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EMPIRICAL LIKELIHOOD METHODS WITH
WEAKLY DEPENDENT PROCESSES1

BY YUICHI KITAMURA

University of Minnesota

This paper studies the method of empirical likelihood in models with
weakly dependent processes. In such cases, if the likelihood function is
formulated as if the data process were independent, obviously empirical
likelihood fails. We propose to use empirical likelihood of blocks of obser-
vations to solve this problem in a nonparametric manner. This method of
‘‘blockwise empirical likelihood’’ preserves the dependence of data, and the
resulting likelihood ratios can be used to construct asymptotically valid
confidence intervals. We consider general estimating equations, for which
an efficient estimator is derived by maximizing blockwise empirical likeli-
hood. We also introduce ‘‘blocks-of-blocks empirical likelihood’’ to conduct
inference for parameters of the infinite dimensional joint distribution of
data; the smooth function model is used for such cases. We show that
blockwise empirical likelihood of the smooth function model with weakly
dependent processes is Bartlett correctable. A wide variety of problems,
such as time series regressions and spectral densities, can be treated
using our methodology.

1. Introduction. The method of empirical likelihood, introduced by
Ž .Owen 1988 , is a technique which has many parallels with the bootstrap.

Both are based on nonparametric likelihood; while the bootstrap assigns 1rN
probability mass to each observation, the empirical likelihood method
‘‘chooses’’ probability mass under linear constraints. The former uses simula-
tions, while the latter uses numerical calculation to obtain confidence inter-
vals. These confidence intervals calculated by the two methods share similar

wŽ . xproperties. In fact, as Hall 1992 , page 161 puts it, empirical likelihood
provides confidence regions ‘‘that have coverage accuracy properties at least
comparable with those of bootstrap confidence regions.’’ Efron and Tibshirani
Ž . w1993 provide a nice discussion on the two methods see also Hall and La

Ž .x Ž .Scala 1990 . Chen 1994a compares the power of the two methods in the
context of mean parameter tests in terms of higher order asymptotics.

Empirical likelihood has been studied extensively in the literature because
of its generality and effectiveness. It has many applications: smooth function

w Ž . Ž .xmodels, regression models Owen 1991 , Chen 1993, 1994a, b , generalized
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w Ž .x w Ž .xlinear models Kolaczyk 1994 , quantiles Chen and Hall 1993 , biased
w Ž .x Ž . wsample models Qin 1993 , general estimating equations GEE Qin and

Ž .xLawless 1994 , to name a few. Recent studies suggest desirable properties of
Ž .empirical likelihood; see DiCiccio, Hall and Romano 1989, 1991 , DiCiccio

Ž . Ž .and Romano 1989, 1990 and Hall 1990 , for example. The empirical likeli-
hood ratio statistic has much in common with its conventional parametric
counterpart. In particular, it has a chi-squared limiting distribution as in
Wilk’s theorem. Furthermore, its confidence interval is Bartlett correctable;

Ž y2 .thus the coverage error can be reduced to the order of O N .
It should be noted, however, that the existing literature seems to focus on

independent data generating processes. If one wishes to use empirical likeli-
hood for general stationary time series, it seems that a new device is called
for. To realize the problem of empirical likelihood in a dependent data setting,
consider the following simple example. Suppose the researcher’s parameter of
interest is the mean u of identically distributed random vectors X , t s0 t
1, . . . , N. Treating X as if they were independent, the empirical likelihood fort
u is the value of the likelihood of the multinomial distribution ŁN pts1 t

Ž .maximized under the constraints Ý p s 1 and Ý p X s u . Let L u denotet t t t t
the maximum value. Without the second constraint, clearly the likelihood is
maximized at the empirical distribution p s 1rN for all t, thereby yield-t

y1 Ž .ing the estimate X s N ÝX . Writing this L X , the empirical likelihoodt
ratio is

R u s L u rL X .Ž . Ž . Ž .
Under mild regularity conditions, the following approximation result can be
shown to hold for possibly dependent processes:

y1y2 log R u s N X y u 9S X y u q o 1 ,Ž . Ž .Ž . Ž .0 0 0 p

y1 Ž .Ž .where S s N Ý X y u X y u 9. If in fact X is iid, clearly the abovet t 0 t 0 t
likelihood ratio statistic is asymptotically chi-squared distributed. If, how-

Ž .ever, X is a dependent and stationary process, the matrix S provides at
' Ž . Ž .‘‘wrong metric’’ for the score N X y u ; S converges to Var X in probabil-0 t

` Ž .ity, instead of the desired term Ý Cov X , X . In this case the empiricaly` t tyj
likelihood method fails.

Obviously this failure occurs because the empirical likelihood was con-
structed ignoring the dependence structure of the data. In this aspect, again
there is a similarity between the empirical likelihood and the bootstrap. Since

Ž .the remark by Singh 1981 , it has been recognized that independent resam-
pling generally leads to results which are not consistent if dependence is
present in the data series. One possible remedy is to fit a parametric model
Ž .typically, an ARMA model so that the transformed innovations become iid;
such a parameterization is often too restrictive, and the result can be quite

Žsensitive to the specification of the unknown data dependence structure. In
fact, the problem of dependent processes in empirical likelihood can be

.treated in the same way, leading to the same problem. Thus the recent
studies of the bootstrap in stationary time series mainly utilize blockwise
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w Ž . Ž . Ž .resampling see Hall 1985 , Carlstein 1986 , Kunsch 1989 and Buhlman¨ ¨
Ž .xand Kunsch 1993 , which preserves the dependence property of the data¨

nonparametrically by appropriately choosing blocks of data.
Observing the close connection between the empirical likelihood and the

bootstrap, one might conjecture that the blocking technique could be effec-
tively adapted to the method of empirical likelihood. In this paper we show
that this conjecture is correct. Empirical likelihood of blocks of observations,
not observations themselves, is proposed. We shall call it the method of

Ž .blockwise empirical likelihood. The sample blocking allows us to treat weak
dependence of time series in a nonparametric way.

Our methodology is quite general. Its applications include the following.

1. Time series regression. In this example the parameter of interest is the
coefficient vector in the following regression model:

Y s X u q « , t s 1, . . . , N ,t t t

�Ž .4 Ž .where X , « is weakly dependent and E X « s 0.t t t t
� 42. Spectral density. Consider a weakly dependent time series X , with thet

Ž .jth autocovariance g j . The parameter of interest is the spectral densityX
� 4 w x Ž .y1 ` Ž . yi v jof X at the frequency v g yp , p : u s 2p Ý g j e .t jsy` X

Ž .Note that example 1 deals with a parameter of a finite dimensional
Ž .distribution, and example 2 is concerned with a parameter of an infinite

dimensional joint distribution.
The paper is organized as follows. In Section 2 some basic concepts that

will be used repeatedly throughout this paper are laid out. Section 3 consid-
ers the empirical likelihood for GEE, originally analyzed by Qin and Lawless
Ž .1994 in an iid framework, and extends their results to blockwise empirical
likelihood with weakly dependent processes. This model is chosen because of
its extreme generality. The weak consistency and the asymptotic normality of
the maximum blockwise empirical likelihood estimator are proved and vari-
ous likelihood ratios are shown to be asymptotically chi-squared approx-
imable. In Section 4 the smooth function model is discussed. We first show
that we can conduct empirical likelihood-based inference regarding parame-
ters of the infinite-dimensional joint distribution of the data series by using
‘‘blocks of blocks’’ techniques. Then we show that the blockwise empirical
likelihood ratio statistic is Bartlett correctable. Section 5 offers some conclu-
sions. Proofs of theorems are included in the Appendix.

2. Weak dependence and data blocking. In this section we state
some important concepts that are used throughout the subsequent develop-
ment. In this paper we allow for weakly dependent processes; in particular,

� 4we consider the following form of dependence. Throughout the paper, Xt
denotes an R d-valued stationary stochastic process, satisfying the following
strong mixing condition:

a k ª 0, k ª `,Ž .X
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Ž . < Ž . Ž . Ž . < 0 ` nwhere a k s sup P A l B y P A P B , A g FF , B g FF and FF sX A, B y` k m
Ž . ` Ž .1y1r cs X : m F i F n . Further, we assume Ý a k - ` for some con-i ks1 X

stant c ) 1.
We use blocking methods that have been used in the bootstrap literature;

Ž .the reader is referred to Politis and Romano 1992 for an example. Let M
Ž 1r2 . Ž .and L be integers that depend on N, where M ª `, M s o N , L s O M

as N ª `, and L F M. We let B , i g N be a vector of M consecutivei
Ž .observations X , . . . , X . Note that M is the ‘‘window width,’’Ž iy1.Lq1 Ž iy1.LqM

whereas L is the separation between block starting points. Also define
wŽ . x w xQ s N y M rL q 1, where ? is the integer part of ?. We further consider

Ž .mapping each block by a function f and define ‘‘observations’’ T s f B ;M i M i
we discuss details regarding the T in later sections. Define A s QMrN.i N

We introduce a more general blocking scheme to deal with inference
regarding parameters of the infinite dimensional joint distribution. Define the

Ž .sth ‘‘block of blocks’’ b s B , . . . , B . Then b and h are depen-s Ž sy1.hq1 Ž sy1.hqb

wŽ . xdent on Q or N. Let q s Q y b rh q 1 and a s qbrQ; they are analogsN
of Q and A above.N

( )3. General estimating equations GEE .

Ž .3.1. Overview. Recently Qin and Lawless 1994 considered the applica-
Ž .tion of empirical likelihood to general estimating equations GEE with iid

data. They allow for a situation in which the number of estimating equations
may exceed the number of parameters; such models, often said to be ‘‘over-

widentified,’’ are typical in econometric applications see, e.g., Hansen and
Ž .xSingleton 1982 . They showed that the maximum empirical likelihood esti-

Ž .mator MELE is asymptotically efficient, assuming iid samples. Qin and
Lawless also proposed statistics based on empirical likelihood to test parame-

Žter restrictions and ‘‘overidentifying restrictions’’ i.e., whether the moment
.condition holds or not . In both cases the statistic converges to a chi-squared

distribution, where the degrees of freedom are equal to the number of
Ž .restrictions in the former case or the number of overidentifying restrictions

Ž .in the latter case . In this section we consider the same model, but allowing
for weakly dependent data generating processes.

When the underlying processes are dependent, the original MELE point
estimator is indeed consistent under regularity conditions, but not efficient if
the model is ‘‘overidentified.’’ More importantly, the empirical likelihood ratio
statistics as originally defined generally are not asymptotically chi-squared

Ždistributed. This is true for other empirical likelihood ratio statistics; see
.Section 1 . We solve these problems by using blockwise empirical likelihood.

3.2. Blockwise empirical likelihood for GEE. Consider the estimating
function f : R d = Q ª R r, which is assumed to satisfy the moment condition

3.1 E f X , u s 0,Ž . Ž .t 0
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where u g Q ; R p is the true parameter and r G p. Instead of considering0
the empirical likelihood of the original estimating functions, we use the

Ž . Ž .function of an observation block T u s f B , u , where B is the ith blocki M i i
of observations as defined in Section 2 and the mapping f : R rM = Q ª R r

M
has the following particular form:

M

3.2 f B , u s f X , Q rM .Ž . Ž . Ž .ÝM i Ž iy1.Lqn
ns1

Though more flexibility would be obtained by considering M-moving averages
with various weights, for simplicity we shall focus on the equally weighted
sum as defined above. The profile blockwise empirical likelihood function is

Q Q Q

3.3 L u s sup p ¬ p ) 0, p s 1, p T u s 0 .Ž . Ž . Ž .Ł Ý Ýi i i i i½ 5is1 1 1

Note that the dependence of p on M and L is suppressed for notationali
Ž .convenience. As in Qin and Lawless 1994 , this optimization problem is

Ž .solved by considering a Lagrangean with multipliers l and g s g , . . . , g 9:1 r

Q Q Q

3.4 LL s log p q l 1 y p y Qg 9 p T u .Ž . Ž . Ž .Ý Ý Ýi i i iž /
is1 1 1

w Ž .xFrom the first-order conditions see Qin and Lawless 1994 , it is easily seen
Ž .that the profile blockwise empirical likelihood 3.3 is rewritten as

Q

3.5 L u s 1rQ 1r 1 q g u 9T u ,� 4� 4Ž . Ž . Ž . Ž . Ž .Ł N i
is1

Ž . Ž . Q Ž Ž ..where g u is a stationary point of the function q g s yÝ log 1 q g 9T u .N 1 i
w Ž . Ž . xIf the conditioning set for 3.3 is empty, we simply let L u s y` . If we

Ž . Ž . Ž .further assume that ÝT u T u 9 is of full rank, q ? is shown to be strictlyi i
Ž . wconvex, implying that g ? is a continuously differentiable function. SeeN

Ž . Ž .Owen 1990 and Qin and Lawless 1994 , for these and other basic properties
xof empirical likelihood. We define the maximum blockwise empirical likeli-

ˆŽ .hood estimator as the maximizer of 3.5 , which is henceforth denoted by u .
We can also define various useful statistics using blockwise empirical

likelihood. Let L denote the empirical likelihood without constraints, thatF
is, empirical likelihood evaluated at the empirical M-dimensional marginal
F s Qy1ÝQd where d denotes the point mass at x g R M. The blockwiseQ 1 B xi

empirical log-likelihood ratio is then defined as

Q

y2 log L u rL s 2 log 1 q g u 9T u ,Ž . Ž . Ž .Ž . Ž .ÝF N i
1
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which could be used to construct a likelihood ratio statistic to test the
Ž .moment condition 3.1 :

Q
y1 ˆ ˆ3.6 LR s 2 A log 1 q g u 9T u .Ž . Ž . Ž .Ž .Ý0 N N i

1

Notice the presence of the factor Ay1, which is necessary to obtain the properN
Ž .chi-squared asymptotics see the next section . Intuitively, this is an adjust-

ment factor for the effect of overlapped use of observations, and it disappears
when there is no overlap.

Next, suppose we are interested in the following parametric hypothesis:

3.7 H : C u s c ,Ž . Ž .0 0

q <where c g R , q F p and D s ­ Cr­u 9 is of full row rank. Now we maxi-u0

ˆcŽ .mize the profile likelihood 3.3 under the above constraint to obtain u and
ˆcŽ .L u . In exactly the same manner as in the likelihood ratio statistic for a

conventional fully parametric model, we let

y1 ˆc ˆ3.8 LR s y2 A log L u rL u ,Ž . Ž . Ž .Ž .1 N

Ž .in order to test the parametric hypothesis 3.7 .
Ž .Note that LR is a blockwise version of Qin and Lawless’ 1994 W ; as we0 1

shall see immediately, LR is asymptotically chi-squared distributed due to0
the blocking technique. Similarly, the second statistic LR is a blockwise1

Ž .version of ‘‘ELR’’ in Qin and Lawless 1995 , who considered estimating
equations with p s r.

Ž .3.3. Asymptotic results. Qin and Lawless 1994 showed the asymptotic
normality of MELE for GEE in the Ny1r3 neighborhood of u , in an iid0
setting. We prove the consistency and the asymptotic normality of our
blockwise version of MELE with weakly dependent processes. In the proof we

ˆshow the weak consistency of u , utilizing the classical argument developed by
Ž . Ž . Ž .Wald 1949 and Wolfowitz 1949 . Let G z, d be an open sphere with center

5 5z and radius d ; ? denotes the Euclidean norm.

THEOREM 1. Assume:

Ž .i The parameter space Q is compact;
Ž . Ž .ii u is the unique root of 3.1 ;0
Ž . 5 ŽUiii For sufficiently small d ) 0 and h ) 0, E sup f X ,u g GŽu , d . t

U .5 2Ž1qh .u - ` for all u g Q;
Ž .iv If a sequence u , j s 1, 2, . . . converges to some u g Q as j ª `,j

Ž . Ž .f x, u converges to f x, u for all x except perhaps on a null set, which mayj
vary with u ;

Ž . Ž .v u is an interior point of Q and f x, u is twice continuously differen-0
tiable at u ;0
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Ž . Ž y1r2 N Ž .. Ž .vi Var N Ý f X , u ª S ) 0 N ª ` ;ts1 t 0

Ž . 5 Ž .5 2 c
Uvii E f x, u - ` for c ) 1 defined in Section 2, E sup0 u g GŽu , d .0

5 Ž U .5 2q« Ž 1r2y1rŽ2q« .. Uf x, u - K, M s o N for some « ) 0, E supu g GŽu , d .0
5 Ž U . 5 2 5 2 Ž U . 5U­ f x, u r­u 9 - K and E sup ­ f x, u r­u ­u 9 - K for all j,u g GŽu , d . j0

Ž . Ž .where K - ` and f x, u denotes the jth element of f x, u ;j
Ž . Ž .viii D s E ­ f x, u r­u 9 is of full column rank.0

Then

1r2 ˆN u y u V 0Ž .0 uª N 0, ,dy1 1r2 0 Vž /ž /ˆ g� 0M N g u y 0Ž .Ž .N

Ž y1 .y1 y1� y14where V s D9S D and V s S I y DV D9S .u g u

REMARK. The assumptions made here are by no means the weakest
Ž .possible. For example, assumption i could be replaced with a weaker condi-

tion at the expense of greater complexity.
It is easy to check that asymptotic normality holds for Qin and Lawless’

maximum empirical likelihood estimator without blocking; however, its
Ž y1 .y1 y1 y1asymptotic covariance matrix has the form D9W D D9W SW =

Ž y1 .y1 Ž . Ž .D D9W D where W s E f x, u f x, u 9. Therefore such an estimator is0 0
ˆasymptotically less efficient than u . In fact, our V coincides with the asymp-u

wtotic covariance matrix of the GMM estimator with optimal weighting see
Ž .xHansen 1982 , defined as the minimizer of

y1ˆ3.9 f u 9S f u ,Ž . Ž . Ž .

y1 ˆŽ . Ž .where f u s N Ý f x , u and S is a consistent estimator of S. Note thatt
ˆour blockwise MELE u is, to the first order approximation, the solution to the

y1'Ž . Ž . Ž .first order condition DSf u s o 1r N , where D s N Ý ­ f x , u r­u 9p i 0
y1 Ž . Ž . Ž .and S s Q MÝT u T u 9. When L s 1 the ‘‘fully overlapped’’ case , thei 0 i 0

Žmatrix S is a nonparametric estimator of S which is the spectral density
Ž . .matrix of f x , u at the origin with the Bartlett kernel and the truncationt 0

parameter M; if we allow for various weighting patterns in the definition of
f , we would obtain other kernel estimators. These estimators are fre-M

ˆ Ž .quently used to calculate S of 3.9 in applications of GMM. If L ª ` as
N ª `, S corresponds to the spectral density estimator using the time-aver-
aged subsample periodogram, which is extensively studied by Zhurbenko
Ž . Ž . Ž .1979, 1986 ; see also Welch 1967 , Priestley 1981 and Politis and Romano
Ž .1993b .

THEOREM 2. Suppose all the assumption in Theorem 1 hold. Then:

Ž . 2i LR ª x ;0 d ryp
Ž . 2ii Under H , LR ª x .0 1 d q
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Ž .REMARK. As in Qin and Lawless 1995 , it is possible to consider other
test statistics that are asymptotically chi-squared distributed. Define, for

Ž .example, the Wald and Lagrange multiplier LM -type statistics:

y1
ˆ ˆ ˆ ˆ ˆWald s N C u y c 9 DV D9 C u y c ,Ž . Ž .Ž . Ž .ž /u

y2 ˆc ˆ ˆ ˆ ˆcLM s M Ng u 9DV D9g u ,Ž . Ž .N u N

ˆ ˆ ˆwhere D, D and V are consistent estimates of D, D, and V ; these can beu u
ˆ Ž .obtained by using the unconstrained estimator u Wald statistic or the

ˆc Ž . wconstrained u LM statistic in place of the unknown u see also Kitamura0
Ž . Ž .xand Stutzer 1995 and Imbens, Johnson and Spady 1996 . It can be shown

that these statistics have the same chi-squared limiting distribution with q
degrees of freedom in the same manner as the results in Theorem 2.

4. Smooth function model.

4.1. Blockwise empirical likelihood for the smooth function model. Con-
Ž . p r Ž .sider the smooth function model u s H m , where u g R and m g R p F r .

Ž . d M rAs in Politis and Romano 1992 , let f : R ª R denote the mapping ofM
Ž .blocks of observations and define the ‘‘estimating function’’ T s f B . Leti M i

QT s Ý T rQ.is1 i
In the case where the parameter of interest is a smooth function of the

parameters of the finite dimensional distributions of the data, it suffices to
consider the blockwise empirical likelihood for u :

Q Q Q

4.1 sup p ¬ p ) 0, p s 1, H p T s u .Ž . Ł Ý Ýi i i i i½ 5ž /is1 1 1

However, in order to cover inference for the infinite dimensional joint distri-
bution, we need to use the ‘‘blocks of blocks’’ technique. Let F : R r b ª R r beb

Ž . ba mapping such that F b s Ý T rb, where the notation intro-b s is1 Ž sy1.hqi
Ž .duced in Section 2 is used. We then use the double array of new observa-

Ž .tions U s F b to construct the ‘‘blocks of blocks’’ empirical likelihood:s b s

q q q

4.2 L u s sup p ¬ p ) 0, p s 1, H p U s u .Ž . Ž . Ł Ý Ýs s s s s½ 5ž /ss1 1 1

Note that U implicitly depends on N. To deal with a parameter of a finites
Ž .m- dimensional marginal in this framework, simply let M s m and L s 1;
the rest of our theory remains valid. The maximum value of the empirical

yq ˆ Ž .likelihood function without restriction is q at u s H U , where U s
Ýq U rq. Hence the blockwise empirical likelihood ratio statistic isss1 s

y1 ˆ y1 q4.3 LR u s y2a log L u rL u s y2a log q L u .Ž . Ž . Ž . Ž .Ž . Ž .Ž .N N
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y1 Ž .The factor a s Qrqb adjusts the effect of overlaps in blocks; see 3.6 andN
Ž . Ž . Ž .3.8 . The statistic 4.3 can be used to test the hypothesis H : u s u s H m0 0 0
using asymptotic chi-squared criteria, as the next theorem implies. It should
be noted that some of the assumptions made in the theorem are essentially

Ž .the same as assumptions used in Politis and Romano 1992 .

THEOREM 3. Assume:

Ž . y1i L s A M for some A G 1;
Ž . Ž . Ž 1r2 .ii b ª `, h s O b and b s o Q ;
Ž . 5 5 2 ciii E T - K for c ) 1 defined in Section 2, some K - ` and all M;i
Ž . Ž y1r2 .iv ET s m q o Q ;i 0

Ž . Ž . Ž .'v Var Q T ª L as Q ª ` N ª ` ;
Ž . r p Ž < .vi H: R ª R is continuously differentiable and rank ­ Hr­m9 s p.m0

Then

LR u ª x 2 .Ž .0 d p

w Ž .xREMARK. We need the ‘‘constant-overlapping’’ scheme Assumption i to
� 4ensure the strong mixing properties of T . This condition is automaticallyi

satisfied when we construct the empirical likelihood for parameters of finite
Ž . Ž .m dimensional marginals, with M s m, L s 1 and A s m. Assumption i
is also essentially important to show the Bartlett correctability in a weakly
dependent framework.

Ž . wThe extension of the above to the homogeneous mixing random field see
Ž . xRosenblatt 1985 , for example might be of interest. In such cases, we need to

take rectangles of observations, instead of the blocks used in the time series
case. Bootstrapping for the random field using blocking techniques has been

w Ž .studied in the literature see Politis and Romano 1993a and the papers cited
xtherein and the consistency of such techniques has been proved. Such

bootstrapping methods are basically an extension of the blockwise bootstrap-
ping for weakly dependent time series. The blockwise empirical likelihood for
the smooth function models may be generalized in a similar fashion.

4.2. Bartlett correction. In iid settings, the Bartlett correction of the
empirical likelihood ratio statistic in the smooth function models was devel-

Ž .oped by DiCiccio, Hall and Romano 1991 ; see Corcoran, Davison and Spady
Ž . Ž .1995 for more information. It should be noted that Mykland 1995 showed a
general Bartlett-correctability result using the concept ‘‘dual likelihood.’’ In
Mykland’s analysis, continuous time models are allowed, but martingale
properties are maintained. In contrast, we confine ourselves to discrete time
models, but our data generating process may not be martingale. Note that
there is no need for blocking martingale difference sequences. As will be
shown below, the empirical likelihood for the smooth function model with
weakly dependent observations is Bartlett correctable if a particular data
blocking scheme is used and additional regularity conditions are satisfied.
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This section studies blockwise empirical likelihood for the smooth function
Ž .models introduced in Section 4.1; see 4.1 . In particular, we consider the

Ž . 1r3nonoverlapping blocking method, such as Carlstein’s 1986 with MrN ª
C, 0 - C - `, as N ª `. Though more flexibility could be allowed, here we
limit ourselves to a discussion of this blocking method, which simplifies our
proof.

We define the Bartlett correction factor for the blockwise empirical likeli-
hood ratio, modifying the formula for the Bartlett factor derived by DiCiccio,

Ž . Ž y1r2 N . y1r2Hall and Romano 1991 . Let S s Var N Ý X and S T s J sN ts1 t N i i
Ž 1 r . Ž . Ž .J , . . . , J 9. For a sequence of d integers satisfying 0 - k 1 - ??? - k d si i
k, k G 3, define

k j1 ? ? ? jk Ž1. , jk Ž1.q 1 ? ? ? jk Ž2. , jk Ž2.q 1 ? ? ? jk Ždy1. , jk Ždy1.q 1 ? ? ? jk Žd .˜
s Qy1 E My1 M k Ž1.J

j1 ??? J
jk Ž1.Ý ½ ž /iŽ1. iŽ1.

Ž . Ž .1Fi 1 , . . . , i d FQ

= M k Ž2.J
jk Ž1.q 1 ??? J

jk Ž2.ž /iŽ2. iŽ2.4.4Ž .

= ??? M k Žd .J
jk Ždy1.q 1 ??? J

jk Žd . 5ž /iŽd . iŽd .

= I max i p y i q F k y 2 ,Ž . Ž .½ 5
p , q-d

� 4where I ? denotes the indicator function. For the special case where d s 1,
we sometimes use the notation

Q
j jj ? ? ? j y1 ky1 1 k1 kk s Q E M J ??? JŽ .Ý i i

is1

s E M ky1J
j1 ??? J

jk .Ž .i i

Our Bartlett factor is

a s py1 2 t q 2 t q t q 2 t q t q 2 t q 2 tŽ 1a 1b 1c 2 a 2 b 3a 3b

qt q 2 t q 2 t q t q 2 t q t ,.3c 4 a 4 b 5 6 a 6 b

where

1 r y1r2m s m , . . . , m 9, m s S m ,Ž . 0 N 0

1r2 l k l j j1 kH m s H S m , H s ­ H m r­m ??? ­m ¬ ,Ž . Ž .Ž .N j ? ? ? j msm1 k 0

y1
i=H s H , G s =H =H9 , W s D H9G =H , N s =H9 G ,Ž .ž /j

t s 1r3 k jk lk m , n , oW joW k mW ln ,Ž . ˜1a

t s 3r8 k jk , lk nm , oW joW k mW lnŽ . ˜ ˜1b

y 5r6 k jk lk m n , o W jmW k nW l o q W joW k mW lnŽ . Ž .˜
q 8r9 k jk lk m noW jmW k nW l o ,Ž .
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t s 1r4 k jk lk m n , oW jmW k oW lnŽ . ˜1c

q y2r3 k jk lk m n , o q 2r9 k jk lk m no W jmW k nW l o ,Ž . Ž .� 4˜

t s 3r8 k jk , lk m n , oW jlW k mW noŽ . ˜ ˜2 a

q y5r6 k jk lk m n , o q 4r9 k jk lk m no W jkW lmW no ,Ž . Ž .� 4˜

t s 1r4 k jk , lk m n , o y 1r3 k jk lk m n , o W jmW k lW noŽ . Ž .� 4˜ ˜ ˜2 b

q 1r9 k jk lk m noW jmW k lW no ,Ž .
t s y1r2 k jk , l , mW jmW k l ,Ž . ˜3a

t s 3r8 k jl , k m q k jk l , m y 3r4 k jk lm W jkW lm ,Ž . Ž .� 4˜ ˜3b

t s 1r4 k jk , lmW jlW k m ,Ž . ˜3c

m k nljk l ju ut s 1r2 k N H I y W I y W ,Ž . Ž . Ž .4 a m n

m k nljk , l ju ut s y k N H I y W I y W ,Ž . Ž .˜4 b m n

jk lm jl k muv u vt s 1r4 G H H IyW IyW q2 IyW IyW ,Ž . Ž . Ž . Ž . Ž .� 45 jk lm

m njk , l jk l ju u k lt s y1r4 k q 1r3 k N H I y W W ,� 4Ž . Ž . Ž .˜6 a m n

m njk , l jk l ju u k lt s y 1r2 k q 1r3 k N H I y W W .� 4Ž . Ž . Ž .˜6 b m n

Repeated subscripts are used to denote summations as the conventional
Žnotation. Note that the coefficients defined above depend on M and Q or N,

.in general .
In addition to the assumptions made in Theorem 3, in the rest of this

wsection, we assume the validity of the Edgeworth expansions Bhattacharya
Ž .xand Ghosh 1978 that are required to show the coverage error results stated

Ž .below. Gotze and Hipp 1983 showed the validity of Edgeworth expansion for¨
Ž .sums of dependent processes assuming 1 the existence of sufficiently many

Ž . Ž .moments, 2 a conditional Cramer condition and 3 the random processes
are approximated by other exponentially strong mixing processes that satis-
fies a Markov type condition. Note that we assume the validity of Edgeworth

Ž .expansions for sums of strong mixing blocks of data. Davison and Hall
Ž .1993 used an Edgeworth expansion for sums of data blocks to analyze the

wbootstrap of Studentized statistics with dependent processes see also Lahiri
Ž .x1991, 1992 .

Ž .In the derivation of our coverage error results, we assume that a m FX
ceyd m for all m, where c and d are positive constants. This can be relaxed,

Ž .since Gotze and Hipp’s 1983 results only require that the observations are¨
L -approximable by some ‘‘base’’ random sequence that has exponentially1
decaying mixing coefficients. In fact, Theorems 1, 2 and 3 also can be proved
to hold under somewhat weaker conditions, under which observations are
approximated by some mixing processes. Such conditions are introduced by

Ž . Ž .Ibragimov 1962 and Billingsley 1968 ; various laws of large numbers and
central limit theorems are available for such processes.
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In the Appendix we shall show that

4.5a P LR u F z s P x 2 F z q O Ny2r3 .� 4Ž . Ž . Ž .� 40 p

Moreover,

4.5b P LR u 1 y Ny1a F z s P x 2 F z q O Ny5r6 .Ž . Ž . Ž . Ž .� 4 � 40 p

That is, the blockwise empirical likelihood ratio statistic is Bartlett cor-
rectable. The coverage error of confidence intervals is improved up to the

Ž y5r6. y2order of O N . This rate is slower than the rate of N obtained for the
wstandard empirical likelihood assuming iid samples DiCiccio, Hall and

Ž .xRomano 1991 , since our nonparametric treatment of dependence slows it
wdown. A similar phenomenon is observed for the blockwise bootstrap; see,

Ž . xe.g., Gotze and Kunsch 1996 . Nevertheless, these results demonstrate that¨ ¨
Ž .the Bartlett-corrected empirical likelihood with blocking is a powerful and

accurate method. It would be possible to extend the above results to blocks-
Ž . � 4 � 4of-blocks empirical likelihood 4.2 . In this case we would replace T and Xi i

� 4 � 4with U and T .s i
In practice, the Bartlett factor a needs to be estimated; this could be done

by replacing unknown population parameters with their estimates using
sample moments of T , or by the bootstrap. This replacement does not affecti
the conclusion of the above result.

5. Conclusions. By using blocks to capture the weak dependence of
data, we have seen that the method of empirical likelihood could be applied to
models with strong mixing time series. Our approach is nonparametric, and
thus is expected to be rather immune from specification errors. In practical
applications, we need to select block length and the length of time shift. The
sensitivity of our method to the choice of these parameters needs to be
investigated.

APPENDIX

PROOF OF THEOREM 1. First, it can be shown that

A.1 g u ª 0,Ž . Ž .N 0 p

Ž .by following the argument in the proof of Owen 1990 ; use weak laws of large
Ž . Ž .numbers WLLN and a central limit theorem CLT for strong mixing
w Ž .xprocesses see, e.g., Ibragimov and Linnik 1971 , which hold under the

mixing rate and moment conditions assumed here, in place of the classical
Ž .WLLN and CLT. In place of equation 2.5 of Owen’s proof, we make use of

5 Ž .5 Ž 1r2 y1.the fact that max T u s o N M with probability 1, which followsQ i 0
Ž . Ž .from Lemma 3.2 of Kunsch 1989 and assumption vii . By using Owen’s¨

5 Ž .5 Ž 1r2 .argument, it is shown that g u s O MrN , which implies the con-N 0 p
Ž .sistency of g u .N 0
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ˆ Ž .In what follows we show that u , which is the maximizer of 1rQ Ý yi
Ž Ž . Ž .. � 5 Ž .5 1rŽ2q2h .log 1qg u 9T u , is consistent. Define C s x: f x, u FN , allN i N

4 Ž . Ž . � 4 Ž . w Ž Ž ..xu g Q , and f x, u s f x, u I C . Let q g s E ylog 1 q g 9 f X , uN N u , N N t
Ž . Ž . Ž .for small g. Then lim ­r­ g q g s E f x, u uniformly in g gN ª` u , N

Ž y 1rŽ2q h .. � y 1rŽ2q h . 5 5 4 Ž .G 0, N . Let G s g : g s N u, u s 1 , g u sN N
w Ž Ž ..x Ž . Ž . 5 Ž .5argmin E ylog 1 q g 9 f X , u and u u s g u r g u . Using theg g G N t N N NN

mean value theorem, the minorant is approximated by
1rŽ2qh . 5 5A.2 E yN log 1 q g u 9 f X , u s y E f x , u q o 1 ,Ž . Ž . Ž . Ž . Ž .Ž .N N t

Ž . Ž . 5 Ž .5 Ž .with lim u u s E f x, u r E f x, u . By assumption iv ,N ª` N

lim lim N 1rŽ2qh .E sup ylog 1 q g u U 9 f X , u UŽ . Ž .Ž .N N t
UNª` d x0 Ž .u gG u , dA.3Ž .

s y E f x , u .Ž .
Ž . Ž .By assumption ii and A.3 , there exist a finite number of open spheres

Ž . Ž . Ž .G u , d , j s 1, . . . , h, that cover the set Q d s QrG u , d , where the smallj j 0
numbers d are chosen so thatj

N 1rŽ2qh .E sup y log 1 q g u U 9 f X , u U q o 1 s y2 H ,Ž . Ž . Ž .Ž .N N t j
U Ž .u gG u , dj j

j s 1, . . . , h ,
Ž .for positive numbers H , j s 1, . . . , h. Note assumption iii implies thatj

5 Ž U .5 Ž 1rŽ2q2h ..Umax sup f X , u s o N with probability 1 as N ª `t u g GŽu , d . tj

w Ž .xsee Lemma 3 of Owen 1990 . Thus there exists a sufficiently large integer
N such that for small « ) 0,j

P 1rN sup y log 1 q g u U 9 f X , u U ) yNy1rŽ2qh .HŽ . Ž . Ž .Ž .Ý N t j½ 5
U Ž .u gG u , dt j j

- «r 2h , j s 1, . . . , h ,Ž .
w Ž . Ž . xfor all N ) N note f ?, ? , not f ?, ? , is used . These h inequalities implyj N

P sup 1rN y log 1 q g u U 9 f X , u U ) yNy1rŽ2qh .HŽ . Ž . Ž .Ž .Ý N t½ 5
U Ž .u gQ d t

- «r2, H s min H ,j
j

Ž .for all N ) max N . Now note that the optimality of g u impliesj j N

1rQ y log 1 q g u 9T uŽ . Ž . Ž .Ž .Ý N i
i

F 1rN y log 1 q g u 9 f X , u q o MrN .Ž . Ž . Ž . Ž .Ž .Ý N t p
t

Therefore there exists a sufficiently large integer N such thatA

P sup 1rQ y log 1 q g u U 9T u U ) yNy1 Ž2qh .HŽ . Ž . Ž .Ž .Ý N i½ 5
UA.4Ž . Ž .u gQ d i

- «r2.



EMPIRICAL LIKELIHOOD 2097

for all N ) N . Notice thatA

yg u 9 1rQ T u F 1rQ y log 1 q g u 9T u F 0,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý ÝN 0 i 0 N 0 i 0
i i

Ž 1r2 . Ž y1r2 . Ž y1r2 .where the first term is O MrN O N s o N . Thus there ex-p p p
ists a large integer N such thatB

A.5 P 1rQ y log 1 q g u 9T u - yNy1r2H - «r2Ž . Ž . Ž . Ž .Ž .Ý N 0 i 0½ 5
i

ˆŽ . Ž . � Ž .4for all N ) N . By A.4 and A.5 , for any small d , P u g G u , d G 1 y «B 0
ˆŽ .for all N ) max N , N ; thus u ª u .A B p 0

The asymptotic normality follows by the Taylor expansion of the first-order
Ž .condition just as in Qin and Lawless 1994 , Theorem 1, with some modifica-

tions. Let
Q

y1l u , g s Q T u r 1 q g 9T u ,Ž . Ž . Ž .Ž .Ýg i i
is1

Q
y1l u , g s Q ­ T u r­u 9 9gr 1 q g 9T u .Ž . Ž . Ž .Ž . Ž .Ýu i i

is1

Also define

l u , g s ­r­g l u , g , l u , g s ­r­g l u , gŽ . Ž . Ž . Ž . Ž . Ž .gg g ug u

and
l u , g s ­r­u l u , g .Ž . Ž . Ž .uu u

Ž . Ž .As in Qin and Lawless 1994 , the consistency and assumption v imply the
following FOCs:

ˆ ˆl u , g s 0, l u , g s 0,ˆ ˆŽ . Ž .g u

ˆŽ . Ž .where we write g s g u . Expanding these equations around u , 0 , we getˆ N 0

0 s Qy1N 1r2ÝT u q Ml u U , g U N 1r2My1 g y 0Ž . Ž . Ž .ˆi 0 gg

U U 1r2 ˆq l u , g N u y u ,Ž . Ž .gu 0

U U 1r2 y1 y1 U U 1r2 ˆ0 s 0 q l u , g N M g y 0 q M l u , g N u y u ,Ž . Ž . Ž .ˆ Ž .ug uu 0

U U ˆ U UŽ . Ž . Ž . Ž .where u , g is on the line segment joining u , g and u , 0 , hence u , gˆ 0

Ž . 5 U 5 Ž 1r2 .ª u , 0 , and in particular g s O MrN . By using the last result,p 0 p
Ž . Ž .assumption vii and Kunsch’s 1989 Lemma 3.2, the argument of the proof¨

Ž . UX Ž U . Ž .of Theorem 1 by Owen 1990 shows that max g T u s o 1 . Using1F iF Q i p
this result, we obtain

M
U U U UMl u , g s Ý y T u T u 9 q o 1Ž . Ž . Ž . Ž .gg i i pQ

ª y S,p
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Ž . Ž .since assumptions v ] vii , ergodicity and stationarity imply that
y1 Ž U . Ž U . Ž U U .MQ ÝT u T u 9 converges to S in probability. Similarly, l u , g ªi i gu p

y1 Ž U U .D and M l u , g ª 0. Following Qin and Lawless’ argument, theuu p
theorem is proved. I

QŽ . Ž . Ž .PROOF OF THEOREM 2. i Let T u s Ý T u rQ. By the asymptoticis1 i
y1 1r2 y1 1r2 ˆ ˆ'Ž . Ž . Ž .results in Theorem 1, M N g s S N T u q o 1 and N T u ªˆ p d

Ž w x.N 0, S y DV D9 . Then we obtainu

y1 y1 2ˆ ˆ ˆLR s 2 A Ý log 1 q g 9T u s NT u 9S T u q o 1 ª x .Ž .Ž . Ž . Ž .ˆŽ .0 N i p d ryp

Ž . Ž Ž ..ii The Lagrangean for the constrained estimation is LL s log L u q
Ž Ž .. Ž . Ž .z 9 c y C u , where L u is given by 3.5 and z is a vector of Lagrange

multipliers. Under H , the first-order condition for the first term of the0
Lagrangean has the following approximation:

cQ ˆ'N ­ T u r­u 9Ž .i cˆg uŽ .Ý Nc cˆ ˆMQ 1 q g u 9T uŽ . Ž .is1 N i

N N
y1 c y1 y1r2 cˆ ˆs N ­ f X , u r­u 9 9S N f X , u q o 1 .Ž .Ž . Ž .Ý Ýž /t t p½ 5 ½ 5

ts1 ts1

Since the approximation term of the right-hand side is the optimally weighted
estimating functions, the stated chi-squared limiting distributions of likeli-
hood-ratio type statistics are obtained by the conventional argument for

w Ž .xnonlinear dynamic models see, e.g., Gallant 1987 . I

PROOF OF THEOREM 3. It suffices to show the result for the case in which
H is the identity function, since the general case can be treated as in Section

Ž .4 of Owen 1990 . Then we can show the theorem following the argument of
Ž .the proof of Theorem 1 of Owen 1990 . First we check that a CLT holds. Let

Ž .a k denote the strong mixing measure of T . Recall that T depends on MT i i
and L, which in turn depends on N; therefore a implicitly depends on N.T

wŽ . Ž .xAs noted by Politis and Romano 1992 , Lemma 1 b , T is a strong-mixingi
Ž . Ž . 1y1r cŽ .sequence and a k F a kL y M for all k G 2. Then trivially Ý a kT X k T

Ž . Ž .- `, and assumptions i ] iii ensure the CLT for a strong mixing triangular
array

'Q T y m ª N 0, L .Ž .Ž . d

Also note
2q q b

y1y1 y1 y1q U U 9 s bq b T s b L q o 1 .Ž . Ž .Ž .Ý Ý Ýs s Ž sy1.hq1 pž /
ss1 ss1 is1

Using these results, as in Owen’s proof we obtain
y1 y1LR u s a bq U y m 9L U y m q o 1Ž . Ž .Ž . Ž .0 N 0 0 p

ª x 2 . Id p



EMPIRICAL LIKELIHOOD 2099

Ž .DERIVATION OF 4.5a, b . Our derivation heavily relies upon the argument
Ž . Ž .by DiCiccio, Hall and Romano hereafter, DHR 1991 ; see the working paper

w Ž .xversion DHR 1988 , for the details. Throughout our derivation, we assume
that appropriate moment conditions are satisfied.

Let

C j1yj k s T j1 ??? T jk y MyŽ ky1.k j1 ? ? ? jk
i i i

and
Q

j ? ? ? j y1 ky1 j ? ? ? j1 k 1 kK s Q M C .Ý i
is1

First we consider the empirical likelihood for the mean parameter with
Ž .m s 0 and S s I. Define R , R and R as in DHR 1991 with a , A, u , Q0 N 1 2 3

and M replaced by k , K, H, G and W. Then moment bounds by Yokoyama
Ž . Ž . Ž .1980 and Kim 1993 imply that LR u is approximated using R s R q0 1
R q R :2 3

Ny1LR u s R9R q O Ny1 or LR u s NR9R q O Ny2 .Ž . Ž . Ž . Ž .0 p 0

Next we calculate the third and fourth cumulants of R. For our purpose, it
Ž u v w . Ž y7r3. Ž u v w x .is enough to show that cum R R R s O N and cum R R R R s

Ž y17r6.O N . In what follows we derive various moments of R , R and R ,1 2 3
which are functions of K ’s. Moments of K ’s, which are centered sums of

wmixing random variables T , can be expressed in terms of k ’s. Note the kth˜i
order k only involves moments of T ’s within k y 1 consecutive periods; see˜ i

Ž . Ž . xdefinition 4.4 . This is a consequence of the mixing condition iii . To this
end, note

a k F a kL y M F c exp yd kL y MŽ . Ž . Ž .T X

s c exp yd k y 1 MŽ .A.6Ž .
1r3s c exp yd k y 1 NŽ .

Ž . Ž . Ž .for k G 2, by assumptions i and iv . Equation A.6 implies that T is ani
asymptotically 1-dependent process with small asymptotic approximation

Ž .errors. The mixing inequality and A.6 imply formulas as in Step 6 of DHR
Ž .1988 , though they need to be appropriately modified to take account of
serial correlations among T ’s. Moreover, under certain moment conditions,i

j k l 1yr w x w xE T T T - Ca Mr2 q 1 F Cc exp yd 1 y r Mr2 q 1Ž .Ž . Ž .Ž .Ž .i iq1 iq2 X

s O exp yd 1 y r N 1r3r2 ,Ž .Ž .Ž .
where C is a positive constant and r - 1. To see this, notice that third-order

Ž j k l .moments of X , E X X X , say, that appear in E T T T can bei t tqp tqpqq i iq1 iq2
1yrŽw x .bounded uniformly by C9a Mr2 q 1 for some C9 ) 0, using the mixingX

w Ž .x Ž .inequality e.g., Corollary A.2, Hall and Heyde, 1980 , since max p, q )
w x Ž j k l m . Ž Ž Ž . 1r3 ..Mr2 . Similarly, E T T T T s O exp yd 1 y r 9 N r2 for somei iq1 iq2 iq3
r 9 - 1.
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Ž u v w . Ž y7r3.Using the above results, it can be shown that cum R R R s O N .
Ž y7r3. Ž j1 j2 . Ž y1 .The error term of order O N is due to the bias E K s O M

Ž u v w . w Ž . Ž .x j1 ? ? ? jkthrough E R R R see DHR 1988 , equation 3.9 . Note that K ,2 1 1
Ž u v w .k G 3 has no such bias by definition. The expectation E R R R includes2 1 1

Ž jk l m n. wŽ jk jk . l m n x Ž y1 y2 .the term E K K K K s E K y E K K K K q O M N . The
last remainder term does not cancel with any other terms and it determines

Ž y5r2 .the order of the third-order cumulants. Other error terms are O N .
Ž u v w x . Ž y3 .Similar calculations show that cum R R R R s O N .

The above results imply that the third- and fourth-order cumulants of
1r2 Ž y5r6.N R are O N and it can be shown that the sth order cumulant of

� w x4y1 2NR9R E NR9Rrp coincides with that of x up to errors of orderp
Ž y5r6.O N . Given the validity of Edgeworth expansions, we have

w x 2 y5r6P LR u rE NR9Rrp F z s P x F z q O N .� 4Ž . Ž .� 40 p

Ž . y1Finally, a straightforward calculation shows that E NR9R s p q N a q
Ž y5r6. Ž . Ž Ž . .O N , which implies 4.5 . Recall a s O M . For the general case

1r2Ž . Ž . Ž .S / I, we replace H l with H l s H S l , and the desired resultN N
follows. I
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