
The Annals of Statistics
1996, Vol. 24, No. 5, 2097]2107

ON ADMISSIBILITY AND OPTIMALITY OF
TREATMENT–CONTROL DESIGNS

BY DIBYEN MAJUMDAR

University of Illinois, Chicago

The relationship between admissible incomplete block designs for
confidence intervals with maximal coverage probability for treat-
ment]control contrasts and optimal designs for estimation is investigated.
For certain types of designs, admissible designs are shown to be precisely
those with the number of replications of the control less than or equal to
that of an optimal design. Moreover, admissible designs are the Bayes
optimal designs for a class of priors.

1. Introduction. There are two widely studied approaches to arriving at
optimal block designs for comparing a set of test treatments with a control.

Ž .One approach, introduced by Bechhofer and Tamhane 1981 , is to find a
design that maximizes the coverage probability of simultaneous confidence
intervals for the control]test treatment contrasts. The other is a Kiefer-style
approach of identifying a design that gives the best estimators for these
contrasts; the most widely accepted criterion being A-optimality which mini-
mizes the sum of the variances of the estimators.

While the relationship between the two approaches has been discussed by
w Ž .several authors cf. Hedayat, Jacroux and Majumdar 1988 , and the discus-

x Ž .sions , including Spurrier 1988 , who felt that the optimal designs from one
approach would perform well under the other, we know of no attempt to
investigate rigorously the connection between the two. In this paper we
attempt to explore some aspects of the relationship. We show that for a
certain type of design that has been studied in the literature, the admissible
designs for the confidence interval approach are precisely those that enjoy a
certain relation with an optimal design for estimation. Moreover, the set of

Ž .admissible designs is the set of Bayes optimal designs for estimation under
squared error loss, for a certain class of priors.

We assume that v test treatments labelled 1, . . . , v have to be compared
Ž .with the control labelled 0 in b blocks of size k 2 F k F v each. The

observation y , in plot p of block j, that receives treatment i will bei j p
assumed to be normal and follow an additive, homoscedastic linear model:

1.1 E y s m q a q b , V y s s 2 , y ’s uncorrelated,Ž . Ž . Ž .i j p i j i j p i j p
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where a and b are the treatment and block effects, respectively. Let us usei j
Ž . ŽDD v q 1, b, k to denote the set of all connected designs. For d g DD v q

. Ž .1, b, k , let n be the number of occurrences of treatment i 0 F i F v indi j
Ž . bblock j 1 F j F b and r s Ý n .di js1 di j

Ž .A design d is called a balanced treatment incomplete block BTIB design
w Ž . xBechhofer and Tamhane 1981 , henceforth abbreviated as BT if

b b

n n s l , n n s lÝ Ýd0 j di j d0 di j di9 j d1
js1 js1

for all i, i9, i / i9 for some l and l . In the incomplete block context, BTIBd0 d1
designs are the same as the designs with supplemented balance of Pearce
Ž .1960 . Let

DD v q 1, b , k s d : d g DD v q 1, b , k , d is a BTIB design .� 4Ž . Ž .2

Ž .For d g DD v q 1, b, k ,2

Var a y a s s 2t 2 , Corr a y a , a y a s r ,ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .di d0 d di d0 di9 d0 d

where
k l q lŽ .d0 d121.2 t sŽ . d l l q vlŽ .d0 d0 d1

and
ld1

r s ,d l q ld0 d1

where a y a is the BLUE of a y a .ˆ ˆdi d0 i 0
Ž .For d g DD v q 1, b, k the coverage probability for simultaneous confi-2

Ž . 2dence intervals of the a y a ’s is a function of t , r and drs , where d isi 0 d d
Ž .the specified ‘‘yardstick’’ equation 5.1 of BT given by

Pr a y a G a y a y d , i s 1, . . . , v .ˆ ˆŽ .0 i d0 di

In general, it is difficult to determine an optimal design by this approach.
wŽ . xHowever, Bechhofer and Tamhane 1981 , Definition 5.2 proposed an admis-

sibility criterion which is very useful. In the original definition of admissibil-
ity, v and k were fixed, but b was allowed to vary. In order to compare with

Ž .A-optimal designs in DD v q 1, b, k we have to adapt the definition to classes
of designs with v, b, k fixed. This is done next.

Ž . Ž .For d , d g DD v q 1, b, k , d is inadmissible with respect to d d % d1 2 2 2 1 1 2
if, for every drs , the coverage probability given by d is no larger than that2
given by d and is smaller for some drs . A characterization of d % d for1 1 2

Ž . Ž .d , d g DD v q 1, b, k BT, Theorem 5.1 is1 2 2

1.3 t 2 F t 2 , r G r with at least one inequality strict.Ž . d d d d1 2 1 2

If d % d , then d need not be considered in the search for optimal1 2 2
Ž .designs in DD v q 1, b, k . Tables of admissible designs for k s 3, 3 F v F 10,2

Ž .are given in Notz and Tamhane 1983 and for k s 4, 5, k F v F 10; v s k s 6
Ž .are given in Ture 1982, 1985 .
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Ž .For the estimation problem, A-optimal designs in DD v q 1, b, k , for many
Ž . wŽ . xv, b, k ’s were given by Majumdar and Notz 1983 , Theorem 2.2 . An

v Ž .A-optimal design is one that minimizes Ý Var a y a . To describeˆ ˆis1 d0 di
Ž . Ž .these designs we use the notation, due to Stufken 1987 , BTIB v, b, k; t, s to

Ž . � 4denote a design d in DD v q 1, b, k with the properties n g 0, 1 for2 di j
i s 1, . . . , v, j s 1, . . . , b, n s ??? s n s t q 1, n s ??? s n s t.do1 do s do sq1 dob

� 4 � 4Here t g 0, 1, . . . , k y 1 and s g 0, 1, . . . , b y 1 . Using x to denote the? @
largest integer less than or equal to x, we define

22h r s rrb b q b rrb y r q r y b rrb rrb q 1 ,Ž . ? @ ? @ ? @ ? @Ž . Ž . Ž .
g r s vr r y h r rkŽ . Ž .Ž .

2q v y 1 r b k y 1 y r k y 1 rk y r y h r rk rv .Ž . Ž . Ž . Ž .Ž .Ž .
w xLet R be an integer in the interval 1, bkr2 , defined by

1.4 g R s min g r : r s 1, . . . , bkr2 .� 4Ž . Ž . Ž . ? @

Ž .Let d* denote a BTIB v, b, k; t, s with r s R.d*0
Majumdar and Notz showed that, whenever it exists, d* is A-optimal in
Ž .DD v q 1, b, k . Thus R can be viewed as the ‘‘optimal replication of the

control.’’
Let

DD v q 1, b , kŽ .1

� 4s d : d g DD v q 1, b , k , n g 0, 1 , i s 1, . . . , v , j s 1, . . . , b ,Ž .� 42 di j

DD v q 1, b , kŽ .0

s d : d g DD v q 1, b , k , d is BTIB v , b , k ; t , s for some t , s .� 4Ž . Ž .2

Clearly,

DD v q 1, b , k > DD v q 1, b , k > DD v q 1, b , k > DD v q 1, b , k 2 d*.Ž . Ž . Ž . Ž .2 1 0

Ž .We derive several inadmissibility results for designs in DD v q 1, b, k in1
Ž .Section 2, and an admissibility result for designs in DD v q 1, b, k in Section0

Ž3. In particular, we show that whenever the design d* exists, d g DD v q0
.1, b, k is admissible if and only if r F R. Admissibility, A-optimality anddo

Bayes A-optimality are linked in Section 3.

2. Inadmissible designs. In this section we will identify some designs
Ž .in DD v q 1, b, k that are inadmissible. First, some notation. For j s 1, . . . , b1

Ž .and d g DD v q 1, b, k , let
v

m s k y n s n .Ýd j do j di j
is1

Ž .THEOREM 2.1. Let d , d g DD v q 1, b, k such that1 2 1

2.1 t 2 F t 2Ž . d d1 2
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and
b b b b

2 22.2 m m G m mŽ . Ý Ý Ý Ýd j d j d j d j1 1 2 2
js1 js1 js1 js1

Ž . Ž .with at least one inequality 2.1 or 2.2 strict. Then d % d ; hence, d is1 2 2
inadmissible.

Ž .PROOF. For any d g DD v q 1, b, k ,1

l q l s l q v y 1 l y v y 2 lŽ . Ž .d0 d1 d0 d1 d1

s r k y 1 y v y 2 lŽ . Ž .d1 d1

mv d jbŽ .since r s ??? s r for d g DD v q 1, b, k . Also l s Ý . Hence,d1 d v 1 d1 js1ž / ž /2 2

Ý m2 y Ý md j d j
r s ,d 2k y 1 v y 1 Ý m y v y 2 Ý m y Ý mŽ . Ž . Ž . Ž .d j d j d j

which is increasing in Ý m2 rÝ m . Hence the theorem. Id j d j

Ž .Note that 2.1 means that d is better than d by the criterion of1 2
A-optimality. We may say that d is ‘‘ A-better’’ than d .1 2

Ž .COROLLARY 2.1. Suppose d is a BTIB v, b, k; t, s design and d is a1 2
Ž . Ž .BTIB v, b, k; x, z design such that 2.1 holds and r ) r . Then d % d .d 0 d 0 1 22 1

PROOF. Let us write g s k y t y 1 and h s k y x y 1. Note that r sd 01
? @bt q s, r s bx q z, t s r rb and x s r rb . Clearly, r ) r im-d 0 d 0 d 0 d 0 d 02 1 2 2 1

plies g G h. From Theorem 2.1 it follows that we have to show

y122sg q b y s g q 1 sg q b y s g q 1Ž . Ž . Ž . Ž .
y122G zh q b y z h q 1 zh q b y z h q 1 ,Ž . Ž . Ž . Ž .

that is,

szgh g y h q s b y z g h q 1 g y h y 1Ž . Ž . Ž . Ž .
q b y s z g q 1 h g q 1 y hŽ . Ž . Ž .2.3Ž .
q b y s b y z g q 1 h q 1 g y h G 0.Ž . Ž . Ž . Ž . Ž .

Ž . Ž . ŽIf g G h q 1, 2.3 is obviously true. If g s h, then 2.3 reduces to g g q
. Ž .1 b z y s G 0, which is true since r - r . It is easy to see that thed 0 d 01 2

Ž .inequality 2.3 is strict unless g s h s 0. In this case, the relations g s h s 0
Ž .and z ) s imply that inequality 2.1 is strict. I

Using the A-optimal design d* and the quantity R defined in Section 1
w Ž .xsee 1.4 , we get the following corollary.
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Ž .COROLLARY 2.2. Suppose the class DD v q 1, b, k is such that d* exists.
Ž .Then any BTIB v, b, k; x, z design d with r ) R is inadmissible.2 d 02

EXAMPLE 2.1. Suppose v s 7, k s 5 and b s 35. We will represent de-
Ž . � 4signs in DD v q 1, b, k by k = b arrays with entries from 0, 1, . . . , v with

Ž .columns as blocks. Let A i s 1, 2, 4 be a i = 7 array with all entries 0 andi
Ž .let A be a 3 = 21 array with entries 0. Let d be a BIB 7, 7, 3, 3, 1 design,3 1

Ž . Ž .d be a BIB 7, 7, 4, 4, 2 design and d be a BIB 7, 21, 6, 2, 1 design based on2 3
Ž .treatments 1, 2, . . . , v. The notation BIB v, b, r, k, l stands for a balanced

incomplete block design with parameters v, b, r, k and l. Let d s4
Ž . Ž .1, 2, 3, 4, 5, 6, 7 be a 1 = 7 array. An A-optimal design in DD 8, 35, 5 is

A A A A A2 1 1 1 1d* s .ž /d d d d d1 2 2 2 2

Hence, by Corollary 2.2, all of the following designs are inadmissible:

A A A A A2 2 1 1 1d s ,1 ž /d d d d d1 1 2 2 2

A A A A A2 2 2 1 1d s ,2 ž /d d d d d1 1 1 2 2

A A A A A2 2 2 2 1d s ,3 ž /d d d d d1 1 1 1 2

A A A A A2 2 2 2 2d s ,4 ž /d d d d d1 1 1 1 1

A A A3 4 4d s .5 ž /d d d3 4 4

For d ,6

A A A4 3 1d s ,6 ž /d d d4 3 2

Corollary 2.2 is not applicable, but a direct application of Theorem 2.1 shows
that d is inadmissible.6

DEFINITION 2.1. A block j of a design d is called trivial if n s k fordi j
� 4some i g 0, 1, . . . , k .

Ž . 0 ŽIf d g DD v q 1, b, k has some trivial blocks, then a design d g DD v q2
.1, b, k obtained from d by replacing each trivial block by any nontrivial

Žblock has a bigger in the sense of nonnegative definite partial order, or
. 0Lowner order Fisher information matrix than d; hence, d gives better¨

Ž .inferences on the a y a ’s than d. For a given d, however, there may existi 0
0 Ž .no d in DD v q 1, b, k .2
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Ž .COROLLARY 2.3. Suppose the BTIB design d is A-best in DD v q 1, b, k .1 1
Ž .Suppose d g DD v q 1, b, k is a design with no trivial block such that2 1

b b
2m m ) k q 1 y bkr bk y r .Ž .Ý Ýd j d j d 01 1 2

js1 js1

Then d is inadmissible.2

PROOF. This follows from Theorem 2.1 by replacing the right side of
Ž . binequality 2.2 by the supremum over the m ’s subject to Ý m s bk yd j js1 d j2 2

r , r fixed. A conservative evaluation of the supremum is obtained whend 0 d 02 2
� 4m g 1, k . Id j2

Ž .EXAMPLE 2.1 continued . Setting d s d* in Corollary 2.3, we see that1
Ž .any d g DD 8, 35, 5 with no trivial block and r G 94 is inadmissible.1 d 02

Ž . Ž .EXAMPLE 2.2. If a BTIB v, b, k; t, 0 design is A-best in DD v q 1, b, k ,1
Ž .then it follows from Corollary 2.3 that any BTIB design d in DD v q 1, b, k1

Ž .with no trivial block and r ) bktr 1 q t is inadmissible.d0

3. Admissible designs. Establishing admissibility is considerably more
difficult than demonstrating inadmissibility. We will focus on designs in

Ž .DD v q 1, b, k and determine when these designs are admissible. Here ad-0
Ž .missibility is in the entire set DD v q 1, b, k of BTIB designs, that is, we2

Ž . Ž .seek d g DD v q 1, b, k for which there is no d g DD v q 1, b, k such that2 0 1 2
d % d . First we need to recall some results on Bayes A-optimal designs,1 2
which will be our tool.

Let Y be the bk = 1 vector of observations y , u s a y a , i s 1, . . . , v,i j p i i 0
Ž . Ž .h s m q a q b , j s 1, . . . , b; u 9 s u , . . . , u , h9 s h , . . . , h . We assumej 0 j 1 v 1 b

that

m B* 0uu<Y u , h ; N X u q X h , E ; ; N , ,Ž .1d 2 hž / ž /mž /ž /0 Bh

for some E, m , m , B*, B; X and X are obtained from the model foru h 1d 2
Ž . Ž . w Ž .xE y in 1.1 . A Bayes A-optimal design is one see Owen 1970 thati j p

minimizes the posterior expected loss. We will work with the squared error
ˆ ˆ ˆ 2Ž . Ž . Ž . Žloss L u , u s u y u 9 u y u . For the special case, E s s I homoscedastic

. y1 Ž . Ž 2 .errors , B* s 0 vague prior on u and B s s ra I for some a ) 0, the
Ž .Bayes A-optimal design d minimizes tr D over d g DD v q 1, b, k , wherea d

y1 X2 y13.1 s D s M a s diag r , . . . , r y k q a N N ,Ž . Ž . Ž . Ž .d d d1 d v d d

Ž . w Ž .xwhere N s n see page 221 of Majumdar 1992 . Ifd di j is1, . . . , v, js1, . . . , b
Ž . Ž .d g DD v q 1, b, k or if d g DD v q 1, b, k with the property r s ??? s r ,1 2 d1 d v
Ž . Ž .then M a is completely symmetric c.s. , but if d is any other BTIB designd

Ž . Ž .in DD v q 1, b, k , then M a need not be c.s. Nevertheless the symmetrized2 d
Ž . Ž .version, M a s Ý P M a P9rv!, where the sum is over all permutationd d
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y1Ž .matrices P of order v, is c.s.; hence, M a can be easily evaluated. Thed
following lemma is proved in the Appendix.

Ž . Ž .LEMMA 3.1. a For d g DD v q 1, b, k and a ) 0,2

y1 23.2 tr M a F t f r ,Ž . Ž . Ž .d d d

where

f r k 1 y r q a 1 q v y 2 r 1 q v y 1 r q a 1 q v y 2 rŽ . Ž . Ž . Ž .Ž . Ž .d d d d d

w xs v k q a 1 q a 1 q v y 2 r 1 y r 1 q v y 1 rŽ . Ž . Ž .Ž .d d d

Ž .and a s ar k y 1 .
Ž . Ž . Ž .b If d g DD v q 1, b, k , 3.2 is an equality.1
Ž . Ž .c f 9 r - 0 for r ) 0,d d

where f 9 denotes the derivative of f.

Ž .Let d be a BTIB v, b, k; t, s design with r F R. Suppose d is inad-2 d 0 22
Ž . Ž .missible, that is, there is a d g DD v q 1, b, k such that 1.3 holds. It1 2
Ž .follows from Theorem 4.3 of Majumdar 1992 that d is a Bayes A-optimal2

design for some a ) 0. Hence, from the statement and proof of Corollary 3.1
Ž .and Theorem 3.1 of Majumdar 1992 it follows that, for this a ,

y1 y1 y1tr M a s tr M a F tr M a .Ž . Ž . Ž .d d d2 2 1

Ž . Ž .This together with parts a and b of Lemma 3.1 implies

3.3 t 2 f r F t 2 f r .Ž . Ž . Ž .d d d d2 2 1 1

Ž . Ž .On the other hand, 1.3 together with part c of Lemma 3.1 implies

t 2 f r ) t 2 f r ,Ž . Ž .d d d d2 2 1 1

Ž .which contradicts 3.3 . Hence d is admissible.2
We have proved the following theorem:

Ž .THEOREM 3.1. A BTIB v, b, k; t, s design d with r F R is admissible ind0
Ž .the class DD v q 1, b, k of BTIB designs.2

Note that we do not need existence of the design d* for Theorem 3.1. If it
does, then we can combine Theorem 3.1 and Corollary 2.2 to get the following
corollary:

Ž .COROLLARY 3.1. If d* exists, then a BTIB v, b, k; t, s design d is admissi-
Ž .ble in DD v q 1, b, k if and only if r F R.2 d0

REMARK 3.1. Corollary 3.1 can be extended to certain classes of designs
for which d* does not exist. This extension is based on the fact that the
function g defined in the introduction has the property: for r - r F R,1 2
Ž . Ž . Ž . Ž . wg r ) g r and for R F r - r , g r - g r see Theorem 2.2 of Cheng,1 2 1 2 1 2
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Ž .x ŽMajumdar, Stufken and Ture 1988 . If R - R is such that a d** g DD v ql 0
. w x1, b, k exists with r s R and for all r g R q 1, R , where R G R isd**0 l 0 l 0 0

Ž . Ž . Ž . Ž .such that g R F g R - g R q 1 , there is no design d g DD v q 1, b, k0 l 0 0
Ž .with r s r , then d** is A-best in DD v q 1, b, k . Using Corollary 2.2 andd0 0 0

Ž .Theorem 3.1 it follows that d g DD v q 1, b, k is admissible if and only if0
r F R.d0

There are many design classes where the situation described in Remark
3.1 occurs, as shown in the next example.

� ? @EXAMPLE 3.1. Suppose k s 3 and v s 5. Then R g 0.949b , 0.949b q? @
4 Ž .1 . Consider design classes DD 6, b, 3 with b s 10a, for integers a in the

w Ž .range 1 F a F 10. It can be shown that DD 6, b, 3 contains a design with0
Ž . xr F b only if b ' 0 mod 10 . Here b y 5 F R - b. For a s 9, 10, d* exists;do

hence, Corollary 3.1 applies. For a s 5, 6, 7, 8, d* does not exist, but the
Žconditions of Remark 3.1 hold with R s b y 5 and d** s BTIB 5, 10a, 3;l

. Ž .0, b y 5 , which exists. Thus, for 5 F a F 10, a design d g DD 6, 10a, 3 is0
admissible if and only if r F R. For 1 F a F 4, neither Corollary 3.1 nord0

Ž .Remark 3.1 applies; any d g DD 6, b, 3 is admissible if r F R, by Theorem0 d0
3.1, and inadmissible if r ) b s 10a, by Corollary 2.1, since ad0

Ž . Ž .BTIB 5, 10a, 3; 1, 0 exists. The only unresolved case in DD 6, 10a, 3 is d s0 0
Ž .BTIB 5, 10a, 3; 1, 0 for which r s b. It follows from Theorem 2.2 of Cheng,d 00

Ž .Majumdar, Stufken and Ture 1988 that, for 1 F a F 4, there is no design
Ž .d g DD 6, 10a, 3 , with r F b y 5 or r G b such that d % d holds. If1 2 d 0 d 0 1 01 1
Ž .d g DD 6, 10a, 3 satisfies b y 5 - r - b, the impossibility of d % d is1 2 d 0 1 01

likely to involve lengthy computations which will not be attempted here. It is
Ž .our belief that d is admissible in DD 6, 10a, 3 . Admissible designs in classes0

Ž .DD 6, b, 3 with b ) 100 can be characterized similarly.0

ŽREMARK 3.2. If a BIB design in all the v q 1 treatments exists in DD v q
. Ž Ž ..1, b, k , then it is a BTIB v, b, k; 0, bkr v q 1 design d, with r - R.d0

Hence it is admissible.

Ž . 2 2Ž .If d is a BTIB design, then, for i / i9, Var a y a s 2s t 1 y r sˆ ˆi i9 d d
2 Ž .2s krg , say, where g s l q vl . For d , d g DD v q 1, b, k we shalld d d0 d1 1 2 2

say that d $* d if2 1

3.4 t 2 F t 2 and g G g with at least one inequality strict.Ž . d d d d1 2 1 2

Ž .A design d will be called )-inadmissible if there exists a d g DD v q 1, b, k2 1 2
Ž .for which 3.4 holds.

Ž .It is clear that for d , d g DD v q 1, b, k , d $ d implies d $* d .1 2 2 2 1 2 1
Hence Corollaries 2.1 and 2.2 hold for )-admissibility. The following re-
sult, which is proved in the Appendix, shows that Theorem 3.1 holds for
)-admissibility.
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Ž .THEOREM 3.2. A BTIB v, b, k; t, s design d with r F R is )-admissibled0
Ž .in the class DD v q 1, b, k of BTIB designs.2

It follows that Corollary 3.1 also holds for )-admissibility, that is, if d*
Ž . Ž .exists, then a BTIB v, b, k; t, s design d is )-admissible in DD v q 1, b, k if2

and only if r F R.d0

REMARK 3.3. The criterion )-admissibility is desirable from an estimation
Ž .viewpoint since if 3.4 holds, then d gives better estimators than d for the1 2

treatment]control contrasts, as well as the treatment]treatment contrasts
Ž .hence all elementary treatment contrasts . The close connection between
admissibility and )-admissibility could be a possible explanation for the close
relationship between the two approaches to obtaining optimal designs.

REMARK 3.4. The Bayes A-optimal designs described in this article are
w Ž .xalso optimal G-minimax designs see Corollary 3.1 of Majumdar 1992 .

Ž .When d* exists, it follows from Theorem 4.3 of Majumdar 1992 that as a
w x Ž .varies in 0, ` , the subset of DD v q 1, b, k formed by Bayes A-optimal0

designs consists of designs with r F R. We have thus shown that when d*d0
Ž .exists, the admissible designs in DD v q 1, b, k are precisely the set of Bayes0

Ž .A-optimal as well as optimal G-minimax designs. This parallels well-known
results in decision theory on the correspondence between admissible and
Bayes decision rules.

APPENDIX

Ž . Ž . Ž . Ž . ŽPROOF OF LEMMA 3.1. a For d g DD v q 1, b, k , k q a M a s m y2 d 1
.m I q m J, where I is the v = v identity matrix, J is a matrix of ones,2 2

Ž .m s yl and m s k q a r y j , where vr s bk y r and vj s2 d1 1 d d d d0 d
v b 2 wŽ . xÝ Ý n . Using Rao 1973 , page 67 ,is1 js1 di j

v k q a k q a r y j y v y 2 lŽ . Ž . Ž .d d d1y1tr M a s .Ž .d k q a r y j y v y 1 l k q a r y j q lŽ . Ž . Ž .d d d1 d d d1

y1Ž . Ž . Ž .ŽSince kr y j s l q v y 1 l , we can write tr M a s v k q a A qd d d0 d1 d
.Ž .y1Ž .y1 Ž . Žaj rk B q aj rk C q aj rk , where B s 1 q ark l q v yd d d d0

.1 al rk, A s B q l and C s B q vl . It can be shown thatd1 d1 d1
y1Ž . Ž .­ tr M a r­j - 0, since j ) 0. Hence, for a d g DD v q 1, b, k , mini-d d d 2

y1Ž .mum j will give an upper bound to tr M a .d d
v b 2 Ž Ž . .Since vj s Ý Ý n G vr and j s kr y l q v y 1 l , we getd is1 js1 di j d d d d0 d1

A.1 j G l q v y 1 l r k y 1 .Ž . Ž . Ž .Ž .d d0 d1

Ž .Substituting the right side of A.1 in A, B and C, we get, after simplifica-
tion,

v k q a l q l 1 q AŽ . Ž . Ž .d0 d1 1y1tr M a F ,Ž .d l l q vl 1 q B 1 q CŽ . Ž . Ž .d0 d0 d1 1 1
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Ž Ž . . ŽŽ . . Ž .where B s a l q v y 1 l r k y 1 l , A s B l r l q l and1 d0 d1 d0 1 1 d0 d0 d1
Ž .C s B l r l q vl . Further simplification of this expression estab-1 1 d0 d0 d1

Ž .lishes a .
Ž . Ž .b This follows from the fact that A.1 is an equality whenever d g
Ž .DD v q 1, b, k .1
Ž . Ž .c The function f r is the ratio of two polynomials in r . Lengthy butd d

Ž . Ž .straightforward computations show that f 9 r - 0 for all r in 0, 1 . Id d

Ž . Ž .PROOF OF THEOREM 3.2. Suppose d g DD v q 1, b, k , d g DD v q 1, b, k2 1 1 0
and d $* d , that is,2 1

A.2 t 2 F t 2 ,Ž . d d1 2

A.3 l q vl G l q vlŽ . d 0 d 1 d 0 d 11 1 2 2

Ž . Ž .with at least one of A.2 and A.3 strict.
Ž .Case 1: l F l . Then A.3 implies l G l , from which it followsd 0 d 0 d 1 d 11 2 1 2

that d $ d . This contradicts Theorem 3.1.2 1
Case 2: l ) l .d 0 d 01 2

Case 2.1: r - r F R. It follows from Theorem 2.2 of Cheng, Majum-d 0 d 01 2
Ž .dar, Stufken and Ture 1988 that

t 2 G g r ) g r s t 2 ,Ž . Ž .d d 0 d 0 d1 1 2 2

Ž .which contradicts A.2 .
Ž .Case 2.2: r G r . This implies r G r s bk y r rv. Hence,d 0 d 0 d 1 d d 01 2 2 1 1

l q v y 1 l F k y 1 r F k y 1 r s l q v y 1 l .Ž . Ž . Ž . Ž .d 0 d 1 d d 1 d 0 d 11 1 1 2 2 2

Since l ) l , this implies, l q vl - l q vl , which contradictsd 0 d 0 d 0 d 1 d 0 d 11 2 1 1 2 2
Ž .A.3 . I
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