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ON LATIN HYPERCUBE SAMPLING'

By WEr-LiEm LoH
Purdue University and National University of Singapore

This paper contains a collection of results on Latin hypercube sam-
pling. The first result is a Berry—Esseen-type bound for the multivariate
central limit theorem of the sample mean f, based on a Latin hypercube
sample. The second establishes sufficient conditions on the convergence
rate in the strong law for i,,. Finally motivated by the concept of empirical
likelihood, a way of constructing nonparametric confidence regions based
on Latin hypercube samples is proposed for vector means.

1. Introduction. McKay, Beckman and Conover (1979) proposed Latin
hypercube sampling as an attractive alternative to simple random sampling
in computer experiments. The main feature of Latin hypercube sampling is
that, in contrast to simple random sampling, it simultaneously stratifies on
all input dimensions. More precisely, for positive integers d and n, let:

1. m,, 1 <k <d, be random permutations of {1,..., n} each uniformly dis-
tributed over all the n! possible permutations;
2. U 1<iy,...,i;<n,1<j<d,bel0,1] uniform random variables;

U1yeevslgyJ?
3. the Ui:_“,id’ /s and m,’s all be stochastically independent.

A Latin hypercube sample of size n (taken from the d-dimensional hyper-
cube [0, 1]9) is defined to be {X(7,(i), m,(i),..., m;(i)): 1 < i < n}, where for
alll <iy,...,i; <n,

X(iy,.-509) = (i, - U ..,id,j)/” Vi<j<d,

X(ig,oonig) = (Xi(igs o nig), oo Xg(iqg, ..o 1)) "

We remark that no generality is lost in this paper by restricting sampling to
the unit hypercube as long as the sampling distribution of interest is a
product measure [see, for example, Owen (1992), page 543].

In many computer experiments, we are interested in estimating u =
E(foX), where f is a measurable function from %#¢ to %#” and X is
uniformly distributed on [0, 1]¢. Let

M o = X £ X (k). malR), s ).
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Then [, is an unbiased estimator for w. McKay, Beckman and Conover
showed that in a great number of instances with p = 1, the variance of p, is
substantially smaller than that of the estimator based on simple random
sampling. Stein (1987) further proved that the asymptotic variance of f, is
less than the asymptotic variance of an analogous estimator based on an
independently and identically distributed sample. Recently Owen (1992)
showed that the multivariate central limit theorem holds for 4, when f is a
bounded function.

This paper contains a number of results, which we think are of interest in
their own rights, all with the underlying theme being the construction of
asymptotically valid confidence regions for u using Latin hypercube samples.
In particular, Section 2 first shows that the result of Stein (1987), mentioned
in the previous paragraph, generalizes naturally and easily to the multivari-
ate setting (see Theorem 1). Also a Berry—Esseen-type bound (Theorem 2) is
obtained for the multivariate central limit theorem for &, under the finite-
ness of third moments. This gives a “rate” to the asymptotic justification for
the use of the contours of constant probability density of a multivariate
normal distribution as confidence regions for u. We remark that in the special
case of d = 2, this reduces to the classical combinatorial central limit theo-
rem [see, for example, Hoeffding (1951) and Motoo (1957)]. The convergence
rate of the combinatorial central limit theorem was investigated by von Bahr
(1976) and Ho and Chen (1978), and a Berry—Esseen-type bound was ob-
tained by Bolthausen (1984) for univariate linear statistics and Bolthausen
and Gotze (1993) for multivariate statistics.

In Section 3, we establish sufficient conditions on the rate of convergence
in the strong law of large numbers for a, (Proposition 1). The main result
(Theorem 3) shows that [, converges almost surely to u under finiteness of
second moments.

Motivated by the empirical likelihood ratio confidence regions introduced
by Owen (1988, 1990) for independent observations, a way of constructing
nonparametric confidence regions based on Latin hypercube samples is pro-
posed for vector means in Section 4. Theorem 4 provides conditions for the
asymptotic validity of the procedure as well as its convergence rates.

Finally the Appendix contains a number of somewhat technical lemmas
that are needed in previous sections.

Throughout this paper, ¢ will denote a generic constant which only de-
pends on d and p, c¢* denotes a strictly positive generic constant independent
of n, |||l will be the usual Euclidean metric on %#?, ®, is the standard
p-variate normal distribution and, given any measurable function h: #? — %,
we write

(JorlR(2)? dy)?, if0 < q <,

Al = .
! esssup, . g lh(y)l, if g =

Also if x € #P, then x' denotes the transpose of x and if A is some event,
then I{ A} is its indicator function.
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2. Rate of convergence to normality. We shall first show that the
result of Stein (1987) mentioned in the Introduction generalizes naturally
and easily to many dimensions.

THEOREM 1. Suppose E|/fo X||> < «. Let S = Cov( fv,) and 3,y be the
covariance matrix of [, when the X’s are independently and identically
distributed, that is

Sia=n"E(feX—p)(feX—pn).
Then as n — o, we have

2lhs = n711£0 l]dfrem(x)flfem(x) dx + O(nil)’

(2) 2iid = n71 v/[‘()’l]dfrem(x)flfem(x) dx

d
1
17t L) () d
k=1
where for all x = (x,,...,x,) €[0,1]%,

f—k(xk)=/ . [f(x)—;u]l_[dxj,
[0,1]¢-1 Jj*k

(3) d
frem(x) =f(x) - r kglffk(xk)‘

The proof of Theorem 1 is deferred to the Appendix. The following corollary
is an immediate consequence of Theorem 1.

COROLLARY 1. 3, — X, is asymptotically positive semidefinite, that is,
d
3 !’ 1 ! !
r}lmnf (g — Zme) €= 1 fo E'f a(xp)fLp(x)Edx, 20 VEEZP.

Suppose that [; 1j¢frem(%) frem(x) dx is nonsingular. Then it follows from
Theorem 1 that for sufficiently large n, 371/ exists and we define

(4) W= 352 ( B — 1)
The rest of this section is devoted to establishing a Berry—Esseen-type bound

for the rate of convergence of W to the standard p-variate normal distribu-

tion ®,. To do so, we shall make extensive use of the multivariate normal

version of Stein’s method [see Stein (1972, 1986)] as given in Gotze (1991)
and Bolthausen and Gotze (1993). Let

EfoX(iy,..rig) = wlins-rig) V1<iy,...,ig<n,

poa(in) = (/) Y 8 wlins.nniy)

J#ki=1
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and
d

(5) Y(iy,..osig) =n "Zpl?| foX(iy,..sig) = 2 mop(ip) +(d = Dul.
k=1

Then we have W = X | Y(7,(i), m,(0), ..., m,(i)). Next let o/ be a class of
measurable functions from %? — % such that ||g|l.. < 1 for all g .. Also for
g €« and 8§ > 0, define

gi(w) =sup{g(w +y):llyl <8} Vwez?,

g5 (w) = —inf{g(w +y): Iyl <8} Vwez?,

w(g,8) = [ [85(2) ~ & (1], (dy).

We further assume that ./ is closed under supremum and affine transforma-
tions, that is, g €« implies g7 €, g; €« and g-T €« whenever T:
RBP — RP is affine. Assume that there exists a constant y > 0 such that

sup{w(g,8): g ev} <v8, V5§>0.

REMARK. If v > 2\/;) , then & can be taken to be the class of all indicator
functions of measurable convex sets in .#? [see, for example, Bolthausen and
Goétze (1993)].

THEOREM 2. Suppose [ 1)t frem(%) frem(%) dx is nonsingular. Then there
exists a positive constant C, , which depends only on d and p such that for
sufficiently large n,

(6) sup{|Eg(W) — [ g(x)®,(dx)|: g €| <Cy By,
‘%P
where By = (1/11‘“1_1)21&»1 ’’’’’ idSnEIIY(il,...,id)HS.
The following is an immediate corollary.

COROLLARY 2. Suppose Ellf o X|> < @ and [p 114 frem(%) frem(x) dx is non-
singular. Then

sup{‘Eg(W) - fgpg(x)d)p(dx) ‘g GM} <c*n 12,

In order to prove Theorem 2, we first need some preliminary results. For
hevand 0 <t <1, define

(7) xi(wlh) = fﬁp{h(y) — (% + (1= ) w) ), (dy),

1 ds
®) n(w) = 5 [*x(wlh) 7



2062 W.-L. LOH

Then —x(wlh) = h(w) — ®,(h) and x,(wl|h) is a smooth approximation of
Xo(w|h) for small ¢. [Here CDp(h) = Eh(Z), where Z is a random vector having
distribution ®,.] The following two lemmas are due to Gétze (1991) and we
refer the reader to his paper for the proofs.

LEMMA 1. For 0 < e<land w = (w,,...,w,) €%”, we have
LA P d
9 - — = — h
(9) L Gz (W) = 2w (w) = = (wlk)

and there exists a positive constant c,, depending only on p, such that

¥.2(w) Q(dw)

sup
<i,j,k<p
(10) 1<i,j

<c,& " sup{‘f h(tw +y)Q(dw)‘: 0<t<l,y 63?”}
,%p

fgp dw; dw; dw,,

for all finite signed measures @ on %* satisfying Q(%#*) = 0.

LEMMA 2. Let @ be a probability distribution on #* and & > 0. Then

[ g(w)@(dw) ~a,(dw)]|
4 5eya
< g:‘;l}; fg?pX.eZ(wm)Q(dw)‘ + 21— %)

where a® is the 7/8-quantile of the chi-square distribution with p degrees of
freedom.

Proor orF THEOREM 2. Let n, and &, be arbitrary but fixed positive
constants. We observe that the theorem is true if n < n, or B; > ¢,. Hence
without loss of generality, we shall assume that n > n, and B; < ¢, for
positive constants n, > d? and &, to be suitably chosen later. Next we
consider the following combinatorial construction inspired by that given in
Bolthausen (1984). Let (I;,J; ; ,: 1 <i, k <d, 2 <j <d) be a random ele-
ment in {1, ..., n}?" such that:

@ (L, J; ;10 1 <i<d, 2<j<d) is uniformly distributed on
{1,...,ny?¢ 1

() Given(l;,d; ; ;11 <i<d,2<j<d,1<k<k,<d),wesetd ;, .1
= for all 2 <J< d if Liye1 =1 for some 1 < k < k; otherwise J; ; ;, .,
is independently uniformly distributed on {1,...,n}/{J; ; x: 1 <k < k}.
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Let w8,..., 7Y be independent random permutations (each uniformly
distributed on the permutations of {1,..., n}), which are also independent of
{I,,J; ;,:1<i,k<d,2<j<d} Definefor2<i,j<dand1<k<d,

-1
[”}1)] (J5).2)
Jiip= Wi(l)(Lj,k)’
Ji,l,k = Wfl)(Ik)'

Ly
I

Let 1 <iy,...,i4 J1s---»Jg <n and BGi,...,04, J1,---,J4) be a permutation
of {1,..., n} leaving the numbers outside {i,,..., i , j;,---, i} unchanged such
that for each 1 <k <d, i, —j, if i, #i; for all 1 <j <k. Also let 7(i, j)
represent the permutation of {1,...,n} which transposes i and j leaving
other numbers fixed. Now define for 2 <j < d,

L.

2) _ 1
7@ =a®oB(L,1,.... L, Ly, Iy Ly Ly sy Ly, Ly g),

J J, 1>
@) — @
mP = 7] OT(Il,Ij).

Finally define

WO = Y YO(>i,n$(i),...,m(i)) V1<j<3,

i=1

where:

@ YDGy,...,i) =Y(,,...,i,) whenever 1 <i,,...,i; <n.

Gi) Given {(I,, #{(I),...,7w™(I)): 1 <k <d}, YOU,, #P(1,),...,
m{Y(I,)) is an independent replicate of Y (I, w{(1,), ..., w{P(I,)) (which is
also independent of all other previously defined random quantities) for all
1<k <dand

Y®(>i,, .. i) = YO(>iy, ... iy),

Gy, k) & (L, (), ., w1 < b < d).

(i) Given (I,, w$&?(I)),..., m®(I1), YOI, #P(1),..., w{#(1))) is an inde-
pendent replicate of Y @(I,, #*(1)), ..., w$*(I,)) (which is also independent
of all other previously defined random quantities) and

YO iy, ... i) =Y®(iy,....i,),

if Gy, oy iyg) # (I, 7D, ..., m ().

We observe from Lemma 4 (see Appendix) that by choosing &, sufficiently
small, we can without loss of generality assume that with probability 1,

(11) 1Y (iy,..rigll <1 V1<iy,...,ig<n.
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We shall now use an induction argument to prove the theorem by assuming

that (6) holds for all values of n less than the current value now being
considered. Writing W = (W,,..., W,)’, we have for & > 0,

E[ > Wiaimm}
i=1

w;

P J
—E| Y WO — (WS
LZI g )}

p J
E{ ¥ ny®(1y, w;3>(11>,...,wf)(ll))a—w(W(S))}
i=1 w;

p d
=E Z nYi(?’)(Il, J2,2,1>---a Jd,d,l){a_l/jsz(W(Z))
i-1 w;

2

p
L (WO —we), [t
j=1 0

Jw; Jw;

o (W® 4+ t(WE — W) dt}.

By construction, {I;, Jy 5 1,...,Jy 44} and {7$,..., 7*} are independent.
Consequently we have

p d
E Z nYi(S)(Ip Jo 215 Jdaa 1)(9_%2(W(Z)) =0
.2, .d, w,

i=1
and, hence,

p J p 2
12 E W—u (W) — — iy (W)|=R,+R
(12) T W (W) = X (W) | = Ry + Ry,
where

p
R, =E Z {nYi(3)(Il: J2,2,1’--~a Jd,d,l)(W(S) - W(z))j - 6i,j}
i,j=1
2

X ———— (WD),
Jw; Jw; e )

8, ; being the Kronecker delta, and

p
R,=E ). nYi(S)(Il’J2,2,1""’Jd,d,1)(W(3)_W(z))j
i,j=1
2

I 9 (2) 3) _ 2) _ ) @ ‘
! G A WO W) )
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We observe from Lemma 5 (see the Appendix) that by choosing &, sufficiently
small, we have

(13) sup{R, + R,|: h €&} <cBy(1+&7'Cy , Bs).
Now it follows from Lemma 2, (9), (12) and (13) that

(14)  sup |Eg(W) = [ g(x),(dx)

ges
Choosing ¢ = 2¢B; and C, , > 2¢(2¢ + 1) in (14) proves Theorem 2. O

<cBy(1+&7'Cy ,By) +co.

3. Convergence rates in the strong law. Let {f X(7(%),..., m,(k)):
1 <k < n}and 1, be as in (1). We shall study the rate of convergence in the
strong law of large numbers for g,.

PROPOSITION 1. Let a> 1/2, aq > 1 and assume that E(foX) =0 if
a < 1. Then a sufficient condition for

n®?P(llnf,ll = en®) < o Ve > 0,
1

n=

is Ellf o X||7 < oo

The following theorem is the main result of this section. It follows directly
from Proposition 1 and the Borel-Cantelli lemma.

THEOREM 3. Suppose E||f o X||* < . Then || i, — ull = 0 almost surely as

n — o,

Proor oF PropPOSITION 1. Without loss of generality, we assume through-
out this proof that E(f- X) =0 if the expectation exists. Suppose that
E|fo X||? < ». For & > 0, we define as in Erdos (1949) and Katz (1963),

a;, =P(llf XI| > e2*)  Vi>0,
£ (x) = {f(x), if [f(x)ll < en®,

0, otherwise,

and fr=f"— E(f" > X), where 6 satisfies (aqg + 1)/(2aq) < 6 <1, faqg > 1
and 20a > 1. For 2 < n < 2! we write

A, = {IIn,&nll > an“},

AD =A{|Ifo X(m(k),..., my(k))ll = £2¢~ 2 for at least one k < n},
AD ={lIfe X(my(ky),..., my(k))Il = en’,
foX(m(ky),..., my(ky)) > en® for at least two ky, k, < n},
AB® = { Y froX(my(k),...,my(k))| = 82(i_2)“}.
k=1
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We observe that
A, CAD UAD UAD,
Hence to prove the proposition, it suffices to show that
Y n“?P(AY) <o  V1<j<3.
n=1
Since E||f° X||? < « is equivalent to X7_,2'*?a; < », we note that
- w gitl

n“?P(AP) < ), ) n% 22", , <.
-1

n= i=0p,=9!

Next we observe that

Y nea-2p(A®)
1

n=

IA

i n“qP({Hfo X('zrl(l),..., Wd(l))” > enea}
n=1

NI e X(my(2),..., 7,(2))l = en’})
(15) -

en®P2(||f o X|| = en®)
-1

n=

IA

Z C*naq—20aq(E||f0 X”q)Z < o,

n=1

IA

Here the second inequality of (15) follows from an argument similar to that
given in the proof of Theorem 1 and the third inequality uses Markov’s
inequality.

To show 7 _,n% 2P(A®) < =, we first consider the case 0 < ¢ < 1. Then
for ¢ < g + 6 < 1, we have

Y nea-2p(AD)
1

n=

IA

oo
c* Z n—Z—EaE
n=1

kﬁ:lf* ° X(7T1(k),..., mq(k))

q+6}

Next suppose that ¢ > 1. Let ¢* = [q], the smallest integer greater than or
equal to g, and let m be a positive integer satisfying

(16) mq*(2a — 1) > aq — 1.
Since E(f- X) = 0, we observe that for ¢ > 1,
n'"Eff o X|l < n' Ellfo X|[{|If > XIl > en®}

IA

¢* Y p-Déa-1g| £o X9 < o
n=1

1-1/q

<n = {Elfo X7} {P(Ilf o XII > en'))

< C*nlf(iaqf(lfﬁ)a’
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which tends to 0 as n — o. Hence from Markov’s inequality and Lemma 6
(see Appendix), we obtain

Y nea-2p(AD)
n=1

< ) n“qu(

n=1

kilﬁ o X(my(k),...,my(k))

> c*n“)

o

< c* Z naq—2—2maq*E

éf‘* o X(my(k),.., m(R))

qu*}

(17) n=1
o 2mq*_2
<c* ), peaEoEmed y n2ma”/@ma* —i)
n=1 i=2mq*—q*+1
@2mg*—q*)A(2mg*—2) oo S i
+ Y p2ma’/@ma =D E|| ft o X |29 ma*/@ma*=D|
i=0
Now we observe from (16) that
°° @mg*—qg*)A@2mg*—2)
Z ne4-2-2magq* Z n2mq*/@maq*—i
n=1 i=0
~ w2 */(2 *_»)
(18) X(E“F ° X”qu L) mq mq-—1
< c* E n—l—a(l—ﬁ)(qu*—q) < o
n=1
and
o 2mq* -2
(19) Z naq7272maq* Z n2mq*/(2mq*fi) < o,
n=1 i=2mqg*—q*+1

The finiteness of Y:_,n*? 2P(A®) follows from (17), (18) and (19). This
proves Proposition 1. O

4. Nonparametric confidence regions. Owen (1988, 1990) introduced
a method of constructing asymptotically valid nonparametric confidence re-
gions for vector-valued statistical functionals using independent and identi-
cally distributed observations. In this section we shall show that this method
can be readily adaptable to Latin hypercube sampling as well.

Let {fe X(mw(k),...,m,(k)): 1 <k <n} be as in (1), p=E(f-X) and
F={w=(wy,...,w,): T}_w, <1, w, >0 VEk}. Define for 0 <r < 1,
(200 O, ,={ Y w,feX(m(k),...,my(k)):wes, [[nw,>r},

k=1 k=1

(21) Ry(w) = sup [T ni,,
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where the supremum is over w €.% satisfying
n

Y wk[fOX(ﬂ'l(k),...,ﬂ'd(k)) - ,u] = 0.

k=1

REMARK. A very nice discussion of the motivation (in terms of empirical
likelihood ratio) for the preceding construction is given by Owen (1990) in the
context of independent observations. In the case of Latin hypercube sampling,
due to the inherent dependence among the observations, the motivation is
less clear. The main motivation here is that this formulation is mathemati-
cally tractable. Also intuitively, we can think of Latin hypercube samples as a
subset of the set of all possible samples of that size by leaving out the
nonrepresentative ones, that is, those that are not “evenly distributed” over
[0, 1]¢. Since empirical likelihiood ratio confidence regions work remarkably
well for simple random samples, it is plausible that they also perform well for
a smaller more representative subset (for instance, Latin hypercube samples).
However, this is just a heuristic; the final justification rests with the results
of Theorem 4, which give the asymptotic validity as well as the convergence
rates for the procedure.

THEOREM 4. Let {fo X(w(k),...,m,(k)): 1 <k <n} be as in (1) with
w=E(f°X). Also let ©, , be as in (20) for some 0 < r < 1 and let f,.,(x) be
as in (3) such that [y 14 frem(%) frem(x) dx is nonsingular. Then ©, , is a
convex set.

(@) IFEE|f> X||* < «, we have

lim P(p€®,,)=P(ZMY*(M+N) 'MY2Z < —2logr)
(22) "7
> P()((zp) < —2log r),

where Z denotes the random vector having distribution ®,,

M= [ fron(®) Flen() dx,
[0,1]

d
N = kZ folf—k(xk)f,—k(xk) dx),,
-1

with f_,(x,) as in (3) and )((Zp) denotes the random variable having the
chi-square distribution with p degrees of freedom.

(b) Let & be a constant satisfying 0 < & < 1/2. Then if E||f o X||"° < o, we
have

|P( I = ®n,r) - P(Zrzll}{szzi;dl III{SZZ < _210g I")| < c*n‘“l/z,

where 2y, and 3,4 are as defined in Theorem 1.

REMARK. The limit in (22) provides a way of calibrating r to ensure that
0O, . is an asymptotically valid confidence region for u having the desired

n,r

degree of confidence.
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REMARK. The moment conditions in Theorem 4 are probably excessive.
However, under these conditions, the proof of Theorem 4 can be carried out
using essentially only results from previous sections.

ProorF OF THEOREM 4. The convexity of 0, , follows from Jensen’s in-
equality and the observation that (I17_,nw,)'/ " is concave (strictly concave if
n > 2)in w €.% [see, for example, Marshall and Olkin (1979), page 79].

(a) Since u € O, , is equivalent to R,(u) > r, to prove (22) it suffices to
show

lim P(R,(p) =r)=P(Z’MY*(M +N) 'MYV?Z < —2logr).

Define B = {é e#?: ||£]] = 1}. From Lemma 2 of Owen (1990), we have
inf, .z P((foX — w)'é> 0) > 0. Hence it follows from Theorem 3 and the
Glivenko—Cantelli theorem that

sup [P((f+X ~ p)'£>0) —n! ki [ foX(m(k),..., ma(k)) = u] &> 0}
=1

¢eE
-0
almost surely as n — « and thus

n

infn ' Y H[feX(my(k),...,my(k)) — n]'€> 0} > c*

¢eB k=1

almost surely for sufficiently large n. This implies that u is an interior point
of the convex hull of {fe X(7(k),...,m,(k)): 1 <k <n} and R, (u)>c*
almost surely for large n. Using Lagrange multipliers, the solution of (21) is
found to be

(23) nwy, = (1+ v,) "',
where y, = 0'(fo X(mw(k),...,my(k)) — p)forall 1 <k <n and n € #? sat-
isfies
Y (feX(my(k),...,my(k)) — n)/(1+v,) = 0.
k=1
For simplicity we write

S=nt kél[f°X<wl<k),...,wd<k)) — ul[fo X(mk),.... my(R)) — u]'.

Then it follows from Theorem 3 that S~! exists almost surely for large n and
we define

{=n—=8"(f, — n
(24) -

=S L X (mR)s s ma(R) = i/ (1 ).
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Next we note from (23) that

—2log R,(p) =2 )Y log(1 + v;)
k=1

25) = kgl {2y, — v + [21og(1 + v,) — 27, + 2]}

= n(

i
+ ) [210g(1 + ) — 2y, + Ykz]
k=1

\ = 1) (o, — ) - ng'SE

Now we observe as in Owen [(1990), pages 101-102] that n/'S¢ — 0 and
Y [2log(1 + v,) — 2y, + y2] — 0 in probability as n — . Since E|f X||*
< o, it follows from Corollary 2 and Theorem 3 that n'/2( 1, — w) converges
in distribution to M1/2Z and S converges almost surely to M + N as n — .
Thus we conclude from (25) that

lim P(R,(p) =r)=P(Z'MY*(M +N) 'MY?Z < —2logr).

This proves (a).
(b) Clearly the arguments in part (a) apply equally well here. Conditioning
on the occurrence or nonoccurrence of the event

n

Y 2log(1 + v;) — 2y, + 7
k=1

{néwsg < n—1/2} A { < ns—l/Q},

it follows from (25) and Lemma 7 (see Appendix) that
|P(R,(p) =r) — P(Z'SY25:i32Z < —2log 1)

< éinlz,aiil{|P{n( By — ) (n350) T (fr, — p) <26n°7Y2 — 2log r}

~P(Z'SY2SiiSN2Z < 28n° 1% — 2log 1) |
+|P{n( B — m)'S™H(f, — ) <28n° /2 — 2log r}
_P{n(ﬁ«n - /J*),(nziid)il( B, — 1) < 26n°"1/% — 2log ’”}|}
+ c*n® 172,
Since {x € #P: x'S23: 131 2x < 28n°" /2 — 2log r} is a convex set in %P,

we conclude from Corollary 2 that the right-hand side of (26) is bounded by
c*n®"1/2, This proves (b). O
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APPENDIX

LEmMmA 3. Suppose h: [0,1]" > % is a measurable function such that
\hlly < o for some 1 < q < » and

pn(x,h) _ nrf(j1+1)/n"‘ f(Jr+1)/nh(y) dy
Ji/n Jr/n

whenever x € I1/_,[j,/n,(j, + 1)/n) for some 0 <j,,...,j. <n — 1. Then
12 = p,(;Rllg > 0 asn — .

Proor. We refer the reader to Royden [(1988), page 129] for a proof when
r = 1. The proof of the lemma for r > 1 is similar and is omitted. O

REMARK. If A:[0,1]" — %P, then we write

(27) p(x;5h) = (p(x5hy),..., p(x5h,)), Vxe [0,1]".
ProOOF OoF THEOREM 1. We observe that

N3y, = n! i E[f°X(i’772(i)""’7Td(i)) - M]

i=1
X[fOX(i"]Tz(i)"“’Wd(i)) - M],
+nt ZE[fOX(i’WZ(i)""’qu(i)) - :U“]

i#]

X[foX(j,mo(d)s-s m(F)) — 1]

(28)

Define for 0 < s,t < 1,

1, if|ns|=|nt],
0, otherwise,

(29) s.(s.0) = {

where |t| denotes the greatest integer less than or equal to ¢. We further
observe that

[n(n =D LE[feX(i,m5(2),..., ma(i)) — u]

i#]

X[ o X(jsma(f)s s ma( ) = 1)’

d
—nd(n =) [ L) =l [A(9) = p] TT =85, 0] dwdy

!
[0, 1] k

d
= _nd(”_l)id kgl fol v/;)lf—k(xk)f/—k(yk)an(xk’yk) dx, dy, + R, say.
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Thus it follows from Lemma 3 (with ¢ = 2) and (27) that
limn ' Y E[feX(i,my(i),..., my(i)) — p]

n—x® i*j
X[ o X(J,m()ses ma()) — 1]’
n d . .
—lim-nY ¥ fl/" f_k(xk)dxkﬁ/n fou(yy) dy,
(30) n—ow i=1k=1"G-1/n (i—-1/n

n d

=lim —n~ ' ¥ ¥ p,((i = 1) /n5fy)p(( = 1) /5 f_y)
n—® i=1k=1

d
1 !
- Z f fon(xp) fLr(xy) dxy,
k=170
and it can similarly be shown that |[R| < cn 2E||f X |I%. Also we observe from
(3) that
E(foX~ p)(feX —u)

(31) d-
= [ frem(®) frem(x) dx + L [ F4(x0) Li(x,) dxy
[0,11¢ k=170

The theorem now follows from (28), (30) and (31). O

LEMMA 4. With the notation of Theorem 2, without loss of generality, to
prove (6) it suffices to assume that ||Y(i,..., il <1 forall 1 <iy,...,i; <n.

Proor. The following proof is heavily motivated by the truncation-type
argument of Bolthausen (1984), page 382]. Define

Y(iy,..onig), 1Y (iq,...,i9)ll <1/(4d),
0, otherwise,

(32)  Y(iy,...,i) ={

i =EW and W = £2_,Y(mr,(i), ..., m,(i)). We observe by Markov’s inequality
that

P(W+ W) SP( iI{IIY(i,wz(i),...,wd(i))ll >1/(4d)} =1

i=1
(33) <n'"¢ Y P(IY(iy,...,i0) > 1/(4d))
1<iy,..., ig<n
< (4d)’Bs,
and

Il all < n'~4 Y EIY(iy,. i M{IY (i, ..., i)l > 1/(4d)}
(34) 1<iq,..., ig<n
< (4d)”Bs.
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Writing 3 = Cov(W), we further observe that for 1 < i, j < p, [Cov(W )0, =
6, . and

J

8.~ Ei,j = MMy
=E{ ) Yi(a,my(a),..., my(a))Y(a, my(a),. .., m(a))
a=1

xI{Y(a,my(a),..., my(a))ll > 1/(4d)}
- Z Yi(a>772(a)""’77d(a))

a#b

XY (a, my(a),..., my(a))l > 1/(4d))
(35) XY;(b, my(b), ..., my(b))
XY (b, 75(b),..., 7y (b)) > 1/(4d)}

+2 ) Yi(a,my(a),..., my(a))

a#b

x{IY(a,my(a),...,m(a))ll > 1/(4d)}
XY (b, my(b),..., my(b))
=A; — A, +2A,, say.
We note that

1A, < nt™d Y ENY (iyye.sig)IPIIY (iyy ... hig)ll > 1/(4d))
(36) 1<iy,...,ig<n
=< 4d33’

and in a similar way,

(37) A, < (n ’i - )d_l[(4d)233]2 < (n 'i - )d_1(4d)480 Bs.

Also we have from (5),

d
[I’L(I’L— 1)]17d Z Z EYi(il""’id)

k=1 i,+j,

Al <

<IIY (iy, .o i)l > (1/(4d) ity )

[n(n=D]"" X {EY(iy,..., 1)

1<iy,...,ig<n

v=0

d—2
XY (iy, ..o il > (1/(4d)} 2 Z(”)(—l)d_yﬂj(jp---,J'd)}‘,
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where given i;,...,i,, L") denotes the sum over j,, ..., j, with exactly d — v
of the j’s satlsfylng Jk, = lkp-esdp, =i, forsomel <k, < - <k, ,<
d. Consequently, it follows from Holder’s and Markov’s 1nequaht1es that
(38) |As] < en™'Bs.

Since B3 < &, it follows from (34)—(38) that 3 tends to the identity matrix as
&y > 0. Thus by choosing &, > 0 sufficiently small, 3! exists. Next define as
in (5),

EY(iy,...,i5) = i(iy,...,i5) V1<iy,...,iz<n,

Al = (/)T L Ainesia)

J#ki=1

and
d

Y*(il"' yig) =371/2 Y(ll>""id) = X a(iy) +(d =Dl

Now it follows from (32) that for sufficiently small &, > 0,

(39) IV *(iy,..., il <1 V1<iy,...,ij<n,

and

(40) (1/n%" Y Y EIY*(iy,-..,ig)l® < cBy.
1<iy,..., ig<n

Let Z denote the random vector having probability distribution ®,. Then
sup |E[g(W) —g(Z)]|

ge
- Zlelp|E g(W) —g(Z)lW=W|P(W=W)
+E[g(W) — g(Z)|W + W|P(W # W)|
< ::§|E[g(W) —g(2)]|+4P(W # W)
< zgyE[g(W) -8(2)|| +|E[2(2) - g(Z)]| + 4P(W + W),

where Z denotes the p-variate normal random vector having the same mean
and covariance matrix as W. Using (33), the Taylor expansion for the density
of Z and the fact that .« is closed under affine transformations, we have

(41) sup|E[g(W) —g(2)]| < sup|E|g(S"2(W - EW)) —g(2)]| +cBs.
gev gy
Thus it follows from (39), (40) and (41) that to prove Theorem 2 it suffices to

prove (6) under the assumption that [|[Y(i;,...,i )l < 1foralll <iy,...,i; <
n. O
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LEMMA 5. With the notation and assumptions of Theorem 2, we have
R, = 0 and by choosing ¢, sufficiently small, we have

sup{lR,|: h e} < c,83(1 + s’lCd,p,Bs).
PrOOF. From the combinatorial construction of 7’ and Y, 1 <j < 3,

we observe that
P

R, = Z {EnYi(S)(IDJ2,2,1""7Jd,d,1)VVj(3)
i,j=1 N
(42) “ERYOD T Jaa VBV = 0 B (W)
p 2
= i,jZ:I {EnYi(S)(Il’ J2,2,1’ HER) Jd,d,1)Wj(3) - 5i,j}EW‘/’82(W(D)~

We further observe that for all 1 < i, j < p,
(43) EnY®(I,dy 515 dg,0.1) WP = EWOW® = 5, ..

It now follows from (42) and (43) that R, = 0.
For simplicity of notation, we write

Oy, ={J; ;1:2<i=<d,1<j,k<d

13

and Q, = -+ =,. Let # denote the sigma-field generated by (Q; U Q,
VYD, 7§G), ..., 70): i € O, 1 < j < 3}. Then
p
IR,| < Z fl flE nYi(3)(I1, Sy o 150005 Jd,d,l)(W(s) - W(z))j
i,j,k=1"0 70
X(W(2) - WO + t(W(3) - W(2)))k
as
XE —(wgz(W(l) +s(W® — wh)
Jw; dw; dw,,
+st(W® — W®)) = yo(Z, , ))& ||dsdt
e Ll 3 3 2
+ Z f f E nYi( )(Ila J2,2,1a---, Jd,d,l)(W( A ))j
i,j,k=170 "0

X(W(Z) — WO 4 t(W(3) — W(Z)))k

R .
XE[—%Z(Z&L?)@]

Jw; dw; Jwy,

dsdt

=R, +R,, say,
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where given %, Z, , . has the p-variate normal distribution with the same
mean and covariance matrix 3, . as

WO+ s(WS — WD) + st(WS — W)
= ¥ [YO3, #06), .., m(@) + (n - 19,) 'R, ]

i€,

L Vi e(6 7500, miP(0), say,

i€Q,

where R, . is a constant and |Q),| denotes the number of distinct elements
in Q. We note from (11) that 3, .z approximate arbitrarily closely to the
1dent1ty matrix uniformly over 0 < s,¢ < 1 and & by choosing ¢, sufficiently
small [see Bolthausen (1984), page 385, for a similar argument]. Define for all
i, €Q,,1<k<d,

E[V, (i1, ,iIZ] = py.e(it,-- s 1q),
, 1-d : .
Bs, ez, —1(ir) = (n — 1Q4]) DY Mgt o(i1reriyg)

J*k ;EQ;

and

d
V:t,%(il"' i) = Es ¢, % t%(llﬂ""id) - Z lu“s,t,%,fk(ik)
k=1

+(d =Dy |-
Next we observe that
d
(44) (n=10,)"" L ¥ E(IVE e (irs..., i) IPIZ) < By
E=1i,20,
and
(45) E|nYi(3)(Il’J2,2,1a-- Jddl)( W& — Wj(z))|

X (W2 — WO + (WS — Wl) < By

Now it follows from (10), (44), (45), the induction hypothesis and the fact that
& is closed under affine transformations that

sup{R;: h €} <ce 'Cy ,B3.

Finally from (7), (8) and (45), we get R, < c¢fB; [see Bolthausen and Gotze
(1993), page 1703, for a similar argument]. This proves the lemma. O

LEMMA 6. With the notation and assumptions of Proposition 1, we have

"Wd(k))

2mgq
} < c**nA?m?(n),
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where ¢** is a generic constant that depends only on d, p and 2mq* and

2mq” -2  [2ma*@ma*—i) 4 amq*—i\1/(@mq*—i)
Mn)= Y ni/ma@mg l](EIIf o X|| ) .

i=0
qu*}

(46) =E{Z Z (f+OX)i(ﬂ-l(kl)""’qu(kl))

Proor. We observe that

S F e X(m(k), . ma(R)
k=1

s

x(f*oX)i(m(kz),...,wd(kz))} -

On simplification, it can be seen that the right-hand side of (46) can be
expressed as a finite sum (which depends only on p and mg*) of terms each
of the form

I q
4n e T B[] ljl(f“*oX)L,,at(mkt),...,m(kt))

1<k;< - <k;<n (=1

for some ! such that ¢, > 1,1 <i, , <pforalll <t <!and2mq*=X}_ 19;-
Nowif g, >2forall 1 <t <! & observe that the absolute value of 47) is
bounded by

sk 1 x@®
c**n [[O,H,dn nfl,a( )

t=1a,=1

S8

X TT( = 8y(xf, xf?)) da® - dx®

1<r<s

1
]_[ E{If* o X117} < ¢**nA2™"(n),

where §,(x{”, x{*) is as in (29). Next we suppose that there exists a ¢, = 1
for some 1 < ¢ < /. Without loss of generality, assume that q; = - =q, =1
and g, > 2 whenever ¢ > b > 1. Then the absolute value of (47) is bounded by

c**nl

b
oo . o]

t=b+1

(49) )
X{ [T(1—6,(x, x}es)))} dx® - dx®,
1<r<s<l k=1
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Since E(f* o X) = 0, by expanding the third product in (48), we observe that
(48) can be rewritten as a finite sum (which depends only on d and [) of
terms each of which is bounded by

Z*
c**plt l_l E{H]Fr R X“lh*} < c**n)\qu*(n)
t=1

for some [*,q}, where q} > 2 for all 1 <t <[* and Y!_,qf = 2mq*. This
proves Lemma 6. O

LEMMA 7. With the notation and assumptions of Theorem 4(b),
(49) P(n{'S¢>n"1?) <c*n™1/?,

(50) P{

n
Y [2log(1 + v,) — 2y, + ¥2]| > n€—1/2} <c*n 1?2
E=1

and
|P{n( &, — &)'S7'( R, — p) > 28n°" 12 — 2log r}

(51 —P{n( f, — u) (nSsg) (B — p) > 260°7 7% — 210g 7

<c*n® 12,

Proor. We first observe from the definition of Latin hypercube sampling
and also as in Owen [(1990), page 103] that

E{Inl*} <c*n™/  V1<j<3,
(52)
P( max |y,| > 1/4) <c*n~1/2,

1<k<n

Since E|/fo X||' < o, it follows from Proposition 1 that

(53) P( max [(S —n3y), | > n(s/z)_(l/z)) <c*n 12,
1<i,j<p
(54) P(nll,&n — ul?> n‘g/z) <c*n~1/2
and
(55) P( P T o X(m(R), oo ma(B)) =l — BN o X = wlf| > 1
k=1

<c*n~1/2,
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By conditioning on the occurrence or nonoccurrence of {max, _, _,lv,| > 1/4},
it follows form (53) and the definition of ¢ in (24) that for sufficiently large n,

P(n{'S¢>n1?)

< P(II{II2 >c*n~3/?) + c*n /2

n 2
<P {n,_1 Z ||f°X(7T1(k),...,7Td(k)) - ;L||’yk2} > C*n_3/2)
(56) k=1
+ c*n=172
<P rfl||’r)||2 Y NfoX(mi(k),...,m3(k)) — ,U«||3 > c*n3/4)
k=1
+ c*n~1/2,

Thus it follows from (52), (55) and Markov’s inequality that the right-hand
side of (56) is bounded by c*n~!/2, This proves (49).

Again by conditioning on the occurrence or nonoccurrence of the event
{max, _, _ .|y, > 1/4}, we have

P{ Z [210g(1 + Y — 2y, + ykz] > ngl/z}
k=1

< P( Yoyl > e*ne V2| 4 e*n 12
(57) k=1

+ ¢ctpn =172

< P(I|n||3 YollfeX(mi(k),...,mg(R))I°/n > c*ne=3/2
k=1

3 A 3 _ B
SP(”{” + I, — pll° > c*n® 3/2) +oetn-1/2

From (54) and (56), we observe that the right-hand side of (57) is bounded by
c*n~1/2. This proves (50).

Finally observing that matrix inversion is a continuous operation for
sufficiently large n, it follows from (53), (54) and (56) that

P{n(f, — p)'S'(fr, — p) >28n°" 2 - 2log r}
—P{n( f, — 1) (n344) (R, — ) > 28072 — 2log r}
= P{n( i, — 1) (n35) (R, — p) > 28n°" Y2 — 2log r
—n( f, — M)/[S_l - (nziid)_l]( Py — M)}

—P{n( fu, — 1) (n354) (R — p) > 280712 = 2log r}

<c*n V2 + P{n( i, — w) (n35) (A, — ) <2812 — 21og r}
—P{n( o, — :U“),(nEiid)_l( Ry — 1)

< —c*n® 12+ 26n°"12 — 2log r}

< c*n® 12,
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The last inequality follows from Corollary 2 and the observation that {x €.%?:
x' SIS 28 < 26n°71/2 — 2log r} is a convex set in %P. Similarly we
have

P{n(f, — p)'S™'(f, — n) >28n°" 2 - 2log r}
- P{n( By — ) (n350) " (fr, — p) > 26n°" 12 — 2log r} > —c*n® /2
and this proves (51). O
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