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THE INTEGRATED PERIODOGRAM FOR STABLE PROCESSES

By Claudia Klüppelberg1 and Thomas Mikosch

University of Mainz and University of Groningen

We study the asymptotic behavior of the integrated periodogram for
α-stable linear processes. For α ∈ �1;2� we prove a functional limit the-
orem for the integrated periodogram. The limit is an α-stable analogue
to the Brownian bridge. We apply our results to investigate some specific
goodness-of-fit tests for heavy-tailed linear processes.

1. Introduction. In this paper we consider the linear process

Xt =
∞∑

j=−∞
ψjZt−j; t ∈ Z;(1.1)

where �Zt�t∈Z is a noise sequence of iid symmetric α-stable r.v.’s for α ∈ �0;2�.
This implies in particular thatZt andXt have infinite variance. In two preced-
ing papers [Klüppelberg and Mikosch (1993, 1994)] we studied the asymptotic
behavior of the periodogram

In;X�λ� = n−2/α

∣∣∣∣
n∑
t=1

e−iλtXt

∣∣∣∣
2

; λ ∈ �−π;π�:

The results obtained there indicate that the self-normalized periodogram

Ĩn;X�λ� =
In;X�λ�
γ2
n;X

; λ ∈ �−π;π�;

with

γ2
n;X = n−2/α

n∑
t=1

X2
t

behaves very much like the periodogram for finite variance linear processes.
More precisely, for all α ∈ �0;2�, smoothed versions of Ĩn;X�λ� converge in
probability to �ψ�λ��2/ψ2, where

�ψ�λ��2 =
∣∣∣∣
∞∑

j=−∞
ψje

−ijλ
∣∣∣∣
2

; λ ∈ �−π;π�;(1.2)

denotes the power transfer function of the linear filter �ψj�j∈Z and

ψ2 =
∞∑

j=−∞
ψ2
j:
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In the finite variance case �ψ�·��2 is, up to a constant multiple, the spectral
density of the linear process. In the case α < 2 this function can naturally not
be interpreted as a spectral density of �Xt�.

In the present paper we continue our investigation of the spectral analysis
of α-stable processes. Our results can be understood as a study of classical (i.e.,
finite variance) quantities in spectral analysis when some of the innovations
Zt assume very large values. In this sense, the theory given below provides
some recommendations on how classical estimators and test statistics have
to be modified when large Zt occur. As appropriate techniques we propose
random normalization (we call it self-normalization) and random centering.

In the sequel we consider modifications of the integrated periodogram
∫ x
−π
In;X�λ�f�λ�dλ; x ∈ �−π;π�;(1.3)

and the corresponding self-normalized version with In;X replaced by Ĩn;X for
smooth weight functions f.

In the finite variance case, the integrated periodogram serves as an esti-
mate of the spectral distribution function. In analogy to empirical process the-
ory, this suggests building up goodness-of-fit tests of Kolmogorov–Smirnov or
Cramér–von Mises type which are based on the integrated periodogram. This
idea has been utilized for a long time, for example, by Bartlett, Grenander
and Rosenblatt [see Priestley (1981) and Dzhaparidze (1986) and the recent
account by Anderson (1993)]. It has been observed by several authors [cf. An-
derson (1993) and the references therein] that the asymptotic theory for the
standard goodness-of-fit test statistics is actually a consequence of a functional
central limit theorem for the integrated periodogram. Thus the asymptotic dis-
tribution of the test statistics follows from such a limit theorem in the same
way that the asymptotic distribution of Kolmogorov–Smirnov or Cramér–von
Mises statistics follows from Donsker’s empirical central limit theorem.

This idea also applies in the infinite variance case. To give an example, we
shall prove that, for a positive constant Cα and α ∈ �1;2�,

(
n

Cα log n

)1/α ∫ ·
−π
�In;X�λ� − �ψ�λ��2Tn�dλ →d S�·� ≡ 2

∞∑
t=1

Zt

sin�·t�
t

(1.4)

in C�−π;π�, the space of continuous functions on �−π;π� equipped with the
uniform topology. Here

Tn =
1

2π

∫ π
−π

In;X�λ�
�ψ�λ��2 dλ:

For α = 2 the limit process in (1.4) is a Brownian bridge [cf. Hida (1980)],
and this is analogous to the result of Anderson (1993) who obtained for the
self-normalized integrated periodogram without random centering a Brown-
ian bridge plus an additional Gaussian term. Random centering with �Tn�
takes care of this additional term and makes the limit theory for the inte-
grated periodogram very much like empirical process theory. We mention that
a similar argument applies to the finite variance case.
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From (1.4) we can, for example, immediately derive the limit distribution
of the Grenander–Rosenblatt statistic for α-stable �Xt�:(

n

Cα log n

)1/α

sup
−π≤x≤π

∣∣∣∣
∫ x
−π
�In;X�λ� − �ψ�λ��2Tn�dλ

∣∣∣∣→d sup
−π≤x≤π

�S�x��:

Tests for α-stable noise or ARMA processes follow easily. This shows the power
of the functional central limit theorem (1.4) which reduces the problem of ap-
proximating the distribution of the Grenander–Rosenblatt statistic to a study
of the properties of the limit process S�·�.

Our paper is organized as follows. In Section 2 we introduce some general
notation and assumptions. The main theoretical results, in particular the basic
functional central limit theorem for the integrated periodogram (Theorem 3.2),
are formulated in Section 3. In Section 4 we discuss some goodness-of-fit tests
for α-stable �Xt� and illustrate the efficiency of the asymptotic theory by some
computer simulations. In particular, we provide tables for the quantiles of
the limit distribution of several test statistics. These tables demonstrate the
dramatic contrast between the finite and the infinite variance cases. They are
followed by Section 5 which contains some auxiliary results for the proofs in
Section 6.

2. Assumptions and notation. We consider the moving average process
�Xt�t∈Z defined by (1.1), where �Zt�t∈Z is a noise sequence of iid symmetric
α-stable r.v.’s for α ∈ �0;2�. This means that the characteristic function of Z1
is given by

EeitZ1 = e−σ �t�α; t ∈ R;
with a scaling factor σ > 0. For the definition and properties of α-stable r.v.’s,
we refer to Feller (1971), Bingham, Goldie and Teugels (1987) or Petrov (1975).
We mention that the restriction to symmetric stable r.v.’s is only for ease of pre-
sentation. Results can also be derived in the domain of attraction of stable r.v.’s
or simply under moment conditions although the proofs then become much
more technical [see, e.g., Mikosch, Gadrich, Klüppelberg and Adler (1995)].

In order to guarantee the a.s. absolute convergence of (1.1), we introduce
the assumption

∞∑
j=−∞

�j� �ψj�δ <∞(2.1)

for some δ < min�1; α�. Condition (2.1) is obviously satisfied for every causal
invertible ARMA process. Throughout we will also suppose that �ψ�λ��2 is
everywhere positive.

The following notation will be used throughout the paper: for any sequence
of r.v.’s �At�t∈Z,

γ2
n;A = n−2/α

n∑
t=1

A2
t ;

In;A�λ� = n−2/α

∣∣∣∣
n∑
t=1

At e
−iλt

∣∣∣∣
2

; λ ∈ �−π;π� ;
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Ãt = n−1/αAt/γn;A = At

/( n∑
s=1

A2
s

)1/2

;

Ĩn;A�λ� = In;A�λ�/γ2
n;A =

∣∣∣∣
n∑
t=1

Ãt e
−iλt

∣∣∣∣
2

; λ ∈ �−π;π�:

We introduce

yn = �Cαn log n�1/α;

where

Cα =





�1− α�σ
20�2− α� cos�πα/2� ; if α 6= 1;

σ

π
; if α = 1;

and we set

γn;A�k� = y−1
n

n−�k�∑
t=1

AtAt+�k�; �k� ≥ 1:

In particular, with

xn =
(

n

Cα log n

)1/α

;

we obtain that

xn�In;A�λ� − γ2
n;A� = 2

n−1∑
t=1

γn;A�t� cos�λt�; n ≥ 1:

The following proposition is Theorem 3.3 in Davis and Resnick (1986). It is
a key result for the present paper. The normalizing sequence �yn�n∈N is a
consequence of Corollary 2.1 in Rosinski and Woyczynski (1987) and of formula
(3.4) in Davis and Resnick (1986).

Proposition 2.1. Let �Zt�t∈Z be a noise sequence satisfying the assump-
tions above. LetY0 be an α/2-stable positive r.v. which is independent of �Zt�t∈Z
and has Laplace transform

E exp�−rY0� = exp�−σKαr
α/2�;

where Kα = E�N�α/2 for an N�0;2�-r.v. Then

�γ2
n;Z; γn;Z�k�; k = 1; : : : ;m� →d �Y0;Zk; k = 1; : : : ;m�; m ≥ 1:

For a derivation of the Laplace transform of Y0, we refer to Klüppelberg
and Mikosch (1994), Proposition 3.2.
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3. Main results. We start with a consistency result for both the inte-
grated periodogram and the self-normalized integrated periodogram. In the
sequel C�−π;π� denotes the space of the continuous functions on �−π;π�
equipped with the sup-norm.

Theorem 3.1. Let �Xt�t∈Z be defined by (1.1) for some α ∈ �0;2� and sup-
pose that the coefficients �ψj�j∈Z satisfy condition (2.1). Let f be a nonnegative
2π-periodic continuous function such that the Fourier coefficients of f�·��ψ�·��2
are absolutely summable. Then

(
γ2
n;X;Tn;

∫ ·
−π
In;X�λ�f�λ�dλ

)
→d Y0

(
ψ2;1;

∫ ·
−π
�ψ�λ��2f�λ�dλ

)
(3.1)

in R1 × R1 ×C�−π;π�, where the r.v. Y0 is defined in Proposition 2.1. In par-
ticular,

sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
Ĩn;X�λ� −

�ψ�λ��2
ψ2

)
f�λ�dλ

∣∣∣∣→P 0:(3.2)

Remark 3.1. By a Cramér–Wold argument the statement of Theorem 3.1
also holds for general functions f provided both the positive part and the
negative part of f satisfy the conditions of Theorem 3.1.

Remark 3.2. Note that, since γ2
n;X/ψ

2 −Tn→P0, one can work with Tn
instead of γ2

n;X in results of type (3.2). This is no longer true if one is interested
in the rate of convergence in (3.2) (see Theorem 3.2 below). Indeed, for a finite
moving average process, it is not difficult to see that xn�γ2

n;X/ψ
2 −Tn� does

not converge weakly to 0.

Remark 3.3. Note that Theorem 3.1 is valid for all α ∈ �0;2�. In the clas-
sical case where Z1 has a second moment, the result remains formally true
with Y0 replaced by 2σ2. This is a consequence of the law of large numbers.
Thus, if we use the self-normalized version Ĩn;X, we are not able to distinguish
between an infinite variance α-stable process �Xt�t∈Z and a process with fi-
nite second moment. This can be interpreted as a robustness property of the
self-normalized periodogram which has intuitively been known for a long time
[see Priestley (1981)]. On the other hand, (3.1) and (3.2) show the profound
difference in the limit behavior of the periodogram and the self-normalized
version. The contrast between the infinite and the finite variance case again
manifests in the rates of convergence in Theorem 3.2 below.

Example 3.1. For f�·� = �ψ�·��−2 we obtain from Theorem 3.1 that

sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
Ĩn;X�λ�
�ψ�λ��2 −

1
ψ2

)
dλ

∣∣∣∣→P 0:

This result holds for any causal invertible ARMA process.
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Example 3.2. The function f ≡ 1 satisfies the assumptions of Theorem 3.1.
Therefore,

sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
Ĩn;X�λ� −

�ψ�λ��2
ψ2

)
dλ

∣∣∣∣→P 0:

Theorem 3.2. Let �Xt�t∈Z be defined by (1.1) with coefficients �ψj�j∈Z sat-
isfying (2.1) and suppose that α ∈ �1;2�. Furthermore, assume that f is defined
on �−π;π� such that g�·� = f�·��ψ�·��2 is continuously differentiable. Then

(
γ2
n;X;Tn; xn

∫ ·
−π
�In;X�λ� − �ψ�λ��2Tn�f�λ�dλ

)

→d

(
Y0ψ

2;Y0;2
∞∑
t=1

Zt

∫ ·
−π
g�λ� cos�tλ�dλ

)

=d
(
Y0ψ

2;Y0; g�·�S�·� −
∫ ·
−π
g′�λ�S�λ�dλ

)
(3.3)

in R1 × R1 ×C�−π;π�, where

S�·� = 2
∞∑
t=1

sin�·t�
t

Zt(3.4)

and Y0 is independent of �Zt�t∈Z with the same distribution as in Proposi-
tion 2.1.

Remark 3.4. Notice that the representation (3.4) is analogous to the Lévy–
Cieselski or Paley–Wiener representation of a Brownian bridge [e.g., Hida
(1980)]. Indeed, if �Zt�t∈Z is iid Gaussian white noise, then (3.4) represents a
Brownian bridge.

Remark 3.5. The series S is a random Fourier series with α-stable coeffi-
cients and as such it is a harmonizable stable process with discrete spectral
measure. As a limit process in C�−π;π�, it has continuous sample paths. For
its tails we conclude that

P
(

sup
−π≤x≤π

S�x� > t
)
= O�t−α�; t→∞:

Figure 1 shows simulated sample paths of the process �S�x��0≤x≤π for dif-
ferent values of α. Some of them look surprisingly regular, at a first sight
almost deterministic like slightly perturbed sine curves. For comparison the
first picture shows a simulated Brownian bridge, that is, a path of S for α = 2.
The sample paths for α < 2 behave completely differently. According to our
limited experience from simulations, “deterministic” behavior appears more
often with decreasing α. The sine shape can be well explained: since the dis-
tribution tail of the r.v. Z1 is very heavy, some of the Zt will be huge compared
with the others. Thus the contribution of the sine function Zt�sin�·t�/t� to the
series S is larger the larger the value of Zt and the smaller t.

We consider some particular cases of Theorem 3.2. First we choose f ≡ 1.
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Fig. 1. Sample paths of the process S on �0; π� with α-stable noise.

Corollary 3.3. Under the assumptions of Theorem 3.2, we obtain that

xn

∫ ·
−π

(
In;X�λ� − �ψ�λ��2Tn

)
dλ→d 2

∞∑
t=1

Zt

∫ ·
−π
�ψ�λ��2 cos�tλ�dλ;

xn

∫ ·
−π

(
In;X�λ�
Tn

− �ψ�λ��2
)
dλ→d 2

∞∑
t=1

Zt

Y0

∫ ·
−π
�ψ�λ��2 cos�tλ�dλ:

Now we choose f�·� = �ψ�·��−2.

Corollary 3.4. Under the assumptions of Theorem 3.2, we obtain that

xn

∫ ·
−π

(
In;X�λ�
�ψ�λ��2 −Tn

)
dλ→d S�·�;

xn

∫ ·
−π

(
In;X�λ�
Tn�ψ�λ��2

− 1
)
dλ→d

S�·�
Y0

:

Remark 3.6. Corollary 3.4 is analogous to the finite variance case where
the limit process is a Brownian bridge [see Grenander and Rosenblatt (1957),
Priestley (1981) and Dzhaparidze (1986)].
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In the case α ∈ �0;1� we cannot expect a result which is similar to Theo-
rem 3.2. For example, note that

S�x� =d 2Z1

( ∞∑
t=1

∣∣∣∣
sin�xt�
t

∣∣∣∣
α)1/α

;

where the series on the right-hand side diverges except for x = 0; π;−π.
Nevertheless, in some cases it is possible to determine the limit law of the
integrated periodogram for a fixed frequency. This follows from the next
result.

Proposition 3.5. Let �Xt�t∈Z be a linear process as defined in (1.1) with
coefficients �ψj�j∈Z satisfying (2.1) and suppose that α ∈ �0;2�. Furthermore,

assume that f is defined on �−π;π� such that g�·� = f�·��ψ�·��2 is continuous
and

∞∑
t=1

∣∣∣∣
∫ x
−π
g�λ� cos�tλ�dλ

∣∣∣∣
µ

<∞(3.5)

for some x ∈ �−π;π� and some 0 < µ < α. Then
(
γ2
n;X;Tn; xn

∫ x
−π
�In;X�λ� − �ψ�λ��2Tn�f�λ�dλ

)

→d

(
Y0ψ

2;Y0;2
∞∑
t=1

Zt

∫ x
−π
g�λ� cos�tλ�dλ

)

=d
(
Y0ψ

2;Y0;2Z1

( ∞∑
t=1

∣∣∣∣
∫ x
−π
g�λ� cos�tλ�dλ

∣∣∣∣
α)1/α)

;

with Y0 independent of �Zt�t∈Z and with the same distribution as in Proposi-
tion 2.1.

4. Goodness-of-fit tests for a-stable processes. In this section we re-
view some specific goodness-of-fit tests and study their asymptotic behavior
under the assumption of heavy-tailedness. Note that all test statistics are con-
tinuous functionals of the integrated periodogram. Hence their weak limits are
immediate consequences of Theorem 3.2 (see also Corollaries 3.3 and 3.4).

The following results hold under the assumptions of Theorem 3.2 for the
linear process (1.1). They are modifications of tests which are well studied in
the finite variance case [e.g., Priestley (1981), subsection 6.2.6].

1. Grenander and Rosenblatt’s test for the nonnormalized integrated spec-
trum:

xn sup
−π≤x≤π

∣∣∣∣
∫ x
−π
�In;X�λ� − �ψ�λ��2Tn�dλ

∣∣∣∣

→d sup
−π≤x≤π

∣∣∣∣2
∞∑
t=1

Zt

∫ x
−π
�ψ�λ��2 cos�λt�dλ

∣∣∣∣:
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Test for α-stable noise:

xn sup
−π≤x≤π

∣∣∣∣
∫ x
−π
�In;X�λ� −Tn�dλ

∣∣∣∣→d sup
−π≤x≤π

�S�x��:

2. Bartlett’s test for the self-normalized integrated spectrum:

xn sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
Ĩn;X�λ� −

�ψ�λ��2Tn
γ2
n;X

)
dλ

∣∣∣∣

→d

1
Y0ψ

2
sup
−π≤x≤π

∣∣∣∣2
∞∑
t=1

Zt

∫ x
−π
�ψ�λ��2 cos�λt�dλ

∣∣∣∣:

Test for α-stable noise:

xn sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
Ĩn;X�λ� −

Tn

γ2
n;X

)
dλ

∣∣∣∣→d sup
−π≤x≤π

�S�x��
ψ2Y0

:

3. Bartlett’s Tp test:

xn sup
−π≤x≤π

∣∣∣∣
∫ x
−π

(
In;X�λ�
�ψ�λ��2Tn

− 1
)
dλ

∣∣∣∣→d sup
−π≤x≤π

�S�x��
Y0

:

4. ω2-statistic or Cramér–von Mises test:

x2
n

∫ π
−π

(∫ x
−π

(
In;X�λ�
�ψ�λ��2 −Tn

)
dλ

)2

dx→d

∫ π
−π
S2�x�dx = 4π

∞∑
t=1

Z2
t

t2
:

5. ω2-test or Cramér–von Mises test with normalization Tn for the integrated
spectrum:

x2
n

∫ π
−π

(∫ x
−π

(
Ĩn;X�λ�
�ψ�λ��2Tn

− 1
)
dλ

)2

dx→d

1

Y2
0

∫ π
−π
S2�x�dx = 4π

Y2
0

∞∑
t=1

Z2
t

t2
:

The above results can immediately be compared with the finite variance
case. In the classical situation the normalizing constants xn are of the order√
n, and S represents a Brownian bridge [see Hida (1980), Priestley (1981)

and Dzhaparidze (1986)]. Formally, the limits in the cases α ∈ �1;2� and α = 2
are the same if we replace Y0 by 2σ2 for α = 2.

The rate of convergence in the α-stable case compares favorably with the
finite variance case. This seems to be the rule for the limit theory of α-stable
time series, in the time domain, in the frequency domain, but also in estima-
tion theory for linear processes. We refer to Mikosch, Gadrich, Klüppelberg
and Adler (1995) for a discussion of this phenomenon and more references.
However, the limit distributions of the above statistics are much less common
than in the finite variance case. Their study is by no means trivial.

The distribution of the quadratic functional
∑∞
t=1�Z2

t /t
2� is characterized

by the relation
∞∑
t=1

Z2
t

t2
=d Y0

(
K−1
α

∞∑
t=1

∣∣∣∣
Nt

t

∣∣∣∣
α)2/α

:
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Here Y0 is α/2-stable as defined in Proposition 2.1 and �Nt�t∈Z are iid N�0;2�-
Gaussian r.v.’s independent of Y0. Indeed, for �Nt�t∈Z independent of �Zt�t∈Z,
we have, for positive λ,

E exp
{
−λ

∞∑
t=1

Z2
t

t2

}
= E exp

{
iλ1/2

∞∑
t=1

ZtNt

t

}

= E exp
{
iλ1/2Z1

( ∞∑
t=1

∣∣∣∣
Nt

t

∣∣∣∣
α)1/α}

= E exp
{
−σλα/2Kα

(
K−1
α

∞∑
t=1

∣∣∣∣
Nt

t

∣∣∣∣
α)}

= E exp
{
−λY0

(
K−1
α

∞∑
t=1

∣∣∣∣
Nt

t

∣∣∣∣
α)2/α}

:

In particular, let Y0 and Y1 be iid and independent of �Nt�t∈Z. Then we con-
clude that

x2
n

∫ π
−π

(∫ x
−π

(
Ĩn;X�λ�
�ψ�λ��2 −

1
ψ2

)
dλ

)2

dx→d

4πY0

ψ4Y2
1

(
K−1
α

∞∑
t=1

∣∣∣∣
Nt

t

∣∣∣∣
α)2/α

:

We conclude this section with a short simulation study in order to show the
efficiency of the asymptotic theory given above. The study was carried out
in S-Plus on a SUN workstation and we chose the parameters (sample size,
number of discretization points and terms of the series) within the limits
of available memory and computer time. The theoretical evaluation of the
distributions of continuous functionals of S�·� seems very difficult and calls
for further research. We restrict ourselves to some simulation studies in order
to show that the proposed methods already work for medium sample sizes n
between 200 and 400. For obvious symmetry reasons, we only consider the
process S�·� and its functionals on the interval �0; π�. The dramatic contrast
between the cases α < 2 and the Brownian bridge, visualized in Figure 1, is
also well illustrated by the following tables. In Table 1 we give the quantiles
of the limit distribution

Aα = sup
0≤x≤π

�S�x��

for statistics of Grenander–Rosenblatt type with α-stable innovations �Zt�. For
reasons of comparability, we include also the case α = 2 which corresponds to a
Brownian bridge. The quantiles for the Brownian bridge were calculated from
the corresponding ones of the absolute supremum functional of the standard
Brownian bridge on �0;1� provided in Smirnov (1948); see Shorack and Wellner
(1986), page 143. The quantiles for α = 1:2 and α = 1:8 are the empirical ones
from 800 independent simulations of Aα with 700 terms of the series S.

In Table 2 we give the quantiles of the limit distribution

Bα =
∫ π

0
S2�x�dx
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Table 1
Quantiles of the absolute supremum functional of S on �0; π�

Quantile A2 A1:8 A1:2

0.05 2.31 3.43 6.99
0.10 2.53 3.82 7.82
0.15 2.71 4.04 8.61
0.20 2.89 4.26 9.36
0.25 3.02 4.50 10.00
0.30 3.15 4.73 10.80
0.35 3.29 4.97 11.51
0.40 3.42 5.19 12.28
0.45 3.55 5.40 13.17
0.50 3.69 5.70 14.23
0.55 3.82 5.96 15.21
0.60 4.00 6.21 16.25
0.65 4.13 6.51 17.60
0.70 4.31 6.74 19.09
0.75 4.53 7.17 20.90
0.80 4.75 7.52 23.87
0.85 5.06 8.08 30.00
0.90 5.42 8.79 39.44
0.91 5.55 9.24 44.22
0.92 5.64 9.56 48.16
0.93 5.78 9.84 51.53
0.94 5.91 10.11 58.77
0.95 6.04 10.68 61.98
0.96 6.22 11.38 73.95
0.97 6.44 12.39 85.71
0.98 6.75 14.07 103.4
0.99 7.20 17.69 180.3

of statistics of ω2-type with α-stable innovations �Zt�. The quantiles for
the Brownian bridge were calculated from the corresponding ones of the
ω2-functional of the standard Brownian bridge on �0;1� provided in Anderson
and Darling (1952); see Shorack and Wellner (1986), page 147. The quantiles
for α = 1:2 and α = 1:8 are the empirical ones from 50,000 independent
simulations of Bα with 600 terms in the series representation.

In a simulation study we convinced ourselves that the goodness-of-fit tests
work well in the heavy-tailed case for medium sample sizes of 200 to 400.
In a first experiment we considered the Grenander–Rosenblatt statistic for
1:8-stable noise modified for the interval �0; π�; that is,

A�n� = sup
0≤x≤π

∣∣∣∣
∫ x
−π
�In;Z�λ� −Tn�dλ

∣∣∣∣:

In Figure 2, for a realization �Zt� of 1:8-stable noise, the values A�n� are
plotted against n (thin line). For comparison, the values 10:68/xn (thick line)
are also plotted. The value 10.68 stands for the 0.95 quantile of the distribution
of A1:8 (see Table 1).
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Table 2

Quantiles of the ω2-functional of S on �0; π�

Quantile B2 B1:8 B1:2

0.05 2.27 10.66 34.94
0.10 2.85 13.58 46.97
0.15 3.36 16.06 58.34
0.20 3.86 18.43 70.05
0.25 4.36 20.88 83.15
0.30 4.87 23.38 98.24
0.35 5.42 26.11 116.1
0.40 6.01 29.06 135.5
0.45 6.66 32.31 159.6
0.50 7.37 36.07 190.6
0.55 8.17 40.21 228.5
0.60 9.09 45.22 278.3
0.65 10.16 50.87 350.9
0.70 11.43 57.75 447
0.75 12.98 66.54 602
0.80 14.96 78.50 852
0.85 17.61 95.99 1,334
0.90 21.54 125.3 2,605
0.91 22.58 134.5 3,056
0.92 23.77 144.6 3,694
0.93 25.13 157.3 4,520
0.94 26.71 172.6 5,873
0.95 28.61 195.4 7,799
0.96 30.96 224.9 11,109
0.97 34.03 281.3 17,955
0.98 38.43 383.7 36,548
0.99 46.10 747.6 110,210

In a second experiment we simulated realizations of an AR(1) process Xt =
0:5Xt−1+Zt with 1:8-stable noise �Zt� and calculated the ω2-statistic modified
for the interval �0; π�; that is,

B�n� =
∫ π

0

(∫ x
−π

(
In;X�λ�
�ψ�λ��2 −Tn

)
dλ

)2

dx:

In Figure 3 we plotted the values B�n� (thin line) against 195.4/x2
n (thick line)

where 195.4 is the 0.95 quantile of B1:8 (see Table 2).

5. Auxiliary results. The following statement is part of Proposition 4.3
in Davis and Resnick (1986).

Lemma 5.1. Under (1.1) and (2.1),

γ2
n;X − ψ2γ2

n;Z→P 0:

We will frequently make use of the following decomposition of the peri-
odogram [see Klüppelberg and Mikosch (1993), Proposition 2.1].



INTEGRATED PERIODOGRAM FOR STABLE PROCESSES 1867

Sample size n

G
re

na
nd

er
-R

os
en

bl
at

t s
ta

tis
tic

 / 
0.

95
-q

ua
nt

ile

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2. The Grenander–Rosenblatt statistic A�n� �thin line� and the �0:95 quantile of A1:8�/xn
�thick line�.

Lemma 5.2. Under (1.1) and (2.1),

In;X�λ� = �ψ�λ��2 In;Z�λ� +Rn�λ�; −π < λ ≤ π;

where

Rn�λ� = ψ�λ� Jn�λ� Yn�−λ� + ψ�−λ� Jn�−λ� Yn�λ� +
∣∣Yn�λ�

∣∣2 ;

Jn�λ� = n−1/α
n∑
t=1

Zt e
−iλt;

Yn�λ� = n−1/α
∞∑

j=−∞
ψj e

−iλj Unj�λ�;

Unj�λ� =
n−j∑
t=1−j

Zt e
−iλt −

n∑
t=1

Zt e
−iλt:

From the proof of Lemma 9.2 in Mikosch, Gadrich, Klüppelberg and Adler
(1995), we conclude the following result [which has been proved there for
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Fig. 3. The Cramér–von Mises statistic B�n� �thin line� and the �0:95 quantile of B1:8�/x2
n �thick

line�.

ARMA processes, but a careful study of the proof shows that it remains valid
for more general processes �Xt�t∈Z]:

Lemma 5.3. Under (1.1) and (2.1), the remainder Rn defined in Lemma 5.2
satisfies the relation

xn

∫ π
−π
�Rn�λ��dλ→P 0:

From Lemmas 5.2 and 5.3 we conclude the following.

Lemma 5.4. Under (1.1) and (2.1),

xn�Tn − γ2
n;Z� →P 0:

We also need the following elementary tool.

Lemma 5.5. Let G1;G2 be jointly Gaussian with zero mean and identical
variances. Then

G1G2 =d 1
2 Var�G1��N2

1 −N2
2� + 1

2 Cov�G1;G2��N2
1 +N2

2�;
where N1;N2 are iid N�0;1�-r.v.’s.
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Proof. The quadratic form

G1G2 = 1
2�G1G2 +G2G1� = GTAG;

with

A = 1
2

(
0 1
1 0

)
; G =

(
G1
G2

)
;

can be written as z1N
2
1 + z2N

2
2 for iid standard Gaussian N1;N2 and for the

eigenvalues z1; z2 of the matrix 6A, where 6 is the covariance matrix of G.
The eigenvalues of 6A are

z1 = 1
2�Var�G1� + Cov�G1;G2��

and

z2 = 1
2�Cov�G1;G2� − Var�G1��:

Hence

z1N
2
1 + z2N

2
2

is distributed as

1
2 Var�G1��N2

1 −N2
2� + 1

2 Cov�G1;G2��N2
1 +N2

2�: 2

6. Proofs. Throughout, c will denote a generic positive constant which
may change from formula to formula or from line to line.

Proof of Theorem 3.1. We define g2�·� = f�·��ψ�·��2. In view of Lem-
mas 5.1 to 5.4 we have, uniformly for x ∈ �−π;π�;

(
γ2
n;X;Tn;

∫ x
−π
In;X�λ�f�λ�dλ

)

= �1+ oP�1��
(
ψ2γ2

n;Z; γ
2
n;Z;

∫ x
−π
In;Z�λ�g2�λ�dλ

)
:

Here we also used the boundedness of f and �ψ�λ��2. We define

Mn�·� =
∫ ·
−π
In;Z�λ�g2�λ�dλ

=
∫ ·
−π
��Re�Jn�λ���2 + �Im�Jn�λ���2�g2�λ�dλ

and show the fidi-convergence

�γ2
n;Z;Mn�·�� →d Y0

(
1;
∫ ·
−π
g2�λ�dλ

)
:(6.1)

We restrict ourselves to the case of two dimensions. Suppose −π < x < y ≤ π.
Let Bi, i = 1;2;3;4; be independent Brownian motions on �−π;π�, �Nt�t∈Z
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be iid N�0;1�-r.v.’s and let �Zt�, �Bi� and �Ni� be independent. Then, for real
ri, i = 1;2;3;

E exp
{
−r

2
1

2
Mn�x� −

r2
2

2
Mn�y� −

r2
3

2
γ2
n;Z

}

= E exp
{
−r

2
1

2

∫ x
−π
��Re�Jn�λ���2 + �Im�Jn�λ���2�g2�λ�dλ

− r
2
2

2

∫ y
−π
��Re�Jn�λ���2 + �Im�Jn�λ���2�g2�λ�dλ− r

2
3

2
γ2
n;Z

}

= E exp
{
ir1

(∫ x
−π

Re�Jn�λ��g�λ�dB1�λ� +
∫ x
−π

Im�Jn�λ��g�λ�dB2�λ�
)

+ ir2

(∫ y
−π

Re�Jn�λ��g�λ�dB3�λ� +
∫ y
−π

Im�Jn�λ��g�λ�dB4�λ�
)

+ ir3n
−1/α

n∑
t=1

ZtNt

}

= E exp
{
in−1/α

n∑
t=1

Zt

(
r1

∫ x
−π

cos�λt�g�λ�dB1�λ�

+ r1

∫ x
−π

sin�λt�g�λ�dB2�λ�

+ r2

∫ y
−π

cos�λt�g�λ�dB3�λ�

+ r2

∫ y
−π

sin�λt�g�λ�dB4�λ� + r3Nt

)}

= E exp
{
−σ
n

n∑
t=1

∣∣∣∣r1

∫ x
−π

cos�λt�g�λ�dB1�λ� + r1

∫ x
−π

sin�λt�g�λ�dB2�λ�

+ r2

∫ y
−π

cos�λt�g�λ�dB3�λ�

+ r2

∫ y
−π

sin�λt�g�λ�dB4�λ� + r3Nt

∣∣∣∣
α}

=x E exp
{
−σ
n

n∑
t=1

�Gt�α
}
:

The r.v.’s

Gt = r1

∫ x
−π

cos�λt�g�λ�dB1�λ� + r1

∫ x
−π

sin�λt�g�λ�dB2�λ�

+ r2

∫ y
−π

cos�λt�g�λ�dB3�λ� + r2

∫ y
−π

sin�λt�g�λ�dB4�λ� + r3Nt

are Gaussian with expectation 0 and covariances (δts is the Kronecker symbol)

Cov�Gt;Gs�

= r2
1

∫ x
−π

cos�λ�t− s��g2�λ�dλ+ r2
2

∫ y
−π

cos�λ�t− s��g2�λ�dλ+ r2
3δts:
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We have for a standard Gaussian r.v. N1 that

E�Gt�α = E�N1�α
(
r2

1

∫ x
−π
g2�λ�dλ+ r2

2

∫ y
−π
g2�λ�dλ+ r2

3

)α/2

= E�N1�α�Var�G1��α/2

independent of t. Applying Lemma 5.5, we conclude that GtGs is distributed
as

1
2 Var�G1��N2

1 −N2
2� + 1

2 Cov�Gt;Gs��N2
1 +N2

2�:
In order to show that

n−1
n∑
t=1

�Gt�α→P E�G1�α

holds, it suffices to show that

var
(
n−1

n∑
t=1

�Gt�α
)
= E

(
n−1

n∑
t=1

��Gt�α −E�G1�α�
)2

→ 0:

Hence it suffices to show that the following expression converges to 0:

1
n2

∑
t6=s
�E�GtGs�α − �E�G1�α�2�

= 1
n2

∑
t6=s

(
E

∣∣∣∣
1
2

Var�G1��N2
1 −N2

2� +
1
2

Cov�Gt;Gs��N2
1 +N2

2�
∣∣∣∣
α

− �E�N1�α�2�Var�G1��α
)
:

Notice thatN2
1−N2

2 has the same distribution as 2N1N2. Using the continuity
of the lα-seminorm, it suffices to show that

n−2 ∑
t6=s
E�Cov�Gt;Gs��N2

1 +N2
2��α→ 0:

We have, with positive constants c,

1
n2

∑
t6=s
E�Cov�Gt;Gs��N2

1 +N2
2��α

= 1
n2

∑
t6=s
E

∣∣∣∣
(
r2

1

∫ x
−π

cos�λ�t− s��g2�λ�dλ

+ r2
2

∫ y
−π

cos�λ�t− s��g2�λ�dλ
)
�N2

1 +N2
2�
∣∣∣∣
α

≤ c

n2

∑
1≤t<n

�n− t�
∣∣∣∣r

2
1

∫ x
−π

cos�λt�g2�λ�dλ+ r2
2

∫ y
−π

cos�λt�g2�λ�dλ
∣∣∣∣
α

≤ c

n

∑
1≤t<n

(∣∣∣∣
∫ x
−π

cos�λt�g2�λ�dλ
∣∣∣∣
α

+
∣∣∣∣
∫ y
−π

cos�λt�g2�λ�dλ
∣∣∣∣
α)
:
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We restrict ourselves to show that the term with x converges to 0. In order
to avoid a notational mess, we will also restrict ourselves to an even function
g2�λ�. Using the representation of g2�λ� as a Fourier series with absolutely
summable Fourier coeffcients, we obtain, for some constant c > 0,

1
n

∑
1≤t<n

∣∣∣∣
∫ x
−π

cos�λt�g2�λ�dλ
∣∣∣∣
α

= 1
n

∑
1≤t<n

∣∣∣∣
∫ x
−π

cos�λt�
∞∑
l=0

cos�λl�kl dλ
∣∣∣∣
α

= 1
n

∑
1≤t<n

∣∣∣∣
1
2

∞∑
l=0

∫ x
−π
kl�cos�λ�t− l�� + cos�λ�t+ l���dλ

∣∣∣∣
α

= 1
n

∑
1≤t<n

∣∣∣∣
1
2

( ∞∑
l=0

kl
sin�x�t+ l��

t+ l +
t−1∑
l=0

kl
sin�x�t− l��

t− l + kt�x+ π�

+
∞∑

l=t+1

kl
sin�x�t− l��

t− l

)∣∣∣∣
α

≤ c

n

∑
1≤t<n

(∣∣∣∣
∞∑
l=0

�kl�
t+ l

∣∣∣∣
α

+ �kt�α +
∣∣∣∣
t∑
l=1

�kt−l�
l

∣∣∣∣
α

+
∣∣∣∣
∞∑
l=1

�kt+l�
l

∣∣∣∣
α)

→ 0:

Hence

n−1
n∑
t=1

�Gt�α→P E�G1�α = E�N1�α
(
r2

1

∫ x
−π
g2�λ�dλ+ r2

2

∫ y
−π
g2�λ�dλ+ r2

3

)α/2

for a standard Gaussian r.v. N1.
Thus we proved for nonnegative ri that

E exp�−r1Mn�x� − r2Mn�y� − r3γ
2
n;Z�

→ exp
{
−E�
√

2N1�ασ
(
r1

∫ x
−π
g2�λ�dλ+ r2

∫ y
−π
g2�λ�dλ+ r3

)α/2}

= exp
{
−Y0

(
r1

∫ x
−π
g2�λ�dλ+ r2

∫ y
−π
g2�λ�dλ+ r3

)}
;

showing the convergence of the two-dimensional distributions in (6.1). This
proves the fidi-convergence in (3.1).
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Furthermore, �γ2
n;X� and the processes �

∫ ·
−π Ĩn;X�λ�f�λ�dλ� are tight and

imply the tightness of the processes �
∫ ·
−π In;X�λ�f�λ�dλ�. This proves the

theorem. 2

Proof of Theorem 3.2. We use an idea due to Grenander and Rosenblatt
(1957), page 189. First we prove the statement for f�·� = �ψ�·��−2: In view of
Lemmas 5.1 to 5.3 we have

(
γ2
n;X;Tn; xn

∫ ·
−π

(
In;X�λ�
�ψ�λ��2 −Tn

)
dλ

)

=
(
γ2
n;Zψ

2�1+ oP�1��; γ2
n;Z�1+ oP�1��;

xn

∫ ·
−π
�In;Z�λ� − γ2

n;Z�dλ+ oP�1�
)
:

(6.2)

Hence it suffices to show that

(
γ2
n;Z; xn

∫ ·
−π
�In;Z�λ� − γ2

n;Z�dλ
)
→d

(
Y0;2

∞∑
t=1

Zt

sin�·t�
t

)
:

We have

xn

∫ ·
−π
�In;Z�λ� − γ2

n;Z�dλ = 2
n−1∑
t=1

γn;Z�t�
sin�·t�
t

:

From Proposition 2.1 and the continuous mapping theorem, we conclude that
for m fixed

(
γ2
n;Z;

m∑
t=1

γn;Z�t�
sin�·t�
t

)
→d

(
Y0;

m∑
t=1

Zt

sin�·t�
t

)
:

Thus it suffices to show that

lim
m→∞

lim sup
n→∞

P

(
sup
−π≤x≤π

∣∣∣∣
∑

n>t>m

γn;Z�t�
sin�xt�
t

∣∣∣∣ > ε
)
= 0; ε > 0:(6.3)

Put

εp = 2−2p/γ

for some γ > 0 to be chosen later. For notational ease we suppose thatm = 2a−
1 and n = 2b+1−1 for integers a < b. If m or n do not have this representation,
the terms below which correspond to m and n have to be treated separately,
but the estimates obtained are completely analogous and therefore omitted.
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We have

I = P
(

sup
−π≤x≤π

∣∣∣∣
∑

n>t>m

γn;Z�t�
sin�xt�
t

∣∣∣∣ > ε
)

≤ P
( b∑
p=a

sup
−π≤x≤π

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > ε
)

≤ P
( b∑
p=a

εp > ε

)

+P
( b⋃
p=a

{
sup
−π≤x≤π

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > εp
})

≤ P
( b∑
p=a

εp > ε

)

+
b∑

p=a
P

(
sup
−π≤x≤π

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > εp
)

= I1 + I2:

(6.4)

Moreover,

Jp = P
(

sup
0≤x≤π

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > εp
)

= P
(

max
k=1;:::;2p

max
j∈��k−1�2p+1;:::;k2p�

sup
x∈��j−1�π2−2p; jπ2−2p�

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > εp
)

≤
∑

k=1;:::;2p
P

(
max

j∈��k−1�2p+1;:::;k2p�
sup

x∈��j−1�π2−2p; jπ2−2p�

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
sin�xt�
t

∣∣∣∣ > εp
)

=
∑

k=1;:::;2p
Jpk:

We have

Jpk = P
(

max
j∈��k−1�2p+1;:::;k2p�

sup
x∈��j−1�π2−2p; jπ2−2p�

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�

×
(

sin��x− �j− 1�π2−2p�t� cos��j− 1�π2−2pt�
t

+ cos��x− �j− 1�π2−2p�t� sin��j− 1�π2−2pt�
t

)∣∣∣∣ > εp
)
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= P
(

max
j∈��k−1�2p+1;:::;k2p�

sup
0≤x≤2−2pπ

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�

× sin�xt� cos��j− 1�π2−2pt� + cos�xt� sin��j− 1�π2−2pt�
t

∣∣∣∣ > εp
)

≤ P
(

max
j∈��k−1�2p+1;:::;k2p�

sup
0≤x≤2−2pπ

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�

× sin�xt� cos��j− 1�π2−2pt�
t

∣∣∣∣ > εp/2
)

+P
(

max
j∈��k−1�2p+1;:::;k2p�

sup
0≤x≤2−2pπ

∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�

× cos�xt� sin��j− 1�π2−2pt�
t

∣∣∣∣ > εp/2
)

= Jpk1 +Jpk2:

We restrict ourselves to the estimation of Jpk2. We write � · � instead of
sup0≤x≤2−2pπ � · � and

Yj�·� =
2p+1−1∑
t=2p

γn;Z�t�
cos�·t� sin��j− 1�π2−2pt�

t
:

We intend to apply a maximal inequality to

Jpk2 = P
(

max
j∈��k−1�2p+1;:::;k2p�

�Yj� > εp/2
)
:

Note that for j < j′ both taken from ��k− 1�2p + 1; : : : ; k2p� and for positive
constants c,

P��Yj −Yj′� > εp/2�

= P
(∥∥∥∥

2p+1−1∑
t=2p

γn;Z�t�
cos�·t�
t

(
2 sin

(
j− j′

2
π2−2pt

)

× cos
(
j+ j′ − 2

2
π2−2pt�

)∥∥∥∥ > εp/2
)

≤ cP
(∥∥∥∥

2p+1−1∑
t=2p

γn;Z�t�
cos�·t�
t

sin
(
j− j′

2
π2−2pt

)∥∥∥∥ > εpc
)
:

In the last step we used the contraction principle for random quadratic forms
[see Kwapien and Woyczynski (1992), Proposition 6.3.2]. For x < y both taken
from �0;2−2pπ� we have in view of Theorem 3.1 in Rosinski and Woyczynski
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(1987) or Theorem 6.9.4 in Kwapien and Woyczynski (1992) that

P

(∣∣∣∣
2p+1−1∑
t=2p

γn;Z�t�
(

cos�yt�
t
− cos�xt�

t

)
sin

(
j− j′

2
π2−2pt

)∣∣∣∣ > εpc
)

≤ cε−µp
2p+1−1∑
t=2p

∣∣∣∣
(

cos�yt�
t
− cos�xt�

t

)
sin�j− j

′

2
π2−2pt�

∣∣∣∣
µ

≤ cε−µp �x− y�µ ��j− j′�2−2p�µ 2p�µ+1�

for an arbitrary 1 < µ < α and positive constants c. An application of the
maximal inequality Theorem 12.2 in Billingsley (1968) yields that

P��Yj −Yj′� > εp/2� ≤ cε−µp 2−2pµ��j− j′�2−2p�µ2p�µ+1�

= c��j− j′�2−2p�µ2p�1+µ�−1+2/γ��

and, again applying the same inequality, we obtain

Jpk2 = P
(

max
j∈��k−1�2p+1;:::;k2p�

�Yj� > εp/2
)

≤ c2−pµ2p�1+µ�−1+2/γ�� = c2p�1+2µ�−1+1/γ��:

[Note that Theorem 12.2 in Billingsley (1968) is proved for real-valued Yj

but a careful study of the proof shows that it remains valid for Banach space
valued r.v.’s.] Hence we have

Jp ≤
∑

k=1;:::;2p
Jpk ≤ c22p�1+µ�−1+1/γ��:

Now choose γ such that κ = −�1+ µ�−1+ 1/γ�� > 0: From (6.4) we conclude
that for every ε > 0 and a sufficiently large

lim sup
n→∞

I = lim sup
n→∞

I2 ≤ c
∞∑
p=a

2−2pκ ≤ c2−2aκ:

This proves (6.3) and implies (3.3) for g ≡ 1.
For general g the relation (3.3) follows by integration by parts and by the

continuous mapping theorem. 2

The proof of Proposition 3.5 is essentially based on the proof of Lemma 9.3
in Mikosch, Gadrich, Klüppelberg and Adler (1995); it is reformulated as a
result for quadratic forms in iid α-stable r.v.’s.

Lemma 6.1. Let ft be real numbers such that

∞∑
t=−∞

�ft�µ <∞(6.5)
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for some µ < α. If f0 = 0, then

(
γ2
n;Z; y

−1
n

∑
1≤t;s≤n

ft−sZtZs

)
→d

(
Y0;

∞∑
t=1

�ft + f−t�Zt

)

=d
(
Y0;Z1

( ∞∑
t=1

�ft + f−t�α
)1/α)

:

If f0 6= 0, then

n−2/α ∑
1≤t; s≤n

ft−sZtZs→d f0Y0:

Proof of Proposition 3.5. We have by Lemmas 5.1 to 5.4 that
(
γ2
n;X;Tn; xn

∫ x
−π
�In;X�λ� − �ψ�λ��2Tn�f�λ�dλ

)

=
(
ψ2γ2

n;Z�1+ oP�1��; γ2
n;Z�1+ oP�1��;

xn

∫ x
−π
�In;Z�λ� − γ2

n;Z�g�λ�dλ+ oP�1�
)

=
(
ψ2γ2

n;Z�1+ oP�1��; γ2
n;Z�1+ oP�1��;

2xn
n−1∑
t=1

γn;Z�t�
∫ x
−π

cos�λt�g�λ�dλ+ oP�1�
)
:

Now we write

ft =
∫ x
−π

cos�λt�g�λ�dλ

and apply Lemma 6.1 which concludes the proof. 2

As Proposition 3.5 shows, the statement of Theorem 3.2 can remain valid
for certain frequencies, but not uniformly on �−π;π�: We demonstrate this
with the process

xn

∫ ·
−π

(
In;X�λ�
�ψ�λ��2 −Tn

)
cosλdλ(6.6)

for a positive power transfer function �ψ�·��2 satisfying (2.1). By (6.2) the prob-
lem of weak convergence of (6.6) can be reduced to the question of weak con-
vergence of

Dn�·� = xn
∫ ·
−π
�In;Z�λ� − γ2

n;Z� cosλdλ:
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Given that Dn converges weakly in C�−π;π� to a limit process of the form

2
∞∑
t=1

Zt

∫ ·
−π

cosλ cos�λt�dλ =x
∞∑
t=1

Ztft�·�;

a necessary condition for its existence is that
∑
t

�ft�x��α <∞

for all x ∈ �−π;π�. This series converges for x = −π;0; π/2;−π/2; π but it
does not for any other rational or irrational multiple of π. Hence for the cen-
tering sequence �Tn� weak convergence does not hold in the uniform topology
for α ∈ �0;1�.
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