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CORRECTION

APPROXIMATE p-VALUES FOR LOCAL SEQUENCE
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1. Introduction. It has been pointed out to us by D. Metzler (University
of Frankfurt) that the proof of Theorem 3 of Siegmund and Yakir (2000) is
incomplete. In addition, S. Grossman (Frankfurt) and A. Dembo (Stanford) have
observed that some conditions are required in order for the proofs of Theorems
1 and 2 (in particular the proof of Lemma 1) to hold. In this note we give
appropriate additional conditions and complete the proof of Theorem 3. We use
the notation of our earlier paper.

To describe the conditions for Theorems 1 and 2, we let Q0 denote the “null”
probability given by Q0(α,β) = µ(α)ν(β) and let Q1(α,β) = exp[θ∗K(α,β)] ×
Q0(α,β) denote the implied “alternative.” Also let Qi,j be defined to be the
product probability that gives x the marginal distribution it has under Qi and y

the marginal distribution it has under Qj . We assume that

E1K(x,y) − Ei,jK(x, y) > 0(1)

for all i, j . This assumption will legitimize the application of a large deviation
bound for additive functionals of finite state Markov chains in the proof of
Lemma 1, since the total length of all gaps is small compared to the number
of aligned pairs and hence essentially all terms forming the additive functionals
have negative expectation. (However, the alternative suggestion to apply the
Azuma–Hoeffding inequality does not work.)

For Theorem 3 a convenient condition will involve computations that build on
the parameter θ∗. Thus, for example, we define

ψy(θ, η) = log E0
[
exp{θK(x, y1) + ηK(x, y2)}],

with y1, y2 independent copies of y. Note that θ∗ is the unique positive solution of
the equation

ψy(θ,0) = 0.

Under the additional assumption that

E1,0K(x,y) = E0
[
exp{θ∗K(x,y1)}K(x,y2)

]
< 0,
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there exists a unique positive η such that

ψy(θ
∗, η) = 0.

Denote by θ∗
y the unique positive solution of this equation. In a similar way one

can define ψx (based on x1, x2 and y) and hence θ∗
x —the unique positive solution

of ψx(θ
∗, η) = 0.

The conditions we will use involve the relation between m and n, the lengths of
the x and the y sequences respectively, and between θ∗, θ∗

x and θ∗
y .

THEOREM 3. Suppose the conditions of Theorem 2 hold, but that mn exp(−a)

converges to a finite, positive limit. Assume that the parameters θ∗
y , θ∗

x defined
above exist and that

lim sup
m,a→∞

logm

a
< min

(
1,

θ∗
x

θ∗
)

and lim sup
n,a→∞

log n

a
< min

(
1,

θ∗
y

θ∗
)
.

Let Q denote the right-hand side of display (4) of Siegmund and Yakir (2000).
Then

P0

(
max
z∈Z

(
�z − g(z)

) ≥ a

)
− [1 − exp(−Q)] → 0

as a → ∞.

2. A proof of the theorem. To prove Theorem 3, suppose that mne−a → x.

Recall that Zj ⊂ Z is the collection of all z ∈ Z for which the k aligned pairs
satisfy (1 − ε1)a/I < k < (1 + ε1)a/I , the number of gaps is exactly j , and
the overall number of unaligned letters, l, is bounded by ε2a

1/2 for some small
ε2 > ε1 > 0. Let Z̃ = ⋃

j≤j1
Zj , where j1 is a large but fixed integer. By essentially

trivial modifications in the proofs of Lemmas 9–12 in the Appendix, we see that
for all sufficiently large j1, P(

⋃
z∈Z\Z̃{�z − g(z) ≥ a}) ≤ ε, so we can confine our

attention to the set Z̃. Note that the elements of this set, represented as paths in
a two-dimensional grid, are of restricted dimensions: a path that begins at the
point (i1, i2) is contained in the square {(i1, i2), (i1 + ca, i2), (i1 + ca, i2 + ca),

(i1, i2 + ca)}, where c = I−1(1 + ε1) + ε2.
For a candidate alignment in Z̃, the dot matrix representation between the two

sequences is contained in a rectangle of size m × n in the two-dimensional lattice,
which can be sub-divided into squares of size a2 × a2. Let α be the index of a
typical square and denote by Zα the set of candidate alignments which intersect
with the square α. Note that though the Zα’s are not disjoint, Zα can have
common elements with Zβ only if Zβ is an immediate neighbor. Denote by Bα the
neighborhood of dependence of α. (The neighborhood of dependence contains α,
its 8 immediate neighbors, the strip of width of 3 squares that runs parallel to the
x sequence, and the perpendicular strip that runs parallel to the y sequence.
Elements in the first strip can have common y variables with elements in Zα .
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Likewise, elements in the second strip can have common x variables with elements
in Zα .) Let Xα be the indicator of the event {maxz∈Zα [�z − g(z)] ≥ a}. It follows
that Xα and Xβ are independent, provided that β /∈ Bα .

Consider W = ∑
α Xα and note that E0W → xλ as a → ∞. According to

Arratia, Goldstein and Gordon (1989), the difference between the probability of
the event {W > 0} = {maxz∈Z̃(�z − g(z) ≥ a} and the quantity 1 − exp(−E0W) is
bounded by 2(b1 + b2), where

b1 = mn

a4 P0

(
max
z∈Zα

(
�z − g(z)

) ≥ a

)2

,

b2 = mn

a4

∑
β∈Bα\{α}

P0

(
max
z∈Zα

(
�z − g(z)

) ≥ a, max
u∈Zβ

(
�u − g(u)

) ≥ a

)
.

From Theorem 2 we see that b1 = O(a4e−a).
For the following calculation we assume that θ∗

x ≤ θ∗ and θ∗
y ≤ θ∗. The other

cases are treated similarly and are slightly simpler. In order to bound b2, consider
first some β which is part of the strip parallel to the y sequence and is not in the
immediate neighborhood of α. It follows from the argument given in Section 3
below that

P0

(
max
z∈Zα

(
�z − g(z)

) ≥ a, max
u∈Zβ

(
�u − g(u)

) ≥ a

)

≤ ∑
z∈Zα

∑
u∈Zβ

P0
(
�z − g(z) ≥ a, �u − g(u) ≥ a

)

≤ 2
∑

z∈Zα

∑
u∈Zβ

exp{−a − g(z)} exp
{−(θ∗

y /θ∗)a − (θ∗
y /θ∗)g(u)

}

≤ 2ade−a−(θ∗
y /θ∗)a,

(2)

for some finite constant d .
Consider next a β that is an immediate neighbor of α. Abusing notation, let

Zα∩β be the set of patterns which intersect with a strip of width 2ca on the
boundary between α and β . Note that

P0

(
max
z∈Zα

(
�z − g(z)

) ≥ a, max
u∈Zβ

(
�u − g(u)

) ≥ a

)

≤ P0

(
max

z∈Zα\Zα∩β

(
�z − g(z)

) ≥ a, max
u∈Zβ\Zα∩β

(
�u − g(u)

) ≥ a

)

+ 3P0

(
max

z∈Zα∩β

(
�z − g(z)

) ≥ a

)
.

The first term is again bounded by 2ade−a−(θ∗
y /θ∗)a , whereas the second term is

asymptotically proportional to a3e−a .
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Equivalent derivation can be conducted for the strip parallel to the x sequence.
Collecting the terms we get the inequality

b2 ≤ mn

a4

[
27a3e−a + 6m

a2 ade−a−(θ∗
x /θ∗)a + 6n

a2 ade
−a−(θ∗

y /θ∗)a
]
,

which converges to zero as a → ∞.

3. Large deviations in two dimensions. The following observation justifies
inequality (2) used above. Assume u and z share common x variables but no
y variables. Let u = u1 + u2, where u1 involves the x terms that u shares
with z and u2 does not. Recall that we have assumed θ∗

y ≤ θ∗. Note that both
�z +∑

(i,j )∈u1
θ∗
y K(xi, yj ) and �z +∑

(i,j )∈u1
θ∗
y K(xi, yj )+∑

(i,j )∈u2
θ∗K(xi, yj )

are log-likelihood ratios. Hence, by considering the disjoint possibilities that �u2

is positive or negative, we find that

P0(�z ≥ s, �u ≥ t)

≤ P0

(
�z + ∑

(i,j )∈u1

θ∗
y K(xi, yj ) + ∑

(i,j )∈u2

θ∗K(xi, yj ) ≥ s + (θ∗
y /θ∗)t

)

+ P0

(
�z + ∑

(i,j )∈u1

θ∗
y K(xi, yj ) ≥ s + (θ∗

y /θ∗)t
)

≤ 2 exp{−s − (θ∗
y /θ∗)t}.

4. Verification of the condition and remarks. The condition (1) requires,
quite reasonably, that the change of measure from Q0 to Q1 increase the
dependence between x and y, and not simply change the marginal distributions.
In particular, the function K(α,β) = f (α) + g(β), for which Q1 is also a product
measure, is excluded.

The condition of Theorem 3 is somewhat clumsy, but we are unable to identify
a simpler general condition that implies it. The following argument suggests that
the condition is often satisfied by reasonable scoring matrices K(α,β), which inter
alia take on positive values on the diagonal and negative values, or at least smaller
positive values, off the diagonal.

According to our model the null distribution that the two sequences are
unrelated is the product measure Q0. The implied alternative is Q1. Large false
positive scores behave empirically as if they come from Q1; and power to detect
a genuine alignment will be maximized if the scoring matrix is chosen so that
Q1 is the true joint distribution. The marginals of Q1 should be similar to those
of Q0, namely µ and ν; otherwise a high score may occur because of differences
in marginal frequencies without the clustering along the diagonal that is the goal
of alignment. If the marginals of Q1 are in fact µ and ν, then θ∗

x = θ∗
y = θ∗,

and the condition of Theorem 3 is easily satisfied for essentially any growth rates
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of m and n. For a numerical example, for the BLOSUM62 scoring matrix and
the marginal distribution of amino acid frequencies determined by Robinson and
Robinson (1991), θ∗ = 0.318, while θ∗

x = θ∗
y = 0.316. Very similar results hold for

the BLOSUM50 and PAM250 scoring matrices. [See Storey and Siegmund (2001)
for a more detailed numerical examination of these three cases.]

For an artificial example of no biological significance, where one can carry out
all calculations analytically, suppose that the null model has (x, y) bivariate stan-
dard normal and K(α,β) = c − (α −β)2/2, where 0 < c < 1. It is easy to see that
the marginal distributions of Q1 are normal with mean 0 and variance (1 + θ∗)/
(1 + 2θ∗) < 1. Some straightforward calculations show that Ei,jK(x, y) < 0 for
all i, j , so both (1) and the new condition for Theorem 3 are satisfied.
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a correction to our argument in Section 3.
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