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SEQUENTIAL CONFIDENCE BANDS FOR DENSITIES'

By Y1 Xu AND ApAM T. MARTINSEK
University of Illinois

This paper proposes a fully sequential procedure for constructing a
fixed-width confidence band for an unknown density on a finite interval
and shows the procedure has the desired coverage probability asymptoti-
cally as the width of the band approaches zero. The procedure is based on
a result of Bickel and Rosenblatt. Its implementation in the sequential
setting cannot be obtained using Anscombe’s theorem, because the nor-
malized maximal deviations between the kernel estimate and the true
density are not uniformly continuous in probability (u.c.i.p.). Instead, we
obtain a slightly weaker version of the u.c.i.p. property and a correspond-
ingly stronger convergence property of the stopping rule. These together
yield the desired results.

1. Introduction. Let X, X,,..., X, be independent and identically dis-
tributed random variables with continuous density function f(x). A familiar
method for estimating f is the kernel estimate due to Rosenblatt (1956) and
Parzen (1962), which is given by

(1.1) £(x) = (nh,)™" %K[(x X)) /h),

where K is a bounded density function called the kernel and 4, is the
bandwidth. There have been several papers on sequential density estimates.
Carroll (1976) considered the problem of sequential estimation of the density
f at a point x, which may be known or unknown and obtained sequential
fixed-width confidence intervals. A similar problem was approached also by
Stute (1983), where a different method was proposed. Isogai (1981, 1987,
1988) also considered aspects of this problem. However, all of them consid-
ered only estimation of f at a fixed point so that asymptotic normality can be
applied. As mentioned in Stute (1983), it seems more interesting to construct
sequential fixed-width confidence bands for f on a bounded interval [a, b].
Our goal is to construct a confidence band for f on [a, b], with approximate
coverage probability 1 — «, that determines each value of the density to
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within + &, where ¢ is the desired precision. One motivation for wanting a
fixed-width confidence band is that density estimates are often used for
classification purposes in situations where misclassification can have serious
consequences. One example is the heart rate data for heart disease patients
and “normals” discussed in Izenman (1991). Without sufficiently precise
estimates of the densities, accurate classification may be problematic.

We assume that f and K satisfy the following assumptions:

(A.1) K is a bounded, symmetric probability density function with finite
second moment such that either (i) K has compact support and is
absolutely continuous on its support or (i) K is absolutely continuous
on the real line with integrable and square integrable derivative;

(A.2) f is continuous, bounded and bounded away from zero on [a, b];

(A.3) f is twice differentiable with bounded second derivative on [a, b];

(A4 [,=5UxD?*(ogloglxD*(|K'(x)] + |K(x)) dx < o

(A.5) the interval [a, b] contains no boundary points of f.

Without loss of generality, take a = 0 and & = 1. Define

nh, 1% .
= o (75| e -

Then Bickel and Rosenblatt (1973) have shown that, for A, =n"%, 1< § < 3,
as n — =,

P[(28 log n)l/z{(/Kz(t) dt)_l/QMn - dn} <z

(1.2)
— exp(—2exp(—2)),

where
d, = (268 log n)l/2

K, (A 1
2 og i(4) + E[log8+loglog n]

=2 [K2(t) dt

+(281logn)

if (A.1)G) holds and the support of K is [—A, Al, K,(A) ={K?(A) +
K?(—A)}/2; otherwise,

1/2

| J(E ()" de

d, = (28logn)"? + (25 logn) *{log| (27)"~
JK2(2) dt
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In view of the uniform almost-sure convergence of fAn to £, (1.2) implies

f(x)[K2(t)de |
nh

P| f(x) & fu(x) i{
(1.3) -
x{—m +dn}\10sxg1
(26 log n)
— exp(—2exp(—2)).
It follows from (1.3) that if z =z, where 0 < « < 1 and
exp(—2exp(—z,)) =1- a,
then

f(2) [ K2 (t) dt}”{ 2, }

P| f(x) € f(x) i{ - otogn Y

-1-a.

We wish to construct a confidence band for f that determines each of the
values f(x) to within + ¢ in such a way that the probability that the band
covers the entire function f is approximately 1 — «. It is natural to use the
stopping rule

f(x) K2ty de ]
T,=inf{n > 1,| sup
O<x<1 n‘hn

z
X|——————— +d,| <.
[(28log n)l/2 } }
Once sampling has terminated, one can use either of two confidence bands.
The simpler one is the fixed-width band

(1.4)

fATs(x)ie, 0<x<l1.
The other possibility is the variable-width band

. 1/2
ng(x)sz(t)dt}{ . } 0<x<l.

; x) + — +d
fTE( ) { T1-96 (2510gT€)1/2 T,

Note that the variable-width band has half-width everywhere smaller than e.
The main purpose of this paper is to prove

fo(x)(K2(1)dt | 2,
T!=? {(25105;7;)1/2

&

p

f(x)efn(x)i{ +dTb_}VOst1}

- 1-«a
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as € » 0 and
limian<f(x) efp(x)+e,V0<x< 1} >1- a.
e—>0 e

The first result of course implies the second. A natural way to approach this
is by using Anscombe’s theorem, which we now state.

ANSCOMBE’S THEOREM [Anscombe (1952)]. Assume that Z, -, Zasn — »
and the sequence {Z,: n > 1} is uniformly continuous in probability (u.c.i.p.);
that is, for every p; > 0 there is a p, > 0 for which

P{ max |Zn+k—Zn|ZP1}<p1 Vnz=l.

0<k<pyn

Assume further that {N,: b > 0} is a sequence of integer-valued random
variables for which N,/b — A > 0 in probability as b — », where A is a
constant. Then

Zy, 2a Z as b — .

However, Martinsek (1993) presents an argument that suggests strongly
that

10
(25 log n)l/z{(jKZ(t) dt) M, - dn}

is not u.ci.p. Careful examination of the arguments in Section 2 below
provides a rigorous proof that this sequence is not u.c.i.p. [note that the order
in (2.4) is exact]. Therefore Anscombe’s theorem cannot be applied directly.
Martinsek (1993) proposes a two-stage procedure to overcome this problem.
Unfortunately, his procedure has the disadvantage that the first sample is
used only to determine the size of the second sample and not in the final
estimate of f. Hence the data are not fully utilized. Also, two-stage proce-
dures typically are less efficient than fully sequential ones.

Our approach here is to get a slightly weaker u.c.i.p. property of the
normalized maximum deviations and a correspondingly stronger convergence
result for T, so that the conclusion of Anscombe’s theorem will still hold. We
will use the Komlés—Major—-Tusnady representation [Komlés, Major and
Tusnady (1975)] for the empirical distribution function and a result on the
modulus of continuity of Brownian motion. The main result is the following.

THEOREM 1. Assume that conditions (A.1)—-(A.5) hold and that if (A.1)1)
holds, then

JIK (¢)|dt < .
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Assume further that the bandwidth h, = n~° is used in the stopping rule as
well as in the final estimate. Then
o 1/2
5 fr(x)[K?*(¢)dt
f(x) €fr(x) £ T1-5

£

p

(1.5)

ZCY
X{WJ”UZTE}VOstl}_)l_a

as € = 0 and
(1.6) liminf P[f(x) € fp + &,Y0<x<1]21-a,
e—0 ¢

provided +< 8§ < 3.

The proof of Theorem 1 is given in Sections 2 and 3. Section 4 contains
some simulation results. Results for censored data will appear elsewhere.

2. Some lemmas. The proof of Theorem 1 relies on two main results: the
modified uniform continuity in probability result in Corollary 1 and the
approximation of 7, in Lemma 7. Corollary 1 follows easily from Lemma 3,
which in turn relies on the Komlés—Major-Tusnady approximation of the
empirical distribution function (Lemma 1) and the modulus of continuity of
Brownian motion (2;4)' Lemma 2, on the uniform rate of convergence of the
density estimate f,, plays a key role in the arguments leading to the
approximation in Lemma 7. Lemmas 4, 5 and 6 all lead to Lemma 7. Lemma
4 is technical. Lemma 5 gives an initial approximation of 7, by a quantity n*.
The order of approximation obtained there is used in Lemma 6 to refine n*
and to produce a better approximation n,. Finally, n, is refined in Lemma 7
to produce a still better approximation n,. This final approximation will,
together with Corollary 1, suffice to prove Theorem 1.

LEMMA 1. Let
Z,)(F(s)) = n'/*(F,(s) = F(s)),
where F,(s) = (1/n)X] Ax ., is the empirical distribution function. Then
there exist a version of the sequence Z° and independent Brownian bridges
WO, j=1,2,..., that is, W°(t) = W(¢t) — tW,(1), where W,,... are indepen-
dent Brownian motions, such that

1 r log n)*
(2.1)  sup|Z)(F(s) —W¥WJ~°(F(S))‘=O(%) a.s.

ProoF. This is immediate from Theorem 4 of Komlés, Major and Tusnady
(1975). O

We will prove Theorem 1 for the version of Z° for which (2.1) holds. The
general case will then follow immediately. The following lemmas apply to the
version for which (2.1) holds, but we do not bother to introduce new notation.
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LEMMA 2. Under the assumptions of Theorem 1,

(2.2) sup |fo(x) — Ef,(x)| = O(n"0="/2(log n)"/?) a.s.

O<x<1

Proor. Lemma 2 follows from Lemma 1 and results on the modulus of
continuity of Brownian motion [see (2.4)]. See Zheng (1988) for a related
argument, and see Stute (1982) for exact rates. O

LEMMA 3. Under the assumptions of Theorem 1, let b(n) > 0 s.t.

(1ogn,)2
b(n)
and
1/2 nh, \"? 4 A
Q, = (log n) 02‘521{(f x)) | Fu(x) = Ef ()] .
Then
(2.3) max |Q,—@Q,.,| =0 a.s.

0<k<n/b(n)

Proor. We will give the proof for the case when (A.1)(i) holds and
[IK'(#)| dt < . The proof under assumption (A.1)(ii) may be found in Xu and
Martinsek (1994). Write

Q, =n"*(logn)"*

K(A)[Z(F(x - 1h,A)) - Z(F(x + h,A))]

X P {—1
O0<x<1 (?(x))l/z

= o(1) + n®/2(log n)"?

1
X s {W K(A)[B,(F(x — h,A)) - B,(F(x +h,A))]

_/OA[BH(F(x —h,y)) = B,(F(x+h,y))|K'(y) dy‘} a.s.,

where B, () is the Brownian motion n™'/*Y} W;(¢). It therefore suffices to
show (2.3) with @, replaced by each of

P* =n°/?(log n)l/z sup ;1/2
O<x<1 (f(x))

X|K(A)[B,(F(x - h,A)) = B,(F(x + h,A))]|
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and
P*, =n®?(log n)"? sup ;12
O<x<1 (f(x)) /
x fOA[Bn(F(x — h,y)) = By(F(x + h,y))|K'(y) dyl.
We have
|Pr;k+k,1 - P:1|
K(A)
=|(log(n + &))" *(n + k)*”*
X ! ! nikW(F +(n+ k)" A)]
2\ Vi v g | & W (e k) a)
n+k
- X W(F(x- (n+k)5A))‘
—(log n)"?*n%/2 sup { ! iiW-(F’(ac—kn_aA))
O0<x<1 \/m ‘/E 1 !
]_ n
——YW(F(x —n°A
- Ewr -
<L +1,+1,+1,
where
1/2 5/2 1
I, = (log(n +k))"(n+k) ey

i:jo(F(x +(n +k)"A))

X sup —F——

O<x<1 \/f(x)

— in(F(x —(n+ k)aA))‘,
I, = (log(n + k)" *(n + k)

X

1 1 |» ,
Ozggllmﬁ Xl‘,WJ(F(x—I—(n-i-k) A))

- Xj:VVj(F(x —(n+ k)aA))‘
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1 1 |» y
_oi‘i‘il[mx) o | G )
— Y W(F(x - nA))

1

I; = (log(n + k) *(n + k)"*

b

1 1 n+k s
Xoiggl{\/f(x) Ny El{Wj(F(er(n+k) A))

b

—W(F(x = (n+k)°4))}

1, =|(log(n + £))*(n + k)" — (log n)"/*n?/?|

X sup

1 1
0=zt VF(x) Vn

By Lemma 1 of Csorgs and Révész (1979) (let £ = 1) and the Borel-Cantelli
lemma,

(2.4) sup sup |B,(¢t+s)—B,(t)| = O(vh log h~! ) a.s.,

0<t<1l-h O0<s<h
when A — 0. Note that 2 can depend on n. Using (2.4) with A =c(n +

i(WJ-(F(x +n°A)) - W(F(x — n-ﬁA)))‘.

1

n/b(n))°,
I -0 log n
Oskril?i(b(n) Yo7 b(n) a8
Similarly,
log n
max I;=0 -0 a.s.
0<k<n/b(n) b(n)
Since
max  |(log(n + k)" *(n + k)*? — (log n)"/*n/2|
0<k<n/b(n)
n®/2=1(log n)"*n
- b(n)
n®/2(log n)"?
—o|———=— |,
b(n)
by (2.4),

log n
max I, =0 -0 as.
0<k<n/b(n)
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Finally,

I, < (log(n + k))*(n + k)**

™M=

sup ———|—= L W,(F(x + (n+k)"A))

1
X
{0<x<1 f(x)

1

% (F(x+n BA))‘

1 =
T;W( (x—(n+Fk) A))

1 75
_W§VVJ.(F(x—n A))‘}.
Since
|F(x+ (n+k)°A) —F(x +n" 5A)|<O(b(n8))
and

n-?
|F(x—(n+k)75A) F(x—n" 5A)|<O( ),
again we can use (2.4),

max I, = O|(logn)"/*n®?y ————
0<k<n/b(n) 2 ( 8 ) b(n)

log n
=0 —1/2 — 0 a.s.
b(n)

Hence,

max |Pf, , —P4l—>0 as.
0<k<n/b(n)

Turning to the sequence PJ,, we have

1PYn,e = Pl

1
< (n+k)”*log(n + k) ‘\/_ =

0<x<1 (f(x))1/2
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A
<),
(n+k)”*log(n + k)

SW(F(x— hyy)) — L W(F(x +hny)>]K'<y>dy
1 1

—+

1 1 2
x{ [ S = i)

ooee1 (F(2)7?

W,(F(x + hn+ky))]K’(y) dy

1

A
e eI

1 n
>
%?W/J(F(x_hny))

1 n
+(n+k)”*log(n + k)

o]

n+k

1
/;)A‘/m Z [VVJ‘(F(x_thrky))

n+1

1
o (o
— W(F(x + Ry )| K'(9) dy\

+|(n + k)”* Ylog(n + k) — n®/?/logn |

1 1 ARl
up e | W(F(x —h
onle (f(x))"? \/Zfo ;[ i(F( 2Y))

— Wi(F(x +h,y)|K'(y) dy‘.
The second term is bounded by a constant times

(n +k)”*log(n + k)

x| sup [* [BL(F(x = hy1) = B(F(x ~ h,y)|K'(5) dy

O<x<1"—

+(n + k)7 flog(n + k)

x| sup [ [B(F(x+ hys9)) = Bu(F(x + h,y)|K'(3) dy

O<x<1"—
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< (n+k)”?*log(n + k)

X sup sup |B,(s) — Bn(t)|fle|K'(y)|dy

0<s,t<1|s—t|<(const)h,—h, ;)

= O(n‘s/2 Vlog n \/(hn - thrk)log((hn - hn+k)71) )

log n
=O(L) -0 a.s.

vb(n)

The other terms can be dealt with similarly, so we have

* _ D%
max |P¥ ,,—P5l—>0 as,n—

0<k<n/b(n)

This proves (2.3) O
COROLLARY 1. Under the assumptions of Theorem 1, for +< 8 < %,

o5 s max [(28log(n + k) H[ M, = d,.]

—(261og n)*(M, - d,)| -0 a.s.,
with b(n) as in Lemma 3.

Proor.

(26 10g(n + k) /*[M,,, — d, ] - (28 log n)/*(M, — d,,)]
< ‘/ﬁlQn#—k - Qn'

+ sup ﬁ'Eﬁwk(’C) —f(x)|(log(n n k))l/Z(n n k)(1_5)/2

O<x<1

T ﬁ"fﬂm — £(x)| | (log n) /2 n-5)2

O<x<1

+|V28 log(n + k) d, ., — V25 log nd,|.

By a standard expansion using (A.3), we have

(2.6) sup |Ef,(x) - f(x)| = O(h2),

O<x<1

so the left-hand side of (2.5) is of order

O(n(1*5‘3)/2 Vlog n ) + 0

1

b(n)

+0(1) >0 as.
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LEMMA 4. Define G(n) by

5 2/(1-8) 45 1/1-6)
G(n) =|———— +d - log &1
(") =\ V2o togn ”) (1—5°g‘9 )
Then
48 1/(1-8)
G(n) = (25 log n)l/(l_‘s) - (mlog al)
+H(n) + O((log n)l/(lf‘”*(loglog n)3),
where
H(n) = a,(log n)l/(l_a)_lloglog n + ay(log n)l/(l_a)_1
(2.7) + as(log n)l/(l_‘s)_Z(loglog n)2 + a4(log 11)1/(1_3)_2 loglog n
+ a(log n)1/(175>—2’

for certain constants a,, a,, a5, a, and a;.
Proor. The proof is obvious by the Taylor expansion. O
LEMMA 5. Let

log &

L1\ 1/-8)
82 )

s 45 2
nk = 1_80ili£)1f(x)/K (t) dt
Under the conditions of Theorem 1,

( (loglog 8’1)2
=0

T —n*
I a.s.as € — 0.

£ &

(2.8)

*
&

n log &~

ProoOF. By the definition of T,

1 z,
+ [— +dp 4
e\ /28 log(T, — 1) ¢

1272/
x| sup fATS_l(x)fKZ(t) dt) ]
0<x<1

(2.9)

>T >

&

1 z
B +d
a(,/2alogTs Tf)

X

1/272/1-)
sup fTé,(x)fKQ(t)dt) }
O<x<1
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and
n* (loglog £~ 1) o
(210 g(lfg jl ) = 0(&7/0="(log &™) """ (loglog #1").
Then
T, - nt

n*(loglog &~ 1)2/log e 1

171/(175)(10g10g 6‘_1)72

2/(1-6)
; )

( n )1/(1—5) z d
X su q(x + _
OnglfTF 1() V26 log(T, — 1) e

1/(1-8) 48 i 1/(1-9)
—( sup f(x)) ( log & ) +1

< const(log & 1)

O<x<1 1-96

< const(log 8‘1)171/(175)(10g10g 8_1)_2
R 1/(1-6)
<[ swp fru(0)]G(n -1
O<x<1
, 1/(1-8)
+ const(log 8‘1)171/(175)(10g10g ey ( T 6log g‘l)
1/(1-8) 1/(1-8)
X ( sup ng—l(x)) _( sup f(x)) }
O0<x<1 O<x<1
+0(1).
By Lemma 4 and
1 46
log n* = log sup f(x) [K*(t) dt
1 - 5 1 - 6 O<x<1
(2.11) v
+ T aloglog e+ T 810g e 1,
we have
1/(1-8)
G(T, - 1) = (25 log(T, — 1))/" 7> — ( —log a_l)

+ O((log(T, — 1))/ loglog(T, — 1))

1-9

1 48 1/1-86)-1
( 1= 6log 6‘_1)

><(2610g(T8— 1) — log g‘l)

1-6
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+ 0((log £™1)"" " "loglog £~ 1)
= const(log 8’1)1/(1_8)_1(log(T8 — 1) —log n¥)
+ 0((10g 3’1)1/(175)71 log log a’l).
Since
(2.12) sup f,(x) = sup f(x) as.n— o,
O0<x<1 0<x<1
for
f(x) K2y de |1 2,
n,=inf{n:n>1,| sup +d,|<e
O<x<1 nh, ¢2510gn
we have
— 51 as.
nS
Also,

F() 7 =
sup +d,
0<x<1 Nh, V268 logn
1/2
— (26 sup £(x)) " (logn)"/*n 0972 4 o(n=1-972(log n)'"?).
O<x<1

So we have n_/n* — 1, which implies

(2.13) n_’;‘: -1 as,
and, hence,

log(T, — 1) — logn* - 0 a.s.
By assumption, we also have

sup f,(x) > sup f(x)€[m,M], m>0,M<o,

O<x<1 O0<x<1
Hence
1/1-6)
_\1-1/(1-8) PR A
(log & 1) / (loglog & 1) ( sup ng_l(x)) G(T, - 1)
O<x<1
-0 as.,e—0.
Also
A 1/(1-8) 1/(1-8)
( sup ng—l(x)) _( sup f(x))
O<x<1 O<x<1

< const- sup |]Z‘\T£—1(x) —f(x)|

O<xx<1
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(2.14) = O(T; = 2/%(log T,)"?)

log &1
( > ) (10ge‘1)1/2)

O(sl’ﬁ(log 3’1)5/2) a.s.,

by Lemma 2 and (2.6).
It follows that

—(1-8)/2

I
Q

1-1/(1-8)

1/(-35)
log 3_1)

(log & 1) (log log 8-1)2(

1-6

1/(1-6)
x )

. 1/(1-8)
( sup fTE,l(x)) —( sup f(x)

O0<x<1 O<x<1

-0 as.,e—0.
Similarly, by (2.9),

_ gk
Ta ns

n*(loglog &~ ! )Z/log g1

_ _ _ n 1/(1-8)
> const(log 8’1)1 va 6)(1o,c._>,flog e ) 2( sup fTs(x)) G(T.)
O<x<1
1-1/(1-5) —of 40 e
+const(log e 1) /s (loglog 1) ( 1 Blog a‘l)

R 1/(1-8) 1/(1-58)
X ( sup ng(x)) —( sup f(x))
O<xx<1 O<x<1
— 0 a.s.

So (2.8) holds. O

LEMMA 6. Let

1/(1-8)
(2.15)  ny=n¥+ 32/(15)( sup f(x)fK2(t) dt) g(e),
O0<x<1
for
(45)1/(173) _N1/1-8)-1
g(s) = 2(1 - 8)1/(1—5)+1(10g‘9 b
456

(2.16) X [loglog £t + log T Osuplf(x)sz(t) dt)

+H(n;‘f)),
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with H(n) defined by (2.7). Then, for all 0 < n < 1, under the assumptions of
Theorem 1,

Ts — Ny
(2.17) —

— X > 0 a.s.,e—0.
ny/(log ng)

Proor. By (2.9),
T - no

&

1+7—-1/(1-6)
1+
ny/(log ng) !

< const(log & 1)

<[G(T.= 1) —g()]( sup fr ()

0<x<1

)1/(16)

+ const(log &~ 1)“ K

( sup f(x))l/(lia)—( sup ng_l(x))l/(lé)}.

O0<x<1 O0<x<1

X

By (2.14), it is easy to see that

. 1/(1-8) n 1/(1-38)
(log 1) ( sup f(x)) —( sup pr_l(x)) -0 as.,e—0.
0<x<1 0O<x<1
By (2.11),

1/(1-98)
(;(T‘g — 1) —g(g) = (25 log(Tg B 1))1/(1—3) _ ( 46 ) /

-1
1= 6log e
+H(T, - 1) - g(e)

+0((log & 1)/ (loglog &~ 1)")

1 48 1/1-8)-1
( = 810g 6‘_1)

1-9

26
log ™! —

1-6 1-6

X 1

26 log(T, - 1) — loglog &~

26 46 )
g g e, o [0 a|
+H(T, — 1) — H(n)

+ O((log a’l)l/(lfs)fs(loglog 3’1)3)

1 48 1/(1-6)-1 T -1
= — I -1 1 -
1_6(1_80;;8 ) (28 og( - ))

+ H(T, — 1) — H(n¥)

+ O((log 8’1)1/(1_5)_3(10g10g 3’1)3).
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Then,
(log &™) " G(T, - 1) ~ g(e))
Y T,-1-ng
= const(log &™) log|1 + T)
+(log &™)V H(T, - 1) — H(n}))
+ 0((log &™) *(loglog & )°).
By Lemma 5,

(log &~ *)" log — = o((log £1)" '(loglog 8*1)2)

Ts—l—nf’;)
142 -~ ¢

-0 a.s.
Using Taylor expansion for every term of H(n), we have

)1+7,—1/(1—5)

(log &~* (H(T,— 1) —H(n*)) >0 as.,&—0.

So
Ta - nO

n,/(log no)Hn

By (2.9) and the same reasoning, we have

<o0(l) as.VO<n<1.

Ts_n’()

>0(1) as.VO<n<1,
n,/(log a’l)Hn

s0 (2.17) holds. O
LEMMA 7. Let

-1
ny = ng + e 2/0-9(log £ 1)

X

[

sup f(x) [K*(t) dt
O<x<1

(2'18) )1/(1—5)

=¥ + 82/<15>( sup f(x) [K*(t) dt
O<x<1

Xg(s)(l + %(log 8_1)71),

with n, and g as defined in (2.15) and (2.16). Then there exists some n, > 0,
such that

T —n,g

&

2.19
( ) n,/(log 8’1)2+n°

-0 a.s.,e—0.
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Proor. Since

1/1-6)
ny, =n* +s‘2/(1_5)( sup f(x)/Kz(t) dt) g(&)
O0<x<1
1/(1-6)
_ 2/0-8) K2(¢
S Fer SISO
g(e)
x|1+ —a |
([48/(1 — 8)]log &~ 1)
1 log & * R () K2(t)d
ogng = T—sloge + T —log 1—502221f(x)/ (¢)de
g(¢)
+ loglog ¢ 1) + -
el ) ([48/(1 - 8)]log &~ 1)/~
loglog &~ 1\*
+ - .
log 7! ’
P oget =251
13 oge ' = og n,
26 [ 45 K d
- t)dt
508 l_aoigglf(x)f (1)
(2.20) 28 o 28g(¢#)
- oglog &' — =
1-3 ([48/(1 — 8)]log &~ 1)/ 7>
o loglog &~ 1\*
log 7! '
By (2.20),
Ts_nl

2+m,

n,/(log n;)

172+ 1me—1/(1-9)
< const,(log &~ 1)* ™

1 -1 . 1/(1-8)
X|G(T, - 1) —g(e) — g(log e ) g(e)}( sup fol(x))

O0<x<1

+ COnstZ(log 3‘1)2+"0[( sup f(x))l/(lfs) _( sup ng_l(x))l/(la)}

O0<x<1 O<x<1
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B B R 1/(1-8)
= const,(log 8_1)2+n0 va 3)( sup pr_1(x))
0<x<1l
1/(1-8)
x| (28 log(T, — 1))/~ - ( —log 81) +H(T, - 1) — g(&)

1/(1-8)-3

- %(log 8’1)_1g(a) + O((log e h) (log log 8’1)3) +0(1)

~1\2 -1/(1-98)
= const,(log 7 1)" "™ /

1 48 1/1-6)-1
e P

1-6\1-96

25 45
x{26 log(7, — 1) = 23 log ng + 7 51°g( {5 Sup f(x))
- — Oo0<x<1
28g(e)
+ loglog ¢ + -
1-6 ([48/(1 - 8)log &)/~

loglog &~ 1\*
O(( log 7! ) )}
1 -1
+H(T,—1) —g(e&) — E(log e ) g(e)} + o(1)

L1324 7m0+ 1/(1-8)
= const,(log 6™ 1)"" " /

1 48 1/1-6)-1 T -1
X | —— I -1 2581 z
1—5(1—5°g8 ) Og( n, )

+H(T,— 1) — H(n*)| + 0(1)

T -1
= const,(log 8,1)1+ o log( )

ng

2+ mo—1/(1-8)

+ consty(log £71) (H(T, - 1) — H(n*)) + o(1).

We have

|(log &) ™ VU (H(T, - 1) — H(n*))]

2 -1/(1-6
< lal(log &~1)* /072
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X |(log(T8 - 1))1/(175)7110g10g(T£ - 1)

_ (log( n* ))1/(1—5)— 1

+|a,(log 871)2+”°_1/(1_6)|(10g(T8 _ 1))1/<175>71 — (log nj)1/<175)71|

loglog n*

2 -1/(1-6
+lasl(log e1) Fo=1/=2)

x|(log(T. — 1))/~ (loglog(T, — 1))’

*)1/(1—3)—2
&

—(log n (loglog n* )2|

24mo-1/(1-5
+lagl(log &~ 1)* "™ /a=e)

X |(log(T8 - 1))1/(175)7210g10g(T£ - 1)

—(log )"/~ "*(loglog n)|

+|asl(log 871)2+"°_1/(1_5)|(log(T8 _ 1))1/(175)72 ~ (log nj)1/<1fa)fz|

-0 as.,e—0.
By Lemma 6,

T -1
(log s‘l)HnO 1og( z )
n

0

T

e o

IA

O((log g )™

ng

=0

(log &71)" "™
(log &71)"""

— 0((log « )™ ")
-0 whenl>n>n,.

So
T

£

<
n,/(log 711)2+ "

By using (2.9) and similar reasoning, we have

T
o(1).

- ny

o(1).

s_n’l

>
n,/(logn,)>" ™

Hence, (2.19) holds. O
3. Proof of the theorem.

ProOOF OoF THEOREM 1. By the result of Bickel and Rosenblatt (1973),
under the assumptions of Theorem 1, for

X, = (25 log n)1/2{(fK2(t) dt)l/ZMn - dn},
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there exists a r.v. X such that
X, =24 X,
where
P(X <z) =exp(—2exp(—2)).
This implies
X[nl(s)] -4 X,

with n,(e) = n; as defined in Lemma 7.
To prove the theorem, it suffices to show that

XTE -4 X,
so it suffices to show
Xr, = Xinyey ~p 0

&

Now, for all b > 0,
P{| Xy, = Xinyon | > b}

<P |XT£_X[n1(£)]|>b’ T, - [’11(*5')”S o) 2+n0}
(log(n(¢)))
ny(e)
+P |Te_ [nl(g)” > —2*-770}
(10g nl(‘g))
Define n,(&) = n,(g) — n,(&)/(log(n,(&))** ™. By Corollary 1,
ny(e)
Pl|X, =X, .| >b,|T. — [nye)]]| <
| Xr, = Xinyon | | [n.(2)]] (log nl(e))2+,,0}
gP{ max X i — X o >b}
o<ks[m(en/(log[m(g)])z*"o| (et rcen |
P{ | X X ol b}
+ max nole — Kpn(e > —
0<k<[ny(e)l/oglny(e)])2* Mo (ra(eN+H (a2 2
-0 ase—0.
By Lemma 7,
ny(e)
P |T€—[n1(8)]|> 2+no}
(log n4(¢))
T.—n, 1
<P Timg | T sras > 1
n,/(logn;) " n,/(logn;) "

-0 ase—0.
This proves (1.5). Relation (1.6) follows immediately. O



SEQUENTIAL BANDS FOR DENSITIES 2239

TABLE 1
Coverage frequencies and average sample sizes for N(0, 1) data on [0, 1] with 6 = 0.21*

« € Coverage frequency Average sample size
0.1 0.3 0.86 142.30 (4.07)
0.1 0.2 0.90 401.62 (6.49)
0.2 0.3 0.72 86.96 (2.82)
0.2 0.2 0.82 257.34 (5.43)

*Coverage frequency is frequency (in each case out of 50 trials) of the event that all
values were covered. Numbers in parentheses are standard errors.

4. Simulation results. Simulations were carried out for the stopping
rule that results from replacing the supremum in (1.4) with the maximum
over a uniform grid of points in the interval under consideration. Two
situations were considered: (1) standard normal on the interval [0, 1], with a
grid of 99 points; (2) exponential with scale 1 on the interval [0.5, 1.5], with a
grid of 100 points. Two choices of a were used: 0.1 and 0.2. There were also
two choices of ¢: 0.2 and 0.3; § = 0.21 was chosen because, according to the
asymptotics, the closer 8 is to + the smaller the sample size will be. The
uniform kernel with support [ —0.5,0.5] was used throughout. All simulated
observations X;, including those outside the interval of interest, were used by
the procedure, although of course the density estimates were computed only
for points inside the interval [see assumption (A.5)]. Fifty simulations were
conducted for each of the eight combinations of distribution, o and &. The
results are shown in Tables 1 and 2, where the coverage frequency [i.e.,
frequency with which all density values on the grid were covered by the band
in (1.5)] and the average sample size are given.

Overall, the coverage frequencies are reasonably good. As one would
expect, they are better at the smaller value of £. When ¢ = 0.3, the observed
frequencies are below the desired coverage probabilities, although not by an
alarming amount. When & = 0.2, the coverage frequencies in the normal case
are either exactly at or slightly above the desired values, while in the
exponential case they are noticeably above the desired values. We do not
know why the procedure appears to be conservative for exponential data, but
at least the discrepancy means increased rather than decreased confidence.

TABLE 2
Coverage frequencies and average sample sizes for exponential data on [0.5,1.5] with & = 0.21

@ € Coverage frequency Average sample size
0.1 0.3 0.84 209.38 (3.61)
0.1 0.2 0.96 589.34 (9.75)
0.2 0.3 0.78 128.76 (2.87)

0.2 0.2 0.90 386.40 (7.27)
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Of course one must keep in mind that the observed frequencies themselves
contain random variation.
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