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PREDICTING INTEGRALS OF RANDOM FIELDS USING
OBSERVATIONS ON A LATTICE!

By MICHAEL L. STEIN
University of Chicago

For a stationary random field Z on R?, this work studies the asymp-
totic behavior of predictors of [v(x)Z(x)dx based on observations on a
lattice as the distance between neighbors in the lattice tends to 0. Under a
mild condition on the spectral density of Z, an asymptotic expression for
the mean-squared error of a predictor of [v(x)Z(x) dx based on observa-
tions on an infinite lattice is derived. For predicting integrals over the unit
cube, a simple predictor based just on observations in the unit cube is
shown to be asymptotically optimal if v is sufficiently smooth and Z is not
too smooth. Modified predictors extend this result to smoother processes.

1. Introduction. This work studies the behavior of linear predictors of
integrals of stationary random fields based on observations on a regular
lattice. Ripley [(1981), Chapter 3], Tubilla (1975), Matern [(1986), Chapter 5],
Cressie [(1993), page 321] and Stein (1993), among others, consider the
asymptotic properties of predictors of area averages of random fields, that is,
predicting [z Z(x) dx over some set B, often a square, for a random field
Z: R¢ - R. Schoenfelder (1978, 1982) and Schoenfelder and Cambanis (1982)
studied the more general problem of predicting [v(x)Z(x) dx. However, none
of these works investigates whether or not these predictors are asymptoti-
cally efficient relative to the optimal linear predictors. Under a broad class of
models for Z, this paper derives an expression for the asymptotic variance of
the optimal predictor of [v(x)Z(x) dx based on an infinite lattice of observa-
tions as the lattice spacing tends to 0. In addition, explicit expressions are
obtained for predictors of [, ;;¢v(x)Z(x)dx based just on observations in
[0, 1]¢ that achieve this asymptotic mean-squared error if v is smooth and Z
is not too smooth. It follows that these predictors are asymptotically optimal
when the conditions on v and Z are satisfied.

Section 2 studies the following scenario: for a stationary process Z on R,
suppose we observe Z(8(J + v)) for all J in Z¢, the d-dimensional integer
lattice, where & is a positive scalar and » a fixed vector in R? Under
condition (2.1) on the spectral density of Z, Section 2 derives an asymptotic
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expression for the mean-squared error of the predictor of [v(x)Z(x) dx as §,
the distance between neighboring observations, tends to 0.

Since, in practice, one never has observations on an infinite lattice, this
result is of limited utility by itself. However, it does serve as a benchmark for
predictors based on a finite lattice. If we can show that a predictor based on a
finite lattice has the same asymptotic variance as the optimal predictor
based on an infinite lattice, then it is obviously asymptotically efficient
relative to the optimal predictor on the finite lattice. Section 3 considers
predicting [, j;¢v(x)Z(x) dx by

S5

m m

where h = 2(1,...,1), m is a positive integer and each component of JJ varies
from 1 through m. If v has bounded partial derivatives of order d + 1 on
[0,1]¢ and Z is not too smooth, then Proposition 3.1 shows that this simple
predictor is asymptotically optimal. The condition that Z not be too smooth is
that its spectral density f(w) must decrease more slowly than |w| ¢ as
|w| = % for some g < 4. Since, under (2.1), f(w) = o(lwl™?) is necessary for f
to be a spectral density, Proposition 3.1 is only meaningful in at most three
dimensions. Section 4 demonstrates how the results of Section 3 extend to
larger ¢ and hence larger d by modifying the predictor.

2. Asymptotic variance of optimal predictors. Suppose Z is a weakly
stationary random field on R¢ with mean 0 and spectral density f. Through-
out this paper, we will assume

(2.1) f(w) < y(lwl) as |w| = =, where y(t) is regularly varying as t — .

See Feller [(1971), page 276] for the definition and properties of regularly
varying functions. For positive functions a and 5 on R?, the notation a(w) =
b(w) means that a(w)/b(w) is bounded away from 0 and «©; a(w) < b(w) as
|w| = % means that, for some R > 0, a(w)/b(w) is bounded away from 0 and
» for all |w| > R. For v: R? - R measurable and square integrable, define
V(w) = [u(x)e'®* dx. Assume [|V(w)’f(w)dw < ©, which implies that
fv(x)Z(x) dx is well defined as a mean-squared limit of finite weighted sums
of Z with var(fuv(x)Z(x) dx) = fIV(w)|2f(w) dw.

Consider predicting [v(x)Z(x) dx based on observing Z(8(J + v)) for all
J € Z¢, where 6 > 0 and v € [0, 1)%. Let Z,(x) be the optimal linear predictor
of Z(x) based on the infinite lattice of observations, so that the optimal linear
predictor of [v(x)Z(x) dx is [v(x)Zs(x) dx. Finally, set

S(t) = /A(t)z’f(w + 27t V() do,

where A(¢) = t(—a,7)? and ¥ means summing over all elements of Z¢
except the origin.
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PropPosSITION 2.1. Under (2.1), if f(w) > 0 almost everywhere with respect
to Lebesgue measure, [v(x)*dx < and var(fv(x)Z(x)dx) < =, then
var( [v(x{Z(x) — Z (x)} dx) ~S(6 1) as 6 0.

PrOOF. The proof has two basic steps. First, show that there is a possibly
suboptimal linear predictor that has asymptotic mean-squared error S(51).
Second, show that the optimal predictor cannot have mean-squared error
asymptotically smaller than S(571).

Let U; , be the Hilbert space given by the real linear hull of the functions
e+ for J € 7Z¢ with respect to the inner product (¢,, ¢,) =
[ (@)dy(®)f(w) dw. Corresponding to each element ¢ € Us. ,, there is a
random variable Z, defined by identifying e+ wwith Z(B(J + v)) and
extending the correspondence first to finite linear combinations of these
elements and then to limits of such linear combinations with respect to the
norm on U;,. We then have Var(fv(x)Z(x) dx — Z3) = [flo)V(w) —
H ) dw. The Hilbert space U; = U; , is equivalent to the space of functions
U(w) = a(w) + ib(w) with a and b real a even, b odd and both with period
278 ! in each of its arguments with ff(w)IU(w)I do < x©, as long as We
equate functions g,(») and g,(w) that satisfy [f(w)lg,(®) — g(w)* dw =
Furthermore, ¢(w) € U; , if and only if e ~i90'1h( ) € Us. In particular, the
function ¢, which equals V on A(67!) and for which e_“s“’ ‘o) has period
278! in each argument is in Us, - Then

VEII‘(/U(JC)Z(DC) dx — Z

= Z,f(w + 278 ') V(w + 2767 1) — e 27"V (0)l* do
A(5™H
=S(87") + Ry,

where

Rol< [ f(o)V(0)do
RNA(G™Y

1/2
+2{j f()V(e)PdoY [ fo+278 1) V(o) dw} :
RANAGS™) A
Under (2.1), we have S(6 1) < y(671) and

/Rd\A@*l)f(w)lV(mFdw_ (7(8 l)f IV(w)|2dw) =o(y(87 ),

d A(5 1)
since [v(x)?dx < » implies [|V(w)|® dw < . It follows that |R;| = o(y(5~1))
and that the suboptimal predictor defined by Z, has asymptotic mean-
squared error S(871).
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Next we need to show that the optimal predictor does no better asymptoti-
cally than given by Proposition 2.1. Following Hannan [(1970), page 167], it is
easy to show that the optimal predictor is given by the random variable
corresponding to

Yf(w+ 278 ')V (w + 278 1 )e 1277

hia() = Tf(w+ 276 1)

Then
var(fu(x){Z(x) — z;(x)}dx)

> [ Yo+ 2m5 )| V(0 +2m671T) — 2 hy(w) [ do
(2.2) A(s™D

> fA(Sil)Z’f(w + 278 W) {IV(w)| — IV(w) — hy( )]
—|V(w+ 275 )| do.

Proposition 2.1 will follow if we can show var([v(x){Z(x) — Z,(x)} dx) >
S(871) + o(y(871)). Since

V(o) = V(0) — ks( )l = V(o + 275 1))’
> [V()l? = 21V(0){IV(0) — hs(w)| + V(0 + 276 1)},
from (2.2), it suffices to show
f  Yf(w+ 28 W) V()]
A(™YH

><{|V(w) —hs(0)| +1V(w + 27T5_1J)|} do=o(y(57")).

(2.3)

By (2.1), f(w + 278 1J)/y(8 !|J|) is uniformly bounded by some constant C
for all w € A(671), J # 0 and all § sufficiently small, so

[, T+ 20 DIV(@)[V(0) ~ hy(w)] + V(0 + 275" 0) | do

< CZ'v(é‘llJl)fA(Bfl)IV(w)|{|V(w) —hs(w) + V(0 + 275 )} do

/2
s2c{f|V(w)|2dw} Yy (8 I

1/2
+{f |V(w-i—271'6_1J)|2 dw} l
A(s™YH



PREDICTING INTEGRALS OF RANDOM FIELDS 1979

Thus, (2.3) easily follows if [, ;-1)|V(w) — 2;(w)I* dw = o(1). We have

/A@—JV("’) — () do

L[ Zf(w+ 2757 1))
(24) = 2[A(571)IV(0))| { Yf(w+ 2787 1) } ©

Yf(w+ 26 1)V (w+ 276 1))
+ 2 — do.
AT Xf(w+2m6 )
The first integral on the right-hand side of (2.4) tends to 0 as 6 |0 by
dominated convergence since the integrand tends to 0 and is dominated by

[V(w)|?, which is integrable over R?. The second term on the right-hand side
of (2.4) is bounded by

| Yo+ 2m8 W) LIV (0 + 276 1T )2 .
w.

A5~ (Ef(w+ 278 1))

Using (2.1), it follows that Y f(w + 276 'J)?2 AL f(w + 276 1J)}? is uni-

formly bounded for w € A(67') and all & sufficiently small, so the second

term on the right-hand side of (2.4) tends to 0 as & |0. Thus, (2.3) and
Proposition 2.1 follow. O

Note that the condition f(w) > 0 almost everywhere is necessary. Let B
be the set on which f is 0, let 1{-} be an indicator function and define ¢(w) =
V(w)l{w € B} on A(67 '), and elsewhere by the periodicity of e *°“"¢(w),
so that ¢ € U; ,. For f(w) = 0 on a set of positive measure, the predictor Z,
has asymptotic mean-squared error S(5°1) — X flo+ 278~ 1J)IV(w)I2 dw
which is nonnegligibly smaller than S(57') as long as [3|V(w)|> dw > 0.

3. Integrals over the unit cube. In practice, we normally only observe
Z over a finite lattice and v has bounded support. As an important special
case, we will consider predicting [, ;;40(x)Z(x)dx based on observing
Z(m_l(J h)) where m is a positive integer, A = +(1,...,1) and J ranges
over the m¢ points in L(m) = {1,..., m}?. Stein (1993) cons1ders this problem
when v(x) = 1. This section considers the asymptotic optimality of the natu-

ral predictor
5 J—h J—h
Zy =t ¥ o )z( )
L(m) m m

for [i5 1j¢v(x)Z(x) dx.

ProOPOSITION 3.1. If fis bounded and satisfies (2.1), y is regularly varying
with exponent —p with p < 4 and v has bounded partial derivatives of order
d + 1 0on[0,11%, then, as m — =, var( fi qjev(%)Z(x) dx — Z,,) ~ S(m).
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Since we require p > d for f to be integrable, this proposition is vacuous
for d > 4.

Proor oF PrROPOSITION 3.1. The key to proving this result is the following
lemma bounding the difference between a Fourier transform of a smooth
function with support on the unit cube and its approximation by a finite sum,
proven in the Appendix.

LEMMA 3.1. Suppose v has bounded partial derivatives of order d + 1 on
[0, 1]¢. Then there exists a constant C independent of m and o such that

. J—h\ |,
f U(x)ezwxdx_mfd Z U( )ezw(Jh)/m
lo, 1)¢ L(m) m
C log m)%¢ 1+ |w?
—{1+( gm)* (1 + o)

= 7 ,(1 + o))

for all w € A(m), where w; is the jth component of .

To apply Lemma 3.1 to Proposition 3.1, write

Var(/[o,lldv(x)Z(x) dx — Zm)

dw

J—h\
V(w) _ mfd Z l)( )elw(Jh)/m

L(m) m

= fA(m)f( w)

(3.1)

+/ Z,f(w+27rmK) V(w+ 27mmK)
A

(m) g

2

do.

—md ¥ v( J—h )ei(w’(Jh)/mZWK’h)
JeL(m) m

The second term on the right-hand side of (3.1) is bounded by

V() + 2[V(w)l

/A Z,f(w-l- 27mmK)

(m) g

X

J—h\
V(o + 20mK)| +|V(0) —m™¢ ), v( )etw(Jh)/m

JeL(m) m

|

J—hy\ |
+2lV(0+27mK) > +2|V(w) —m~¢ Y v( )ezw(J—h)/m

JeL(m) m

2
de,
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which we want to show is S(m) + o(y(m)). Similar to the proof of (2.3), this
result will follow if

2

dw=o0(1),

J—h\
[ V) =m e ¥ o S e
A(m)

L(m) m

which follows from Lemma 3.1 and [4,,(1 + |w|2)2/1‘[jd:1(1 +lo)* dow =

O(m?®). Then Proposition 3.1 obtains if we can show the first term on the

right-hand side of (3.1) is o(y(m)). By (2.1) and f bounded, we have that, for

any g < p, f(w) = 01 + |w|?)™!) and
1+ lwl?)’

(1 + o)L, (1+]o))

1+ Z}Llwf_q
9 |
T2 (1 + loyl)

so, by Lemma 3.1,

&mfun

log m)*? 1+ X% wi
O ( g 4) / j=1%j . dw
A(m) H;?L 1(1 + |wj|)

2

dw

J—h\ .,
V(w) _ m—d Z U( )euu(J—h)/m

L(m) m

m

= O((log m)**(m~* + m~171)).

Since y(m)m” — « for any r > p, by choosing ¢ = p — 3, say, we get that the
first term on the right-hand side of (3.1) is o(y(m)) for p < 4. O

Propositions 2.1 and 3.1 imply that if the conditions on f and v in
Proposition 3.1 are met and f is positive almost everywhere, then Z,, does as
well asymptotically as the optimal predictor based on the infinite lattice of
observations at (J — h)/m and thus does as well asymptotically as the best
predictor based on observations at (J — h)/m for J € L(m).

4. Extension to smoother processes. This section describes a class of
predictors for which the results of Section 3 apply to values for the exponent
p that are greater than or equal to 4. The problem with the predictor in
Section 3 is that it essentially predicts the integral of Z over the cube of side
m~1 centered at (J — h)/m by m ?Z({(J — h)/m). This natural predictor is
not good enough for smooth processes. In spectral terms, this corresponds to
approximating

(o) / ( J—h
) w) = v
I [-1/2m),1/(2m)]? m

+ x)ei“"" dx

by m~4v((J — h)/m)exp(iw'(J — h)/m). To develop a better approximation,
we first need some preliminary results. Define %,,(s,n) = [Y55) e*Yy" dy
and a,,o(®) = [1¢_12, (0, Q,), where @ = (Q,,...,Q,). Define D, to be the
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subset of Z¢ whose components are nonnegative and sum to k. Then, for v
possessing bounded partial derivatives through order ¢ on [0, 1]¢,

g-1 J—h
(@) ms(0) = £ 3 £ a0 @] s 0(mn),
B
k=0 QeD,
where the remainder is uniform in o and J € L(m) and v@(x) =
{99t Qe /gx @ -o 9x94}v(x). Defining

12

Bi(n) =1{j + neven}j!(j TR )2

k s \J s \k+1
{Loolz) +oll2)7)]
s m m
where the remainder is uniform for |s/m/| < . _
We can now write a function of the form Y .e'®®\, that approximates

we have

h,(s,n) =

M (@) well for w € A(m). For fixed nonnegative integers r and ¢,,...,¢,,
define
J—h 1 b A
bulond) = T T 00— ) [1 {Q— > vltb(leme},

b=0 QeD, k=1|M 1=0
where v, (n) for [ = 0,...,¢ are defined as the unique solution to the system
of equations

i/t .
Bi(n) = P X v(n)l for j=0,...,¢
120

We then have, for |s/m| < 7,

t

1 St+1
hasm) = oz § om)e =o(—)

m

which implies

d

1 la .
(@) — T1 {W )y Vlta(Qa)elSl/m}
a=1|M 1=0

4.2
( ) d | (1)| t,+1
=0 az=:1 mdtatt+1 |
One way to proceed would be to consider the predictor given by the random
variable corresponding to ¥, ,,, (@, J)e'”?""/™ For p, v, r and ¢,,..., ¢,
satisfying the conditions of Proposition 4.1 and f the conditions of Proposi-
tion 2.1, this predictor is asymptotically optimal. However, it uses some

observations outside [0, 1]%. Instead, defining S, (j) =1 if j <m —¢,, and
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S,,(j) = —1 otherwise, where ¢,, = max(¢,, ..., ¢,), let
s oI 2 1 IS, ( Tyl
(pm w,dJ) = v )( ) - v Q eiSm(dpwpl/m ,
( ) b§0 Qesz m kl]l m* zgo (@)
where J = (J,,..., J,;). Then the predictor corresponding to

Erimy ¥ @, J)el”'I=M/m which we will call Z, (r;¢,,...,t,), is given by

A " 1 J—h
PRIV g

JeL(m) b=0 T QeD, m

123

123 d
X ) ) {kljllektb(Qk)}

1,=0  1,=0

N AL CHCALMSENCALN) )

m

This predictor only uses observations in [0, 1]¢.

PROPOSITION 4.1. Suppose f is bounded and satisfies (2.1) where vy is
regularly varying with exponent —p, v has bounded partial derivatives of
order max(r,d + 2 + | p/2) on [0,1]1¢ and r and t,...,t, are nonnegative
integers satisfying r > p/2 and t, >p/2 -k + 1 for k=0,...,r. Then, as
m — o, var( iy 100(x)Z(x) dx — Z,,(r;ty,...,t,)) ~ S(m).

Before proving this result, some comments are in order. The conditions on
v, r and ¢,,...,t, are stronger than necessary. In particular, Proposition 3.1
does not follow from Proposition 4.1. Furthermore, the definition of the
predictor is somewhat arbitrary. For example, the predictor changes if x;, the
Jth component of x, is replaced by 1 — x;. Thus, in practice, it may be
desirable to use some other predictor that also possesses this optimality
property. One possibility is to use the exactly optimal predictor under some
spectral density g for Z. I would conjecture that, for any g satisfying (2.1),
the resulting predictor would be asymptotically optimal if the true spectral
density for Z is given by f, where f satisfies (2.1) and g(w)/f(w) is bounded
and does not tend to 0 as |w| — « at faster than an algebraic rate. Of course,
for large m, it may not be feasible to calculate the exactly optimal predictor
under g.

Schoenfelder (1982) studied the asymptotic behavior of predictors using
random sampling locations. Among the sampling plans she considered, strati-
fied random sampling had the fastest rates of convergence. Her conditions on
the covariance function of Z are neither more nor less general than (2.1) here.
However, where they overlap, the rates of convergence given by Proposition
4.1 are always at least as fast as those given by Schoenfelder (1982) for
stratified random sampling. If (2.1) holds, then her results give predictors
based on stratified random sampling that have asymptotic mean-squared
error of order n ' V4 for f(w) < |w| * ! and asymptotic mean-squared
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error of order n~*~2/% for f(w) = o(lw|"? ~2). Since n = m? here, the n~1~1/4
rate for f(w) < lw| ¢! is the same as in Proposition 4.1. Furthermore, the
n~172/d rate for f(w) = o(lw| * %) is worse than that in Proposition 4.1,
since f(w) = o(|w| * %) implies the asymptotic mean-squared error in Propo-
sition 4.1 is o(n~172/9),

Proor oF PROPOSITION 4.1. We have

var(f[o 1]dv(x)Z(x) dx — Zm(r;to,...,tr))

2

=/ f(w)‘V(w) -y t,l/m(w,J)ei“”(th)/m dw
(43) A(m) L(m)
+ [ Yo+ 2mmd)|V(w+ 2mmd)
A(m) g

2
= Y (0, K)eidE-n/moizal b g,
KeL(m)

From the definition of ¢,(w, K) and the conditions on v, we have
maL e’ Ty (0, J) = LpomAn e’ /™, where A, ,; — v((J —
h)/m) O(m™1) for J € L(m — ¢t,;) and A,,; = O() for J € L(m)\ L(m —
tyr)- Then, similar to the argument used to bound the second term on the

right-hand side of (3.1), it can be shown that, as m — o,

fA Y f(w+ 2amd)|V(w+ 2mmd)

(m) g

2
_ Z dlm(w,K)eiw’(th)/mfi%rJ/h do ~ S(m)
KeL(m)
Proposition 4.1 holds if we can show that the first term on the right-hand
side of (4.3) is o(y(m)). To prove this, first note that
2

f v(x)e“"xdx— Y el T/ Mgy (@, )
[0, 114

L(m)
2
o J-h\
Z eLw(J—h)/m / v(x+ )ethdx_ d)m(w,J)
L(m) [-1/2m),1/(2m)]? m
lp/2] .
> ¥y eiw’(J—h)/mU(Q)(J h)
b=0 Q€D,|L(m) m
ty 2
X | amg(@) — d 1_[ { )y Vltb(Qk)ewkl/m} +m P!

lp/zj |w|2tb+2

(log m)*
I

+m P!
d 2 2b+1+¢ ’
foi(1+ of) = m* 2 )
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using Lemma A.1 and (4.2). It follows that, for any fixed & > 0, using the

conditions on ¢,,...,¢,,

[ fo|vo) - ¥ e “dw=o

L(m)

mp+1—a)'

To finish the proof, it suffices to show

(44) [ flo)| T e (0, ) = du(o, M| do=o(v(my).
L(m)
Now,
2
Y explio'Jm™ ", (o, J) = ¢, (0, J)}
L(m)
lo/2l 1 J—h
= O( Y —dTH Y Y exp{iw’Jml}v(Q)( - )
QED, | JeL(m)\L(m—ty)
(4.5) . 4
X P Il zytb(Qy)
Isees, lg=0v=1
d d 2
X exp{i Y wklkm_l} - exp{i Y Sm(Jk)wklkm_l} +m P!
E=1 k=1
Consider o/y,...,d, fixed and m —t),;, <J, <m for k=1,...,c. For w €
A(m),
m J—h i
£ etioan 00Tt Y TTu@)
Jerr,. Ja=1 Ly, oons Ig=07r=1
d d
X exp{i Y wklkml} - exp{i ) Sm(Jk)wklkml}}
k=1 k=1
46 m o J—h
(4.6) Y exp{iw'Jm 1}U(Q)( ) Z ﬂ v tb(Q )
Jc+1 ,,,,, Jd:1 m ll ..... l =0 7_
X exp{i Y wklkml} - exp{—i Y wklkml}}
k=1 k=1

k=c+1

X ]_[ {Zb vltb(Qk)exp{iwklkml}}‘

o |w|tb+1md—c—tb—1(10gm)Z(d*C)
- ng=c+1(l + |wk|) ,
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using Lemma 3.1 and

Y I sztb(Qy)[eXP{i Y wklkml} — exp{—i Y a)klkml}}
Iiyenns 1,=07r=1 k=1 k=1
c ty c ty,
- IT{ % vu@aessliontan )| ~TT{ 2 vu@posl-ioutom )|
a=1|7=0 a=1|7=0

il
|(:;,|)b )}

=11 {mQ““hm(wa,Qa) +0
a=1

-T1 {mQ“”hm(—wa,Qa) +0
a=1

)

where we have used the definitions of v,,(n) and %,,(s, n) and the fact that
h,(s, n)is an even function of s. Since there are only a fixed finite number of
terms for which m — ¢, <J, <m for k = 1,...,¢, it follows from (4.5) and
(4.6) that

2

Y ey (0,d) = (0, )}

L(m)
Lp/2l (log m)4d|w|2tb+2 d m—25
=0| L 26+t 1) Y =2 ~ +m P!
b=0 m o1 o a(1 + wf)
Then (4.4) and hence Proposition 4.1 follow from the conditions on #g,..., ¢,

and the bound [4,,, f(@)lw[***?/TTI{_, . /(1 + 0}) dw = O(1 + m?»*2 e pte)
for any ¢ > 0. O

APPENDIX

Proor or LEMMA 3.1. Let A be an upper bound on v and all of its partial
derivatives through order d + 1 on [0, 1]¢. Define v]-(x) = (c?/axj)v(x). Then

. J—-h\
f dv(x)emedx_mfd Z U( )ezw(Jh)/m
[0,1]

L(m) m

Ad?

+
m2

<

d -
eiw’(er(th)/m) Z x-v-( J h ) dx
Lm) "[—1/@m), 1/@m)]? o177 m

Y v( il )eiw'(J—hvm / el *dx —m™ ¢
m [-1/@m),1/@m)¢
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J—h 1 ; 2 (o
”J‘( imchos(Zm) - iaﬂsm(zm)

m
2 w Ad?
X]_[—sin(—k)H+ 5

k#j Wy, 2m

d

Z pi@(J—h)/m Z

L(m) Jj=1

+

J—h
i (J—h)/m
zv( — )e

L(m)

y Uj( J—h )eiw’(Jh)/m
L(m) m
Ad?

m2

d 2 ;
11 —sin(—]) -m¢
2m

Jj=1 W

d

< X

Jj=1

|wj|

md+2

2
|0l
+

—+

Yov

(J —h
L(m)

pi@ (J—h)/m
m mat2

Lemma 3.1 holds by applying the following bound to v(x) and v,(x) for
j=1,...,d. 0

LEMMA A.l. If u: RY - R has bounded partial derivatives of order d on
[0, 114, then for all w € A(m) there exists a constant B depending on u such
that

Bm?(log m)**
L =
I 4(1 + loyl)

Jy
Z u(_)esz/m

PROOF. Suppose 2" < m < 2"*1, For nonnegative integers n,,..., n, that
are at most n, consider, for some real-valued function ¢ on R,

2m—1  2mi—1

(A1) oy t(%)ew/m’

J1=0 Jy=0

where J = (J,,..., J,;). We can write J, = X7+, j,,2"!, where each j,, is 0
or 1 and we set JJ, = 0 if n, = 0. Then

(2] § - E %% e

a;=0 ag=0 B,;=0

a;— By ag—Ba
X t Z j112n1_lm_1,..., Z jd12nd_lm_1 s
=1 =1

where Y!_, is defined to be 0 and #(X%1,7,,2m 'm~1, ... X0 i, 2" 'm™ 1)
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= 0 if any b, = —1. Plugging this expression into (A.1) yields

2" —1 27d—1

Lo L o 2 esslioim

J1=0 Jy=0

1 1

— C o gn—1, -1 Lo -1

= ¥ explioj,2" 'm Y ¥ expliojy, mTt)
Ju=0 Jiny=0

1
Y expliwgj2" 'm~ 1}

Ja1=0
1 ny 1 5
> eXP{iwdjdnd - } PO Z Z S (mpF
Jan,=0 a;=0 ag=0 p,=0 By=0
a;— By ag—Bqg
Yoot im0 Y a2t im
=1 I=1

(A.2) 0y ny L
= Z Z Z eXp{iwljuznlflmil}

a;=0 ag=0 j;;=0
1

expliw,j,; 2M %mpm~1
P 1]1(11
jlrx1:0

1 1

Y exp{iwddeZ”d_lm‘l}--- Y exp{iwdjdad2”d_“dm_1}
Ja1=0 jdad=0

1 a1 — By ag—Bqg

X ), Z (-1)* F1brg Y ju2mTim o Y ju2reimt
Bi=0  By=0 =1 =1

X

=

Il
Jun

q=1k=

n(
l_I[ [1 + exp{iwq2”q_km_1}],
a,+1

where the term

1 1
Y. expliw,j 2™ tm e Y exp{iwkjkakZ”k_“km_l}
Jr1=0 Jha,=0

drops out if «a;, = 0 and a product with no terms is set equal to 1. The ability
to write the discrete Fourier transform in this form is the basis for the fast
Fourier transform. This same representation is also the key to proving
Lemma A.1.

To bound (A.2), the first step is to show that, for any function s: R¢ - R
with bounded partial derivatives of order d on [0, 1]¢, there exists a constant
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C such that, for all &,,..., ¢; [0,1],

1 1

d
(A.3) Yooy (—l)zleﬁ’s(Blal,...,ﬁdad) gCl_[lsj.
j=

B1=0 Bi=0

To prove (A.3), assume, without loss of generality, &, < - < &;. Then (A.3)
follows by noting

1

1
)IEEREDY (‘UZr:lBrS(3131’~~-,Bd‘9d)
B1=0

Ba=0
1 1 -
Yo X (-1 'Zlﬁr{s( Bi&1s---5Ba-18a-15 €a)
B1=0 Ba-1=0
—s(B1&1,---» Bd—1€d—1’0)}
1 k

1 d-1 4
DRI D G e L pca

!

B1=0 Ba-1=0 k=1 k!
0,...,0,k d
X g0 0 )( Bi&1s--+» Ba—184-1,0) + Cy&4

1 1 is
Y o Y (—1)FEE

B1=0 Bi-2=0

0,...,0,1,k d—1
X s¢ (Bi€1s---> Ba—984-2,0,0) + Cyeile,

d-1 gk d—zk:—l el —1

Bl 1
i1 kY Al

where the C)’s are bounded by constants independent of the &/s. In fact, if D
bounds the partial derivatives through order d of s on [0, 1], then it can be
shown that we can take C = (2d)?D /d! in (A.3).

If ¢ and all of its partial derivatives through order d on [0, 1]¢ are bounded
by D, then applying (A.3) and the identity [[1;_,(1 — 2?2 ") =
lsin(A /2) /sin(A/27% 1) to (A.2) yields

2m—1  2mi-1

y o ¥ t(%)eiw'J/m

J1=0 Jy=0

n ng 2d dD d
<Y - ¥ 2a1+"'+ad—( )‘ IT2m o
a;=0 ayz=0 d! i.::(,)
d |sin(w, 2% %" 1m~1!
s | )
=1 sm{wj/(Zm)}
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Now, 2" < 2" < m, so

d
Qait tag 1_[ 2nj7ajm71 <1
Jj=1,
aj>0
and, for w € A(m),
sin( wj2”f‘“f*1m*1) min(l, ijl) 47m

X = = )
sin{w;/(2m)} lw)l/(27rm) — 1+ o)l

using min(x, y) < 2xy/(x + y) for x, y positive. Thus,
2m—1  2ma—1

Iy
Z Z t(;)ele/m
Ji=0  Jg=0
(2d)"D i 1
< T{Alwm(n + 1)} j]:[l(l + | w))

(A.4)

for @ € A(m). Finally, ¥ ;u(J/m)e®?/™ can be written as a sum of at most
(n + 1? sums like

21 2=l g\
Z Z t(_)ele/m’
Jy=0 J,=0 \M
where ¢(x) will be of the form u(x + (1 — 27"1,---,1 — 27 "4)), so Lemma A.1
follows from (A.4). O
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