
The Annals of Statistics
1997, Vol. 25, No. 1, 414–434

LOCAL ASYMPTOTICS FOR QUANTILE SMOOTHING SPLINES1

By Stephen Portnoy

University of Illinois

Quantile smoothing splines were introduced by Koenker, Ng and Port-
noy as natural and appealing estimates of conditional quantiles of response
variables. The natural setting for the problem considers minimization of a
weighted combination of a “fit” penalty and a “roughness” penalty over the
space of functions whose derivatives have bounded variation. Although this
space is not traditional, Shen has shown recently that the quantile smooth-
ing splines do indeed converge at the usual optimal rate (n−2/5) in various
norms. Here, local asymptotic results are obtained by establishing Bahadur
representations for local parameters of the splines. These are used to ob-
tain local rates of convergence, to establish uniform convergence rates, to
provide local distribution theory for quantile B-splines and to expand the
“fit” measure in order to analyze an information criterion for determining
the smoothing parameter. Examples of using derivatives of the smoothing
splines for estimating jump functions are also presented.

1. Introduction. Use of conditional quantiles plays an increasingly im-
portant role in modern statistical analysis. Following the pathbreaking work
of Koenker and Bassett (1978), the theory and application of regression quan-
tiles have undergone substantial development and now provide a reliable and
efficient methodology for conditional quantile analysis in homoscedastic linear
models. However, it has become clear that typical regression examples often
exhibit important forms of nonstationarity. Responses that are especially high
or low may often be expected to depend on the independent variables rather
differently from median responses. Hendricks and Koenker (1992) present a
good example of this in a study of consumer demand for electricity, where
heavy users responded much more dramatically to weather and time varia-
tion (presumably because of air conditioner use). Thus, generalization of con-
ditional quantile methods beyond the usual linear models is required.

Rather than try to model nonstationarity directly, we will take the natural
approach of nonparametric estimation. Although there are a large number
of methods available, Koenker, Ng and Portnoy (1994) make a strong case
for a smoothing spline approach, which generalizes the L2 theory developed
for conditional means to the estimation of conditional quantiles. To be specific,
consider optimization of a penalized form of the classical “check” function that
defines quantiles: let τ ∈ �0;1� and define

ρτ�u� = u�τ − I�u < 0��; “fit” =
n∑
i=1

ρτ�Yi − ĝ�xi��:(1.1)
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The classical L2 roughness penalty is not especially natural for this mea-
sure of “fit,” and it leads to rather formidable quadratic programming meth-
ods of computation. As noted in Koenker, Ng and Portnoy (1994), a roughness
penalty based on the variation norm is quite natural, allows the use of efficient
(parametric) linear programming methods and permits significant generaliza-
tion of the space of fitting functions considered. Here we add the justification
for this approach that the resulting conditional quantile estimates converge
and possess natural local asymptotic and finite sample quantile-like proper-
ties. To define the roughness penalty formally, consider functions f of bounded
variation and let V�f� denote the total variation norm of f. The quantile
smoothing spline may be defined as a function ĝτ�x� solving the following
minimization problem:

min
V�g′�<+∞

n∑
i=1

ρτ�Yi − g�xi�� + λV�g′�;(1.2)

where λ is the smoothing parameter. Note that V�g′� =
∫
�g′′�x��dx if g′ is

sufficiently smooth; so that the roughness penalty in (1.2) arises essentially
by replacing the familiar L2-norm of traditional spline theory with the L1-
norm here. Koenker, Ng and Portnoy (1994) show that the solutions ĝn�x� of
(1.2) are continuous, piecewise linear functions and that their computation is
especially appealing. For λ sufficiently large, the solution is the corresponding
globally linear regression quantile. By linear programming results, solutions
remain constant on λ-intervals, and successive solutions can be found by single
simplex pivots. Thus, the family of solutions for all λ values can be computed
quite efficiently. Koenker, Ng and Portnoy (1994) present some examples and
[following Schwarz (1978)] also introduce an information criterion (SIC, for
“Schwarz information criterion”) for choosing an appropriate value for the
smoothing parameter λ. This criterion will be discussed further in Sections 4
and 5.

Although parametric linear programming provides efficient computation for
moderate sample sizes, large n requires substantial computational resources.
As a more easily computable alternative, consider functions g̃n�x� minimizing
(1.2) subject to the condition that all breakpoints lie on a subgrid of larger
mesh εn. The case where all of the points of the subgrid are breakpoints is
just the case of B-splines, as described in He and Shi (1994). Thus, g̃n�x� may
be called a penalized B-spline (with a specified subgrid). If n is large enough
and εn is sufficiently small, g̃n�x� should be very similar to ĝn�x�.

The primary focus here is on asymptotics for these quantile smoothing
splines. The results here will be developed under the simple nonparametric
regression model:

Yi = g0�xi� +Ui for i = 1; : : : ; n(1.3)

where Ui form a random sample from a distribution F with density f. Gen-
erally �xi� will be taken to be equally spaced on the unit interval: xi ≡ i/n,
i = 1; : : : ; n. In fact, since nonparametric methods are inherently local, gen-
eral smooth heteroscedasticity is not difficult to incorporate. However, in an
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effort to simplify the already rather involved computations, the simpler model
(1.3) will be assumed here, even though conditional quantiles are most im-
portant when they differ over τ. For (1.3), the τth conditional quantile is just
gτ�x� = g0�x� + F−1�τ�, and the subscript τ may be dropped if its value is
clear from context.

In dealing with the asymptotic theory for solutions of (1.2), however, there
is a fundamental difficulty with standard approaches to asymptotics: the ap-
propriate space over which (1.2) is minimized is the space of functions whose
derivatives have bounded (total) variation. Unfortunately, this space is too
large in terms of metric entropy for standard methods to obtain the usual opti-
mal rates �n−2/5� [although results of Mammen and van de Geer (1997) may be
applicable]. In a penetrating study of asymptotics for penalized methods, Shen
(1994) obtained global convergence at the optimal rate using the following ap-
proach: take λn = O �n1/5� and consider a sequence of subspaces Tn whose
metric entropy is bounded appropriately. Let gn be any sequence of elements
of Tn for which the penalized criterion in (1.2) is within δn of the minimizing
value. If δn converges quickly enough, Tn has appropriately bounded metric
entropy, and g0 is sufficiently smooth (twice continuously differentiable), then
gn converges to gτ at the optimal rate �n−2/5� (in any reasonable norm, includ-
ing L1 or L2). For the quantile smoothing spline penalties, Shen notes that
one can choose Tn to be (norm bounded) subsets of the standard Sobolev space
W2 (whose metric entropy is well known to lead to n−2/5 rates). In particular,
let ĝn be the minimizer of (1.2). For such a piecewise linear function (whose
derivative has bounded variation), and any δn, there is a twice-differentiable
function g∗n (in W2) such that both the fit and roughness penalties are within
δn of the values for ĝn, as well as �g∗n − ĝn� ≤ δn. Let δn be of order n−2/5.
Then, as a consequence of Shen’s result, g∗n converges to the true gτ at the
optimal rate; by construction of the approximation, ĝn must also converge in
norm at the optimal rate.

Here the basic question is that of local asymptotics. Global convergence re-
sults giving rates of convergence in various norms have been well-developed
for smoothing splines. However, local asymptotic results have been much less
studied, even though such results are required for statistical inference. Some
results are available, especially in some cases that are closely related to quan-
tile smoothing splines. Mammen (1991) provides some local results for least
squares estimates of piecewise concave or convex regression functions. These
estimates are rather similar in form to the quantile smoothing splines. Some
extensions are given by Wang (1993). Mammen and van de Geer (1997) also
provide some local results in a problem like (1.2) but where the fit is mea-
sured by a sum of squares. The quadratic nature of the fitness criterion in
these alternative approaches appears to simplify the theory, but the compu-
tational requirements seem substantially more complicated than the rather
simple linear programming approach of quantile smoothing splines.

The fundamental asymptotic approximations required are local Bahadur
representations for the parameters of a single linear segment of ĝ. It is easiest
to establish the non-i.i.d. representation of Portnoy (1991) on the entire linear
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segment. However, this leads to two serious problems. First, the endpoints
of the segment are random; so the representation is a random sum, whose
distribution cannot be easily approximated. Second, for the representation to
be useful, there must be sufficiently many points in the segment. Optimal
convergence rates would require the number of points in the segment to be
of exact order n4/5. If a linear segment is not part of a concave or convex sec-
tion of ĝ, then introducing an additional breakpoint along the segment will
strictly increase the roughness penalty. This makes it possible to show that the
length of such a segment must exceed εn−1/5�log n�1/3 (in probability). How-
ever, within a concave (or convex) section, introducing a new breakpoint that
does not lose concavity (or convexity) does not change the roughness penalty
at all. This seems to make it impossible to bound the length of such a seg-
ment from below: it seems that there very well might be exceedingly short
linear segments along concave or convex sections. However, it is possible to
bound the number of breakpoints by cna for some a < 1. This will yield uni-
form convergence, but at a somewhat slower rate. These problems may be
circumvented by using the penalized B-splines g̃n�x� with an initial subgrid
large enough to ensure that all linear segments are sufficiently long. Optimal
asymptotic rates of convergence in the “sup” norm can be obtained by simply
taking εn = O ��n log n�−1/5�.

The basic Bahadur representations are introduced in Section 2. Section 3
shows that sufficiently many of the local linear segments are sufficiently large
to provide the local and uniform convergence results. Section 4 presents an
expansion of the “fit” criterion in (1.2) and applies it to defining a new infor-
mation criterion for choosing λ. Section 5 notes that the piecewise linear form
of the quantile smoothing splines suggests that derivatives of the splines may
be used to estimate jump functions. Some examples are presented.

2. Asymptotic representations. We posit the model (1.3) and the basic
definitions given there, including the assumption that xi = i/n. In addition,
the following conditions are introduced:

F. The error distribution has a uniformly bounded, strictly positive density,
with a uniformly bounded derivative.

G. The true regression function g0�x� has a uniformly bounded, continuous
second derivative. This implies that for any partition of the unit interval
by subintervals Jk centered at xk and of length δ (or smaller), we have
(uniformly)

g0�x� = g0�xk� + g′0�xk��x− xk� + 1
2g
′′
0�xk��x− xk�2 + o�δ2�:(2.1)

The following result now provides a representation for an entire local seg-
ment on which ĝ�x� is linear. In particular, let J be the subscripts for an
interval on which ĝ�x� is linear, and let x̄J be the midpoint of the interval.
That is, the local parameter estimates may be defined by

ĝ�x� = α̂+ β̂�x− x̄J�; min�xix i ∈ J� ≤ x ≤ max�xix i ∈ J�:(2.2)
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Let α and β be the (corresponding) value and derivative of gτ�x� ≡ g0�x� +
F−1�τ� at x = x̄J. The representations depend critically on whether or not ĝ′

is monotonic over the three linear segments from the one preceding J to the
one following J, that is, on whether or not ĝ is concave or convex near J. To
provide appropriate notation, let I∗�∼ mon�J�� denote the indicator function of
the corresponding event; that is, with �β̂−; β̂; β̂+� denoting the three successive
slopes (at J), define

I∗�∼ mon�J�� ≡
{

1; β̂− < β̂ < β̂+ or β̂− > β̂ > β̂+;

0; otherwise:
(2.3)

Theorem 2.1. Assume conditions F and G, and let J be the subscripts for
an interval on which ĝ�x� is linear. Let �λn� be any sequence of smoothing
penalty coefficients in (1.2):

(i) With I∗ defined by (2.3) and ψτ�u� ≡ ρ′τ�u�, the following gradient con-
ditions hold:

∣∣∣∣
∑
i∈J
ψτ�Yi − ĝ�xi��

∣∣∣∣ = O �1�y(2.4)

∣∣∣∣
∑
i∈J
�xi − x̄J�ψτ�Yi − ĝ�xi��

∣∣∣∣ = O �1+ I∗�∼ mon�J��λn�:(2.5)

(ii) Thus, if the number of observations in J, m ≡mn ≡ ]�J�, satisfies

m

�log n�1/2 →∞;(2.6)

then the following representation holds:

�α̂− α� = 1
mf�F−1�τ��

∑
i∈J
ψτ�Ui +F−1�τ�� + bJ�τ� + Op�m−3/4�log n��y(2.7)

�β̂− β� =
(
m3

12n2

)−1 1
f�F−1�τ��

∑
i∈J
�xi − x̄J�ψτ�Ui +F−1�τ��

+Op�m−3/4�log n�� + O �I∗�∼ mon�J��n2λnm
−3�:

(2.8)

Here bJ�τ� is the bias term,

bJ�τ� ≡
(
m2

24n2

)
g′′�x̄J�:(2.9)

Proof. Since the departures from linearity in the model are nonstation-
ary, even locally, we will follow the development of a representation given in
Portnoy (1991). Many of the details will be relegated to that paper.

(i) The first step is to develop the gradient conditions. In the classical
linear case, this involves taking directional derivatives with respect to the pa-
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rameters of a perturbation of the linear fit. Here we need a local perturbation,
that is, a perturbation defined on J. To do this, let J̌ be the interval J with
both endpoints deleted. For a and b small, define

ǧ�x� = �α̂+ a� + �β̂+ b��x− x̄J�;
min�xix i ∈ J̌� ≤ x ≤ max�xix i ∈ J̌�:

(2.10)

For a and b sufficiently small, we may extend this linear function and (if
needed) the preceding and succeeding linear segments of ĝ so that these seg-
ments meet within a length 1/n from the endpoints of J. Thus, a continuous,
piecewise linear function ǧ is formed which is a linear perturbation of ĝ on J̌
and agrees with ĝ off J (and either equals ĝ or is part of the linear segment
in J̌ at the two endpoints of J).
Now, the values a = 0 and b = 0 minimize the difference 1 between the objec-
tive function (1.2) at ǧ and its value at ĝ. The contribution to the roughness
penalty depends on whether or not ĝ′ is monotonic [as described above in
(2.3)]. If the slopes are monotonic, there is no contribution to the difference
in roughness penalty; but otherwise each slope change contributes a value b.
Thus, the difference 1 is

1 =
∑
i∈J
�ρτ�Yi − ǧ�xi�� − ρτ�Yi − ĝ�xi��� + 2�b�I∗�∼ mon�J��λ:(2.11)

Following the usual approach originally given in Koenker and Bassett (1978),
the partial directional derivatives of the terms in (2.11) evaluated at a = 0 and
b = 0 must sum to zero except for contributions at points where Yi = ĝ�xi�.
Since these contributions are bounded, the a-partials and the b-partials yield
(2.4) and (2.5).

(ii) The second part of the proof is to obtain the following uniform approx-
imation: let D ⊂ R2 be the set defined by

D ≡
{
�δ1; δ2�x �δk� ≤ c1

(m
n

)1−k
m−1/2�log n�1/2; k = 1;2

}
(2.12)

where c1 is a constant. Let zi ≡ �1; �xi − x̄J��′. For �δ1; δ2� ∈ D, define

T�δ1; δ2� ≡
∑
i∈J
ziψτ�Ui +F−1�τ� − rJi + δ1 + δ2�xi − x̄J��

−
∑
i∈J
ziψτ�Ui +F−1�τ��;

(2.13)

where rJi is the bias of g�x� from its linear approximation: for i ∈ J,

rJi ≡ g�xi� − g�x̄J� − g′�x̄J��xi − x̄J�

= 1
2
g′′�x̄J��xi − x̄J�2 + o

((
m

n

)2)
:

(2.14)
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Then, with E∗ denoting the expectation assuming J is fixed (not random),

sup
�δ1;δ2�∈D

∣∣T�δ1; δ2� −E∗T�δ1; δ2�
∣∣ = Op�m1/4�log n��:(2.15)

This result is proved using a Bernstein exponential inequality for fixed �δ1; δ2�
and then using the chaining argument. The proof follows those of Lemmas 3.3–
3.5 in Portnoy (1991). The calculations of E∗T�δ1; δ2� and Var∗T�δ1; δ2� are
straightforward generalizations of the calculations in Portnoy (1991). The fac-
tor of �log n� in the stochastic error term permits the exponential inequality
to bound the probability that the error exceeds this order by a value tending
to zero faster than any fixed power of n. Since the endpoints of J are obser-
vations, there are at most n�n− 1�/2 such intervals. Therefore, the stochastic
error term in (2.15) is uniform over all such intervals, J.

(iii) Let δ̂1 = α̂−α and δ̂2 = β̂−β. Since E∗T�δ1; δ2� is linear in δ1 and δ2,
(2.15) establishes a relationship among �α̂; β̂�, the representation on the right-
hand side of (2.7) and (2.8), and the sums on the left-hand side of the gradient
conditions (2.4) and (2.5); at least for �δ̂1; δ̂2� ∈ D. If one can show that the
gradient conditions must fail on the boundary of D, then the monotonicity
argument of Jurečková (1977) [exactly as used in the proof of Theorem 3.1 in
Portnoy (1991)] shows that the gradient conditions must also fail outside D.
This shows that �δ̂1; δ̂2� must lie in D; hence the relationship noted above
yields the resulting representations immediately. The remaining complication
here is to show that the representations (2.7) and (2.8) are actually smaller
than the bounds defining the set D (2.12) (so that the gradient conditions fail
on the boundary of D). But this follows by applying an exponential inequality
to sums of the form

∑
i∈Jziψτ�Ui +F−1�τ�� for any fixed interval J. That is,

for a fixed (nonrandom) J (with size m),

∑
i∈J
ziψ�Ui +F−1�τ�� = O

((
m∑

i∈J
�xi − x̄J�2

)
�log n�1/2

)
;(2.16)

except with probability bounded by n−a for any constant a. Uniformity over
the entire unit interval follows since there are at most n�n+1�/2 intervals J.
Lastly, the bias is especially easy to compute: denote the deviation of g0 from
linearity by

ri =
1
2
g′′0�x̄J��xi − x̄J�2 + o

(
m2

n2

)
:(2.17)

To compute the bias term in (2.7), note that

E∗
[
ψτ�Ui +F−1�τ� + ri� − ψτ�Ui +F−1�τ��

]

= −rif�F−1�τ� + o
(
m2

n2

)
:

(2.18)

Using (2.14), the bias contribution for β̂ involves
∑
i∈J�xi − x̄J�3, which van-

ishes, while the contribution for α̂ uses
∑
i∈J�xi − x̄J�2 =m3/�12n2�. 2
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As noted above, the fact the endpoints of the interval J are random makes
the sum in the representations a random one, and this reduces the usefulness
of the representation. However, one immediate consequence of (2.7) is the
analogue of the fundamental Koenker–Bassett result [Koenker and Bassett
(1978)] that the τth regression quantile lies above a fraction τ ± p/n of the
observations. The proof follows that of Koenker and Bassett (1978).

Corollary 2.1. Suppose the gradient condition (2.4) holds, and let J be a
linear segment with ]�J� = m. Then the number of observations in J that lie
below the spline, ĝ�x� = α+ β�x− x̄J�, is within a constant of the value τm.

The proof is as in Koenker and Bassett (1978). The constant arises from
the O �1� term in (2.4), and the fact that there is a possible contribution to the
error from each of the endpoints of J and from at most two points fit exactly
by the local linear segment of the spline (and each of these contributions is
less than 1 in absolute value).

It is often important to consider the case of penalized B-splines, where the
knots are specified to lie along a fixed grid. A representation similar to that
of Theorem 2.1 can be developed, but the proof requires one important mod-
ification: the perturbation, ǧ (2.10), is not itself a B-spline in that two of its
breakpoints need not lie on the grid. Thus, we require an alternative pertur-
bation, whose knots lie on the grid, and this requires some extra computation.
The basic steps are quite similar, so the proof will only be sketched.

The asymptotic results again depend on local representations, which them-
selves depend critically on the number of observations along an interval. For
B-splines, these intervals may be fixed to have exactly m observations each.
Uniform error bounds will be of order ��logm�/m�1/2, the logm factor arising
from an exponential inequality that provides the uniformity over all intervals.
On the other hand, the bias will have order m2/n2. These orders will be equal
for m = n4/5�log n�1/5, which would lead to the optimal rate for sup norm con-
vergence: O �n−2/5�log n�2/5�. For a fixed interval, m = n4/5 would give a better
result. Thus the formulation below includes both of these rates. In fact, as
long as m = nd for some d > 0, the basic expansions below would hold.

Theorem 2.2. Let g̃n�x� be the penalized B-spline defined in Section 1,
with λn arbitrary and with m, the number of observations between break-
points, satisfying m = n4/5�log n�a for some real number a. Note that the inter-
val length is Ln ≡m/n = n−1/5�log n�a. Let �x∗jx j = 0;1; : : : ; n/m� denote the
breakpoints, and parameterize the B-spline by its values at x∗jx θj ≡ g0�x∗j�.
Thus the penalized B-spline is the solution g̃ to (1.2) among piecewise linear
functions with breakpoints only at �x∗j�, and we may define g̃ by the parameter
estimates θ̃j ≡ g̃�x∗j�. Then the following representation holds uniformly in n
and log n ≤ j ≤ n/m− log n:

�θ̃j − θj� =
√

3A∗j +
√

3b∗j + Op�m−3/4�log n�1/2� + O �n−3/5�log n�4a�
+ O �nλn/m2�:

(2.19)
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Here

A∗j ≡
j+log n∑
k=j−log n

�−γ��k�Aj−k(2.20)

with γ = 2−
√

3 and

Aj ≡
1

mf�F−1�τ��
j+m∑
i=j−m

(
m− �i�
m

)
ψτ�Ui +F−1�τ��:(2.21)

Also, �b∗j� is the bias:

b∗j ≡
m2

12n2

j+log n∑
k=j−log n

�−γ��k�g′′0�x∗j−k�:(2.22)

Consequently, since maxj �A∗j� = Op��log n/m�1/2� and maxj �b∗j� = O �m2/n2�,
we may take a = 1/5, to obtain

max
j
�θ̃j − θj� = Op�n−2/5�log n�2/5�;

max
j
�β̃j − βj� = Op�n−1/5�log n�1/5�;

where β̃j = �θ̃j+1 − θ̃j�/Ln is the slope on the jth interval. Furthermore,

sup
n−1/5 log n≤x≤1−n−1/5 log n

�g̃�x� − g0�x�� = Op
(
n−2/5�log n�2/5

)
:(2.23)

Proof. The basic ideas are in the proof of Theorem 2.1, so only the im-
portant differences are presented here. Most important is the need for an
alternative perturbation: fix j and consider θj 7→ θj + a. This changes the
penalized B-spline only on the intervals adjacent to x∗j; by piecewise linearity,
the perturbed B-spline is

ga�xj+i� = g�xj+i� +
(
m− �i�
m

)
a; i = 0;1; : : : ;m:(2.24)

It follows that the gradient condition becomes
∣∣∣∣
m∑

i=−m

(
m− �i�
m

)
ψ�Yi − g̃�xi��

∣∣∣∣ = O �1� + O

(
nλn
m

)
;(2.25)

where the second error term is the contribution of the smoothness penalty and
follows from the fact that if the value changes by a, then the slope changes by
a divided by the length of the interval (Ln =m/n). To compute the represen-
tation requires taking the expectation of the difference between the summand
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in the gradient condition and its value at the true mean, g0�xi�. With some
work this expectation is

f�F−1�τ��
{
mbj + �θ̃j−1 − θj−1�

m∑
i=0

m− i
m

i

m

+ �θ̃j − θj�
m∑

i=−m

�m− �i��2
m2

+ �θ̃j+1 − θj+1�
m∑
i=0

m− i
m

i

m

}

=mf�F−1�τ�
{
bj +

1
6
�θ̃j−1 − θj−1� +

2
3
�θ̃j − θj�

+ 1
6
�θ̃j+1 − θj+1� + O �1�

}

≡mf�F−1�τ�
{
bj + ηj + O �1�

}
;

(2.26)

where this last equation defines ηj, and where

mbj =
1
2

m∑
i=−m

m− �i�
m

(
i

n

)2

g0
′′�x∗j� + O

(
m4

n3

)

= m3

12n2
g0
′′�x∗j� + O

(
m4

n3

)
:

(2.27)

Now, developing an appropriate analogue of (2.15) and combining the ex-
pectation calculation and gradient condition above yields the following repre-
sentation:

ηj = Aj + bj + Op�m−3/4�log n�1/2� + O �n−3/5�log n�4a�
+ O �nλn/m2�;

(2.28)

where the middle big-O term combines the various errors above, and where
Aj and bj are given by (2.21) and (2.27), respectively.

To obtain a representation for θ̃j, a specific exponential smoothing can be
applied to collapse ηj. Define γ = 2−

√
3 as for (2.20) so that γ2 − 4γ+ 1 = 0.

Then the exponential smoothing of �ηj� telescopes, to give

∑

�k�≤log n

�−γ��k�ηj−k =
(

2− γ
3

)(
θ̃j − θj

)
+ O

(
γlog n

)
:(2.29)

Note that γlog n ≤ 1/n. Therefore, the desired representations (2.19) follow
from (2.28) and the definitions of A∗j and b∗j. The remainder of the theo-
rem follows from applying exponential bounds on the Aj’s, which gives the
��logm�/m�1/2 term in the errors that provides the uniformity of the bounds.
The bound on the supremum uses the fact that �g̃�x�−g0�x�� is bounded by the
difference at the nearest breakpoint plus �n log n�−1/5 times the slope at x. 2
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Finally, we formulate a result for the case where the breakpoints are com-
pletely specified as being equally spaced. Here the representation theorem is
adequate for distributional results since the O �nλn/m2� term does not appear.
So consider functions g�x� which are piecewise linear with fixed breakpoints
at the indices jm, for j = 1; : : : ; p = �n/m�. Again, take m = n4/5�log n�a.
Then the number of breakpoints is exactly n/m = n1/5�log n�−a. This is just
the usual case of B-splines, whose global asymptotics were given in He and
Shi (1994). Define g̃∗ to be the function of this form minimizing the objective
function (1.1) without the penalty. For each linear segment Jj = �ix jm ≤
i ≤ �j + 1�m�, define the local parameter estimates α̃∗ and β̃∗ so that g̃∗ =
α̃∗j+ β̃∗j�xi− x̄j� (for i ∈ Jj), where x̄j corresponds to the midpoint of Jj. Then
α̃∗j and β̃∗j are simple linear functions of ηj; hence, from Theorem 2.2, these
parameters satisfy representations from which asymptotic normality follows
immediately. It remains to compute variances and the covariance (which is
straightforward though tedious) to obtain the following result.

Theorem 2.3. Assume the conditions for Theorem 2.2. Then, under the
above specification of a fixed grid for the breakpoints,

m1/2�α̃∗j − αj� − bj →D N

(
0;
�3−
√

3�
4

σ2
τ

)
;(2.30)

�m1/2Ln��β̃∗j − βj� →D N �0;6�
√

3− 1�σ2
τ �;(2.31)

where σ2
τ ≡ τ�1− τ�/f2�F−1�τ�� and �m1/2Ln� =m3/2/n.

Again (taking a = 1/5), uniform convergence of the B-splines holds:

sup
0≤x≤1

�g̃∗�x� − g0�x�� = Op�n−2/5�log n�2/5�:(2.32)

Remarks. (i) Note that α̃∗j and β̃∗j are asymptotically independent.
(ii) This result is a bit stronger than Theorem 2.2 in that it continues the

result to the penultimate endpoints of the x-interval. This requires some ad-
ditional work, or it can be obtained by recognizing that the B-spline problem
without any penalty is just a (p + 1)-parameter regression quantile problem
with p3 log n/n → 0. Hence, the results of Welsh (1989) apply. Again, some-
what complicated computations are needed to compute elements of the ap-
propriate �X′X�−1 matrix for the variances and covariances, but the same
distributional results can be obtained.

3. Length of linear segments. The theorems of the preceding section
provide immediately the appropriate rate of convergence for the parameters
of a sufficiently long local linear segment. Here, Proposition 3.1 shows that
linear segments that are not part of a convex or concave section of ĝ�x�
must be sufficiently long that convergence occurs at nearly the optimal rate
�Op�n−2/5 log n��. However, as noted in the Introduction, there appears to be
no way to control the length of a segment along a concave or convex section
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of the spline. Nonetheless, it is relatively straightforward to show that the
number of segments cannot be too large. As a consequence, it is possible to
prove uniform convergence of ĝ, although at a rather slow rate. For penalized
B-splines, of course, Theorem 2.2 provides a rate of uniform convergence that
is optimal.

Now, consider linear segments that are not part of a convex or concave
section of the spline, that is, linear segments for which the slope of the pre-
ceding segment, its own slope and the slope of the succeeding segment are not
monotonic.

Proposition 3.1. Under the model assumptions of Section 1, assume that
λ = cn1/5. Let J ≡ �ix i1 ≤ i ≤ i2� denote the indices corresponding to a
“nonconcave” or “nonconvex” segment (as described above), and let the number
of observations in J be m ≡ i2 − i1 + 1 be the number of observations in J.
Then there is a constant c such that, with probability tending to 1,

m ≥ cn4/5�log n�−1/3:(3.1)

Proof. Crude bounds will be used first to show that m is moderately
large, and then more careful expansions will yield the result in (3.1). Let
ĝ�x� = α̂ + β̂�x − xi1� be the linear segment of the spline along J (i.e., for
x = xi = i/n with i ∈ J). Let ǧ�x� = α̂+ �β̂+ b��x− xi1� be a perturbation of
ĝ (and note that no perturbation of α̂ is needed here). As in (2.11), it is easy
to see that

1F ≡
n∑
i=1

ρτ�Yi − ǧ�xi�� −
n∑
i=1

ρτ�Yi − ĝ�xi��

≤
m∑
i=0

�ǧ�xi� − ĝ�xi�� = b
m∑
i=0

i

n
= bm�m+ 1�

2n
:

(3.2)

Let β̂− and β̂+ denote the slopes of the preceding and succeeding linear seg-
ments. Consider the case where β̂− > β̂ and β̂+ > β̂ (the other case will follow
analogously). Then, again, as in (2.11), the difference in the roughness penalty
is

1S ≡ V�ǧ� −V�ĝ�
= β̂− − �β̂+ b� + β̂+ − �β̂+ b� − �β̂− − β̂+ β̂+ − β̂� = −2b:

(3.3)

As a consequence, since 1F+ λ1S ≥ 0,

bm�m+ 1�/�2n� − 2bλ ≥ 0 ⇒ m ≥ 2cn3/5 − 1(3.4)

since λ = cn1/5.
It is now possible to use (3.4) to obtain a more precise expansion of 1F. In

particular, (3.4) permits one to follow the proof of Lemma 3.1 in Gutenbrunner,
Jurečková, Koenker and Portnoy (1993) and (with some effort) to obtain the
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following expansion: there are constants c1 and c2 such that, with probability
tending to 1,

∣∣∣∣1F− b
m∑
i=0

i

n
ψτ�Ui�

∣∣∣∣ ≤ c1b

(
log n

m∑
i=0

i2

n2

)1/2

+ c2m
−k(3.5)

for b sufficiently small and for fixed k (here k may be taken to be 3, and b
may be taken to be m−3 also). The first (c1) bound comes from the exponential
inequality and is essentially �log n�1/2 times the standard deviation of 1F
(with α̂ and β̂ taken as fixed); and the second (c2) bound comes from the
contribution of the discontinuity of ψτ and uses the argument at the end of
the proof of Lemma 3.1 in Gutenbrunner, Jurečková, Koenker and Portnoy
(1993). Combining the inequality 1F + λ1S ≥ 0 with (3.3) and (3.5), one
immediately obtains

m3/2 ≥ c1n
6/5�log n�−1/2 + c2m

−k/b;(3.6)

with probability tending to 1; the result (3.1) follows by taking b ≤m−k. 2

A precise result on the number of breakpoints and, consequently, on the size
of the locally linear seqments will now be presented. Let ĝ�x� be a quantile
smoothing spline satisfying (1.2).

Lemma 3.1. Assume conditions F and G of Section 2, and suppose λn =
O �n1/5�. Let p be the number of interpolated points, that is, ĝ�xij� = Yij

for

j = 1; : : : ; p. Then, with probability tending to 1, p = O �n11/15�.

Proof. The result of Shen(1994) giving convergence of the quantile splines
in the L2-norm at the optimal rate will be applied. To do this, it is necessary
to bound the average squared error along the grid of all observations below
by the L2-norm. To obtain this bound, consider an interval �xi; xi+1�. On this
interval, ĝ�x� is linear, and g�x� is within c/n2 of a linear function gL�x�
[since g′′�x� is uniformly bounded]. Using linearity, direct computation gives

∫ xi+1

xi

�ĝ�x� − gL�x��2 =
1

3n
�1g�xi+1�2 + 1g�xi+1�1g�xi� + 1g�xi�2�

≥ 1
6n
�1g�xi+1�2 + 1g�xi�2�;

(3.7)

where 1g�x� ≡ ĝ�x� − gL�x�. It follows that

�ĝ − g�2L2
≥ 1

3n

n∑
i=1

�ĝ�xi� − g�xi��2 −
c

n2
:(3.8)
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Now, for interpolated points, ĝ�xij� − g�xij� = Uij
. Thus, letting �U��k�

denote the ordered absolute values of the errors and using (3.8),

�ĝ − g�2L2
+ c

n2
≥ 1

3n

n∑
i=1

�ĝ�xi� − g�xi��2

≥ 1
3n

p∑
j=1

(
ĝ�xij� − g�xij��

2 ≥ 1
3n

p∑
j=1

��U��j��2;
(3.9)

with probability tending to 1. Now let V = �U�, let FV denote the c.d.f. of V
and note that the density fV is bounded strictly above zero on any interval
�0; a�. Thus, letting Z�i� denote uniform order statistics, and expanding FV,
the last sum in (3.9) is

1
n

p∑
j=1

�F−1
V �Z�j���2 ≥

1
n

p∧�n/2�∑
j=1

(
Z�j�
fV�c�

)2

≥ c
′

n

p∧�n/2�∑
j=1

(
j

n

)2

≥ c1
p3

n3
;

(3.10)

with probability tending to 1, where the last step uses well-known properties
of the empirical (uniform) distribution function [see, e.g., Shorack and Wellner
(1986)].

Now, the basic convergence result of Shen [(1994), Example 4, page 12]
shows that with probability tending to 1,

�ĝ − g�2L2
≤ c2n

−4/5(3.11)

for some constant c2. It follows from (3.10) and (3.11) that

p ≤ c∗n
(
n−4/5 + c

n2

)1/3

= O �n11/15�;

with probability tending to 1. 2

Lemma 3.1 will now be applied to obtain the following uniform convergence
result.

Theorem 3.1. Assume the conditions for Lemma 3.1. Then

sup
x∈�0;1�

�ĝn�x� − g�x�� = Op�n−4/45�log n�1/2�:(3.12)

Remark. It is possible to get a slightly better rate of convergence using
this approach by replacing the L2-norms of (3.9) by Lr-norms. Lemma 3.1
would then provide a bound p = O �n−�3/5��r/�r+1���. This is arbitrarily close to
O �n3/5�, which would lead to a bound of O �n−2/15�log n�1/2� in (3.12).
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Proof of Thoerem 3.1. Consider linear segments of length less than
n−a, where a = 37/45, and let T denote the union of all such segments. By
Lemma 3.1, the total length of T (and thus of any segment of T) is bounded
by pn−a ≤ c∗n11/15−a = c∗n−4/45. So points in such small segments must lie
within c∗n−4/45 of points in larger segments. Now use Theorem 2.1 with the
number of points in the local linear segment exceeding n−a. It follows that,
uniformly for x /∈ T,

�ĝn�x� − g�x�� = Op�n−�1−a�/2�log n�1/2� = Op�n−4/45�log n�1/2�:(3.13)

Now ĝ′�x� is uniformly bounded in probability for the following reasons: the
first and last linear segments have in fact nonmonotonic derivatives. Hence,
on the first and last linear segments, �β̂− β� = Op�n−1/5�log n�1/2�, by Propo-
sition 3.1 and (2.8); and β is bounded by hypothesis G. Therefore, we have

sup
x∈�0;1�

�ĝn�x� − g�x�� ≤ sup
x/∈T
�ĝn�x� − g�x�� + c0 × length�T�

= Op�n−�1−a�/2�log n�1/2 + n11/15−a�
= Op�n−4/45�log n�1/2�: 2

(3.14)

4. Expansion of ±: the SIC criterion. Koenker, Ng and Portnoy (1994)
introduced the following “Schwarz information criterion” as a formal way of
choosing the smoothing parameter λ:

SIC�λ� = log
(
n−1

n∑
i=1

ρτ�Yi − ĝ�xi��
)
+ log n

2n
p�λ�;(4.1)

where p�λ� is the number of points interpolated exactly by ĝ. The coefficient
of p�λ� [i.e., log n/�2n�] was chosen in exact analogy with the corresponding
coefficient that Schwarz (1978) introduced to prevent overfitting. However,
it is possible to expand the first term in (4.1) and show that the coefficient
�1/2� log n should be replaced by a constant depending on τ, the error density
and the true regression function g0. This is rather reminiscent of the “bias
corrected” AIC criterion of Hurvich and Tsai (1989), but where the normal
assumption is avoided. The expansion here uses the local representations in
the special case of Theorem 2.3 to obtain an expansion of the first term in (4.1)

First note that it is equivalent to use the following form for the SIC cri-
terion, which will be denoted as ADIC (asymptotically defined information
criterion):

ADIC�λ� ≡ log
( �1/n�∑n

i=1 ρτ�Yi − ĝ�xi��
�1/n�∑n

i=1 ρτ�Yi − gτ�xi��

)
+ cn

p�λ�
n

;(4.2)

where cn is a quantity to be analyzed. This form immediately permits appli-
cation of the following expansion.
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Theorem 4.1. Assume the conditions for Theorem 2.3 with p = �n1/5� fixed
breakpoints lying on a lattice. Then

n∑
i=1

ρτ�Yi − ĝ�xi�� −
n∑
i=1

ρτ�Yi − gτ�xi�� = −c0p+ o�p�;(4.3)

where

c0 ≡
τ�1− τ�
f�F−1�τ�� +

τ�1− τ�f�F−1�τ��
1152

∫ 1

0
�g′′0�x��2 dx:(4.4)

Proof. Let Jj denote the jth linear segment for j = 1; : : : ; p; and let x̄j
denote the midpoint of the corresponding segment. Then the difference of the
ρ-functions in (4.3) can be written as

∑p
j=1 1j; where

1j ≡
∑
i∈Jj
�ρτ�Yi − ĝ�xi�� − ρτ�Ui +F−1�τ� + rij��;(4.5)

where rij is the deviation of g0 from its linear part:

rij ≡ 1
2g
′′
0�x̄j��xi − x̄j�2 + o�d2�:(4.6)

Here d is the segment length, d = 1/p ≈ n−1/5. Now, applying equation (3.36)
of Gutenbrunner, Jurečková, Koenker and Portnoy (1993), it is not difficult to
express 1j as follows:

1j = −
1
2

(
1

f�F−1�τ��

∥∥∥∥Q
−1/2
n

∑
i∈Jj

ziψτ�Ui +F−1�τ� + rij�
∥∥∥∥

2)
+ op�1�;(4.7)

where

zi =
(

1
xi − x̄j

)
; Qn =

(nd 0

0 nd3/12

)
:(4.8)

It follows that there is a random variable W ∼ ·2
2 such that

1j = −
τ�1− τ�

2f�F−1�τ��

(
Wj +

∥∥∥∥
∑
i∈Jj

Q−1/2
n zi�biasij�

∥∥∥∥
2)
;(4.9)

where �biasij� = rijf�F−1�τ�� + o�d2�. Note that the error terms are uniform
in j. Therefore,

∑
i∈Jj

zi�biasij� = 1
2f�F−1�τ��




∑
i∈Jj

g′′0�x̄j��xi − x̄j�2

∑
i∈Jj

g′′0�x̄j��xi − x̄j�3




=
(f�F−1�τ��g′′0�x̄j�nd3/24

0

)
:

(4.10)
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It follows that
∥∥∥∥
∑
i∈Jj

Q−1/2
n zi�biasij�

∥∥∥∥
2

= f2�F−1�τ���g′′0�x̄j��2nd5/576+ o�d2�:(4.11)

Using the fact that
∑p
j=1 ·2

2 = 2p+ op�p� and inserting (4.11) (with nd5 = 1)
into (4.9),

p∑
j=1

1j = −p
(
τ�1 − τ�
f�F−1�τ��+

τ�1 − τ�f�F−1�τ��
1152

∫ 1

0
�g′′0�x��2 dx

)
+ o�p�;(4.12)

which is the desired result. 2

Using Theorem 4.1, the following expansion for ADIC is immediate:

ADIC = −p
n

c0

n−1∑n
i=1 ρτ�Yi − gτ�xi��

+ cn
p

n
+ o

(
p

n

)
;(4.13)

where c0 is given by (4.4). It now follows that if ADIC is to be minimized, the
linear coefficients of p in (4.13) must cancel. That is, we must have

cn =
c0

n−1∑n
i=1 ρτ�Yi − gτ�xi��

:(4.14)

Remarks. (i) The explicit appearance of the factor g′′0�x̄j� emphasizes the
necessity of assuming that g0 is twice continuously differentiable. That is,
g0 is in fact smoother than the “bounded variation” functions over which the
quantile smoothing spline is defined [see Koenker, Ng and Portnoy (1994)].
If g0 is not sufficiently smooth, it is possible that the rate of convergence is
slower than that given by the results here or by the results of Shen (1994).

(ii) As noted in the Introduction, parametric linear programming provides
efficient computation of the ADIC function of (4.2) for all p. In fact, starting
at the global linear fit (p = 2), one needs only to pivot until n is somewhat
larger than n1/5; although in the examples I have tried with n less than 300, it
was little harder to compute the quantile smoothing splines for all the (finitely
many) values of λ. The value p∗ minimizing (4.2) [with cn given by (4.14)] can
be found by simple finite minimization. I conjecture that, under appropriate
conditions, the corresponding λ̂n�p∗� will be of order n1/5. If this conjecture is
not true, it would be possible to truncate λ̂n to lie in an interval of the form
�an1/5, bn1/5� with a small and b large. If this is done, it should be rather
straightforward to show that the asymptotic results of Sections 2 and 3 will
hold for the truncated λ̂n. The basic problem would be to consider a fixed
linear segment J (as in Section 2) and to show that the sum of the “check”
function in (4.2) may be replaced by a sum over �i /∈ J� without changing λ̂n
appreciably. Since the local asymptotic results depend only on observations
in J, and λ̂n is of order n1/5 by construction, the results of Sections 2 and 3
would follow.

(iii) Application of the ADIC criterion with c0 given by (4.4) clearly re-
quires estimates of f�F−1�τ��, of the denominator in cn and of

∫
�g′′�x��2dx.
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This last (“curvature”) term can be estimated in several ways. Perhaps the
best approach is to use (4.10) directly. The quantity g′′0�x̄j� could be estimated
locally either using the slopes β̂j−1, β̂j and β̂j+1 from the quantile smoothing
spline or (perhaps more accurately) by refitting a local quadratic approxima-
tion near x̄j. Given density and c.d.f. estimates, the second term in (4.4) could
be estimated by

1
2
τ�1− τ�f̂�F̂−1�τ�� 1

p

p∑
j=1

(
1
2

(
p

n

)1/2 ∑
i∈Jj

ĝ′′�x̄j��xi − x̄j�2
)2

:

The density term, however, may require somewhat more work, although the
experience of estimating f�F−1�τ�� reported in Portnoy and Koenker (1989)
offers hope that this can be done in an effective manner. Whether or not this
version of the information criterion is really appropriate will await extensive
experience with examples and simulations. In some examples ADIC is close
to the originally suggested SIC, and in most cases it seems to work remark-
ably well. Future work should clarify the utility of this potentially valuable
approach.

5. Derivatives of QSS for estimating jump functions. For penalized
B-splines, the derivative ĝ′�x� converges to g′τ�x� at the nearly optimal rate
n−1/5�log n�1/2, which is essentially the best one can expect without introduc-
ing more stringent smoothness assumptions. However, since ĝ is piecewise
linear, its derivative is a piecewise constant jump function. Thus, it may be
possible to use derivatives of quantile smoothing splines to estimate (discon-
tinuous) jump functions. The basic idea would be to integrate the data [i.e.,
take partial sums ofYi times 1xi ≡ �xi−xi−1�], fit a quantile smoothing spline
ĥτ�x� to the integrated data and then differentiate: ĝτ�x� = ĥ′τ�x�. Here, two
examples of this idea will be presented. The first is a simulated jump function,
and the second is a simulated density, with which most density estimators ap-
pear to have great difficulty.

The jump function example is as follows: for each interval �j; j + 1�, for
j = 1, 2, 3, 4, take 20 observations with xi on a regular grid of mesh 0.05 and
with Yi ∼ N �j;1�. To describe the method explicitly, let Ỹi = 0:05

∑i
k=1Yk,

fix τ = 0:5 and let ĥλ�xi� = α̂j�λ� + β̂j�λ��xi − x̄j� be the L1 (τ = 0:5 quan-
tile smoothing spline) fit to Ỹi (where the subscript j indexes the jth linear
segment Jj of the spline). Define the estimator of the original jump function
(i.e., the fit to the original Yi) by ĝλ�xi� = β̂j�λ� for i ∈ Jj. Although the
error structure for the partial sums is no longer i.i.d. globally, it may not be
too far from i.i.d. locally. That is, conditional on the value of the partial sums
Ỹi at some point, the successive further errors for a relatively small range of
xi would still look somewhat stationary.

A potential problem here, however, is that g0 is no longer smooth enough for
the asymptotic theorems to hold. Nonetheless, it seems reasonable to examine
these estimates. Choosing an appropriate λ-value is especially problematic.
Visual assessment and some very rough calculations based on Theorem 4.1
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suggest the possibility of using an ADIC criterion:

log
(

1
n

n∑
i=1

ρ�Ỹi − ĥλ�xi��
)
+ cn

p

n
;

with cn between 10 and 50 (or so). Two solutions corresponding to “optimal”
λ-values for cn = 40 (λ∗ = 5:227) and for cn = 20 (λ∗ = 3:244) are plotted in
Figure 1, and show remarkable agreement with the true jump function (as well
as moderate robustness to the choice of cn). Use of the original SIC criterion
with �p log n�/n does not work at all in this case. It suggests a solution with
far too few breakpoints (i.e., with λ far too large).

The second example is a simulated density used by Roger Koenker as a
classroom example. A random sample of size n = 200 was taken from a tri-
modal density defined as a weighted combination of three lognormals and
plotted in Figure 2. Students in the class tried a variety of nonparametric
density estimators, but the only method that could resolve the second mode
very well was a version of Stone’s logspline methods [see Kooperberg and
Stone (1991)]. Here, the empirical distribution function was computed from
the data, median smoothing splines were calculated, and they were differen-
tiated to give piecewise constant density estimators. An ADIC criterion with
cn = 10 was applied to the spline estimate of the c.d.f., giving λ = 3:831. The
corresponding density estimate together with a visually appealing one with a
nearby λ-value are plotted in Figure 2. Here, the true density is smooth, so
one might expect the slower convergence rate of the derivative to be a seri-
ous handicap; but the results appear to be remarkably good, especially if the
piecewise flat appearance is acceptable.

Fig. 1. Derivatives of spline fits to integrated jump data.
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Fig. 2. Derivatives of spline c.d.f. estimates.

Clearly considerably more work is needed, but these initial attempts show
real potential, especially considering the rather small amount of fine-tuning
required. Note that since the computational method uses parametric program-
ming, the computation of ĝλ�x� for all λ is quite fast. Once this is done, viewing
all solutions in turn or adjusting and applying various information criteria is
computationally trivial.
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