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MOMENT-BASED OSCILLATION PROPERTIES
OF MIXTURE MODELS

By Bruce Lindsay1 and Kathryn Roeder2

Pennsylvania State University and Carnegie Mellon University

Consider finite mixture models of the form g�xyQ� =
∫
f�xy θ�dQ�θ�,

where f is a parametric density and Q is a discrete probability measure.
An important and difficult statistical problem concerns the determination
of the number of support points (usually known as components) ofQ from a
sample of observations from g. For an important class of exponential family
models we have the following result: if P has more than p components
and Q is an appropriately chosen p-component approximation of P, then
g�xyP�−g�xyQ� demonstrates a prescribed sign change behavior, as does
the corresponding difference in the distribution functions. These strong
structural properties have implications for diagnostic plots for the number
of components in a finite mixture.

1. Introduction. Consider a family of univariate probability densities
f�xy θ�, with respect to some σ-finite measure dγ�x�, parameterized by θ ∈ �.
Frequently, interest lies in mixtures of such densities. The random variable
X is said to have a mixture distribution G�·yQ� if it has density

g�xyQ� =
∫
f�xy θ�dQ�θ�;(1)

and the mixing distribution Q is a probability measure on �. If Q has a
finite number of support points ν ≡ ν�Q�, then we say Q is a finite mixing
distribution and we write Qν =

∑
πjδ�θj�, with θ1; : : : ; θν being the support

points (often called components) and π1; : : : ; πν being the weights.
A problem of longstanding interest in such models is inference on the un-

known value of ν�Q�. At the simplest level, this is the problem of determining
if ν = 1, the one-component model, or if ν > 1, the multicomponent model.
Shaked (1980) presented important results for this problem when the compo-
nent densities f�xy θ� are from a one-parameter exponential family. We build
on his results in two ways, generalizing to the discrimination between ν = p
versus ν > p, and moving beyond the one-parameter exponential family to the
normal mixture model in which each component has a different mean, but the
same unknown variance.

Here we summarize Shaked’s sign crossings results. Suppose we wish to
contrast a multicomponent model g�xyQ� with a plausible one-component
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model f�xy θ�. Choose θ= θ∗ for the one-component model so that the observed
variable X has the same mean under both densities:

∫
xg�xyQ�dγ�x� =

∫
xf�xy θ∗�dγ�x�:

Our notation for this last equation will beE�XyQ� = E�Xy θ∗�. Shaked showed
that g�xyQ�−f�xy θ∗� has exactly two sign changes, in the order �+;−;+�, as
x traverses the sample space. That is, g�xyQ� has heavier tails than f�xy θ∗�.
Moreover, the difference in the corresponding distribution functions G�xyQ�−
F�xy θ∗� has exactly one sign change, in the order �+;−�.

We extend his results as follows: letP, the nominal true mixing distribution,
satisfy ν�P� > p; choose Qp, a candidate p-point probability measure, such
that it satisfies

E�XkyP� = E�XkyQp�; k = 0;1; : : : ;2p− 1:(2)

(In Section 2, we show how to solve for Qp.) Then, in Theorem 3.2, we
show that g�xyP� − g�xyQp� has exactly 2p sign changes in the order
�+;−; : : : ;−;+�, unless it is identically 0 (the case of nonidentifiable P). An
exact sign change result for the difference in distribution functions is also
given in Section 3. In Section 4, these results are extended to normal densities
with unknown variance.

Before proceeding to the mathematical verification of these results, we offer
a few brief comments on their potential application. In Figure 1(a), we plot
�g�xyP� − g�xyQ2�� /

√
g�xyP� for the case when f�xy θ� is Poisson, P puts

mass 1/3 each at (1, 3 and 5) and Q2 is constructed to match moments as
specified in (2). We note the clear trimodality of this function, in contrast to
the unimodality of the density g�xyP� [Figure (1b)].

Shaked demonstrated that his sign change results could be used for diagnos-
tic checks to determine if the data were from a mixture of specified exponential
family densities rather than a one-component model. These ideas were further
developed in Lindsay and Roeder (1992). When interest lies in assessing the
number of components in a finite mixture, the oscillation results obtained in
this article have clear implications for diagnostic plots. In Section 5, the num-
ber of accidents per year is modeled as a Poisson mixture to illustrate the
diagnostic potential of the results. In a companion paper, these results are
used to develop diagnostic plots for the case of normal mean mixtures with
unknown variance [Roeder (1994)].

2. Background.

2.1. The models under investigation. We will be interested in component
densities f�xy θ�, where both x and θ have ranges in the real numbers, say
x ∈ T ⊂ R and θ ∈ �, and f�·y ·� satisfies regularity conditions which will be
expounded in this section.

A real function of two variables, K�x; θ�, ranging over linearly ordered
sets T and � is said to be strictly totally positive (STP) of order r, if, for all
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Fig. 1. (a) Plot of �g3 − g2�/
√
g2, where g3 is the density of a mixture of three Poissons

�1/3�f�yy1�+f�yy3�+f�yy5��� and g2 is a mixture of two Poissons, selected to have three moments
in common with g3. (b) Density of g3.

x1 < x2 < · · · < xm and θ1 < θ2 < · · · θm; xi ∈ T, θj ∈ �; 1 ≤ m ≤ r, we have
the inequalities

∣∣∣∣∣∣∣

K�x1; θ1� · · · K�x1; θm�
:::

:::
K�xm; θ1� · · · K�xm; θm�

∣∣∣∣∣∣∣
> 0

[Karlin (1968), pages 11 and 15]. Many density functions occurring in statis-
tical theory are STP. The list includes the one-parameter exponential fam-
ily with density function f�xy θ� = exp�θx − ψ�θ��, the noncentral-t and the
noncentral-χ2 densities.

2.2. Background on moments and exponential families. In order to apply
our results in a particular model, we need to establish an important structural
feature for the component densities f�xy θ� beyond total positivity. Suppose
that P is a mixing distribution with p or more support points. Then we need
to be able to construct a p-point distribution Qp such that the first 2p− 1 mo-
ments of g�xyP� and g�xyQp� match, satisfying (2). Fortunately, there exists
an important class of exponential families (the quadratic variance class) in
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which Qp satisfying (2) can be shown to exist. This class includes the normal,
gamma, Poisson and binomial distributions. The following is a brief review of
techniques found in Lindsay (1989).

In the quadratic variance class of exponential family models [Morris (1983)],
for each k, there exists a polynomial of degree k, call it ξk�x�, such that

∫
ξk�x�f�xy θ�dγ�x� = �µ− µ0�k(3)

for mean value parameter µ. The choice of µ0 is arbitrary so we set it to 0. For
example, in the Poisson with mean µ;E�X� = µ;E�X�X−1�� = µ2;E�X�X−
1��X− 2�� = µ3 and so forth. In addition, a classical moment result indicates
that for a given distribution P with no fewer than p-points of support, there
exists a unique distribution Qp with exactly p-points of support such that

∫
µkdQp�µ� =

∫
µkdP�µ�; k = 1; : : : ;2p− 1:(4)

Thus integrating both sides of (3) with respect to dQp�µ� and dP�µ� and
using (4) yields

E�ξk�X�yP� = E�ξk�X�yQp�; k = 1; : : : ;2p− 1:(5)

Finally, the linear transformation taking �1; x; : : : ; x2p−1� → �ξ0�x�; ξ1�x�; : : : ;
ξ2p−1�x�� is invertible, so (5) implies (2).

More details on solving (5) forQp are given in Lindsay (1989). The solutions
can be obtained algebraically for p = 2. For arbitrary p, the problem involves
solving a degree p polynomial for its p real roots.

3. One-parameter models. In this section, we obtain sign change re-
sults for one-parameter models. The following notation [Karlin (1968), page 20]
will be used. Let a�x� be defined on I, where I is a subset of the real line. The
number of sign changes of a in I is defined by

S−�a� = supS−�a�x1�; : : : ; a�xm��;(6)

where S−�a�x1�; : : : ; a�xm�� is the number of sign changes of the indicated
sequence, zero terms being discarded, and the supremum is extended over
all sets

x1 < x2 < · · · < xm; xi ∈ I; m <∞:(7)

We assume throughout that f�xy θ� is STP and that P and Qp satisfy (2).
The following notation will be used throughout this section: g+ ≡ g�xyP�,
gp ≡ g�xyQp�, G+ ≡ G�xyP� and Gp ≡ G�xyQp�.

Remark. In the following result, we will give exact sign change results for
g+−gp with the proviso “the difference g+−gp is not identically 0” with the
possible exception of a γ-null set. If such an equality in densities occurs, it is
clear that there is an identifiability problem; both P and Qp are generating
the same distribution. The results of Lindsay and Roeder (1993) can be used
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to determine exactly when this will occur. If the sample space is infinite, it
will not occur. If the sample space has N points, then p-point distributions Qp

are identifiable when p ≤ �N − 1�/2, and so g+ − gp cannot be identically 0.
If both P and Qp have more than �N−1�/2 points, then g+−gp cannot have
exactly 2p sign changes, since we can have at most N− 1 sign changes as we
traverse the sample space. Thus our result proves that P and Qp generate
the same density.

Lemma 3.1. Provided g+ − gp is not identically 0; S−�g+ − gp� ≤ 2p.

Proof. Define the measure dχ�θ� by

dχ�θ� = d�P+Qp��θ�:

Let

p∗�θ� =
{
P��θ��/�P��θ�� +Qp��θ���; if θ ∈ �θ1; : : : ; θp�;
1; otherwise

and

q∗�θ� =
{
Qp��θ��/�P��θ�� +Qp��θ���; if θ ∈ �θ1; : : : ; θp�;
0; otherwise;

where θ1; : : : ; θp are the support points of Qp.
Then p∗ and q∗ are versions of the Radon-Nikodym derivatives dP/dχ and

dQp/dχ, so that g+ − gp =
∫
f�xy θ��p∗�θ� − q∗�θ��d�P+Qp��θ�.

We now apply Theorem 3.1(b) of Karlin (1968), page 21, noting that p∗�θ�−
q∗�θ� = 1, except possibly at the support ofQp, where it can be negative. Hence
it undergoes a maximum of 2p sign changes. Karlin’s result then implies that
integration with respect to the STP kernel f�xy θ� will result in a function,
g+ − gp, with no more sign changes in x than p∗�θ� − q∗�θ� has in θ relative
to dχ. This establishes an upper bound of 2p sign changes in g+ − gp. 2

Theorem 3.2. Provided g+ − gp is not identically 0, S−�g+ − gp� = 2p;
with sign changes in the order �+;−; : : : ;−;+�.

Proof. From Lemma 3.1, we obtain an upper bound on the number of
sign changes of 2p. Because

∫
xk�g+−gp��x�dν�x� = 0 for k = 1; : : : ;2p− 1;

any polynomial A�x� of degree less than or equal to 2p− 1 satisfies
∫
A�x��g+ − gp��x�dγ�x� = 0:

Suppose S−�g+ − gp� ≤ 2p − 1. Then we can construct a polynomial A�x�
that matches g+ − gp in sign (i.e., it has single roots exactly at the roots of
g+ −gp). It follows that A�x��g+ −gp��x� ≥ 0, and, since it has 0 integral, it
must be 0 except for a set of γ-measure 0. Hence either g+ = gp or g+ − gp
has 2p sign changes. 2
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Remark. As is clear from the proof for this result, our oscillation results
still hold if we replace xk in (2) with any system of functions αk�x�, such as
xke−x, provided that one can construct a polynomial A�x� =∑akαk�x� which
has any prespecified set of 2p− 1 0’s. Such an approach could be useful in
improving on the robustness of the sample moments in applications by using
bounded variables such as αk�x� = xke−x. The next theorem, however, uses
the special form of xk.

Theorem 3.3. ProvidedG+−Gp is not identically 0, S−�G+−Gp� = 2p−1;
with sign changes in the order �+;−; : : : ;+;−�. The roots occur between the
roots of g+ − gp.

Proof. An upper bound is obtained on the number of sign changes by
appealing to the sign change behavior of g+ − gp. The function G+ − Gp is
increasing on the intervals [a, b], where g+ − gp ≥ 0:

G+�b� −Gp�b� − �G+�a� −Gp�a�� =
∫
I�a < x ≤ b� �g+ − gp��x�dγ�x� ≥ 0:

From this it follows that G+ −Gp has at most one crossing in each interval
where g+ − gp is constant in sign, but has none in the first or last interval.
Hence S−�G+ −Gp� ≤ 2p− 1. Integration by parts gives

0 =
∫
xd�G+ −Gp��x� =

∫
�G+ −Gp��x�dx;

and, more generally,

0 =
∫
xkd�G+ −Gp��x� =

∫
xk−1�G+ −Gp��x�dx;

up to k = 2p− 1. Now, follow the proof of Theorem 3.2. If G+−Gp had 2p− 2
or fewer sign changes, a polynomial A�x� of degree 2p−2 could be constructed
with matching signs. Hence A�x��G+−Gp��x� ≥ 0, but has zero integral. The
result follows. 2

4. Normal mean mixtures with unspecified variance. In this section,
we consider a mixture model of great interest—the normal mean mixture.
We use the following notation: let f�xyµ; τ� denote the density of an N�µ; τ�
random variable and let g�xyQ;τ� =

∫
f�xyµ; τ�dQ�µ� denote a mixture of

normals with corresponding distribution function G�xyQ;τ�. If τ is known,
then this is just a special case of the previous section; however, in practice,
τ will typically be unknown and hence we treat it as a free parameter. In
this section, we extend our results to this case. We first present an existence
theorem, due to Lindsay (1989), which extends the classic moment results
presented in Section 2 to normal mixtures.

Theorem 4.1. If Q is a distribution with more than p points of support,
then there exists a unique p-point distribution, Qp, and variance τp > τ such
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that
∫
xk dG�xyQp; τp� =

∫
xk dG�xyQ;τ� for k = 0;1; : : : ;2p:(8)

Proof. While this is not explicitly stated in Lindsay (1989), it is a con-
sequence of Lemma 5A and Theorem 5C. In the latter, replace the empirical
moments with the moments of X under G�·yQ;τ�. 2

Theorem 4.2. If �Qp; τp� satisfies (8) for Q = Qp+1; a p + 1-point distri-
bution, then

g�xyQp+1; τ� − g�xyQp; τp�
has exactly 2p+ 2 sign changes, occurring in the order �−;+; : : : ;+;−�.

Proof. Since τp > τ, we can represent the above difference as

g�xyQ;τ� − g�xyQ∗p; τ�;
where Q∗p is the convolution of Qp with a normal distribution with mean 0
and variance τp−τ. By the same argument as in Lemma 3.1, this means there
are a maximum of 2p+2 sign changes. The polynomial argument used in the
proof of Theorem 3.2 can now be used together with (8) to show that there
are at least 2p + 1 sign changes. Moreover, since Q∗p has more mass in the
tails than the discrete Qp+1, the difference g�xyQ;τ�−g�xyQ∗p; τ� will have a
negative sign in both tails, and so must have an even number of sign changes,
hence 2p+ 2. 2

Theorem 4.3. G�xyQ;τ� − G�xyQp; τp� has exactly 2p+ 1 sign changes,
in the order �−;+; : : : ;+�.

Proof. An argument similar to Theorem 3.3.

This result indicates that

g�xyQ2; τ� − g�xyµ;σ2�
has four sign changes in the order �−;+;−;+;−� provided µ is the mean
of Q2 and σ2 = Var�X� = τ + Var�Q2�. For this case a supplementary re-
sult is available from Roeder (1994). If we instead examine the ratio R�x� =
g�xyQ2; τ�/g�xyµ;σ2�, we obtain a function proportional to a bimodal normal
density. By combining the two results we can see that R�x� is bimodal and
that both modes are greater than 1.

In the normal model, with π1 = π2 = 1/2, the density g�xyQ2; τ� is bimodal
if and only if the two separate supports µ1 and µ2 satisfy �µ1 − µ2� > 2τ
[Robertson and Fryer (1969)]. Thus the ratio function is much more sensitive
to the existence of two support points than is the density itself. This sensitivity
continues to exist even for very small support weights πi.
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Graphical techniques, such as the normal scores plot [Harding (1948) and
Cassie (1954)] and the modified percentile plot [Fowlkes (1979)], have played
an important role in identifying whether data follow a mixture of two normal
distributions. The geometric characterizations obtained herein extend the ar-
senal of potential diagnostic plots for normal mixtures.

5. Applications. The data appearing in Table 1 of Thyrion (1961) are
purported to be a mixture of Poissons. The data consist of observed counts of
accidents per year for 9461 Belgian drivers. Fitting the data to a two-point
mixture using both the method of moments and maximum likelihood esti-
mation, we obtained estimates for �θ1; θ2; π� equal to (0.162, 1.64, 0.965) and
(0.147, 1.23, 0.938), respectively. Using the maximum likelihood estimates, we
performed a chi-square goodness-of-fit test which indicates that the two-point
mixture model does not provide an adequate fit (X 2 = 25:21). In order to ap-
ply Theorem 3.2, we used the empirical density f̂�y� = �1/n�∑I�Xi = y� to
estimate g+ and the method of moments solution to estimate gp. In Figure 2,
to determine if the mixture has more than two components, we plot

√
n�f̂�y� − g2�y�√

g2�y�
and obtain a sign sequence + − + − +. In light of Theorem 3.2 and the ap-
proximate standard errors, it can be conjectured that the distribution of the
number of accidents per year is a mixture of Poissons with at least three points
of support.

For continuous X, believed to be a mixture of one-parameter exponential
family densities, a diagnostic plot based on a nonparametric empirical ana-
log of G+ −Gp can be constructed directly. Let Fn, the empirical distribution

Fig. 2. Plot of
√
n�f̂−g2�/

√
g2; where f̂ is the empirical density of the data presented in Table 1

and g2 is the estimated density of these data, fitted to a two-point Poisson mixture density using
method of moments.
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function, be an estimate of the alleged distribution G+ and let Ĝp be an es-
timate of Gp constructed by using the method of moments estimates of the
p-component model. Naturally,Fn and Ĝp have 2p−1 moments in common. It
follows that if Fn− Ĝ2 has the sign change behavior specified in Theorem 3.3,
then the data provide some support for using more than p components. On
the other hand, if a p-point mixture is the correct model, then the asymptotic
properties of Fn − Ĝp can be obtained from empirical process theory.

Theorems 3.2 and 4.2 can be applied to continuous random variables if
g�xyP� and g�xyQp+1; τ�, respectively, are estimated using nonparametric
density estimation techniques. Details of implementation for the normal model
are specified in Roeder (1994).
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