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When a spatial point process is observed through a bounded window,

edge effects hamper the estimation of characteristics such as the empty
space function F, the nearest neighbor distance distribution G and the
reduced second-order moment function K. Here we propose and study
product-limit type estimators of F, G and K based on the analogy with
censored survival data: the distance from a fixed point to the nearest point
of the process is right-censored by its distance to the boundary of the
window. The resulting estimators have a ratio-unbiasedness property that
is standard in spatial statistics. We show that the empty space function F
of any stationary point process is absolutely continuous, and so is the
product-limit estimator of F. The estimators are strongly consistent when
there are independent replications or when the sampling window becomes
large. We sketch a CLT for independent replications within a fixed obser-
vation window and asymptotic theory for independent replications of
sparse Poisson processes. In simulations the new estimators are generally
more efficient than the "border method" estimator but (for estimators of
K), somewhat less efficient than sophisticated edge corrections.

1. Introduction. The exploratory data analysis of observations of s
spatial point process often starts with the estimation of certain distance
distributions: F(t), the distribution of the distance from an arbitrary point in
space to the nearest point of the process; G(t), the distribution of the distance
from a typical point of the process to the nearest other point of the process:
K(t), the expected number of other points within distance t of a typical point
of the process, divided by the intensity. For a homogeneous Poisson process
F, G and K take known functional forms, and deviations of estimates of F,
G, K from these forms are taken as indications of clustered or inhibited
alternatives [11, 37, 38].

However, the estimation of F, G and K is hampered by edge effects
arising because the point process is observed within a bounded window W,
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Essentially the distance from a given reference point to the nearest point of
the process is censored by its distance to the boundary of W. Edge effects
become rapidly more severe as the dimension of space increases, or as the
distance t increases.

Traditionally in spatial statistics, one uses edge-corrected estimators which
are weighted empirical distributions of the observed distances. The simplest
approach is the "border method" [38] where we restrict attention (when
estimating F, G or K at distance t) to those reference points lying more than
t units away from the boundary of W. These are the points x for which
distances up to t are observed without censoring. This approach is sometimes
also justified by appealing to the "local knowledge principle" of mathematical
morphology ([42], pages 49, 233). However, the border method discards much
of the data; in three dimensions [5] it seems to be unacceptably wasteful,
especially when estimating G.

In more sophisticated edge corrections, the weight c(x, y) attached to the
observed distance \\x — y\\ between two points oc, y is the reciprocal of the
probability that the distance will be observed under invariance assumptions
(stationarity under translation and/or rotation). Corrections of this type were
first suggested by Miles [34] and developed by Ripley, Lantuejoul, Hanisch,
Stoyan, Ohser and others ([11, 24, 35-37], [42], page 246). For surveys see
[38], Chapter 3, [47], pages 122-131), ([9], Chapter 8) and [4].

The estimation problem for F, G and K from data in a bounded window W
has a clear analogy, already implicitly drawn above, to the estimation of a
survival function based on a sample of randomly censored survival times.
This paper develops the analogy and proposes Kaplan-Meier [29] or product-
limit estimators for F, G and K. Since the observed, censored distances are
highly interdependent, classical theory from survival analysis has little to say
about statistical properties of the new estimators. One may hope that the new
estimators are better than the classical edge corrections, as in the survival
analysis situation the Kaplan-Meier estimator has various large-sample
optimality properties. In fact the border method for edge correction, described
above, is analogous to the so-called reduced sample estimator, an inefficient
competitor to the Kaplan-Meier estimator obtained using only those observa-
tions for which the censoring time is at least t when estimating the probabil-
ity of survival to time t.

Surprisingly, the analogy between edge effects for point processes and
random censoring of survival times has not been much explored. Laslett [30,
31] noted that when a spatial line segment process is clipped within a
bounded window, the observed line segment lengths can be compared to
censored survival times. However, a Kaplan-Meier type estimator for the
segment length distribution is inconsistent and the NPMLE is a different,
difficult estimator [50]. Zimmerman [51] proposed introducing artificial cen-
soring in spatial sampling by restricting the maximum search distance from
any reference point.

The estimation of F by a Kaplan-Meier type estimator poses a new (for
survival analysis) problem, since one has a continuum of observations: for
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each point in the sampling window, a censored distance to the nearest point
of the process. We tackle this using product integration [22, 23].

Together with estimators of F, G and K, one would like to evaluate their
accuracy. We make a start on this by using linearization techniques (the
functional delta-method; see [21]) and evaluate the asymptotic efficiency
explicitly in a simple sparse Poisson limiting situation. This also leads to
proposals for variance estimators.

The plan of the paper is as follows: Section 2 recalls some definitions from
spatial statistics and from the analysis of survival data; Section 3 introduces
our Kaplan-Meier style estimator of the empty space function F\ Section 4
discusses asymptotic properties of this estimator; Sections 5 and 6 treat the
estimation of G and K, respectively, in less detail. Critical comments are
collected in Section 7.

2. Preliminaries.

2.1. Spatial statistics. Let O be a simple point process in Rk, observed
through a compact window W c IR*. We consider <3> both as a random set in
Rk and as a random measure. The problem is, based on the data <l> n W (and
knowledge of W itself) to estimate the functions F, G and K defined as
follows.

For x e Rk and any closed A c R*, let

(1) P(*,A) = inf{||*-a||2:aeA}

be the shortest Euclidean distance from x to A, and

Aer = {x^Uk: p(x,A) <r}
Aer = {x eA: p ( x , Ac) > r},

where the superscript c denotes complement. Write B(x, r) for the closed ball
of radius r, center x in Uk.

Assume now that <& is a.s. stationary under translations, with intensity
0 < a < co. Thus EO(A) = a\A\k for any bounded Borel A c R*, where I • \k
denotes ^-dimensional Lebesgue volume. For r > 0, define

(2) F(r) = P{p(0,$>) <r}
= P{*(B(0,r)) >0} ,

(3) G(r) = P{p(0,e&\{0}) < r | 0 e O}

= P{*(B(0,r)) > 1|0 e <&},
(4) K(r) =a - 1 E{<D(S(0 , r ) \ {0} ) |Oe*} .

The conditional expectations given 0 e <E> used above are expectations with
respect to the Palm distribution of $ at 0. By stationarity, the point 0 here
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may be replaced by any arbitrary point x. Using the Campbell-Meckc
formula [47]

,., r( , Kxe*nAl{P(x,®\{x}) *r}
(5) G(r) = ———————E*(A)———————
and

£Lxe*nA®(B(x9r)\{x})
(6) aK(r) -

E$(A)

for arbitrary Borel A with 0 < |A|A < oo. The latter definition of 7f is the
original one and it applies to any second-order stationary process [47].

Edge-corrected estimators for F, G and K based on observation of <& in W
are reviewed in [38], Chapter 3; [47], pages 122-131; and [9], Chapter 8, See
[5, 6, 13-18, 20 and 43].

Many estimators in spatial statistics are not unbiased, but instead are
ratios of two unbiased consistent estimators

, Y EY
0=- where f l - ——

with X, Y > 0, P{X > 0 } > 0 , X= 0 ̂ Y= 0 typically arising as the mean oi
a weighted empirical distribution where the weights are random variables [5,
38], We call such estimators "ratio-unbiased" and accept this property as a
substitute for the generally unobtainable unbiasedness.

2.2. Survival data. Next we recall some theory of the Kaplan-Meier and
reduced sample estimators. Suppose T^...,Tn are Lid. positive r.v.'s with
distribution function F and survival function S = 1 - F. Let Cx, . . . ,Cn be
independent of the T/s and i.i.d, with d.f H. Let ft = Tl A C19 Dt = 1{TL < CJ,
where a A 6 denotes min{a, b}. Then (7\, DJ), ... 9(fn9 Dn) is a sample oi
censored survival times Tl with censoring indicators Dr The reduced-sample
estimator of F is

#{i:ft <t <Ct}
(7) f"'"° Vc.a.| •
This requires that we can observe the censoring times Cl themselves, or at
least the event {Cl > t} for all t for which F(t) must be estimated. This
estimator is clearly pointwise unbiased for F and has values in [0, 1] but may
not be a monotone function of t.

The Kaplan-Meier estimator of F is

(8) Ao = i -n
s<t

1 - #{i:fl=s,Dl = l}
#{i:ft >s\(8)
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Introduce

(9) ATn(0 = ^#{ i :T i <^A = l}>

(10) Yn(0 = -#{^^},
n

,dN,(s)(11) A-(i) -£-*•.(.)
dF(s)rt «

(12) A ( 0 = / ——
A) 1 - f(s-)

Then A is the cumulative hazard belonging to F, and An is the Nelson-Aalen
estimator of it. One can write

1 -F(t) = 77(1 -dA(s)) ,
(13) °t

l-Fn(t) = 7T(l-dKn(s)),
0

where 77 denotes product integration:
t ™>
7T(l + dA(s)) = lim rKl+A^-Aa^)),
0 maxl^-^J^O r = l

where 0 = £0 < ••* < tm = t forms a partition of (0, t].
If F is absolutely continuous with density f then defining A(£) = /U)/(l -

F(£)X the hazard rate, one has AO) = /0* A(5)rfs and

1 -F(*) = 77(1 -dA(s)) =exp(-A(0).

However if F has a discrete component, the relation A = -log(l — F) no
longer holds. See [22] and [23] for further information on the product inte-
gral, including empirical process theory.

3. Kaplan-Meier estimator of the empty space function.

3.1. Definition of estimator. Return to the setup of Section 2,1. Every
point x in the window W contributes one possibly censored observation of the
distance from an arbitrary point in space to the point process $. The analogy
with survival times is to regard p(x, $) as the distance (time) to failure and
P(XJ dW) as the censoring distance, where dW denotes the boundary of W.
The observation is censored if p(x, dW) < p(x, 3>).

From the data <£ n W we can compute p(x, <3> n W) and p(x, dW) for each
x e W. Note that

(14) p(x,&) A P(x,dW} = p ( x , $ > n W) A P(x,dW)
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(cf. [42], pages 49 and 233) so that we can indeed observe p(x, <£) A p(x, dW]
and 1{ p(x, <£») < p(x, dW)} for each x e W. Then the set

[x G W: p ( x , & ) A p ( x , d W } > r}

can be thought of as the set of points "at risk of failure at distance r," and

{x e W: p (x ,0») = r , p ( x , < & ) < p ( x , < ? W ) }

are the "observed failures at distance r."
Geometrically the two sets are the closures of WQ r \ <E>e r and <?(<&e r) n We r ,

respectively. See Figure 1.

DEFINITION 1. Let O be an a,s. stationary point process and W c IR* a
fixed compact set. The Kaplan-Meier estimator F of the empty space function
F of O, based on data <l> n W, is defined by:

(15)

(16)

(17)

fr\d(3>98) n WeJ^!
A ( r >°/ . iw..\«..i» ds

F ( r ) - 1 - 7T(1 -dA(s))

- 1 - exp(-A(r)),

where | - U - i denotes k — 1 dimensional Hausdorff measure (surface area).
The reduced-sample estimator FTS of F is

(18) Frs(r) =
\Wer n <&erU

IWerl*

that is, this is the border correction [38].

W W

FIG. 1. Geometry of the reduced sample (left) and Kaplan-Meier (right) estimators. Spatial
process <I> indicated by filled dots. For Kaplan-Meier, points x at risk are shaded, and observed
failures constitute the curved boundary of the shaded region.
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Here F is the Kaplan-Meier estimator based on the continuum of observa-
tions generated by all x e W. Note that the estimator is a proper distribu-
tion function and is even absolutely continuous, with hazard rate

,,.. ;, , !*(*.,) ny.,I.-!
(19) A<r ) = I*.A*.,I. '

3.2. Unbiasedness and continuity.

THEOREM 1. Let <£ be any stationary point process with intensity 0 < a <
o°. Then the following statements hold:

(a) The empty space function F is absolutely continuous.
(b) The hazard rate ofF equals

ElWn^dy))^
( r ) E|W\<DerU

for any compact window W such that the denominator is positive.
(c) The Kaplan-Meier estimator (19) of A is ratio-unbiased.

Thus our estimator F(r) respects the smoothness of the true empty space
function F. The reduced-sample estimator (18) is not even necessarily mono-
tone.

To prove the theorem we need three regularity results. The first is an
example of Crofton's perturbation or moving manifold formula [2, 10].

LEMMA 1. Let Z c Uk be compact and A c Rk a finite union of compact
convex sets. Then for r > 0,

| Z n A e r U = |ZnA| ,+ I | Z n ^ ( A e s ) , _ 1 d s ;
Jo

the integrand is Lebesgue measurable and integrable.

PROOF. The function f ( x ) = p(x, A) is Lipschitz, f ( y ) < f ( x ) + \\x - y\\,
and hence a.e. differentiate with approximate Jacobian apJlf< 1. A geo-
metric argument shows that up to a null set ap Jlf= 1 and {x: f ( x ) = s,
J i f ( x ) > 0} = <?(Aeg). Apply the co-area formula ([19], page 258) to integra-
tion of 17 over Affir. DE>r *

The next lemma shows that the integrand \Z n ^((I)
f f i r)U-i is uniformly

bounded (over possible realizations of <I>) in such a way that dominated
convergence justifies interchanges of expectation and integration or differen-
tiation with respect to r.
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LEMMA 2. For any compact set Z,
k

\Z n <?(<V)L-i S 7 Z9r\k A ̂ /-'-^(Ze,) a.s.,

u;/iere <»k = |*B(0,l)l*-i = 27r*/2/T(A/2).

PROOF. The second term on the right is a trivial bound since a)krk~l =
\dB(Q, r)\k-i. For the first term, fix a realization of $ and let xl9 i = 1,..., m,
be the a.s. distinct points in <I> n Zer. Then

/ m \zn*(*e r ) = z n < ? U B K > r ) •
u=i /

Construct the Dirichlet cells formed by the xl9

Cf = C( *,!*!,...,*„) = {y eR*: | |y-*. | | = min||y - x,||}.

Split the surface <?(<&er) into pieces of surface within each cell:
/ m \ m

*\ \jB(xi9r)\ = U { y e R * : l l y - * J I - r , m i n | | y - ^ | | - r }
\ i = i / 1 = 1 v -/' ;

m
= U ( C , n d B ( * , , r ) )

1=1

m

= U A , (say).
1-1

The D^ are measure-disjoint since Dl n JD7 = dB(K^ r) n #B(xj, r) is k ~ 2
dimensional (or empty) for i =£ 7. Thus

(20)
/ m \

<? UB(*, ,r) H Z
\ j = i /

L l A n Z U - L
A - l i = l

Any line segment joining xl to a point on the corresponding surface piece
Dl O Z is contained entirely within the Dirichlet cell Cl, since this is convex.
The union 1̂  of these segments is a solid angular cone of the sphere B(xl9 r),
and its curved surface area \Dl n Z\k-i equals k/r times its volume. The
cones Ft are volume-disjoint since the Ct are, and Fl c Z0r, so the sum of the
cone volumes is bounded by |Zff i rU, yielding the result. D

LEMMA 3. Let ^ be a simple point process in Rk and W c Rk compact.
Then for fixed r, \W n <J>erU and \Wer n Oer|A are a.s. finite r.v.'s on the
same probability space, and the following identities hold a.s.:

(21) IWn* e r | f c = /Vn^Jl^ds,
^0

(22) \{X e W: p ( x , 3 > ) < p ( x , dW) A r} \k = f Wes n a^.^ds,Jo

(23) |Wer\*erU - W\k - /AV(We.\*e.)L-i&,
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where the integrands are well defined r.v.'s for each fixed s and are a.s.
measurable and integrable functions of s.

PROOF. By [33], pages 9, 19, 47, 3>er is a random closed set, so that
<?(<t>er) is a random closed set, the intersections with W are random compact
sets and their measures are r.v.'s. Now apply Lemma 1 to each realization to
get (21).

For (22), we note that p(x,dW) is continuous in x and p(x,3>) is a
random upper-semicontinuous (u.s.c.) function, so that p(x, $) - p(x, dW) is
also a random u.s.c. function and Z = {x e W: p(x, <£) < p(x, dW)} is a
random closed set. Recognize the left-hand side of (22) as the volume of
Z n 3>er and the integrand as the surface area of Z n <?(<I>es). Measurability
arguments remain valid for the random closed set Z and we apply Lemma 1
to each realization.

For (23), observe that Wer\$er = W\(dW(J $)er and use the same
technique as for (21). D

PROOF OF THEOREM 1. By Fubini (Bobbins' theorem [331, page 47),

E\Wn<t>9r\k = Ef l{x*Q9r}dx

(24) = />{*e*er}dxJw
= F(r)\W\k.

Since r •-> |W Pi OerU is absolutely continuous with derivative given in
Lemma 3 and bounded as in Lemma 2, its expectation is absolutely continu-
ous too, with derivative
(25) /•(r)|WU = E | W n < ? ( c & e r ) | A _ 1 ,

but complementarity to (24),

(26) E\W\Q9r\k = (l-F(r))\W\k.
Dividing (25) by (26) we obtain the first result of the theorem. The rest
follows by replacing W with WQr. D

3.3. Discretization and classical Kaplan-Meier estimator. In practice one
would not actually compute the surface areas and volumes for each s e [0, r]
in order to estimate F(r). Rather one would discretize W or [0, r] or both. For
standard estimators of F, one typically discretizes W on a regular lattice (see
[12]), although Lotwick [32] showed the areas can be computed analytically.

A natural possibility here is to discretize W by superimposing a regular
lattice L of points, calculating for each xl e W n L the censored distance
p(xl,<&) A ( x l 9 dW} and the indicator I { p ( x t , <l>) < p(xt, dW}}. Then one
would calculate the ordinary Kaplan-Meier estimator (8) based on this finite
Hflta sftt.
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Our next result is that as the lattice becomes finer, the discrete
Kaplan-Meier estimates converge to the theoretical continuous estimator F.

THEOREM 2. Let FL be the Kaplan-Meier estimator (8) computed from the
discrete observations at the points ofWr\L, where L = sM + b is a rescaled,
translated copy of a fixed regular lattice M. Let

R = mf{r>Q:Wer\3>vr = 0}.
Then as the lattice mesh s converges to zero, FL(r) -» F(r) for any r < R. The
convergence is uniform on any compact interval in [0, R). Similarly the
continuous reduced-sample estimator (18) is the uniform limit of the discrete
reduced sample estimator (7).

PROOF. For any compact set A c R* with |<?AU — 0, one can easily show
that

sd#(A nL) ->c|A|A as s^ 0,

where c is a finite positive constant depending on M. The sets W&r, <&er and

V = (XSE W:p(x,3>) <P(x,dW}}

clearly have these properties for r < R. Hence the functions

#(LK{x^W:p(x^}<p(x,dW} A r } )
^(r) = ——————————J(L^W]——————————

and
v, , #(L n (wsr\*9r))
Yl(r) ~ ——#(LnW)——

converge pointwise to

\(x^W:p(X,$) <P(x,dW) Ar}\k
(27) N(r) =

and

(28) y(r) =

\w\k
and

IWeA^erl*

\W\k '

respectively. Since NL(r) is increasing in r and the limit is continuous,
NL -» N uniformly in r. Recalling (23) and using the argument of Lemma 2 to
bound the integrand, YL converges uniformly in r.

Given (22) and by continuity of the mapping from (N, Y) to Art = fdN/Y
([21], Lemma 3) the discrete Nelson-Aalen estimators

A fdNL

^L = 1~Y7
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converge to A. By continuity of the product-integral mapping ([23], Theorem
7), FL converges to F. A similar, simpler argument establishes the result for
the reduced-sample estimator. D

It does not seem to be widely known in spatial statistics (cf. [9], page 764;
[12] and [15]) that computation of the distances p(x,<$ n W) and p(x, dW)
for all points x in a fine rectangular lattice can be performed very efficiently
using the distance transform algorithm of image processing [7, 8, 39, 40] at
the price of accepting a discrete approximation to the true Euclidean metric
II • ||2 in the definition of p at (1). Thus the reduced-sample and Kaplan-Meier
estimators are equivalent in computational cost when a fine grid is used.

It is often of interest to replace Euclidean distance by another metric,
either for computational convenience as above, or in order to obtain different
information about the process <fr [26, 47], particularly in three dimensions [5],
It is possible to replace || • ||2 by another vector space norm || • || in the above
results, provided the unit ball of || • || is a polyhedron (in [R2 a polygon) scaled
so that

(29) sup/M:||x||2£i\ = 1.
' \ I W l 2

Examples are || * IU, II • Hi/ V^ and continuous versions of the standard cham-
fer metrics [7, 8] used in the distance transform algorithm. Redefine the ball
of radius r as B(x, r) = [y: \\x - y\\ < r] and the distance function p of (1) in
terms of || • ||. Then it can be shown that

d
— \B(x,r)\k=\dB(x,r)\k_l

and that Lemma 1 remains true when A is a finite set but not in general.
Hence Theorems 1 and 2 continue to hold for the Kaplan-Meier estimator
with respect to this more general metric.

Estimation of F for more general sets B, and for more general random sets
instead of the point process 3>, is treated in [25] and [26],

3.4. Simulations. We have compared the performance of the Kaplan-
Meier and reduced-sample estimators of F in Monte Carlo simulations of a
Poisson process and of a randomly translated square grid.

Both processes were simulated as binary images on a 256 X 256 square
grid. For the Poisson process of intensity a, the pixel values were i.i.d.
Bernoulli variables with p = a/(2562). We generated 100 realizations of each
of Bernoulli p = 0.001, 0.0001, 0.00005, 0.00002 and randomly translated
grids of side s = 25, 32, 50, 100 and 150. For each realization the distance
transform was computed in the chamfer (5,7) metric of Borgefors [7] and the
two estimators were derived.
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Figure 2 compares the sample standard deviation of the reduced-sample
estimator with the sample root mean square error of the Kaplan-Meier
estimator (since the reduced-sample estimator is unbiased pointwise for F).
The Kaplan-Meier estimator appears to be uniformly more efficient.

Figure 3 is a similar comparison for a randomly translated grid. Here the
comparison is not uniformly favorable to the Kaplan-Meier estimator, al-
though it is generally better. One can attribute this to periodic effects. For
certain values of r the reduced-sample estimator is exact; near these values
it has small variance. The mse of the Kaplan-Meier estimator oscillates for
similar reasons. An extreme case is Figure 4, where the grid dimension 32 is
a divisor of the window dimension 256.

Bernoulli p = 0.001
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FIG. 2. Root mean square error comparison for simulations of Poisson process. Dotted lines:
reduced sample estimator; dashed lines: Kaplan-Meier estimator; solid lines: estimand F. Note
different scales for rmse and F.
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random 25 x 25 grid random 50 x 50 grid

Distance Distance

FIG. 3. RMSE comparison for simulations of randomly translated grids. Dotted lines: reduced
sample estimator•; dashed lines: Kaplan-Meier estimator', solid lines: estimand F.

FIG. 4. Extreme resonance case of Figure 3.
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4. Asymptotic properties of estimators of F.

4.1. Large sample theory. In spatial statistics, many large sample limit-
ing regimes are possible (see [9], page 480; [38]; [45], page 224). It is common
to consider the limit in which the window W expands to fill Uk [3, 27, 28, 44].
Under the additional assumption of ergodicity, it is clear that the reduced-
sample and Kaplan-Meier estimators of F are pointwise consistent as W /•
Rk. Edge effects are asymptotically negligible in this limit.

However, edge effects are appreciable in practical applications, so it would
be more relevant to study asymptotic regimes in which the edge effect
remains equally severe for all sample sizes. One such limit is considered by
Stein [45].

We shall consider the situation where there are n independent replicated
observations <&t of a process <I> within a fixed window W. This is becoming
increasingly common in applications: the data consist of 10-100 binary
images which may be treated as independent replications of the same process
(e.g., [5, 26]). Equivalently, if <J> satisfies a mixing assumption, we may
consider observation of the same point process through n distantly separated
windows Wt of fixed size and shape (cf. [5]). Apart from its practical rele-
vance, study of this limiting regime (n -> °o replicates) enables qualitative
comparison of different estimators and may provide suggestions for variance
estimation.

A A

Given n replicated observations 3>f in W, the pooled statistics F and FTS

are obtained, not as the mean of the separate estimators for each window, but
by analogues of (16) and (18) in which the numerators and denominators of
(15) and (18) are replaced by the sums of these expressions over all replicates
<£;. Asymptotics as n -» °° are now straightforward using empirical process
theory.

THEOREM 3. Let 4 > 1 , < J > 2 , . . . be i.i.d. copies of an a.s. stationary point
process <£ with finite positive intensity a. Fix a compact set W c Rk and let Fn
be the Kaplan-Meier estimator ofF obtained from Oj , . . . , <&n in W by pooling
as above. Let r > 0 satisfy F(r) < 1. Then Fn is consistent and ]fn(Fn — F)
converges weakly in C[0, T] to a Gaussian process with linear approximation

(30) Fn(r} - F(r) = i £ l(F,^, r) + op(n~^z)

uniformly in 0 < r < r, where I is the influence function,

(31) I(t.*.r)-(l-r(rnf^W"n«*")^m'^*"'«'>*

and y(s) = E|We s\<I>e sU = (1 -^F(s))\We$\k. A similar statement holds for
the reduced-sample estimator F™ with the influence function replaced by
7(Frs,$,r) = Frs(r)-F(r).
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We use the following lemma.

LEMMA 4. Any nonnegative, monotone nondecreasing, cadlag process X on
[0,1] with finite second moment satisfies a uniform LLN and CLT in D[0,1],

SKETCH OF PROOF. Since Esup, X(t)2 = EX(1)2 < <», for the bracketing
CLT of [49], Theorem 2.11.9 (cf. [1]), it suffices to find for each s > 0 a
partition of [0,1] into Ne sets I^e such that Esups>,e / (X(t) - X(s))2 < s2

for each j and (^log Ne ds < ~. For s < t, (X(t) - X(s))2 < 2X(l)(X(t) -
X(s)) a.s. The function h(t) •= 2E[X(1XXXO] is finite, monotone nondecreas-
ing and right-continuous. Given s > 0, there are at most h(l)/s2 points
where h jumps by more than s2. By adding further points we can par-
tition [0,1] into Ne < 2h(l)/z2 intervals [ t l 9 tl + l) with tl < tl + l such that
h(tl + l - ) - h(tt) < s2. The result follows. D

PROOF OF THEOREM 3 (Sketch). Let N^r^Y^r) for i = 1,2,... be the
fraction of failures and fraction at risk processes (27) and (28) for <E>f in W.
They are monotone and uniformly bounded by 1. By Lemma 4, they satisfy a
LLN and CTL uniformly on [0, r], A joint CLT follows immediately. Apply the
functional delta-method ([21], Theorem 3) to the sequence of mappings from
(Nn,Yn) to (Nn, 1/YJ, then to AB = ((dNn)/Yn, then to 1 - Fn = 7r(l - dkn\
Each mapping is Hadamard differentiate or compactly differentiate ([21],
[22], and [23], Theorem 8). Hence ^/n(Fn — F) is asymptotically equivalent (in
the sense that the supremum of the difference over any bounded interval
converges in probability to zero) to the linear functional of the empirical
processes

dNn(s) - Ytt(s) d\(s)
( l - A A ( S ) ) y ( s )

where y(s) = EYn(s). a

rn ^^[tdNn(s)-Yn(s)d^(s)
^ "*W>/n n - A A r ^ v ^ ' ° ** < T>

4.2. Calculations for the sparse Poisson limit. From Theorem 3 we can
obtain the asymptotic variance of the Kaplan-Meier estimator as the vari-
ance of the influence function (31). However, this expression is unwieldy, and
further simplifying assumptions are needed to obtain explicit results.

In this section we calculate variances of (31) for the extreme case of a
Poisson process whose intensity a is sent to zero. Edge effects become
increasingly severe for small a.

This sparse Poisson limit is chosen because it is mathematically tractable,
yet is stringent enough to reveal qualitative differences between the compet-
ing estimators. The differences emerge in the first-order approximation and
not (as is usual) at higher orders. The limit also facilitates comparisons with
results in survival analysis. It is, of course, an extreme situation which may
not have direct practical impact. It may be relevant to applications where
data are observed in a large number of windows, each window containing
relatively little information.
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There are just two situations to consider as a -> 0: (i) no random point in
W, with probability exp(- a |WU) = 1 + 0(a\ and (ii) one random point in W
at a position x uniformly distributed over W, occurring with probability
a|WU exp(-a|W|jfe) = a\W\k + ^(a2); the remaining possibilities have prob-
ability &(a2).

The influence function (31) for Kaplan-Meier is the difference of two
terms: a part depending on surface areas at some distances from a point of $
and a part depending on volumes at risk and involving the hazard rate of F.
In case (i) only the second part is present and is of order a; in case (ii) the
first part is also present and is of constant order.

The empty space function for the Poisson process is

F(r) = l~exp(-a\Br\k)
and its hazard rate is

A(r) = J:[-log(l-F(r))] = a|^rU-1;

where Br = 5(0, r) is a ball of radius r in the Euclidean metric, so that
\Br\k = rda)d/d and |<?Br |A_i = rd~lwd. The expected volume at risk is

y(r) = (l- .F(r)) |We rU.
In case (i), no random points in W, (31) is therefore

/(/.0.,)-(i-r(,))|-/VrJV'W£''n*\ J0 |We§|*exp(-a|B.|*)

= exp(-a|Br|»)(- f'"a|<9BsU-1exp(a|BsU)ds)
\ Jo I

= -(l-exp(-a|Br|»))
= -a |B r U+^(a 2 ) .

In case (ii) the influence function is

l ( F , { x } , r )

/ i LV , J r r l^(^ ' s ) ^Wet\h_1-a\dB,\k-1\We,\B(x,8)\k \
= (1-F(r»(f0——————————IW..|t«p(-a|B.U)——————————^

fr\dB(x9s) O WeJA j/ I 7 ~ i l \ / ' \ 7 / t* S |A — J. j , ^,/ \= exp(-o|Br|»)/ —————-———^-ds + ̂ (a)Jo |WesUexp(-a|BsU)

fr\dB(X,s)nWes\k^
= /o—————Wj-k————* + ̂ (a )-

It is an interesting exercise to check this by verifying that the expected
influence function is zero to first order, using integral geometry ([41], page
97).
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Hence the variance of the influence function is to first order,

/ fr\aB(x,s) n W e a \ k _ l(32) var/(F, <&, r) ~ a|W|*E / ——-——-£———^^ ds
1/0 \Wes\k

since case (i) is now ̂ (a2). For the reduced sample estimator, in case (i) the
estimator is identically zero; in case (ii) it is

F"(r)=\B(X,r)nWer\k/\Wer\k.

Since F(r) = 1 - exp(-a|Sr|*) = a\Br\k + &(a2), the influence function ( =
estimator - estimand in this linear case) is in case (i),

I(F™,0,r) = -a[Br\k+(?(a2);

in case (ii),

\B(x,r) nWer\k
l(Fn,(*}.r)-!-±-^———^+«f(a).

1 VVer \ k

Again, it can be verified using integral geometry that the expectation of the
influence function is zero to first order. The variance is

l f \ B ( x , r ) O We r | 2

(33) var/(^r s ,<l>,r) ~ a\W\kE M

\\ Wer\k

For convenience in calculation of (32) and (33), we will take W to be the
d-dimensional unit cube centered at (|,...,f), and replace the Euclidean
metric || • ||2 by the L^ metric in the definition (1) of p and A0r, Aer (see
comments at the end of Section 3.3). Thus F becomes the empty square space
function obtained by replacing B(x, r) by a cube BJix, r) of center x and side
length 2r.

In this case it becomes feasible to enumerate all possible ways the cubes
BJix, r) and Wer intersect. Expressing the volume and surface area contribu-
tions in terms of x in each case, we integrate over r (for Kaplan-Meier only)
and then over x.

In one dimension with W = [-1/2,1/2] the variance of nl/*(Fw(r) -
F(r)), ignoring terms of order O(a2), equals a times the following expres-
sion:

2r + (1 - 4r)log(l - 2r) - |(log(l - 2r))2 , for 0 < r < \,
2r

1/2
2r + I r logwlog(l - u) du ~ 2rlog2rlog(l - 2r), for \ < r < |.

•'I /9
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For the reduced sample estimator |4>er n Wer A/|Wer|A, the corresponding
formula is

Ur 2 ( l - f ) / ( l -2 r ) 2 , f o r O < r < | ,
\ (8r - l)/3, for± < r < f.

These functions are plotted in Figure 5 together with the corresponding
curves for two and three dimensions; the latter have been calculated (tn
Mathematica) with a mixture of computer algebra, numerical integration (fo]
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Efficiency = var(RS)/var(KM)

in
d

3 dim
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FIG. 6. Asymptotic relative efficiency (ratio of variances} in 1, 2 and 3 dimensions, calculated
for the L^ metric.

integrals over s) and Monte Carlo integration (for integrals over x). The new
estimator is superior over a broad range of distances r, but surprisingly
deteriorates at very large distances. Apparently the dependence here has
destroyed the uniform optimality enjoyed by the Kaplan-Meier estimator in
the i.i.d. case.

Figure 6 shows the asymptotic relative efficiency in dimensions 1-3. The
greatest gain is achieved at intermediate distances (near ^); only for very
large distances (near |) is there a loss in efficiency. As the dimension d
increases and hence as edge effects become more severe, Kaplan-Meier
represents an ever more convincing improvement on the reduced sample
estimator.

5. The nearest neighbor function G. The nearest neighbor distance
distribution function G was defined in (3) and (5). Note that G need not have
any special continuity properties, in contrast to F\ in fact G may be degener-
ate, as in the case of a randomly translated lattice.
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5.1. Kaplan-Meier estimator. Let <J> Pi W == {x^..., xm} be the observed
point pattern. A Kaplan-Meier estimator for G is more immediate than for
F\ for each point xt of the process <l> observed in the window W, one has a
censored distance from xt to the nearest other point of <E>,

^ = p(xi,®\{xi}),
censored by its distance to dW9

6, = P(xi9dW).
Counting observed failures and numbers at risk as for censored data,

NG(r) = #{x e $ n W: p ( j e , < D \ {*}) <p(x,dW) A r]
= #{i:si <btAr}

and
YG(r) = #{jce d> n W:r< p(x,3>\{x}} A p(x,dW)}

= #{i: st A 6- > r},
define the Nelson-Aalen estimator

,rdNG(s)
(34) Ao(r) = /o_^

and the Kaplan-Meier estimator of G,

G(r) = i - 77(l-dAG(s))

(35)
 = 1 _ n f ! _ #{«:«£-«^^M

#{i: $; > s, 6- > s}
where s in the product ranges over the finite set {sj.

It follows from the Campbell-Mecke formula [see (5)] that the numerator
and denominator of (34) satisfy the same mean-value relation as for ordinary
randomly censored data,

(36) ENG(r) = (rEYG(s)dAG(s),Jo
where dAG(s) = dG(s)/(l - G(s - )).

Compare this to the reduced-sample estimator

/onx At x E-^nW9r l{ p(*,® \ {*}) < r} #{i '. S, < r, 6, > r}
(37) Gl(r) = ————————WJ———————— = #{i:6^r}
and the modification

|W|* #{»:* , -^r ,6 , . > r }
(38) G2(r) =

l^erlfe

obtained by replacing <b(Wer) by an estimate of its expectation. Other estima-
tors are described in [47], page 128; [9], pages 614 and 637, 638; [13] and [18].
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5.2. Large sample theory for G. Linearization can be applied to G — G
just as well as for F — F and the results used to study variances.

Analogously to Theorem 3, since NG(r), YG(r) < <E>(W), it follows from
Lemma 4 that provided E<E>(W)2 < °°, each of NG,YG satisfies a LLN and
CLT uniformly on an interval [0, T], where E7(r) > 0. A joint LLN and CLT
for (NG,YG) follow immediately. Then differentiability of the product-
integral mapping implies weak convergence of G to a Gaussian process at
rate Vw~ and the asymptotic variance is equivalent to that of the influence
function.

The Kaplan-Meier influence function for the nearest neighbor distances
equals the sum over points x e 3> Pi W of the usual influence function based
on a censored observation ( p(x, <I> \ {jc}) A p(x, dW), 1{ p(x, 4> \ {x}) <
p(jc, <?W)}). The effective censoring distribution is that of the distance to dW
from a uniformly distributed random point in W.

Fix the window W, an arbitrary compact set with Lebesgue measure 1. The
information we need about W and the metric || • || is contained in the functions
6(r) = |Bd(0, r)|A, c(r) = \3Bd(Q, r )U_ i and e(r) = |Wer k, where the erosion
Wer is defined in terms of || • ||. For the Lx metric and W = [0, l ] k , we have
c(r) = (1 - 2r)*, 6(r) = (2r)A and c(r) = 2k(2r)k~\

The influence function for the Kaplan-Meier estimator of G is thus

1(1- G(r)) 1{ P(*>*\ <*}) ^ r A P(x> dW»
x&3>nW

-/:
y(p(*,$\{x}))
rAp(x,4>\{x})Ap(a:>^W)^(^s)

y(«)
where A is the cumulative hazard function associated with G and

y(r) = E E l{p(x,3>\{x})>r,p(X,dW)>r}
^xe®nw

= a ( l -G( r ) )e ( r ) .

The factor a is the expected number of points in W since |WU = 1.

5.3. Sparse Poisson asymptotics for G. Suppose the process is homoge-
neous Poisson with intensity a; then G(r) = exp(-aMr)) and A(ds) =
ac(s)ds. For a small, 1 - G(r) ~ 1 and y(r) ~ ae(s). The cases O(W) =
0? 1,2 have probabilities ~ 1? a and |a2 and result in influence functions

7(3,0, r) = 0 ,

7//S r i \ M /^/ ^ frAp(x,dW*)Mds) rrAp(x,dW)c(s)
I(G,{x},r) = -(1 -G( r ) ) / - - / ^ ~TTds'v y ^o y(s) ^0 e(s)
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I(d,{x,z},r)

= (l-G(r))ll{d(x,z)<r}

l{d(x,z) <P(x,dW)} + l{d(x,z) <p(z,dW)}
X y ( d ( x , z ) )

_ rr/\d(x,z)/\,,(x,fiW)^(ds) ^ rrr\d(x,z)/\,>(z,aW)k(ds)

J0 y ( s ) '0 y(s)
l{d(x,z)<r}

l{d(x,z) <p(x,dW)} + l{d(x,z) < p ( z , f ) W ) } \
NX

ae(d(x, z ) }

fr/\d(x,z}/\p(x,dW}c(s) . fr^d(x,z)^p(z,dW)c(s) .
- / ~7~Tds " / ~TTds*^o e ( s ) JQ e ( s )

Larger values of <KW) have probability of order a3 and influence functions
of order a"1.

The required asymptotic variance is the expectation of the square of th*
influence function. The leading term comes from the first part of the case
OCW) = 2 and is (of constant order)

var / (G,<t> , r )

(39) ~^(w.V)*r}

l ( l { p ( U , d W ) >d(U,V)} +!{P(V,dW) >d(U,V)})2

XN

\ e(d(U,V))2

where U, V are independent uniformly distributed random points in W.
We now look at the reduced-sample estimator (37) in the same way. The

expectations of numerator and denominator are aG(r)\Wer\k and a|We rU:
respectively, so that the linearized estimator minus estimand is

!(G $ r\= £*^n^1M*,fr\{*}) ^r} - G(r)«D(W e r )

= E

a|Wer|*

l{p(x,3W) >/•}(!{ P(x,3>\{ x } } <r} -G(r))
<*\Wer\kxeO>0 W "|rrer|

The cases ^(W) = 0,1,2 give influence functions [up to higher order terms,
and putting G(r) ~ a b ( r ) ] y

/(G1?0,r) = 0,

l(Gl9{x}9r)^ -~l{p(x,3W)>r}
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l{d(x,z) <r}(l{p(x,dW) >r] + 1{ p(z, dW) > r})
ae(r)

6(r)
e(r)

(1{ p(*, <?W) > r} + 1{ p(2, <?W) > r}).

For the asymptotic variance's leading term, again only the first part of the
case <J>(W) = 2 contributes, giving a term (of constant order)

var/(dl f*,r)

(40) i.L „„ „, , (1{P(U,*W) >r} +l[p(V,3W) >r})
2

-E {l{d(U,V)<r}2 \ e(r) 2

where again C7, V are independent uniformly distributed random points in
W.

It is also easy to calculate the influence function of the estimator G2
defined in (38). Its asymptotic variance turns out to be asymptotically equiva-
lent to that of Gl given above.

Compare (40) with the result (39) for Kaplan-Meier. These have leading
terms of constant order, because only a fraction a of the realizations provide
any data at all; this amplifies an asymptotic variance of order a by the factor
I/a to constant order. In the case of F, asymptotic variances are of order a
as we would expect.

Integration techniques of geometrical probability applied to (39) and (40)
give, for the L^ metric and W = [0,1]*,

(2r)* v(r)k

limvarGiCr) = -———-j +
( l -2 r )* (1 -2r ) 2 * '

where

v(r) - 2(1 - 2r ) ( r A (1 - 2r)) - (r A (1 - 2r))2

= ( 2 r - 5 r 2 , for r < 1/3,

\(1 - 2r)2, for 1/3 < r < 1/2,

and

rrZR(ZS) n
limvarG(r)^ / —————T ds + /V ^o ( l - 2 s ) * ^o

2A(2s ) B ~ 1
 7 , r A i / 32^(l - 3s)(2s - 5s2)

————r d$ + \ ————————^i———— ds.
(1 -2s)" ^o ( l -2s)2"

The results are plotted in Figure 7 for dimensions 1, 2 and 3. They show a
superiority of Kaplan-Meier over the reduced-sample estimator more marked
than in the case of the empty space function. Moreover, the deterioration of
the Kaplan-Meier estimator at large distances is no longer observed.
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6. The K function. K(r) was defined in (4). Equivalently

(41) aK(r}= £ GB(r) ,
re = 0

where Gn(r) = P{4>(5(0, r)) > re | 0 e <!>} is the distribution function of the
distance from a typical point of <J> to the nth nearest point. For each Gn one
can form a Kaplan-Meier estimator, since the distance from a point x e <E> to
its Tith nearest neighbor is censored just as before by its distance to the



KAPLAN-MEIER ESTIMATORS 287

boundary. The sequence of Kaplan-Meier estimators always satisfies the
natural stochastic ordering of the distance distributions.

The large-sample theory we sketched for F and G can also be developed for
K. Again we require EO(W)2 < <». For the estimator of Gn the influence
function has a similar form to that given for G. Since, for a Poisson process,

Gn(r)=e-°b^£
k = n

(a6(0r
kl

terms in the influence function for <I>(W) = 3,4,... remain of the same
(lower) order, while those for $(W) = 0,1,2 are unchanged. That is, sparse
Poisson asymptotics for K coincide with those for G. Hence our conclusions are
similar to those of the previous section.

For estimating K, a number of sophisticated edge corrections exist; see
[11]; [35-37]; [38], Chapter 3; [47], pages 122-131; [9], pages 616-619,
639-644; and recent investigations in [14], [17] and [43]. The asymptotic
variances of these estimators are the variances of weighted analogues of the
influence function given in the previous analysis. Figure 8 shows asymptotic
variances for the rigid motion correction, translation correction and isotropic
correction (estimated by Monte Carlo simulation of the influence function)
together with the asymptotic variances of reduced sample and Kaplan-Meier
estimators carried over from Figure 7. It turns out that under sparse Poisson
asymptotics, the sophisticated edge corrections are equally as good and better
than Kaplan-Meier, which in turn is better than the classical border method
(reduced-sample) estimator.
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FIG. 8. Asymptotic variance of estimators of K, sparse Poisson limit. Solid lines: reduced
sample; dotted lines: Kaplan-Meier; dashed lines: weighted edge corrections; see text.



288 A. BADDELEY AND R. D. GILL

In two-dimensional spatial statistics, it is common to transform K into
L(r) = ^K(r)/7r. Our efficiency comparisons remain the same and all
asymptotic variances are multiplied by a constant factor (2<7r^K(r) )~1.

7. General discussion. The Kaplan-Meier technique has been shown
to provide good estimators of all three distributions F, G and K. It appears to
be substantially more efficient than the simple border correction (reduced-
sample) estimators in most situations. However, in the case of K, the
Kaplan-Meier estimator is less efficient (asymptotically in the sparse Poisson
limit) than the more sophisticated edge corrections currently in favor. This
loss of efficiency is offset by the ease of implementing the Kaplan-Meier
estimator for arbitrary windows W, while the popular edge corrections are
only easy to apply in rectangular windows.

Experimentation is needed to compare the worth of the various estimators
in practical situations (see, e.g., [13]). Heinrich [27] proved large-domain limit
theorems concerning the estimation of K in Poisson cluster processes, and
Stoyan, Bertram and Wendrock [46] derived approximations to the variance
of kernel estimators of the pair-correlation function.

The Kaplan-Meier estimator casts new light on the local knowledge
principle ([42], pages 49, 233). This states, for example, that for all X,
W c R * ,

*e,n Wer = ( X n W ) e r n W e r

and that Wer is the largest set Z satisfying
Xer nZ = ( X n W)e r nZ for all X.

In words, given observation of a set X within a window Wy the dilation of X
is known only within the mask Wer. While this principle has been used to
justify the border method (reduced-sample) estimators, it iŝ  not in conflict
with the construction of the Kaplan-Meier estimator since F(r) is based on
hazard estimates for distances s < r,

The Kaplan-Meier estimators use more information than the correspond-
ing reduced-sample estimators, but not all information, in the following
sense. Write C(x) for the censoring distance p(x, dW) at a point x and T(x)
for the observed failure distance p(x, 3>) or p(x, <E> \ {x}) as appropriate. Then
the reduced-sample estimate at distance r depends only on those points x
where C(x) > r, while the Kaplan-Meier estimate also involves cases where
T(x) < C(x) but C(x) < r. However, neither estimator makes use of cases
where C(x) < T(x) and it seems plausible that these may contain usable
information. The sophisticated edge-correction estimators for K use informa-
tion from the case C(x) < T(x) < r. Doguwa [15] argues that information
should be used from all six possible orderings of C(x), T(x\ r.

A bootstrap result for the estimators of F, G and K in the independent
replications case is available from the Gine-Zinn equivalence theorem that
the bootstrap works if and only if the CLT holds; see, for example, [22],
Section 11.
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One might wonder whether it is possible to improve the Kaplan-Meier
estimators of F, G and K by considering the observed distances as interval
censored rather than just right censored. This seems possible since, for a
point x e W9 which is closer to dW than to other points in O n W, one does
know that its distance to $ \ {x} is not greater than its distance to (4> \ {x})
n W, so

P(x,dW) <P(x,3>\{x}) *p(*,(*\{*}) n W ) .
Similar statements can be made for the distance to the kih nearest neighbor.
However, treating this data as randomly interval-censored data would pro-
duce asymptotically biased estimators, since the upper limit p(x,(3>\{x}) n
W) is strongly dependent on p(x, <£ \W), unlike the lower limit p(x, dW\

The asymptotic theory also suggests variance estimators. In Theorem 3,
the variance of F(r) can be approximated by the sum of the squares of the
summands in (30), with A(0 and F replaced by their Kaplan-Meier esti-
mates. The expression (31) for /(F, <£, r) can be rewritten as an integral over
x e W of the one-point influence function

,1 w , J l{p (* ,* )* r ,p (* ,* )£p(* ,*W)}

(42)
 (1-M————m^»————

rAp(x,$>)Ap(x,dW) ^(s) 1as-Lo y(s)
The integral over x can be approximated by a sum over lattice points as
above. In order to implement this proposal one only has to numerically
tabulate an estimate of the function /0

r(A(s)/3/(s))ds together with the
functions y and 1 - F.

Alternatively (and this is applicable for n = 1 replicate) one can write
down the variance of /(F, <&, r) in terms of the covariance structures of the
random function r(x) = p(x, <&) and of the window W:

cov(F(r),F(r'))

(43) , -r -r h(ds,ds',x)
• <' -*'»<' -w>U/.c*...^*'-;<^rr'fc-

where CAtB(x) is the set cross-covariance function of A, B c R*,

CA,B(X) = | A n ( B + * ) | A , x e Rk,
with S + x being the translate of B by x, and

h(t, tf, x) = cov(M(Q, t),M(x, tf))7
where

M(x,t) = 1{ p(x,&) <t] - Tl{ p( *,<!>) > s}A(s) ds,
^o

a martingale in t for each x e R*. Further work is needed to find good
estimators of (43).
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Finally, Kaplan-Meier estimators can also be developed for contact distri-
butions, the analogues of F for random closed sets [47]. This is investigated
in [25] and [26].
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