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HIGHER-ORDER APPROXIMATIONS TO CONDITIONAL
DISTRIBUTION FUNCTIONS1

BY JOHN E. KOLASSA

University of Rochester Medical Center

This paper derives higher-order terms in the double-saddlepoint ex-
pansion of Skovgaard for a unidimensional conditional cumulative distri-
bution function. Expansions for continuous and lattice random variables
are derived. Results are applied to the sufficient statistic in logistic
regression.

1. Introduction. Many authors use double-saddlepoint approximations
to perform conditional inference in the presence of nuisance parameters.

Ž . Ž .Among these are Bedrick and Hill 1992 , Davison 1988 and Kolassa
Ž .and Tanner 1994 . This paper derives higher-order terms in this double-

saddlepoint expansion for a unidimensional conditional cumulative distribu-
tion function.

Ž .Skovgaard 1987 derives a conditional distribution function approxima-
tion by approximating a multiple integral representing the product of the
conditional distribution function and the density of statistics to be condi-

Ž .tioned on. Jensen 1991 provides an alternate expansion using the method of
Esscher.

The present work uses an extension of an expansion theorem of Temme
Ž . Ž .1982 to approximate the multivariate integral used by Skovgaard 1987 .
The resulting series is then factored into two factors, the first being an
approximation to the density of statistics conditioned on. The second is the
approximation to the conditional distribution function. This method is ap-
plied to continuous and lattice distributions.

2. Conditional cumulative distribution function expansions. Con-
Ž 1 d .sider random vectors X s X , . . . , X arising as means of N independent

and identically distributed random vectors Y , each with cumulant gen-j
Ž 1 < 2 d .erating function K . Define the quantity D x x , . . . , x sY

` Ž 2 d .1H f v, x , . . . , x dv; then, by the definition of the conditional tail probabili-x
ties,

1 1 < 2 2 d d 2 d
2 dP X G x X s x , . . . , X s x = f x , . . . , xŽ .Ž . X , . . . , X

1 < 2 ds D x x , . . . , x .Ž .
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The cumulative distribution function approximation is derived by finding a
Ž 2 d .2 dseries expansion for D and dividing by f x , . . . , x . The quotient isX , . . . , X

hence the desired series expansion.
A useful representation for D is derived from the standard cumulant

generating function inversion formula for recovering a probability density,

dN qi` qi` if x s ??? exp N K b y b x db ,Ž . Ž .Ž .H HX Y id
yi` yi`2p iŽ .

by replacing x1 by a dummy integration variable w, and then integrating
with respect to w between x1 and `, to yield

1 < 2 dD x x , . . . , xŽ .
dy1N dbqi` qi` js ??? exp N K b y b x .Ž .H H ž /Y jd byi` yi`2p iŽ . 1

1Ž .

Unless otherwise noted, the presence of an index in a term both as a
superscript and as a subscript indicates summation over that index. Skov-
gaard expands D in terms of the multivariate saddlepoint both for the full
distribution of X and for the distribution of the shorter random vector
Ž 2 d .X , . . . , X , and in terms of derivatives of K at these saddlepoints. DefineY

ˆ i ˆ i ˜Ž .the saddlepoints b solving K b s x , and define the reduced saddlepoint bY
j ˜ jŽ .to be the vector with d components satisfying K b s x for j s 2, . . . , dY

˜ jand b s 0, where K denotes the derivative of K with respect to compo-1 Y Y
nent j of its argument. Factor D as above to obtain the conditional tail
probability approximation of interest:

1 2 d˜ '<1 y F x x , . . . , x s 1 y F N wŽ . ˆŽ .
˜< <YK b' Ž . 1Yy1'q f N w y ,ˆŽ .

Y 'N ŵˆ ˆ< <� 0'b N K bŽ .1 Y

2Ž .

ˆ ˆwhere b is the first component of b,1

j jˆ ˆ ˆ ˜ ˜w s sgn b 2 b x y K b y 2 b x y K b ,ˆ ' Ž . Ž .Ž .1 j Y j Y

Ž . Ž .YK is the d y 1 = d y 1 submatrix of second derivatives of K , corre-Y Yy1

sponding to all components of b except the first, and F and f are the normal
distribution function and density, respectively.

Also of interest are inversion techniques for conditional distributions
� < 4supported on a lattice, or a set of form a q jD j an integer . Often such

conditional lattice distributions arise from multivariate distributions sup-
� Ž . < 4ported on a lattice of form a q j D , . . . , j D j , . . . , j integers . Simple1 1 d d 1 d

examples of multivariate lattice distributions are binomial and Poisson distri-
butions. More complicated examples are the multivariate distributions of cell
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counts in contingency tables, and multivariate distributions of sufficient
statistics associated with indicator variables in logistic regression. Skovgaard
Ž . Ž .1987 derives a counterpart of 2 in the lattice case when D s 1:

1 2 d˜ '<1 y F x x , . . . , x s 1 y F N wŽ . ˆŽ .
˜< <YK b' Ž . 1Yy1'q f N w y .ˆŽ .

Y1 'N ŵˆ ˆ< <� 0'2 sinh b N K bŽ .Ž .1 Y2

3Ž .

1 ˆHere x is corrected for continuity when calculating b; that is, if possible,
1 ˆ X ˆ j jŽ .values for X are one unit apart, b solves K b s x, where x s x if j / 1˜ ˜Y

11 1and x s x y . The relationship between expansions for continuous and˜ 2
Ž .lattice probability distributions is discussed by Kolassa and McCullagh 1990 .

Ž .3. Plan for higher-order approximations. Skovgaard 1987 shows
Ž .that in some extreme cases 3 behaves poorly. A refinement to this approxi-

Ž .mation may be derived by seeking a series expansion for D of 1 and by
factoring this expansion in such a way that one of the factors is the expansion
for the conditional tail probability.

Ž .Integration in 1 is performed by changing variables to a new set w so
that the term that is exponentiated is quadratic. The integrand will then be
of the form

N ­b
jk jk y14 exp w d w y Nw d w b ,Ž . ˆj k j k 1ž /2 ­ w

Ž . Ž .ydand D is the d-dimensional integral of 4 , times 2p i . Here and below the
symbol d with superscripts or subscripts or both denotes the array with
entries 1 where all indices agree, and zero elsewhere. Note specifically that
w d jk w is the inner product of w with itself. Choose w so thatj k

1 jk i iˆ ˆ5 w y w d w y w s K b y b x y K b q b xŽ . Ž .Ž .ˆ ˆŽ . Ž .j j k k Y i Y i2

along the path of integration, and so that w depends only on b .1 1
< <The function ­br­ w rb has a singularity at w s 0. As noted by1 1

Ž .Skovgaard 1987 and others, the accuracy of the result obtained by applying
< <integral expansion techniques directly to ­br­ w rb will deteriorate as ŵ1 1

approaches 0. Express D as the sum of two integrals D q D , where the1 2
integrand of D has no singularity at w s 0 and where the integration withˆ2 1
respect to w in D can be calculated exactly. Specifically, let1 1

N dy1 Nqi` qi` jk jkD s ??? exp w d w y Nw d ŵH H1 j k j kd ž /2yi` yi`2p iŽ .
­by1 y1= 0, w w dw.Ž .y1 1­ wy1
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< <Here ­b r­ w is the determinant of the matrix of first derivatives fory1 y1
b , . . . , b as a function of w , . . . , w . Integration with respect to w and2 d 2 d 1'Ž Ž ..then with respect to the remaining variables gives 1 y F N w f . Theˆ1 Xy1

task remains, then, of expressing D as a series,2

N dy1 Nqi` qi` jk jkD s ??? exp w d w y Nw d ŵH H2 j k j kd ž / /2yi` yi`2p iŽ .

< < < <dbrdw db rdw 0, wŽ . Ž .y1 y1 y1
= y dwž /b w1 1

6Ž .

dy1 my1N N
jk ys yms exp y w d w A N q O N ,Ž .ˆ ˆ Ýj k sd ž /22p iŽ . ss0

and factoring this series such that one factor is f . The quantities ŵX , . . . , X j2 d

are determined below.
Ž . Ž .The approximations 2 and 3 are the result of a first-order approxima-

Ž .tion to the integral of 6 . To derive higher-order approximations, an asymp-
totic expansion for a multiple integral of an integrand of the form

N
jk7 exp w y w d w y w u w ,Ž . Ž .Ž .ˆ ˆŽ .j j k kž /2

Ž .with u analytic, is needed. Note that 4 fails to be of this form, since the
factor by1 makes it not differentiable at b s 0. A theorem concerning series1 1

Ž . Ž .expansions of integrals of the forms 4 and 7 will be cited in the next
section. These will include a multivariate integral expansion theorem for

Ž . Ž .integrals of the form 7 in terms of derivatives of u w . The following section
will present two lemmas showing that the decomposition of D into D q D1 2

Ž .performs as desired; that is, that the singularity of 4 at b s 0 is a simple
pole and that the integrand of D is analytic. These relationships will be usd2

Ž .to generate a series expansion for the quantity D of 1 .
The resulting series will then be factored into two series, one of them being

the series expansion for the conditioning probability. By the usual saddle-
w Ž . xpoint density arguments McCullagh 1987 , Chapter 6 , the second factor

then becomes the series expansion desired.

4. An extension of a theorem of Temme. As suggested by Skovgaard
Ž .1987 , we begin our investigation of higher-order corrections to the condi-
tional cumulative distribution function by proving a multivariate extension of

Ž .a univariate theorem due to Temme 1982 .

THEOREM 4.1. Suppose that w is a vector with d components and that the
Ž .function u is analytic on an open set Q of the form Ł I = iR for I openj j j
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real intervals, satisfying

d v1q? ? ?qvdu wŽ .
l 2< < < <s O w y w exp v w y wŽ .ˆ ˆŽ .v v1 dd w ??? d w1 d

Ž < Ž . < .as min R w ª `. Let v!s v != ??? = v !, and letj 1 d

v v q? ? ?qv1 d­ ­
s .v v v1 d­ w ­ w ??? ­ w1 d

Let Hqi` ??? Hqi` be the operator consisting of d integrations over smoothyi` yi`
Ž . Ž . Ž . Ž .curves g t for t g y1, 1 such that lim g t s "`, respectively, g 0j t ª "1 j j

Ž Ž ..s w , and R g t is bounded. Thenˆ j j

dr2N Nqi` qi` jk??? exp w y w d w y w u w dwŽ .Ž .ˆ ˆŽ .H H j j k kž / ž /2p 2yi` yi`
8Ž .

my1
ys yms A N q E N ,Ý s m , d

ss0

where
ys 2vy2 ­Ž .

A s u w ,Ž .ˆÝs 2vv! ­ wŽ .vgS s

Ž . � d < 4with S s s v g Z v G 0, Ý v s s , andj j j

Ž .y mq1 2vy2 ­Ž .qi` qi`
E s ??? u w* w dw,Ž .Ž .ÝH Hm , d 2vv! ­ wyi` yi` Ž .S mq1

for w* a convex combination of w and w.ˆ

PROOF. Choose d ) 0. Expand u using a Taylor series:
v2m 1 ­

v v1 du w s u w w ??? w q R w ,Ž . Ž . Ž .ˆÝ Ý 1 d mq1vv! ­ wss0 Ž .S s

for w* a linear combination of w and w. Deforming the path of integration toˆ
Ž .run vertically through each w , and integrating terms not involving R wˆ j mq1

Ž . Ž .gives the sum in 8 . By Taylor’s theorem, the function R w can bemq 1
expressed as

Ž .y mq1 2vy2 ­Ž .
u w* ,Ž .Ý 2vv! ­ wŽ .S mq1

for some w* between w and w. Iˆ

5. Integral parameterization. A careful choice of the parameterization
Ž .of b in terms of w to satisfy 5 makes analysis much easier. For real b and
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for 1 F m F d, let

21 j <y w y w s min K g y g x g s b ; j - mŽ .Ž .ˆ Ž .m m Y j j j2

j <y min K g y g x g s b ; j F m ,Ž .Ž .Y j j j
9Ž .

1 2 j <y w s min K g y g x g s 0 ; j - mŽ .ˆ Ž .m Y j j2

j <y min K g y g x g s 0 ; j F m .Ž .Ž .Y j j

This parameterization makes proving the following lemmas easy.

Ž .LEMMA 5.1. The function b w is analytic in w at w.ˆ

Ž . Ž .PROOF. For each m the function g , . . . , g of b , . . . , b solvingmq 1 k 1 m

K j g , . . . , g , b , . . . , b s x j,Ž .Y 1 m mq1 k

for j ) m, exists and is differentiable by the implicit function theorem of
j Ž . Ž .complex variables. Here K b s ­ K b r­b . This choice of g achieves theY Y j

Ž . Ž .minimum in 9 , and so the left-hand side of 9 is an analytic function of b
w Ž .x Ž .for all m Bochner and Martin 1948 . The right-hand side of 9 has zero

ˆconstant and first-order terms when viewed as a function of b at b and so itm
ˆ 2 ˆŽ . Ž .can be factored as b y b times a function q b of b analytic at b andm m m
ˆwhich does not vanish at b. Then w satisfiesm

1 ˆw y w s b y b q b .' ' Ž .Ž .ˆ Ž .m m m m m2

ˆŽ .The quantity q b is easily shown to be positive, and the branch of them
square root function assigning a positive result may be used. Since the
equation for w does not contain b , . . . , b , the determinant of the matrixm 1 my1
of derivatives of the right-hand sides with respect to b is the product of the

ˆdiagonals; one can easily show that these derivatives, evaluated at b, are
nonzero. Hence the requirements of the inverse function theorem for complex
variables are satisfied, and the lemma follows. I

ˆmLEMMA 5.2. Let b be the derivative of b with respect to w , evaluatedi i m
at w. Let k be the generic entry in the inverse of second derivatives of Kˆ ˆi j Y

ˆ ˆm ˆnevaluated at b. Then b d b s k .ˆi m n j i j

Ž .PROOF. Differentiating 5 twice with respect to w, evaluating at w andˆ
i ˆ i m n ˆm i jˆnŽ .noticing that K b s x , gives d s b k b . Hence the result followsˆY i j

ˆm ˆn jkupon examination of the product b d b k . Iˆi m n j

LEMMA 5.3. We have

b ­b ­b1 y1
lim s 0, w .Ž .y1w ­ w ­ ww ª01 1 y1



APPROXIMATIONS TO CONDITIONAL DF’S 359

PROOF. For each m, w is a function of b , . . . , b , demonstrating thatm 1 m
< <­br­ w is triangular, and hence the Jacobian is the product of the deriva-

< < < < < <tives; specifically, ­br­ w s ­b r­ w ­b r­ w . The lemma follows byy1 y1 1 1
noting that

b ­b1 1
lim s 0, w . IŽ .y1w ­ ww ª01 1 1

6. The expansion of the inversion integral. Expressing the inte-
grand of D as the sum of an analytic term and a term that can be integrated
exactly, and integrating these terms separately, allows the use of the theo-

Ž .rems of the previous section. Let w denote the vector w , . . . , w . They1 2 d
quantity D may be expressed as1

N dww qi`ˆ 11y1 22p i exp y w y Nw wŽ . ˆH 1 1 1ž /2 ww yi`ˆ 11

dy1 dN Nw qi` w qi`ˆ ˆ2 d 2= ??? exp y w y 2w ŵÝH H ž /j j jdy1 ž /2w yi` w yi`2p i ˆ ˆŽ . 2 d js2

­by1
= 0, w dw .Ž .y1 y1­ wy1

Ž .By reversing the logic used to derive 5 , the second factor is exactly the
Ž 2 d . Ž .unconditional density of x , . . . , x ; the first is 1 y F w .ˆ1

THEOREM 6.1. The second-order saddlepoint approximation to the condi-
tional cumulative distribution function of the mean of N independent and
identically distributed continuous random vectors with a density, accurate to
Ž y5r2 .O N , is

˜ 1 2 d<1 y F x x , . . . , xŽ .
' 's 1 y F N w q f N wˆ ˆŽ . Ž .1 1

=
1 1

y3 'N ŵ� ' 1N ŵŽ .1

1 1 1 1
2 2q 1 q r y r y r y rˆ ˜ ˆ ˜Ž . Ž .4 4 13 13' N 8 8N z �ˆ

10Ž .

i jk 111 1 k k k kˆ ˆ ˆ ˆ1k i j2 2y r y r y y ,ˆ ˜Ž .23 23 2ˆ12 2 b 0 0ˆ1 bŽ .1
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where

Y Yˆ ˆ ˆz s b s and s s det K b rdet K 0, b .'ˆ ˆ ˆ Ž . Ž .1 Y Y y1y1

The invariants are given by r 2 s k g i j = k hk lk k k , r 2 s k g i jk hk lk k kˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ13 g h i j k l 23 g h il jl

and r s k i jk lk k ; r , r 2 and r 2 are the corresponding quan-ˆ ˆ ˆ ˆ ˜ ˜ ˜4 i j k l 4 13 23

tities calculated from k , k i jk and k i jk l. If these random vector summands lie˜ ˜ ˜i j
in the lattice of Section 2, the second-order saddlepoint approximation to the
conditional cumulative distribution function of a random vector on a lattice,

Ž y5r2 .accurate to O N , is

˜ <1 y F x x , . . . , xŽ .1 2 d

' 's 1 y F N w q f N wˆ ˆŽ . Ž .1 1

=
1 1

y3 'ž N ŵ' 1N ŵŽ .1

1 1 1 1
2 2q 1 q r y r y r y rˆ ˜ ˆ ˜Ž . Ž .4 4 13 13' ž n 8 8N ẑ

11Ž .

1 1 1
2 2 i jk ˆy r y r y D k k k coth b Dˆ ˜ ˆ ˆ ˆŽ .23 23 1 1k i j 1 1ž /12 4 2

21 1 1
2ˆy coth b D y D k .ˆ1 1 1 11ž /ž / /4 2 8 /

1 ˆŽ .Here z s 2 sinh b D s , and x is corrected for continuity before calcu-ˆ ˆ1 1 12
ˆlating b.

Ž .PROOF. Skovgaard 1987 suggests performing the inner integrals to ob-
tain the standard higher-order saddlepoint approximation to the density of
the conditioning variables and then applying Temme’s theorem to the re-
maining univariate integral. The present approach of using the extended
version of Temme’s theorem is analytically more straightforward. Theorem
4.1 is applied once to D , and the resulting series is factored. The first will be2
the series expansion for the density of X ; the second will then be what isy1

Ž .added to 1 y F w to produce the desired expansion for the conditionalˆ1
cumulative distribution function.

Ž .d r2 Ž Ž . jk . ` ysUsing Theorem 4.1, D s Nr2p exp y Nr2 w d w Ý A N ,ˆ ˆ2 j k ss0 s
where

ys 2vy2 ­Ž .
A s u w ,Ž .ˆÝs 2vv! ­ wŽ .S s
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Ž . < <Ž . < <Ž . Ž .where u w s ­br­ w w rb y ­b r­ w 0, w rw . Let h w be the1 y1 y1 y1 1
function of w whose power series about w is constructed from that ofˆ
< <Ž .­b r­ w 0, w , with all terms involving components of w y w to oddˆy1 y1 y1
powers omitted. Let

< < < <u w ­br­ w w ­b r­ w 0, wŽ . Ž . Ž .y1 y1 y1
g w s s y .Ž . 1h w h w wh w bŽ . Ž .Ž . 1

Then

ys 2vy2 ­Ž .
u wŽ .ˆ2vv! ­ w

ys u 2vyu1 2 2v ! ­ ­Ž .
s h w g w .Ž . Ž .ˆ ˆÝ u 2vyuv! u! 2v y u ! ­ w ­ wŽ .0Fu F2 vj j

Recalling that h has only even-order terms,

ys
2v ! y2Ž . Ž .

A s Ý Ýs v! 2u ! 2v y 2u !Ž . Ž .Ž . 0Fu FvS s j j
12Ž .

2u 2vy2u­ ­
= h w g w .Ž . Ž .ˆ ˆ2u 2vy2u­ w ­ w

� 4 my1 ys my1 ysIf C are coefficients such that Ý A N s Ý B N =s ss0 s ss0 s
my 1 ys Ž ym .Ý C N q O N , where B are coefficients in the asymptotic expan-ss0 s s

sion of the density for the conditioning variables,

dyÝ v 2 v q ??? q2 vjs 2 j 2 dy2 ­Ž .
B s h wŽ .ˆÝs 2 v 2 v2 dv ! ??? v ! ­ w ??? ­ w2 d 2 dv , . . . , v G02 k

kÝ v ssjs2 j

my 1 ys Ž ym .such that f s Ý B N q O N , thenX , . . . , X ss0 s2 d

my1
y1r2 ys' '1 y F N w q f N w N C Nˆ ˆŽ . Ž . Ý1 1 s

ss0

is the required expansion for the conditional tail probability. Skovgaard
Ž .1987 provides such a decomposition for m s 1; that is, he factors the lead

< < Ž . Ž .term A s ­ b r­ w 0, w = g w into the lead term B sˆ ˆ0 y1 y1 y1 0
< <Ž .­b r­ w 0, w in the asymptotic expansion for the density of theˆy1 y1 y1
conditioning density times a factor C s 1rz y 1rw , which consequentlyˆ ˆ0 1
contributes to the lead term in the asymptotic expansion for the conditional
tail probability desired.

When m s 2, we are concerned with A and A . When s s 0 or s s 1,0 1
Ž . Ž . Ž . Ž .2v ! in 12 is equal either to 2u ! or 2v y 2u !, or to both. The other



J. E. KOLASSA362

Ž .quantity is 1. Also, u!, v! and v y u ! are all 1. Hence, when s s 0 or s s 1,
ys 2u 2vy2uy2 ­ ­Ž .

A s h 0, w g w ,Ž . Ž .ˆÝ Ýs y12u 2vy2uu ! v y u ! ­ w ­ wŽ . Ž .Ž . 0Fu FvS s j j

indicating that

y1 2d y2 ­ 1Ž .
m nC s g w s y d g w ,Ž . Ž .ˆ ˆÝ1 m n21! 2­ wjjs1

where superscripts on g indicate derivatives with respect to components of
w.

Ž .Implicitly differentiating 5 to obtain derivatives of b with respect to w,
wand using standard matrix determinant differentiation formulae Hocking

Ž . x1985 , Appendix A.II.1.2 and Lemma 5.2,

1 1 1
2 2 2 2C s y r y r y r q r q r y rˆ ˜ ˆ ˜ ˆ ˜Ž .ž /1 13 13 4 4 23 23z 8 12žˆ

1 k k i jkk k 1ˆ ˆ ˆ ˆ1 j ik 11q q y ,2 3ˆ2 /b wˆ Ž .ˆ1 b 1Ž .1

Ž .completing the proof for the continuous case. See Kolassa 1994 for some
Ž .details. The lattice case follows by noting that the counterpart to 1 is

dN y 1 iprD iprD1 d T<D x x , . . . , x s ??? exp N K b y b xŽ .Ž . Ž .H H1 2 d Xd
yiprD yiprD2p iŽ . 1 d

D db1
= ž /2 sinh D b r2Ž .1 1

Ž .and by expanding the factor involving sinh D b r2 . I1 1

7. A logistic regression example. Consider the logistic regression
model for binary outcomes X :i j

exp z u 1Ž .i
13 P X s 1 s ; P X s 0 s ,Ž . Ž . Ž .i j i j1 q exp z u 1 q exp z uŽ . Ž .i i

� 4 � 4for i g 1, . . . , m and j g 1, . . . , n . The quantities z are row vectors ofi i
covariates, with d components. Let Y s Ý X . Let Y and n be the vectors ofi j i j
the number of successes Y and the number of binary trials n , each with mi i
components. The sufficient statistics T associated with b are T s Y TZ, where
Z is the m = d matrix whose rows are the covariate vectors z associatedi
with the various groups. Assume that Z is of full rank. Let y and t be

� 4observed values of Y and T, respectively. For any j g 1, . . . , d , a p-value for
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TABLE 1
Logistic regression results

Continuity-corrected one-sided p-values

Normal approximation 0.0260
Double-saddlepoint approximation 0.0315
Higher-order double-saddlepoint approximation 0.0321
Exact 0.0352

a two-sided test that b takes on a prespecified value can be calculated byj
doubling the smaller of

j j < j j <14 P T G t T s t ; b and P T F t T s t ; b ,Ž . Ž . Ž .yj yj j yj yj j

where T and t represent the random vector T with component j removedyj yj
and its observed value, respectively. Both the true conditional probability and
the Skovgaard approximation are independent of b . The approximationyj

Ž .depends on b through w . Davison 1988 approximates the probabilities inˆj j
Ž . Ž .14 using first-order terms in 11 . The cumulant generating function for the

Ž . Ž . Ž .sufficient statistic vector T is given by K u s w u q b y w u , whereT
ˆŽ . Ž Ž ..w u s Ý n log 1 q exp uz . Derivatives of K evaluated at b are equali i i T

ˆ ˆ ˆto the corresponding derivative of w at u s u q b. In particular, u satisfies
ˆ ˜Ž .w9 u s t. Similarly, derivatives of K evaluated at b are equal to theT

˜ ˜ ˆ Žr . ˜Ž .corresponding derivative of w at u s u q b. In particular, u satisfies w u
r ˜ Ž .s t for r / j and u s u . Mehta, Patel and Senchaudhuri 1993 present anj j

alternative Monte Carlo approach to these calculations.
Ž .These methods are applied to a data set of Gordon and Foss 1966 . Using

Ž .this data set, Cox and Snell 1989 model the probability of a baby crying as a
Ž .function of day and treatment status, using 13 , and perform a test of the

hypothesis that treatment has a nonzero effect, calculating the probabilities
Ž .in 14 exactly. Table 1 contains various approximations to these results,

including the higher-order double-saddlepoint approximation.

REFERENCES

Ž .BEDRICK, E. J. and HILL, J. R. 1992 . An empirical assessment of saddlepoint approximations for
testing a logistic regression parameter. Biometrics 48 529]544.

Ž .BOCHNER, S. and MARTIN, W. T. 1948 . Several Complex Variables. Princeton Univ. Press.
Ž .COX, D. R. and SNELL, E. J. 1989 . Analysis of Binary Data. Chapman and Hall, London.

Ž .DAVISON, A. C. 1988 . Approximate conditional inference in generalized linear models. J. Roy.
Statist. Soc. Ser. B 50 445]461.

Ž .GORDON, T. and FOSS, B. M. 1966 . The role of stimulation in the delay of onset of crying in the
new-born infant. Journal of Experimental Psychology 16 79]81.

Ž .HOCKING, R. R. 1985 . The Analysis of Linear Models. BrooksrCole, Monterey, CA.
Ž .JENSEN, J. L. 1991 . Uniform saddlepoint approximations and log-concave densities. J. Roy.

Statist. Soc. Ser. B 53 157]172.



J. E. KOLASSA364

Ž .KOLASSA, J. E. 1994 . Series Approximation Methods in Statistics. Springer, New York.
Ž .KOLASSA, J. E. and MCCULLAGH, P. 1990 . Edgeworth series for lattice distributions. Ann.

Statist. 18 981]985.
Ž .KOLASSA, J. E. and TANNER, M. A. 1994 . Approximate conditional inference in exponential

families via the Gibbs sampler. J. Amer. Statist. Assoc. 89 697]702.
Ž .MCCULLAGH, P. 1987 . Tensor Methods in Statistics. Chapman and Hall, London.

Ž .MEHTA, C. R., PATEL, N. R. and SENCHAUDHURI, P. 1993 . Smart Monte Carlo methods for
conditional logistic regression. Unpublished manuscript.

Ž .SKOVGAARD, I. M. 1987 . Saddlepoint expansions for conditional distributions. J. Appl. Probab.
24 875]887.

Ž .TEMME, N. M. 1982 . The uniform asymptotic expansion of a class of integrals related to
cumulative distribution functions. SIAM J. Math. Anal. 13 239]252.

DEPARTMENT OF STATISTICS

NORTHWESTERN UNIVERSITY

2006 SHERIDAN ROAD

EVANSTON, ILLINOIS 60208


