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SHRINKAGE ESTIMATION IN THE TWO-WAY
MULTIVARIATE NORMAL MODEL'

By L1 Sun

Simon Fraser University

A two-way multivariate normal model is proposed and attention is
focused on estimation of the mean values when the common variance of
the observations is unknown. A class of empirical Bayes estimators is
proposed and mean-squared errors are given. A lower bound on the
mean-squared error is found and related to risk asymptotics. A James—
Stein-type estimator is derived and compared with its competitor—a
modal estimator that is obtained from a hierarchical prior for the un-
known parameters.

1. Introduction. Consider the following two-way model:

(1.1) Yijp = 0;j + &ijns
where &, ~;;q4 N(0,7%) with unknown > for k=1,...,n, i=1,...,r,
J=1,...,s. Our interest lies in estimation of the treatment means 0,;,
1=1,...,r,j=1,...,s.

Following Lindley (1972), suppose the treatment means 6,; in each cell
(i, j) are composed of four factors, overall effect w, row effect «, column effect
B and interaction effect vy, that is,

0;=pn+a + B+ t=1,...,7,j=1,...,s.

At this stage, suppose the overall mean w is fixed, with «, 8 and y being
independent random effects distributed as follows:

& ~iid. N(O, U'AZ)a Bj ~iid. N(07 ‘TBz)a Yij ~iid. N(O’ O'AzB)-
Consequently, the distributions of 6,; are normal with common mean

(12) E[eij|M70-AZB’UA270-B2] =M
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and covariances

2 2 2
cov[oiljl’ 9i2j2| W, 045, 04, O'B]

2 2 2 . _- . _.
oup tog o, 14=19,]J1 =J2

(1'3) _ U'Aza Iy =1y, J1 #Jg,
oz, i1 # 19, J1 =Jas
0, Iy F 1y, J1 #Ja2-
Denote
(14) 0=(6y,.-.,015,..-,0,4,...,60.,), b= (u,1% 0,00, 05).

In this article, we will use the conventional dot notation such as Y, .=
T 1 Yins Y= R 5= ) TR X1y, and 6,=s7'X5_16,; and
so forth. A two-way array will always be represented by a vector ordered as is
0 in (1.4).

Applying Lindley and Smith’s (1972) approach to the above hierarchical
structure, we find that the posterior distribution (0ly, d) given ¢ is multi-
variate normal with mean

E[0|Ya¢] =0" = (0;‘1,..., giks""’ 0;11’0;1;)!,

where
2
* = E[6,)] — 1 (=T m T+ 5.
eij_ [ijy’(b] - 72+nUAZB yijv Y. y-j» y...
1 r y y
+ — L.
72 + noly + nsoy (3:.=3..)
(1.5) )
1 ; (7,-5.)
+ — LTy
2 + noly + nrog Yim Y
72
+ —y.)+y...
'r2+na'A2B+ns<rA2+nra'B2 (M Y ) Y

The variance matrix var[0ly, ¢] is found to be (721 + C~1)"1, where I is the
identity matrix and C is the covariance matrix determined by (1.3). The
derivation can be found, for example, in Sun (1992). A similar discussion is
given by Lindley (1972).

The posterior mean E[Oly, &d] does not provide a valid estimator for 0 in
the circumstances when the components of ¢ are unknown. However, the
empirical Bayes method developed by Efron and Morris (1973) can be used to
find a class of empirical Bayes estimators by utilizing the marginal distribu-
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tion of (y|¢). Sun [22] shows that this marginal distribution has the following
form:

p(yld) o (72) " 52 o) T (22t nady + msa)

(s=1)/2
7)o

~1/2
X (7% + nogy + nrog 7% + noly + nsal + nrog) Y

S2 T2, T?
Xexp| — = | — +
L Y [ nol 12+ noly + nsol
(1.6)
T;
T3 D )
7% + nosg + nrog
1 nrs(y..— w)’
X exp T 9|52 2 2 2 (>
7% + nosp + nso, + nrop
where
r S n 9
S? = Z Z Z (yijk _3_’1‘]‘-) s
i=1j=1Fk=1
r S 2
i=1j =1
(1.7) !
_ 2
-1
u 2
T =nr ), (¥,~-5..) -
-1
It is obvious that y..., S% T2, T? and TZ are sufficient and complete

statistics for this distributional family indexed by ¢.
When ¢ is unknown, a typical empirical Bayes estimator, 8, will have
[(i — 1)s + j]th component

§;= (1~ PAB)(Q_’ij-_ Yi.— ¥t 3_’) + (L= p) (¥ —5..)
+(1 = pp)(7,;-5...) +7...

for i=1,...,r, j=1,...,s, where p,5, py and pg are some functions of
(S2, T2y, TE T2), to be written generically as p, = p,(S?, T2, T2, T2). This
type of empirical Bayes estimator is obviously suggested by the form of
E[6,ly, d] in (1.5).

As a special case, when p,p = py = pgp = 0, §;; =,;; yields the maximum
likelihood estimate (MLE) of 6;;, i =1,...,r, j=1,...,s. Another special
case is when p,z = py, = pg = 1, corresponding to a common estimate—the
overall sample average y... for each component of 0. Other particular forms
of the estimators can be obtained by letting p 5 =0, ps = pg =1, pag = 1,

(1.8)
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ps =0, pp =1 and so on. In any case, an estimator determined by (1.8) is
referred to as a shrinkage estimator.

Estimation problems for multivariate normal means have long been of
interest in the literature. See, for example, Stein (1956, 1966, 1981), James
and Stein (1961), Box and Tiao (1968), Baranchik (1970), Strawderman
(1971), Efron and Morris (1973), Leonard (1976), Berger (1980, 1982), Casella
and Hwang (1982), Berger and Wolpert (1983), Morris (1983) and Green and
Strawderman (1991).

The two-way model with interactions is a classic model. Some interesting
discussions are given by Stein (1966), Giri (1970), Lindley (1972) and Smith
(1973). This paper shows how to implement the standard empirical Bayes
technique and proves minimaxity of the resultant empirical Bayes estima-
tors. Some useful properties of the risk function are established, and the
dominance results are generalized to other interesting estimators, such as a
positive part estimator and a hierarchical Bayes modal estimator.

In Section 2, some useful stochastic properties of the statistics in (1.7) are
given. We discuss the mean-squared error (MSE) and provide a class of
improved shrinkage estimators in Section 3. Asymptotic results are presented
in Section 4. The discussion is expanded in Section 5 to the Bayes modal
estimator which arises by assuming a hierarchical prior for the hyperparame-
ter .

2. Preliminary results. In this section, we will provide needed distribu-
tional properties of the statistics (S?, T'2;, T2, T2).

We write X =, Y if X has the same distribution as Y. To facilitate the
discussion, we introduce the notation

hy = Z b (yi]n_ Yi. =yt y..)(Gij - éi,— E,j + 5),

i=1j=1
(2.1) hy=s) (3.7 ~)(éi-_ 0 )>
i=1
hy=r Y (5,-75.)(6;-0)
j=1
and
r S _ _ _ 2
v2=Y Z(eu—el—oﬁe),
i=1j=1
(2.2) vi=s (éi.— 0 )2,
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LEMMA 1. Let (S%,T2,, T2, TZ) be given in (1.7). We have:

) ) (Z’AZB/n, h) =, (x? + 2%, v,x,), where x, ~ N(v,,7%/n) and 2z} ~
(r /.’?’)X(rél)(sfl)flvz , ) 5 , 5
() (T /n, hy) =; (x5 + 25, V5%x,), where x, ~ N(vy, 7%/n) and 2z

(T2/n)/\/r2—2,
Gii) (TZ/n, hy) =; (x2 + 22, v3x,), where x5 ~ N(vg, 72/n) and zZ ~
(TZ/n)Xs{Z‘

The distributions of (xq, x4, x5, 2, 29, 23) are independent.
ProoF. The proof is straightforward; see Stein (1966), for example. O

LEMMA 2. Suppose x ~ N(u, c2) and h(x) satisfies E[|h(x)]] < © and
E[|xh(x)]] < . We have

E[xh(x)] = pE[h(x)] + 02 IE[h(x)]/p.

Proor. Since E[|h(x)]] and E[|xh(x)[] are finite, dE[A(x)]/du = E[(x —
wh(x)/o?], which leads to the result. O

THEOREM 1. Suppose K, ~ Poisson(),) are independent for [ =1,2,3,
where A, = nv?/21? and the v, are given in (2.2). For any real function g of
(S%, T2, T2, TE) and h; in (2.1), we have, given 0 and 72,

E[g(S% Tk, T2, T3)|
= E[g(TZXZ%a 72)(1?1’ Tzsz’ T2X53)] >
E[g(S% Tk, T2, TF)h,]

= (27%/n)E[ K, g (7%, 7% T 7)) |
where the four chi-square random variables are independent when K, K,, K,
are fixed, and where L, = 2K, + (r — 1)(s — 1), L, = 2K, +r — 1l and Ly =
2K; +s— 1.

ProOOF. Recalling the definition of the noncentral chi-squared distribu-
tion, if @ ~ x2(A), then, for any real function f(-),
oo k

(2:3) E[f(a)] = E[f(xik+)] = X e B[ f(X3hss)]

k=0
where K ~ Poisson(A), provided that the summation is convergent.
It follows from (1.6) and (1.7) that S2, T2, T2, T5 are independent for
given 0,72 and it is well known that S? =, 7%y2. Note that Lemma 1 implies

2 _ 2 2.2 _ 2.2
Tip =q nx7 + TXG—1ys-1)-1 =a T Xir—1xs—1)( A1)
2 _ 2 2.2 _ 2.2
(2.4) Ti =5 nxy + 7% 9 =5 TX5-1)(A2),

9 _ 2 2. 92 _ _2.9
Ty =4 nx3 + 7X_9 =4 TX5-1(A3),
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where x; ~ N(v,,72/n) and A, = nv?/27%, | = 1,2,3. The independence of
S2 T2, TZ, TZ implies the independence of the four chi-square variables. It
follows from (2.3) that

E[g(S? T}, T2, T3)]
= E[g(TZX]%, T2XL21, T2XL22, TZXL23)] .

To prove the second part of the theorem, we take / = 1 as an example.
Note that (S2,T2,T2) and (TZ3, h,) are independent. Defining E[-| S?,
T2, T3], we have

(2.5) E[g(S% Tk, T2, T2 ) |S?, T2, T3] = E[ f(T2s)hy],
where f(T'23) =g(S2, T2, T2, TZ) when (S?, T2, T2) are fixed. From Lemma 1,
(2.6) E[f(TfB)hl] = UIE[xlf(nxf + 722%)],

where x, ~ N(vy,7%/n) and 2} ~ x%_1y,_1)_1, independently. It follows from
Lemma 2 that

vlF:'[xlf(nxf + TQZf)]
(27) 7'2 J o 9

= vIE[ f(nx} + 7223)] + vy~ ﬁﬁ[f(nxf + 1222)].
1

Now the last term above becomes

%E[f(rzxi)]
- : &ikz ,f;E”[f(ﬂxi)]
S e LY
_ ; B[2k, f(vx2)] - o3[ f(2)].

From (2.5)-(2.7),
2
T2 .
E[g(S% T2, T2, Tip)h)|S?, T, TZ| = —E[2K, f(r%2)]-
n
Taking expectation with respect to S?, T2, T2 on the both sides leads to

E[g(SZ’TfB’TAZ’TfB)hZ]

= (272/n)E[K1g(TZX]%, TQXIi’ TZXEZ’ TZXIZ)] ’
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which is the result of the second part of the theorem when [ = 1. For [ = 2, 3,
the proofs can be similarly shown. O

3. MSE and improved shrinkage estimators. For an estimator &, the
mean-squared error (MSE) is defined as a function of 0 as

(3.1) MSE(35,0) = E[[5 - 0|*] = E

Z Z (Sij - aij)2la

i=1j=1

where the expectation is taken over the distribution of (y|0, 72).
For estimators which have the form of (1.8), we denote

(32) p*(K) = p*(Tz)(I\ZI’TZXEI’TZX52572X53)

for * covering AB, A and B.

THEOREM 2. Assuming K, K,, K; and Ly, Ly, Ly given in Theorem 1, the
mean-squared error of ® can be written as

MSE(5,0)
= —B[(pas(K))' X2, = 2005(K)

(3.3) *(xf, — 2

+—E[(pu(K))'x2, ~ 2oa(K) (12, - 2K0)]

e B[00, - 2ma(B) (2, 2] 4

n

Moreover, if r > 3, s > 3, then all MSE functions are bounded from below by
(3.4) B, = (t*/n)(rs —6 = U),

where

U=E

((r—1)(s-1) —2)° w

2K, +(r—1)(s—-1) -2
(3.5) , ,
2K, +r—3 2K, +s—3
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ProoF. Since 6,; = (6;; — 0,.— aj +0)+(0,—6)+ (éj -0)+40.,

Y (8- 6,)

1j=1

=E, +E,+E, +E,,

r

1

MSE(3, 0) =E[

To evaluate E,, we have
E, = E[( ij - 2PAB)TAzB/n]

+ 2E

U
N
—_—

s

~
I
!
I
Sy
~
_|_
S|
-

PaB Z Z (yij»_ Yi.— 5’-1'-‘*‘
i-1j=1
+(r =1 (s = 1)7%/n,
since E[T2;/n] =v? + (r — 1X(s — D72 /n from (2.4). Now using the results
of Theorem 1 leads to
m 2 2 2
E, = XE[( pAB(I—{)) XL, — 2PAB(I—{)(XL1 - 2K1)]
1 1 i
+(r - - 1)—.
(r-D(s -1
Similarly,
'TZ 92 9 9 72
E, = —E[(pa(K))'x2, — 2pa(K) (X2, — 2K)] + (r = 1)—
and

E; = %E[(pg(ff))zxi — 2p5(K)( X2, — 2K3)] + (s - 1)%-

Summing up E,, E,, E; and E, = 7%/n, we obtain the MSE as shown in
(3.3).
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By completing the quadratic forms of p,z(K), p,(K) and pg(K) from (3.3),
respectively, we have

72 2K, ?
MSE(8,0) = —(E )(L21 pAB(‘K) -1+ 2
, 2K, \”
(3.6) TE| x| pa(K) =1+ —
XL,
2K, \”
+E XI?3 pB(‘K)_lJ'_ 2 +Brs’
XL,
where

rsr2 72 B (XL21 - 2K1)2

2
n n XL,

o (.~ 2K0)

Xi,
2
2
E (XL3 B 2K3)
2
XL,
By noting that, for any constants £ > 0 and a > 2,

2k)’ - s 4k2 , (a —2)°
=2k+a—4kh+ ——— =2+ ———
. ok + a — 2 2k +a -2’

(X22k+a -

2
X2k+a

E

we have

’7'2
B,,=—(rs —6—1U),
o= (s )

where U is given in (3.5). This completes the proof. O

Let us consider a subset of the estimators of (1.8) such that

c,S? cy 82 c3S?

(3-7) Pap = TAQB , PA = o
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where ¢y, ¢y, ¢5 are constants. Denote such estimators by &°. Employing (3.3),
the MSE of 8° is given by

7_2

MSE(5°,0) = —E
n

L,

¢N(N +2) — 2¢;N[(r — 1)(s — 1) — 2] l

3.8 +—E
(38) n L,—-2

2 [cgN(N +2) — 2¢,N(r — 3) l

1_2

+rs—,
n

n

72 | e2N(N + 2) — 2¢,N(s — 3
+—E[3 ( ) csN(s )
L,—-2

where N = (n — Drs and K, K,, K5 and L,, L,, L, given in Theorem 1. For
any choices

(r—=1)(s—1) -2 r—3
0<ec, <2 , 0<ecy, <2 ,
39 N+ 2 N+ 2
< <
“s N+2)

the MSE(8¢,0) is smaller than rst2/n, which is the MSE of the maximum
likelihood estimates (y;;, i =1,...,7r, j=1,...,s), for any 6 and 2> 0.
Corresponding to such choices, therefore, 6° is minimax since the MLE is
minimax under the squared loss.

Note also that the MSE in (3.8) is minimized at

310 (r—1)(s—-1) -2 r—3 s—3
310 a="""F s “TNiz TNz

This yields the so-called James—Stein estimator for the two-way multivariate
normal means:

(r—1)(s—1)—2 S8
3 =11- Vii— YV — Yoty
e ST LEEELAER
r—3 S?2
(3.11) (1—N+zﬁ)(yi..—y...)
s—3 S?\, B
+ 1_N+2T_Bz (y.j.—y...)+y..4
and
T2 N
1 MSE(8%® = — -
(3.12) SE(8°>,0) n(rs N+2U)’

where U is given in (3.5) and N = (n — Drs.
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A class of dominating estimators of the form (1.8) is given in the next
theorem. Define

(3.13) PaB = CABSQ/TA2B’ Pa = CASQTAQ’ Pp = CBSQTBZ,
where C,, = C,.(S%, T2, T2 TZ) for = = AB, A, B.

THEOREM 3. For an estimator 8 determined by (1.8) and (3.13), if C,
(x+ = AB, A, B) satisfy the following:
(a) C,p is nonincreasing in S? and nondecreasing in T}?, and

(r—l)(s—l)—2)
N+ 2

2

OsCABgZ(

(b) C, is nonincreasing in S? and nondecreasing in T} and

0<c, <o 3
=ta= (N+2)’

(¢) Cjy is nonincreasing in S* and nondecreasing in Ty and

< <
= Up = N 2,

then MSE(S,0) < rst2/n, provided that r > 3, s > 3.

An example of the dominating estimators is the positive version of the
James—Stein estimator:

8+=(1_(r—1)(s—1)—2 S?2

N+ 2 T2 ),
r—3 8?2 _
(3.14) +{1 - NT2T? +(yl-..—y,‘.)
s—3 §? L _
+ 1_N+2T_32 +(y.j,—y...)+y...,

where (a), = max{0, a}. It can also be shown that MSE(3, 0) < MSE(57%, 0);
that is, the James—Stein estimator is dominated by its positive version. See
also Baranchik [1].

4. The MSE as r,s — ». It is obvious that MSE(8, 0) of Theorem 2 goes
to 0 when n —  while (r, s) and 0, 72 are fixed, provided that p,5, p, and
pp are bounded in terms of n. Of more interest are the asymptotic MSE
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values when r, s — « and n is fixed. To investigate such asymptotic proper-
ties of the MSE, we assume

2 r S
Uy ! 6,-0,+0)
Qup= lim — = lim — ) 2(0‘1_9‘_0'j+0)’
r,s=® IS r,s=o® IS g i
2
U2 1 " n 232
QA r,;lllw rs r’illlw r i:Zl( i )
02 1 s _\2
Q= lim — = lim — ¥ (4,-4.]
roso® TS r,so 8§ Ty

exist and are finite. We first compute the asymptotic value of the lower bound
B.., when r,s — o,

rs?

THEOREM 4. When n is fixed, the lower bound B

B,, QupT?/n
(4.1) lim - Lﬁ
r,s—w IS Qg + 7%/

. satisfies

Proor. Using the fact

B 1
<
20 +a 2K + a

[see, e.g., Green and Strawderman (1991)], we know U of (3.5) is such that

1

4.2 <
(4.2) T 22 4+ a—2

if K ~ Poisson(A), a > 0

lim (rs) 'U= (nQup/7>+1) .

Therefore the lower bound B, of (3.4) satisfies
. Brs Tz 1 QABTQ/n
lim = — - ) = 2 )
r,s—w IS n nQup/7*+1 Qup + 7%/

when @, 5, @4, @5 exist and are finite. This shows the result. O

It follows from (3.12) that MSE(87%,0)/rs has the same limit as in (4.1).
Since MSE(8",0) < MSE(575, 0), the positive James—Stein estimator " also
possesses the limit.

Note that MSE(8°,0) = rst2/n, where §° is the MLE of 0, so that, from
Theorems 2 and 4, the lower bound of the limiting MSE ratio
MSE(S, 0) /MSE(8°, 0) is given by @,5/(Q.5 + 72/n). In the following, we
will give the conditions under which this limiting ratio achieves the minimum
value.

We say the estimator & has the minimum limiting MSE ratio if

(4.3) lim (rs) 'MSE(8,0) = (Qup7%/n)/(Quap + 7°/1).
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THEOREM 5. An estimator & determined by (1.8) and (3.13) has the
minimum limiting MSE ratio if

4.4 Cino>(n-1)"" C,-0, C,—>0
AB A B

in probability as r, s — .

ProOF. For §° that is determined by (3.7) and (1.8) with ¢; = (n — 1)7!
and ¢, = ¢5 = 0, its MSE obviously satisfies (4.3), by using the result of (3.8).
The proof then follows from the fact that C,5 = ¢y, C4, = ¢y, Cz — ¢4 in
probability and (rs) [MSE(S,0) — MSE(5¢,0)] — 0. O

COROLLARY 1. An estimator & determined by (1.8) has the minimum
limiting MSE ratio if

7_2

4.5 _—
(4.5) pAB_)nQAB'l'Tz’

pa — 0, pg — 0
in probability as r, s — «, provided that @, # 0, Qg # 0.

Proor. The result follows from Theorem 4 and the facts that

S2 (n—1)r? S (n—1)7? S (n—1)72
— , _—a _——
TP  nQup+ 7° T nQ 4 T3 nQp

in probability as r, s — «, recalling that p,p = C,5S2/T2s, pa = C,S?/T}

5. Modal estimator. Common hierarchical Bayesian analysis of the
two-way model chooses, as the prior distribution for the hyperparameter
d) = (/J" 72, UAZBy O-AQ, 0-32),

(51) p(d)) =p(/~'L’T2’ O-A2B’ UA2> O-Bz) =p( M)p(Tz)p(UAQBy O-A27 UBZ);
where

p(p) al,

e VoA
(5.2) p(r2) o (72) P e - 1,
T

p(O'AQB, 0'A2, a'BZ) o l.
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A similar prior structure for one-way hierarchical models was proposed by
Leonard and Ord (1976). The posterior p(dly) is proportional to p(y|d)p(b),
of course, where p(y|d) is given by (1.6). Moreover, the posterior of the
variance components (72, 0%, 0,2, 02) has the form

p(Tza 0'A2B» 0'A2’ 0'32|Y)

(N 2)/2 —(r=1(s—-1)/2
a (72) Frota/ (72 + nogy) ro s/
-(r=1/2 —(s=1/2
X (7% + naofs + nsa) / (12 + nok +nrag) /
(5'3) % exp| — 1 SZ + VO)\O TAZB
2 2 2
2 T 7%+ noyp
i T3
T3 2 7 T 3 2 2
T + nosp + nsoy T + no,g + nrog

[after integrating out u from p(bly)], where N = (n — Drs.

The modal estimator 85}’1 has the form of (1.5) with the replacements of u
by 4 =3%. and (7%, 0%, of, 0f) by the mode of the posterior
p(r?, 0, af, o5 ly):

o STEwmd o L T,
5 'AB 3
N+ vy+2 n{(r—1)(s—-1) .
1/ T2
54 2= — - %2 —né&k| ,
(54) Oy ns(r—l T nO'AB+
1( T2
(’7\-32= —%Z—H&AZB
nris—1 +

THEOREM 6. The modal estimator 8™ is minimax when A, = 0 and

Voz—[(n_l)rs+2]min{(r—1)(3_1)_4 I 3—5}'

(r—-1(s-1)-2"r-8"s-3

If n > 1, r = 5 and s = 5, then the estimator is minimax when v, > 0.
PrOOF. The proof is straightforward application of Theorem 3. O
Asymptotic results about 87 can also be obtained. Noting that N =

(n — Drsand T23/S% - (nQ, 5 + 72)/[(n — 1)72] in probability as r, s — o,
we have

Cip~(n-1)"
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in probability. It is also noticed that, as r, s — o,

(r— 1)(S2 + VO/\O)

CM
A7 (N + v, +2)8?

- 0 sothat C}¥ - 0.

Similarly, C¥ — 0. From Theorem 4, the modal estimator 8" has the
minimum limiting MSE ratio.
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