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A COUNTEREXAMPLE TO A CONJECTURE CONCERNING
THE HALL-WELLNER BAND

By KaNI CHEN AND ZHILIANG YING!

Hong Kong University of Science and Technology
and Rutgers University

Hall and Wellner proposed a natural extension of the Kolmo-
gorov—Smirnov simultaneous confidence band for survival curve using the
Kaplan—Meier estimator. They and Gill conjectured that the confidence
band holds for all ¢ up to the last observed failure time. A counterexample
is given herein, showing that this may not always be true.

1. Introduction. Let X;,..., X, be independent and identically dis-
tributed (i.i.d.) positive random variables with a continuous distribution F. A
theorem of Donsker [Billingsley (1968), Theorem 16.4] states that Vn (F* — F)
converges in 2[0,%] to B, F, where F*(t) =n 1Yr, Lx .4 is the usual
empirical distribution, 9[0 «] is the space, equipped with the Skorohod
topology, of functions which are left-continuous with right limits and B, is
the Brownian bridge process, and where o denotes functional composition. It,
among other things, yields a very important result for the Kolmo-
gorov—Smirnov statistic; that is, sup,vVn (F*(¢) — F(¢))| converges to
sup; _, < 11By(w)l, the distribution of which is well known and has been
tabulated.

In survival analysis, the X, are often subject to independent right-censor-
ing so that the observed data are X = min{X,,U;} and §; = I(X <up L=
1,..., n, where the U, are i.i.d. positive censoring variables that are indepen-
dent of the X, and have possibly discontinuous, distribution G. In this case,
the analogue of F* is the Kaplan—Meier estimator defined by

[1 AN }

(1.1) A =1-TI - 575

s<t

where AN (¢) = N (t) — N,(¢ — ) and

(1.2) N,(t) = Z 0Lz, Yu(t) = XLlxg.y
i=1 i=1

Let H(¢) = 1 — H(¢) and H(¢) = F(¢)G(¢). Here and in the sequel, F(¢) =
1 - F()and G(¢) = 1 — G(¢). Let 7y = supf¢: H(#) < 1}. Breslow and Crow-
ley (1974) showed that, for any 7 < 75, Vn(F, — F) converges weakly in
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2[0, 7] to a Gaussian process B,,, which in general is not a time-rescaled
Brownian bridge process. Based on Doob’s transformation which relates the
Brownian bridge to the Brownian motion, Hall and Wellner (1980) argued
that a natural analogue of the classical Kolmogorov—Smirnov statistic for the
censored data should be sup, _ x:|W,(#)], where X* = max; _ {5, X;} is the last
observed failure time and

1-K, (1) 4
(1.3) Wo(t) =V g oy L) ~ F)
with
5 An A ot ndN,(s)
(1.4) Ki=1re ad G _onn(s)(Yn(s) —

Following Gill (1983), define the stopped process W (¢) = W, (min(X}, ¢)).
Clearly, K, and C, are estimators of

C(?)
1+ C(¢)

dF(s)

Hs (s )F(s)

t
and C(t) =
0=
The reason that W, is asymptotically distribution-free is that, from the weak
convergence result of Breslow and Crowley,

(1.5) W, =510,-) Bo° K,

for any 7 < 75 [Hall and Wellner (1980)]. However, in order to justify the use
of sup, _ x+|W,(¢)], one needs to show that the weak convergence (1.5) can be
extended to the last observed failure time X*. This was proved to be true by
Gill (1983) under the condition

o dF(2)
(16) '/(‘) T(t—) < @,

This condition appears to be more than necessary since Gill (1983) and Ying
(1989) showed that

-F

without (1.6). In view of (1.7), it is natural to speculate that the weak
convergence may hold for W, up to the last point without imposing (1.6); see
Hall and Wellner [(1980), page 137] and Gill (1983, 1994).

Recently, Kaplan—-Meier analysts have made significant progress, includ-
ing the elegant results of Gill (1983), Wang (1987) and Stute and Wang
(1993), on th endpoint behavior of the product-limit estimator for censored
data. Yet the convergence of W remains open [Gill (1994)]. This open
“problem is rather important since so far there is no theorem justifying
‘common practice,” which is to compute a confidence band on a large interval
whose endpoint ¢ is such that Y,(o) is rather small” [Gill (1994), page 162].

(1.7) n 1 (ﬁn - F) 510,751 Bo° K
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In this note, we present a counterexample to show that W* does not in
general converge weakly on the whole interval.

2. A counterexample. Our construction of the counterexample is con-
ceptually rather simple: we find an integer subsequence n, 1* and an
increasing sequence a, 1 7y such that, for some ¢ > 0 and any L > 0,

(2.1) ligig?fP“Wn";(Z*l(ak + 1) = Wia, )= L) = e,

violating a necessary condition for the tightness of W* [Billingsley (1968),
Theorem 15.3]. This shows that W,* is not tight and therefore does not
converge weakly in 2[0, 7] [Billingsley (1968), Theorem 15.3]. Furthermore,
by the triangle inequality, (2.1) implies that sup|W *| does not converge to
sup|B, ° K| and thus the validity of the Hall-Wellner band cannot be ex-
tended to the last failure time.

Without loss of generality, we may assume that F is uniform on [0, 1]. For
definiteness, define

n,=(k+ D", r=(k+1"

(2.2) Tiar ! r
ap=T=——1, Pr=

00 -1
Zj:].rj n,

- -1
r;

E - 5

i=1 "

where 7 is any number in (0, 1]. It follows that a;, T 7 and X p; = 1. Define the
censoring distribution by P(U; = a,) = p,, £k = 1,2,.... Clearly, 75 = 7. In
addition, it can be verified easily that, as & — oo,

(2.3) n,°rn,_; — 0 foranye >0,
Dy
(2.4) SN
Zj=kpj
1
2.5 AN
> 1
j=rTYj

Now let A, be the event that, among the n, observations, the largest
uncensored failure time falls into the interval (2~ *(a, + a,_,), a,) and all
other uncensored failure times are in [0, a,_ ;). By symmetry,

P(A,) =n,P(A,, X, is the largest uncensored failure time)
= nkP(Z_l(ak +a,,)<X;<aq,, X; < Ul)
X[1—-P(a, , <X, < Up)]"""

oo n,—1

ij 1- Z (a;—a;_1) Zpi
I=k i=1

j=k

ap —Qp-1
2

:nk
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n,Try; Paml
= (1+O(1)) 2200 71pk
(2.6) j=17j

-1
=TI D
o -1

1-(1+o0(1))
l

=k ~i=1Ti

[by (2.4)]

- (@rom)gi- (oS ar|
1=k

-@romgli-aremy| byes)

= (1+ o(1)) exp(—),

where &= 7/(;_,r; 'Y r;/n).

Next we show that [W,*(27'(a;, + a,_;)) — W,*(a;,_,)| tends to » on A,,
thus proving (2.1). Since on A, the largest uncensored observation is no
smaller than (a, + a,_;)/2 and there is no uncensored observation in
(a,_q,(a, + a,_1)/2), it follows that, again on A,,

a, +a,_ 1-K,(a,_
‘an*( k k 1) VVn*(ak—l) _n}e/Q Ak( k 1)
' ! 1 ln(ak—l)
k

ol )

[1-R, (a,)]|n¥?27 (a, —ayy)

ny/ ?r

2rk[1 + C‘Ank(ak_l)]Z;Llrj‘1

"

>

recalling that C, (¢) = [(ndN,(w)/[Y,(uXY,(u) —1]. On A,, t <a, , and
AN, () #0 imply that Y, (t)>2, or Y,(t)—1=>Y,(t)/2, so C,(t) <

2[¢n;, dN, (u)/Y,*(w). Thus, to show ny/?/[r,(1 + énk(ak,l))] —poon A,,it
suffices to show that

ry a1 Ny, AN, (1) a,_1 AN, (t)
(2.8) — 1+ j;) I tk —p 0, or rkni/zfo —szt -5 0
k ny ny

Since N, (¢) has compensator [;Y, (s)(1 — s)™" ds, we have

fak,l dN, (t) B /-ak,l I(Ynk(t)zl) dt
0 Ynzk(t) 0 Ynk(t) 1—1¢

A O

i=1 1-¢
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ap_y 1k 2 n\ =; . dt
< H(t - )YH" (t =) ——
j;) i=21i+ 1( i ( ) ( )l—t
2 Aoy o n, +1)\ =,
— Hz+1 t —
n;, + 1/0 El i+ 1 =)
) dt
ank+1*(l+1)(t_) _
H(t—-)(1-1)
- 2 fak,1 _ dt
np+ 1%  H(t—-)(1-1t)
2
< —
(np + D)G(a,, =) (1 —a;_,)
2
<
(ny + 1)pp_1(a, —a,_)
2ryn,_y

E(ny + Vry_y
Therefore,
2
z rkn}e/zfak—l dNan(t) < 2rin;, 4 ,
0 Y. (2) &nary_,

which converges to 0 by (2.3). Hence (2.8) holds. From (2.7) and (2.8) we
conclude (2.1), proving that W.* cannot be tight.

3. Remarks. By taking a monotone transformation, the failure-time dis-
tribution F' in the counterexample can be any continuous distribution func-
tion. The censoring distribution G should be changed accordingly.

A similar counterexample may be produced with a continuous censoring
distribution. This can be done by spreading mass p, at a, evenly to interval
la, — &o/ny, a, + &o/n,], with &, being sufficiently small. It is easy to see
that (2.1) still holds.

If we regard the left-hand side of (1.7) as a normalized Kaplan—Meier
process, then W, may be viewed as a Studentized Kaplan—Meier process.
Thus our counterexample reveals that the Studentized Kaplan—Meier process
does not in general converge on the whole interval, even though the normal-
ized process does.
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