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Previously, Huggins and Staudte examined robust estimators for a
variance components formulation of the bifurcating autoregressive model
for cell lineage data. They gave asymptotic properties of the estimators if a
large number of trees were observed. However, for single trees the deriva-
tion of these asymptotic properties is more complex. Here the asymptotic
distributions of robust estimators of parameters associated with the sta-
tionary bifurcating autoregressive process as a single tree becomes large
are obtained. These results follow from the formulation of the estimating
functions as the product of a nonrandom matrix and the sum of vectors of
functions of an infinite sequence of exchangeable random variables.

1. Introduction. The collection of trees of cell lineage data is a labori-
ous process, involving time lapse photography and the inspection of a series
of films of the descendants of an initial cell, from which characteristics of the
individual cells and their relationship to one another can be determined. Data
on cell lifetimes of E.coli was initially collected by E. O. Powell in the 1950s
and 1960s [Powell (1955, 1956, 1958); Powell and Errington (1963)]. One of the
aims of Powell’s studies was to determine a biological basis for the high corre-
lations between the lifetimes of sister cells. The biological background of the
statistical analysis of cell lineages has been discussed in Huggins and Staudte
(1994), who also gave references to cell lineage data collected from a range of
cell lines. Scientific interest is largely in determining if there are nonzero cor-
relations between mother and daughter cells or between the daughter cells.
These correlations are an explicit part of the bifurcating autoregressive model
of Cowan and Staudte (1986) which we examine here.

A typical tree of cell lifetimes, tree 41 of Staudte, Guiget and Collyn d’Hooge
(1984) and Figure 1 of Huggins and Staudte (1994), is given in Figure 1. There
is one extreme outlier, several other possible outliers and the initial observa-
tion and one further observation are missing. Missing initial observations are
typical of trees of cell lifetimes as the birth time of the initial cell, which has
been randomly selected from some population of cells, is rarely observed. How-
ever, the division of this cell is observed so that the relationships between its
descendants are known. Typically other missing cells wander from the field
of view so that even if they or their descendants reappear, their relationship
with the cells whose lineage is observed is not known.
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Fig. 1. A tree of EMT6 cells [tree 41 of Staudte, Guiget and Collyn d’Hooge (1984)].

The presence of outliers indicates that it is desirable to have an outlier-
resistant estimation procedure as an alternative to maximum likelihood, if
only to verify that the maximum likelihood estimates have not been unduly
influenced by a few aberrant observations, or perhaps to conduct an initial
screening of the data. The absence of some observations requires flexible sta-
tistical procedures which may be applied to any observed structure of a tree of
cell lineage data. Huggins and Staudte (1994) considered robust inference for
variants of the bifurcating autoregressive model of Cowan and Staudte (1986)
based on observations on a large number of independent trees. However, in
practice it is possible that a scientist may only be able to collect data on one
large tree rather than many smaller trees. Here we show it is theoretically
feasible to conduct robust inference for the stationary bifurcating autoregres-
sive process using data from a single large tree, leaving the determination of
any optimality properties of the estimators to a later date. The development
of similar inference procedures for variants of this model, such as models with
nonstationary means or variances or models which incorporate measurement
error, remains an open problem. A further open problem concerns the estima-
tion of the correlation between mothers and daughters and between daughters
using data from a single tree if the means vary from generation to generation.
This requires a separate parameter for the mean of individuals in each gener-
ation, and there will be too few observations on the early generations for the
asymptotic approach presented here to be valid. Another unsolved problem is
to determine how to incorporate the information from the left-censored initial
observation and the cells which wander from the field of view, and are thus
right censored, into the robust methodology.

Cowan and Staudte (1986) introduced the bifurcating autoregressive model
for cell lineage trees. In their model, cells in a tree are labelled 1;2; : : : with
cell n giving rise at division to daughter cells 2n and 2n+ 1. Let xn denote a
characteristic, such as the lifetime, of the nth cell. In the bifurcating autore-
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gression process,

x2n = θxn +w2n;

x2n+1 = θxn +w2n+1;
(1.1)

where �θ� < 1 and the pairs �w2n;w2n+1� have a bivariate normal distribution
with common mean and variance and correlation coefficient ϕ: The observa-
tions are generated by x1 and the independent sequence of independent pairs
�w2n;w2n+1�, although as noted above for some characteristics such as cell
lifetime, x1 may not be observed. Of course for other characteristics such as
cell diameter at division the initial individual will be readily observable. A
balanced tree is a tree in which there are no missing observations, with the
possible exception of the initial observation. In an unbalanced tree observa-
tions on at least one cell, apart from the initial cell, and its descendants are
not observed. In the stationary bifurcating autoregressive process the joint
distribution of �xn; x2n; x2n+1� is the same for all n and the unconditional cor-
relation coefficient for sister cells is ρ = Corr�x2n; x2n+1� = θ2 + �1− θ2�ϕ:

We derive asymptotic properties of robust estimators for the parameters
associated with a stationary bifurcating autoregressive process. However, our
representation result, Theorem 2.2, is more general than this as it allows the
means to be linear functions of some vector β of parameters, and it allows
sisters to have different means. We also relax the assumption that the errors
have a bivariate normal distribution and replace this with an assumption of
elliptic symmetry.

Note that the bifurcating autoregressive process satisfies a “Markov” prop-
erty in the sense that the joint distribution of x2n and x2n+1 depends on
xn; : : : ; x1 only through xn. The “Markov” nature of the bifurcating autore-
gressive process allows the use of simpler convergence results than those used
by Miller (1977), which were based on results of Weiss (1973, 1975), to study
maximum likelihood estimators in mixed linear models. The “Markov” prop-
erty does not hold for the measurement error model of Huggins and Staudte
(1994), so that the simplifications of our Corollary 2.2 are not available for
that model, suggesting an extension of our results to this latter case may be
quite difficult.

The maximum likelihood analysis of this model, under the assumption of
multivariate normality, has been discussed by Cowan and Staudte (1986).
Robust methods, based on a time series approach have been given by Hug-
gins and Marschner (1991), but their methods required the use of estimated
residuals to estimate the sister–sister correlation ρ. Here we consider robust
inference based on a variance components model, developed by Huggins and
Staudte (1994), which allows more flexible and tractable models for the mean
and covariance structure and simultaneously estimates all the parameters in
the model. Huggins (1993a, b) and Huggins and Staudte (1994) previously
considered robust inference for pedigrees, repeated measures and cell lineage
data using independent sampling units. In that setting the asymptotic prop-
erties of the estimators as the number of sampling units becomes large are
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straightforward and differ from the more complex situation involving only one
tree considered here. A further difference between the results of Huggins and
Staudte (1994) and the results presented here is that they regarded the struc-
tures of the trees, that is, which individuals were or were not observed, as
being random quantities, whereas we condition on the observed structure of
the cell lineage tree.

It is supposed that the vector of observations X = �x1; : : : ; xn�t on some
characteristic of cells in a tree has mean vector µ̃ and covariance matrix �,
where � is determined by the structure of the tree. The general model for
the mean is of the form µ̃ = Yβ for some vector of parameters β and design
matrix Y and this model is used in Theorem 2.2. However, our asymptotic
results are given for the special case where Y is a n × 1 vector of ones and
β consists of the single parameter µ. Huggins and Staudte (1994) defined the
covariance matrix � as follows: Let the matrixD give the generation distances
separating cells in the tree. It consists of elements dij =m+n, where m and n
are the respective numbers of generations from each of i and j to their nearest
common ancestor. By definition dii = 0 and dij = n if i is a direct ancestor of j
living n generations earlier. Also introduce the direct lineage indicator matrix
L having elements lij, which takes the value 1 if i and j are on the same
line, that is, either i is an ancestor of j or vice versa; let lij = 0 otherwise.
We define the diagonal elements to be lii = 1: Let J be a matrix of ones. Then
for the bifurcating autoregression process with stationary variance, if we set
var�xn� = σ2, then

� = σ2L× θD + σ2ρ�J−L� × θD−2J;

where θD is the matrix with elements θdij , and for matrices of the same di-
mensions, × denotes element by element matrix multiplication. Let η =
�βt; θ; σ2; ρ�t be the vector of parameters in the model.

To find robust estimates we suppose � is positive definite so that we may
write � = AAt and then let Z = �z1; : : : ; zn�t = A−1�X − µ̃�. Note that the
matrix A is not unique. In Section 2 a version of A, suitable for our purposes,
is determined. In order to obtain the asymptotic properties of our estimators,
we assume the distribution of X is elliptically symmetric in the sense that
the distribution of Z is spherically symmetric. Let 9 be a twice differentiable
function, let ψ = 9′ be an odd function and let K = E�ψ�z1�z1�. Huggins
and Staudte (1994) proposed estimating η by minimizing the sum, over N
independent trees, of

M =
n∑
j=1

9�zj� +
K

2
ln�����;

with respect to η, which is a robust version of the likelihood under the as-
sumption of multivariate normality. We retain the same form of the estimating
functions for all spherically symmetric distributions, and the effect of changing
distributional assumptions is only to change the quantity K .



ROBUST INFERENCE FOR CELL LINEAGE DATA 1149

We consider estimating η by minimising M over observations X =
�x1; : : : ; xn�t on a single tree. This minimization approach results in the
estimating functions for β,

Vβ;n = −YtA−tψ�Z�;(1.2)

and for α = θ, σ2 or ρ,

Vα;n = ψ�Z�t
dA−1

dα
AZ+ K

2
tr
(
�−1d�

dα

)
:(1.3a)

Note that (1.3a) is not a bounded function of the zj, and in order to bound the
effect of large zj, we also consider replacing (1.3a) by

V̄α;n = −ψ�Z�tA−1d�

dα
A−tψ�Z� + K̄ tr

(
�−1d�

dα

)
;(1.3b)

where K̄ = E�ψ2�z1��. We refer to estimators arising from minimizing M
as robust I estimators and those arising from zeroes of (1.2) and (1.3b) are
referred to as robust II estimators. Robust I estimators have computational
advantages in that only the model for the mean vector and the covariance
matrix need be specified, and the estimators may be found numerically using
a minimisation procedure. On the other hand, the estimating functions for the
robust II estimators need to be explicitly specified.

Let Vn�η� or V̄n�η� denote the respective vectors of estimating functions.
Here we are concerned with the asymptotic behavior of the two robust estima-
tors as the size of a single tree becomes large. Under the assumption of elliptic
symmetry it is shown that the residuals form an exchangeable sequence of
random variables so that de Finetti’s theorem may be used to determine the
asymptotic properties of the estimators. We do not require that the tree be
balanced, although for notational convenience, much of the theory is derived
in this setting.

Our approach is based on a matrix representation of the estimating func-
tions for the parameters of the balanced stationary bifurcating autoregres-
sive model in the form C

∑n0
j=1Pj +C∗P∗. Here n0 is the number of observed

mother-daughter triples, C and C∗ are nonrandom matrices, Pj is a vector of
functions of the residuals corresponding to the jth mother–daughters triple
and P∗ is a function of the residuals corresponding to the initial individual,
if this individual has been observed. If the initial individual has not been ob-
served, there will be an initial term arising from the joint distribution of the
first two sisters that were observed. This term does not affect the asymptotic
results and is not considered further. Thus asymptotic properties of the esti-
mating functions may be derived from a consideration of

∑n0
j=1Pj, which is

shown to be a vector-valued martingale.
The simple form of the matrix representation is due to the “Markov prop-

erty” of the bifurcating autoregressive process and the stationarity assump-
tion. If it is not assumed that the process is stationary, then the estimating
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functions take the more complex form
∑n0
j=1CjPj + C∗P∗ which is not con-

sidered here. Related representation results for general mixed linear models
may be easily extracted from Theorem 2.2 as in Huggins (1996). In the gen-
eral case this representation is of the form EnFn, where, given the structure
of the data, En is a deterministic matrix and Fn is a vector of functions of the
residuals. In the general representation the columns of En and the rows of Fn

increase with n. This complicates its use in deriving the asymptotic properties
of estimators in the general case. However, Huggins (1996) has applied this
general result to address identifiability in the bifurcating autoregressive model
with measurement error, and identifiability in models for repeated measures
experiments and pedigree data may be similarly examined.

The choice of 9 as twice differentiable or ψ as differentiable is no real
practical restriction and allows relatively simple proofs, comparable to those
required for maximum likelihood estimators. For example, we may take 9
corresponding to Tukey’s bisquare or, as an approximation to Huber’s ψ, use
ψ�x� = 28�x/c� − 1, where 8 is the normal cumulative distribution function
and c is a constant. The extension to other less smooth ψ functions appears
feasible, but would be far more difficult technically.

An important difference between the results presented here for a single
tree and those of Huggins and Staudte (1994) for a sequence of trees is that
in order to preserve the martingale property of the estimating equations, K
is now an unobservable random variable rather than a fixed constant. An
exception is the special case when the tree does in fact have a multivariate
normal distribution. In practice, K is usually taken to be the appropriate
quantity for the multivariate normal distribution so that the estimators are
consistent for this model.

Note that the robust estimating functions are based on conditional resid-
uals given the previous individuals in the tree and are thus sensitive to the
order within the sister–sister pairs. While the problems with order within the
sister–sister pairs could be overcome by choosing a symmetric decomposition of
�, rather than the lower triangular decomposition considered here, this would
result in a different, less convenient, interpretation of the residuals Z. More-
over, there is no simple characterisation corresponding to our Corollary 2.2,
which would complicate the asymptotic theory.

2. Properties of the estimating functions. We state two results, The-
orems 2.1 and 2.2, for mixed linear models in general. Corollaries 2.1–2.3 are
specific to the stationary bifurcating autoregressive process. Outlines of the
proofs are given in Section 4.

Theorem 2.1. Let the random vector Xn have mean vector µ̃n = Ynβ =
�µ1; : : : ; µn�t, for some design matrix Yn and vector β of parameters. Let �n
denote the covariance matrix of Xn. Let An be the lower triangular Cholesky
decomposition of �n and let Zn = �zn1; : : : ; znn�t = A−1

n �Xn − µ̃n�. Then there
exists a sequence of uncorrelated zero mean random variables z1; z2; : : : such
that A−1

n �Xn− µ̃n� = Zn = �z1; : : : ; zn�t. Further if the distribution of Xn is el-
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liptically symmetric, then the conditional distributions of zn+1 given zn; : : : ; z1
are symmetric about zero, and the sequence z1; z2; : : : is an exchangeable se-
quence of martingale differences.

Thus for our choice of An, the znj do not depend on n. In particular, Zn =
�zn1; : : : ; znn�t may be embedded in an infinite sequence Z = �z1; : : : ; zn�t of
exchangeable random variables. As a consequence of the proof of Theorem 2.1,
the zn corresponding to the stationary bifurcating autoregressive process may
be written in an accessible form.

Corollary 2.1. Let Xn = �x1; : : : ; xn�t be the first n observations on a
bifurcating autoregressive process. Let

01 =
(
σ2 σ2θ

σ2θ σ2

)
and 012 =

(
σ2θ

ρσ2

)
:

Denote the mean vector of the mother–daughters triple by �µn; µ2n; µ2n+1�t,
let x2 = �xn; x2n�t, let µ2 = �µn; µ2n�t and define δ2

e = σ2�1 − θ2� and δ2
o =

σ2 − 0t120
−1
1 012. Then the zn of Theorem 2.1 are of the form

z2n = δ−1
e �x2n − µ2n − θ�xn − µn��

and

z2n+1 = δ−1
o �x2n+1 − µ2n+1 − 0t120

−1
1 �x2 − µ2��:

In view of Theorem 2.1, we may apply de Finetti’s theorem and suppose
the existence of a σ-field G such that given G , z1; z2; : : : is a sequence of
independently and identically distributed random variables. For a random
variable R, let EG �R� = E�R�G �. Following the argument of Lemma 2.1.1 of
Taylor, Daffer and Patterson (1985), note that as the zi [and also the ψ�zi�
and ψ′�zi�zi] are uncorrelated, we have that 0 = E�z1z2� = E�EG �z1z2�� =
E�E2

G �z1�� so thatEG �z1� = 0 (and similarlyEG �ψ�z1�� = 0 andE�ψ′�z1�z1� =
0). Further note that, in general, E�ψ�zn�zn − K � = 0, but this does not
imply that EG �ψ�zn�zn −K � = 0 or that EG �ψ�zn�zn −K �zn−1; : : : ; z1� = 0.
Let KG = EG �ψ�z1�z1� and K̄G = EG �ψ2�z1��, so that using the conditional
independence of z1; z2; : : : ; given G , we have EG �ψ�zn�zn−KG �zn−1; : : : ; z1� =
EG �ψ�zn�zn−KG � = 0: Thus in the sequel we minimize MG ; n =

∑n
j=1 ρ�zj�+

KG /2 ln���n��; so that (1.1) is now written as Vβ;n = −Yt
nA
−t
n ψ�Zn�; (1.3a)

is Vα;n = ψ�Z�t�dA−1/dα�AZ + �KG /2� tr��−1�d�/dα�� and (1.3b) is now
V̄α;n = −ψ�Zn�A−1

n �d�n/dα�A−tn ψ�Zn� + K̄G tr��−1
n �d�n/dα��:

To show that the estimating equations are in fact martingales, let y1 de-
note the first row of Y, write Yn+1 = �Yt

n; y
t
n+1�t, Zn+1 = �Zt

n; zn+1�t, partition
�n+1 and define δn+1 and rn+1 as above. The martingale property is a conse-
quence of the following theorem and the above properties of �z1; z2; : : :�. Like
Theorem 2.1, Theorem 2.2 applies to mixed linear models in general.
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Theorem 2.2. Let Xn be as in Theorem 2.1 and let Vβ;n, Vα;n and V̄α;n

be defined by (1.2), (1.3a) and (1.3b) respectively. Then we may write

Vβ;1 = −δ−1
1 yt1ψ�z1�;

Vα;1 = −δ−1
1
dδ1

dα
�ψ�z1�z1 −KG �;

Vβ;n+1 = Vβ;n − �Yt
nr

t
n+1 + δ−1

n+1y
t
n+1�ψ�zn+1�;

(2.1)

and if α is one of the parameters in the model for �,

Vα;n+1 = Vα;n − �ψ�zn+1�zn+1 −KG �δ−1
n+1

dδn+1

dα

− ψ�zn+1�δ−1
n+1

datn+1�
−1
n

dα
AnZn;

(2.2)

V̄α;n+1 = V̄α;n + 2�ψ2�zn+1� − K̄G �δ−1
n+1

dδn+1

dα

+ 2ψ�zn+1�δ−1
n+1

datn+1�
−1
n

dα
Anψ�Zn�:

(2.3)

The general expressions of Theorem 2.2 admit some simplification for the
balanced stationary bifurcating autoregressive process.

Corollary 2.2. Using the notation of Corollary 2.1, for the balanced sta-
tionary bifurcating autoregressive process and n > 1, we obtain the following
simplifications of terms in Theorem 2.2:

−�Yt
2n−1r

t
2n + δ−1

e y
t
2n� = −δ−1

e �−ytnθ+ yt2n�;

−�Yt
2nr

t
2n+1 + δ−1

o y
t
2n+1� = −δ−1

o �−�ytn yt2n�0−1
1 012 + yt2n+1�;

dat2n�
−1
2n−1

dα
A2n−1Z2n−1 =

dθ

dα
�xn − µn�;

and

dat2n+1�
−1
2n

dα
A2nZ2n =

d0t12 0
−1
1

dα
�x2 − µ2�:

The latter two expressions depend on the past of the process only through xn
and x2n and xn, respectively.

Theorem 2.2 and Corollary 2.2 allow the matrix representation for the sta-
tionary bifurcating process exploited in Theorem 3.1.

Corollary 2.3. Let Xn denote a balanced stationary bifurcating autore-
gressive process. There exist nonrandom matrices C�η� and C∗�η� and random
vectors Pj�η� and P∗j�η� such that the resulting estimating functions Vn�η�
may be written in the form C�η�∑n0

j=1Pj�η� +C∗�η�P∗�η�.
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To prove Corollary 2.3, note that for each j the additions to the estimat-
ing functions due to observation j + 1 consist of a random and nonrandom
component. To construct the matrix representation, the random components
corresponding to observations x2j and x2j+1 are collected into the vector

Pj�η� =
(
ψ�z2j�; ψ�z2j+1�; ψ�z2j�z2j −KG ; ψ�z2j+1�z2j+1 −KG ;

ψ�z2j��xj − µ�; ψ�z2j+1��xj − µ�; ψ�z2j+1��x2j − µ�
)t
:

To incorporate the initial observation, let P∗�η� = �ψ�z1�; ψ�z1�z1 − KG �t.
In the stationary case, where yn = 1, the nonrandom components are
then written in matrix form as follows. Define Ke = −δ−1

e �1 − θ�, Ko =
−δ−1

o �1− �11�0−1
1 012� and for each of α = θ, σ2 or ρ let K1α = −δ−1

e �dδe/dα�,
K2α = −δ−1

o �dδo/dα�, K3α = −δ−1
e �dθ/dα� and let K4α = �K41α;K42α� =

−δ−1
o d0t120

−1
1 /dα: Define C�η� and C∗�η� by




Ke Ko 0 0 0 0 0

0 0 K1θ K2θ K3θ K41θ K42θ

0 0 K1σ2 K2σ2 0 0 0

0 0 0 K2ρ 0 K41ρ K42ρ


;

and



−δ−1
1 yt1 0

0 −δ−1
1 dδ1/dθ

0 −δ−1
1 dδ1/dσ

2

0 −δ−1
1 dδ1/dρ


;

respectively, where C∗�η� is needed to calculate the contribution from the
initial individual.

3. Asymptotic properties of the estimators for the stationary bifur-
cating autoregressive process. The consistency and asymptotic normality
of the estimators may be derived following Marschner (1991), who modified an
earlier result of Huggins and Marschner (1991). See Crowder (1976, 1986) and
Klimko and Nelson (1978) for related results. We say that a positive random
variable W is bounded away from zero if for all ε > 0 there exists a 1 > 0
such that P�W > 1� > 1 − ε. Let Vn�η� be a set of differentiable estimating
equations for η ∈Rp and let Gn�η� = n−1 dVn�θ�/dη. The limit in probability
of a sequence Wn of random variables is denoted by p-limn→∞Wn.

Theorem A [Marschner (1991)]. Suppose that n−1Vn�η0� →p 0,Gn�η0� →p

G�η0�, where G�η0� is a symmetric and positive definite, n−1/2Vn�η0� →d

N�0; 6�η0�� for some positive definite matrix 6�η0� and

p-lim
n→∞

sup
��η−η0��<δ

��Gn�η� −Gn�η0��� ≤H�δ�;
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where H�δ� > 0 a.s. and p-limδ→0H�δ� = 0. Then there exists a sequence
η̂n of solutions of Vn�η� = 0 such that η̂n →p η0 and n1/2�η̂n − η0� →d

N�0;G�η0�−16�η0�G�η0�−1�:

The first three conditions concern the behaviour of the vector estimating
functions and its matrix of derivatives under the “true” model. The first two
conditions and the fourth continuity condition are required to show the es-
timators are consistent using Brouwer’s fixed point theorem as in Aitchison
and Silvey (1958) and Crowder (1976, 1986). The central limit theorem for the
estimating functions is used to show the estimators are asymptotically nor-
mal via the mean value theorem. In practice, consistent estimators of G�η0�
and 6�η0� are required. The consistency of η̂n and the continuity conditions
in Theorem A imply that Gn�η̂n� →p G�η0�. In order to estimate 60, we re-
quire an estimator 6n�η0� satisfying 6n�η0� →p 6�η0�; continuity conditions
on 6n�η� equivalent to those on Gn�η� are also required.

3.1. The robust I estimators. We use the matrix representation of Vn0
�η�

of Corollary 2.3 and Theorem A to derive the asymptotic properties of
the estimators in the stationary case. The parameters of interest are
η = �µ; θ; σ2; ρ�t. Initially suppose that the tree is balanced and let n0 = �n/2�.
Define, 6∗n0

�η� = n−1
0
∑n0
j=1Pj�η�Pj�η�t and 6n0

�η� = C�η�6∗n0
�η�Ct�η� +

C∗�η�P∗P∗tC∗t�η�. Further, let 6�η0� = EG �ψ2�z1��C�η0�6∗�η0�Ct�η0� and
G�η0� = EG �ψ′�z1��C�η0�G∗�η0�Ct�η0�, where 6∗�η� and G∗�η� are defined
by




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 C1 0 0 0 0

0 0 0 C1 0 0 0

0 0 0 0 σ2 0 0

0 0 0 0 0 σ2 θσ2

0 0 0 0 0 θσ2 σ2




and 


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 C2 0 0 0 0

0 0 0 C2 0 0 0

0 0 0 0 σ2 0 0

0 0 0 0 0 σ2 θσ2

0 0 0 0 0 θσ2 σ2




;

respectively, andC1 andC2 are defined byC1=EG �ψ�z1�z1−KG �2/EG �ψ2�z1��
and C2 = �EG �ψ�z1�z1� +EG �ψ′�z1�z2

1��/EG �ψ′�z1�.
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Theorem 3.1. LetXn be the balanced stationary bifurcating autoregressive
process. Suppose that E�z2

1� < ∞, ψ is bounded, continuous and odd, ψ′ is
even and bounded, �ψ′�x� −ψ′�y�� ≤ b�x− y� for some constant b and E��xj −
µ�4� <∞. Then there exists a sequence η̂n0

of solutions of Vn0
�η� = 0 such that

n
1/2
0 �η̂n0

− η0� →d N�0;G�η0�−16�η0�G�η0�−1� and both Gn0
�η̂n0
� →p G�η0�

and 6n0
�η̂n0
� →p 6�η0�, where G�η0� is positive definite.

To prove Theorem 3.1, note that Corollary 2.3, the exchangeability of
the zi and the laws of large numbers of Huggins (1995) now allow a
straightforward, if tedious, checking of the conditions of Theorem A by
applying standard martingale theory to the martingale

∑n0
j=1Pj�η0�. To do

this, the convergence of various quantities is required and Huggins (1995)
has shown that for the stationary bifurcating autoregressive process with
�θ� < 1, constant mean µ and variance σ2 < ∞, n−1∑n

j=1 xj → µ a.s.,
n−1∑n

j=1 x
2
j →p σ

2 + µ2 and for any ε > 0, for large enough n, with large
probability, n−1∑n

j=1 �xj� ≤ �E�w− γ� + γ�/�1− θ� + ε, where γ = µ�1 − θ�
and w has the common distribution of the wn. For example, to show that
n−1

0
∑n0
j=1ψ�z2j�xj → 0 a.s., we note that

∑n0
j=1ψ�z2j�xj is a martingale with

conditional variance EG �ψ2�z1��
∑n0
j=1 x

2
j and so that the above convergence

results and the law of large numbers for martingales [Shiryayev (1984),
page 487] yield the desired result. The Lindeberg condition may be eas-
ily checked and an application of the corresponding central limit theorem
for martingales may be applied to show n

−1/2
0 Vn�ηo� →d N�0; 6�η0��. The

checking of the continuity conditions on Gn�η� is tedious but straightforward.
The more difficult part is to show that G�η0� is positive definite. However,

using the formulation of G�η0� in terms of C�η0� and G∗�η0� above, it is only
necessary to show that the rows of C�η� are linearly independent. This can
be easily done using a computer algebra package as in Huggins (1996).

The extension to the common case where the tree is unbalanced, in the
sense that only one of a pair of sisters may be observed or even neither of the
sisters are observed, is straightforward, the only real change being the use
of laws of large numbers for the unbalanced rather than the balanced case.
Let n denote the number of observed individuals, let n1 denote the number
of observed sister–sister pairs and let n2 denote the number of single sisters
observed. Then n = 2n1 + n2. Let n0 = n1 + n2. Consider the pairs where
both sisters were observed separately from those where only one sister was
observed. Let Pj�η�, j = 1; : : : ; n1, denote the vector Pj�η� as previously
defined for pairs where both sisters were observed and letP∗j�η�, j = 1; : : : ; n2,
be the corresponding vector for those pairs where only one sister was observed.
Let

D�η� =




Ke 0 0 0 0 0 0

0 0 K1θ 0 K3θ 0 0

0 0 K1σ2 0 0 0 0

0 0 0 0 0 0 0


;
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so that the estimating functions are now of the formVn0
�η�=C�η�∑n1

j=1Pj�η�+
D�η�∑n2

j=1P
∗
j�η�:

Theorem 3.2. LetXn be the unbalanced stationary bifurcating autoregres-
sive process. Suppose that the conditions of Theorem 3.1 hold, the distribution
of n1 and n2 are independent of the distribution of the full (unobserved) tree
�xj; j=1; : : : ; n� and ni/n0→ppi, i=1;2; for some constants pi, i=1;2; with
p1 > 0. Then there exists a sequence η̂n0

of solutions of Vn0
�η� = 0 such that

n
1/2
0 �η̂n0

−η0� →d N�0;G�η0�−16�η0�G�η0�−1� and both Gn0
�η̂n0
� →p G�η0�

and 6n0
�η̂n0
�→p6�η0�, where 6�η0� = p1C�η0�6∗�η0�Ct�η0�+p2D�η0�6∗�η0�·

Dt�η0� and G�η0� = p1C�η0�G∗�η0�Ct�η0� + p2D�η0�G∗�η0�Dt�η0�, with
G�η0� being positive definite.

3.2. The robust II estimators. Let X̃ = µ + Aψ�Z� and denote the jth
element of X̃ by x̃j. Let P̃tj�η� be defined by

(
ψ�z2j�; ψ�z2j+1�; �ψ2�z2j� −K1G �; �ψ2�z2j+1� −K1G �;

ψ�z2j��x̃j − µ�; ψ�z2j+1��x̃j − µ�; ψ�z2j+1��x̃2j − µ�
)
:

The robust II estimators are of the form C�η�∑n0
j=1 P̃j�η� +C∗�η�P̃∗�η�.

To state the result we need to modify some of our previous defini-
tions. Let 6̃∗�η� be 6∗�η� with C1 and C2 replaced by C∗1 = EG �ψ2�z1� −
K1;G �2/EG �ψ2�z1�� and C∗2=2�EG �ψ�z1�z1ψ

′�z1���/EG �ψ′�z1��, respectively,
and σ2 replaced by σ̃2 = EG �ψ2�z1��σ2. Let

C3 = �1− θ2�−1[�1/2�EG �z1ψ�z1���δ2
o + δ2

e�1+ �ρ− θ2�/�1− θ2���
]
;

C∗3 = EG �ψ′�z1��C3

and

C4 = 2EG �ψ′�z1�ψ�z1�z1�;

and define G̃∗�η0� to be G∗�η0� with C2 replaced by C4 and σ2 replaced by
C∗3. Further define 6̃�η0� = C�η�6̃∗�η0�Ct�η� and G̃�η0� = C�η�G̃∗�η0�Ct�η�,
let 6̃∗n0

�η� = n−1
0
∑n0
j=1 P̃j�η�P̃tj�η� and let 6̃n0

�η� = C�η�6̃∗n0
�η�Ct�η�.

Theorem 3.3. LetXn be the balanced stationary bifurcating autoregressive
process. Suppose that E�z2

1� <∞, ψ is bounded, continuous and odd and ψ′ is
even and bounded. Then there exists a sequence η̃n0

of solutions of V̄n0
�η� = 0

such that n
1/2
0 �η̃n−η0� →d N�0; G̃�η0�−16̃�η0�G̃�η0�−1� and both G̃n0

�η̃n� →p

G̃�η0� and 6̃n0
�η̃n� →p 6̃�η0�; where G̃�η0� is positive definite.
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The derivation of the asymptotic behaviour of the robust II estimators is
similar to that of the robust I estimators with some technical complications.
If we note that X̃ is still a bifurcating autoregressive process, the required
convergence results are easily checked. Checking the continuity condition is
extremely tedious in this case. The unbalanced case is similar to Theorem 3.2
and is omitted.

4. Proofs. In this section we outline the proofs of some of the main re-
sults.

Proof of Theorem 2.1. First, it is clear from its definition that Zn is a
vector of zero mean uncorrelated random variables for each n. Next, write

�n+1 =
(
�n an+1

atn+1 bn+1

)
;

An+1 =
(
An 0

ln+1 δn+1

)

and

A−1
n+1 =

(
A−1
n 0

rn+1 δ−1
n+1

)
;

where ln+1 = atn+1A
−t
n , δn+1 = �bn+1 − ln+1l

t
n+1�1/2 and rn+1 = −δ−1

n+1a
t
n+1�

−1
n ,

so that, using the results of Stewart [(1973), page 141], �n+1 = An+1A
t
n+1.

Hence, Zn+1 = A−1
n+1�Xn+1 − µ̃n+1� = �Zt

n; zn+1; n+1 � so that, in particular,
zn+1 = zn+1; n+1 is defined by the first n + 1 members of the tree and zn+1 =
δ−1
n+1��xn+1−µn+1�−atn+1�

−1
n �Xn−µ̃n��: The second part of the theorem follows

from noting that the joint distribution of z = �z1; : : : ; zn�t is spherically sym-
metric, that z1; : : : ; zn are exchangeable, for example, Kingman (1972), and
that by symmetry the conditional density of zn+1 given zn; : : : ; z1 depends on
zn+1 only through z2

n+1 [Kelker (1970)], and is thus symmetric about zero. 2

Proof of Corollary 2.1. The results of Kelker (1970) directly show
that the mean of xn+1 given x1; : : : ; xn, is µn+1 + atn+1�

−1
n �Xn − µ̃n�

and the “Markov” property of the bifurcating autoregressive process im-
plies that E�x2n�x2n−1; : : : ; x1� = E�x2n�xn� and E�x2n+1�x2n; : : : ; x1� =
E�x2n+1�x2n; xn�, which may be identified as µ2n + θ�xn − µn� and µ2n+1+
0t120

−1
1 �x2 − µ2�; respectively. To identify δ2

2n and δ2
2n+1 as δ2

e and δ2
o, re-

spectively, note that they correspond to the conditional variances in the
multivariate normal case. 2

Proof of Theorem 2.2. First, (1.2) and the decomposition of A−1
n+1

in terms of A−1
n of Theorem 2.1 yields (2.1). A similar decomposition of
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A−1
n+1 dAn+1/dα yields

ψ�Zn+1�tA−1
n+1

dAn+1

dα
Zn+1 = ψ�Zn�A−1

n

dAn

dα
Zn

+ ψ�zn+1�
[
rn+1

dAn

dα
+ δ−1

n+1
dln+1

dα

]
Zn

+ ψ�zn+1�δ−1
n+1

dδn+1

dα
zn+1:

and tr��−1
n+1 d�n+1/dα� = 2�tr�A−1

n dAn/dα�+δ−1
n+1 dδn+1/dα�. Elementary cal-

culations reveal that

rn+1
dAn

dα
+ δ−1

n+1
dln+1

dα
= δ−1

n+1
datn+1�

−1
n

dα
An;(4.1)

which is sufficient for (2.2). Next,

d�n+1/dα = An+1dA
t
n+1/dα+ �dAn+1/dα�At

n+1;

which yields

A−1
n+1

d�n+1

dα
A−tn+1 =




A−1
n

d�n
dα

A−tn
dAt

n

dα
rtn+1 +

dltn+1

dα
δ−1
n+1

rn+1
dAn

dα
+ δ−1

n+1
dln+1

dα
2δ−1

n+1
dδn+1

dα


(4.2)

and

tr
(
�−1
n+1

d�n+1

dα

)
= tr

(
�−1
n

d�n
dα

)
+ 2δ−1

n+1
dδn+1

dα
:(4.3)

Equations (4.1), (4.2) and (4.3) now yield (2.3). 2

Proof of Corollary 2.2. First, Vβ;n+1 = Vβ;n + ψ�zn+1��dzn+1/dβ�t,
dz2n/dβ = −δ−1

e �y2n − θyn� and dz2n+1/dβ = −δ−1
o �y2n+1 − 0t120

−1
1 �ytn; yt2n�t�,

which is sufficient for the first two identities. We establish the latter two iden-
tities by exploiting the fact that our estimating functions are derived from the
log-likelihood for the multivariate normal case. The “Markov” property of the
bifurcating autoregressive process implies that the likelihood may be written
as the product of conditional densities. Consider the contribution to the log-
likelihood of x2n+1, for example, with the contribution of x2n being simpler. The
contribution of x2n+1 is − ln�δo� − z2

2n+1/2; and the derivative of this quantity
with respect to the variance component α is −�δ−1

o dδo/dα+ z2n+1 dz2n+1/dα�.
Further, dz2n+1/dα = −z2n+1δ

−1
o dδo/dα − z2n+1δ

−1
o �d�0t120

−1
1 �/dα��x2 − µ2�;

and an examination of Theorem 2.2 now yields the corollary. 2

Proof of Theorem A. Marschner (1991) only gave an outline of the proof
of this result, so for completeness a fuller proof is given here. Let 1 > 0 denote
the smallest eigenvalue of G�η0�. Choose ε > 0 so that 1 − 3ε > 0 and then
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δ > 0 so that H�δ� < ε/2: Then choose n so that, with probability larger than
1− ε, ��n−1Vn�η0��� < εδ, ��Gn�η0� −G�η0��� < ε and

sup
��η−η0��<δ

��Gn�η� −Gn�η0��� < H�δ� +
ε

2
< ε:(4.4)

Thus, for ��η− η0�� = δ and any η∗ such that ��η∗ − η0�� < δ,

�η− η0�tGn�η∗��η− η0�
= �η− η0�tG�η0��η− η0� + �η− η0�t�Gn�η0� −G�η0���η− η0�
+ �η− η0�t�Gn�η∗� −Gn�η0���η− η0�

≥ δ21− δ2ε− δ2 sup
��η−η0��<δ

��Gn�η� −Gn�η0���:

Hence, using (4.4), �η − η0�tGn�η∗��η − η0� > δ2�1 − 2ε� > 0: Let hn�η� =
n−1Vn�η0� + Gn�η∗��η − η0�: Then �η − η0�hn�η� > δ2�1 − 3ε� > 0: Hence
we may apply Lemma 2 of Aitchison and Silvey (1958), as in Crowder (1976,
1986), to establish the existence of a sequence η̂n of zeros of hn. Now using the
mean value theorem we may choose η∗ so that hn�η� = n−1Vn�η� and η̂n is a
zero of n−1Vn�η�. Standard arguments now show that P��η̂n − η0� < δ� → 1
as required. Asymptotic normality is proven via the mean value theorem; that
is, for η∗ between η̂n and η0 we have Vn�η̂n� = Vn�η0� +Gn�η∗��η̂n −η0�: In
view of the above, we see that ��Gn�η∗� −Gn�η0��� →p 0; and the result now
follows from the convergence of Gn�η̂n� and the central limit theorem for the
estimating functions. 2
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