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A MINIMAXITY CRITERION IN NONPARAMETRIC
REGRESSION BASED ON LARGE-DEVIATIONS
PROBABILITIES

BY ALEXANDER KOROSTELEV

Wayne State University

A large-deviations criterion is proposed for optimality of nonparamet-
ric regression estimators. The criterion is one of minimaxity of the large-
deviations probabilities. We study the case where the underlying class of
regression functions is either Lipschitz or Hoélder, and when the loss
function involves estimation at a point or in supremum norm. Exact
minimax asymptotics are found in the Gaussian case.

1. Introduction. Consider observations
(1) Y, =f(i/n) + &,, i=...,—-1,0,1,....,n=1,2,...,

of a regression function f(¢), ¢t € R', in an additive random noise ¢;,. For
each n the random variables ¢;,’s are i.i.d. (0, o ?)-Gaussian. The problem is
to estimate the regression function f at a fixed point, say, at the origin. This
problem of estimating f(0) from observations (1) has been studied in various
aspects [see Ibragimov and Khas’'minskii (1981) and Stone (1982)].

Let f, be an arbitrary estimator of f(0); that is, f, is a measurable
function of Y;,, lil=0,1,.... In this paper we introduce a minimax risk
associated with the logarithm of P,(|f, — f(0)] > ¢), where P, = P{" is the
probability of the observations Y;, in (1) for a fixed “true” regression f; ¢ > 0
is a given constant independent of n. The superscript n is omitted in the
notation P; for the sake of brevity. The random event {| £, — f(0)l > ¢} relates
to the large deviations since for each ¢ > 0 and for any consistent estimator
f, its probability is vanishing as n — .

In Section 2 we assume that regression f belongs a priori to a class (L)
of the Lipschitz functions:

(L) = {f1|f(t1) —f(E) < Llty — tol, 4, 8y ERI}’

where L is given, L > 0. Introduce a minimax risk

1 X
(2) B.(c) = inf sup —log Pi(If, — f(0)I > ¢),
fo fesy M
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1076 A. KOROSTELEV

where the infimum is taken over all possible estimators fAn It turns out that
the asymptotics of B,(c) as n — « can be found explicitly, unlike the case of
the traditional risks, for example, the quadratic risk

(3) inf sup n2/3Ef(fAn—f(O))
fn FES(L)

2
)

where E, is the expectation with respect to P; [cf. Ibragimov and Khas'minskii
(1981), Chapter 7, and Stone (1982)].

The minimaxity criterion (2) has a strong resemblance to the Bahadur-type
risks in parametric problems [Bahadur (1960, 1971), Ibragimov and
Khas’minskii (1981), Section 1.9, and Fu (1982)]. We study the problem for a
fixed value of threshold ¢ which makes the considerations global. From this
point of view our results are closer in the parametric case to Sievers (1978).
In the nonparametric setup the asymptotic analysis of (2) is far from being
trivial even in the Gaussian case.

In Section 3 we give an extension to the case of the Hoélder regression
functions, applying the optimal recovery theory [Micchelli and Rivin (1977)
and Donoho (1994)]. Section 4 presents a generalization of the estimation
problem on the sup-norm. The asymptotic minimaxity in the sup-norm is
shown to be the same as that at a point. The results are discussed in brief in
Section 5.

2. Asymptotic minimaxity over Lipschitz classes.
THEOREM 1. Under the assumptions on the observations Y;, in (1), the

equality
3

(4) lim B,(c) =
holds.

~ 3Lo?

The proof of (4) is based on the following two lemmas. First, to show that
B,(c) does not exceed asymptotically —c?/(8Lo ?), we define a kernel estima-
tor

o i
(5) frent v
JjlsN

where N = [c¢n/L]. We call f asymptotically minimax in the sense of risk
(2) since it satisfies the following inequality.

LEMMA 1. The inequality

3

1
lim sup n 10ng(|f: — f(0)| > c) == 3Lo?2’

holds uniformly in f € 2(L).
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Proor. Define the bias term b,(f) = Ef( £¥) — f(0). Put K, = 1-
|jI/N)* and note that

ljlsN
Further,
' N K| jl
b,(f) <N! K, f(i) - f(0 sL(—) e
sup b,(f) ) A RCIEE s P

(7) fex(L) |jl<sN
—e(1+ o(1))]j1(1 “leDlel dt = %(1 +o(1)),

where 0o(1) - 0 as n — «, the vanishing term o(1) being independent of f.
It is easily seen from (6) that

>c¢— sup bn(f)).

fe3(L)

(8 Pf('frik = f(0)l >C‘) SP( N-* Z angjn

ljI<N

The random variable N_IZ‘ ji<n Kjn &, 1s zero-mean Gaussian and has
variance

2(Lo?
(9) Vn=02N2|.|z,NKj2n=§( . )nl(1+o(1)).

Applying (7) and (9) to (8), we obtain the inequality

. 1 log P (| £* 0| y 1{ (c—-c¢/3)° c3
— > < m - -
im sup — log (I = F(0)>¢) < m oV 3Lo?’

n— o n n

uniformly in € 3(L). O

To prove the reverse inequality, introduce a one-parameter family 3,,(L) of
the regression functions f = f(¢, ). Choose & > 0 small, take an arbitrary 6,
|6] < ¢ + &, and define

f.0) - |

Use the notation P, for P;., . Note that 6 coincides with the value f(0) if
f € 32,(L). Hence, for f known to belong to this parametric subfamily, the
problem of regression estimation reduces to the problem of estimation of 6.

0(1 = Lltl/(c + &), ifltl<(c+e)/L,
0, otherwise.

LEMMA 2. For an arbitrary estimator én of 0 obtained from the observa-
tions Y;, in (1) with f = f(¢, 6), we have, for each & > 0, the inequality

(c + &)
B 3Lo?

1 A
liminf sup — log Pg(lﬂn - 0> c) >

n=% gl<e+e
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Proor. The observations Y;, in (1) are equivalent to a single Gaussian

observation y, which has mean value 6 and variance

D?=(1+0(1))La?/((2/3)n(c + &)),

where o(1) - 0 as n — ». Indeed, in the model of observations Y;, = a;,0 +
&, with a;, =1 — (L/(c + &))li/nl, the Fisher information with respect to 6
is equal to X, a?,/o? Thus, the variance D? of the equivalent Gaussian
experiment equals the inverse value of the Fisher information, the term o(1)
being independent of 6. For an arbitrary estimator 6,(y,) define the random
events

A ={18.(y,) —(c+e)l>c} and A, ={6,(y,) + (c+e)l>c)

The triangular inequality guarantees that I(A;) + I(A,) = 1 for any ¢ — 0.
Further, the following inequalities are true:

sup  Py(10,(y,) — 01> c)

lol<c+e

IV

1
2 C+£(A)+ C+€(A )

= 1E —'I(A —°I(A
— — +
( 1) ZPO ( 2)

dP,
ya(c + &)

%

—exp| — 5D

1 (c + &)
2

\%
|
I
[}
o]

for n large enough. This proves the lemma since

1 (c+ a) (c + 8)3
mint sup - og B 01> )= im S —em S e

O

ProOF OF THEOREM 1. Lemma 1 implies that lim sup,_,.S8,(c) <
—c®/(8Lo?), while Lemma 2 guarantees inequality liminf,_ . 3,(c) >
—(c + )®/(BLo?) — &. This proves the theorem since & > 0 is arbitrarily
small. O
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3. Asymptotic minimaxity over Holder classes. In this section we
assume that f € 2(y, L, B), where

S(y, L, B) = {f:1f(¢,)l < B;1fY(¢,) = F17)(¢,)
< Llt, — £,/ t,,¢, € RY,

with given positive constants y, L and B. Here |y | denotes the greatest
integer strictly less than y. Note that the class of Lipschitz functions in the
previous section (L) = 3(1, L,»). For y integer, y > 1, we have |y|=y — 1,
and the class (v, L, B) is a set of bounded regression functions having
(y — Dth Lipschitz derivative.

The definition of B,(c) in this case also must be modified:

(10) B,(c) = inf  sup llog Pf(lfAn - f(0)] > c), 0 <c <B.
In fex(y,L,B) ™
Let a function ¢, (¢), t € R, be a solution of the extremal problem
¢ (0) — max,
under the restrictions
lgll3 <1 and ¢ € 3(y,1,%),
where [ly/l5 = /()" dt.

THEOREM 2. For any c, 0 < ¢ < B, the minimax risk (10) satisfies

2+1/y
lim ,(c) = —(202)1L—1M( 4,*(0))

ProOF. Introduce a kernel function K(¢) = . (¢)/[*%2 ¢, (¢)dt and a
bandwidth 2 = (c¢/(Ly,(0)'/”. The correctness of these definitions follows
from the optimal recovery theory which we apply after Donoho (1994).
Introduce the kernel estimator obtained from the observations Y;, in (1):

4 J
(1) fr- ) T K[y,

j: — o0

Similarly to Lemma 1, the following inequality holds uniformly in f &

3(y, L):

Py(Ify = F(0)I > c)

(12) _p

>c—  sup bn(f)),

fex(y, L)

‘(hn)‘l ZK(%)&W

J
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with the bias term
() = ) R[] =00
= (1+0(1))h! /mmK(%)(f(t) —~ £(0)) dt,

where o(1) — 0 uniformly in f € 3(y, L, B) as n — « since the functions in
this class are bounded and uniformly continuous over any finite interval. The
following renormalization relation is true as shown in Donoho (1994):

swp 1 [ (70 - o) a

fei(y,L,B)

SRR ) (ORI OE

fedily, L,»)

—Lh* sup [ K(6)(f(2) - £(0)) dt
fe3(y,1,0) " —*

(4 c

RO | _K(@O)(f(t) = f(0)) dt = T o

where

b= sw [ K()(f(2) - f(0)) dt.

fe3(y,) " ==

The random variable (hn)~'Y; K(j/(hn))§;, is zero-mean Gaussian with
variance V, = (1 + o(1))X(hn) ‘o ?|| K|35, where o(1) - 0 as n — «. Note that
here o(1) is independent of f € 3(y, L, B). As in Lemma 1, one gets from (12)
that

1
lim sup —log P
n

‘(hml;K(%)fm >c—  sup bn(f))

n—o» fe3(y,L,B)
. (¢ = (/¥ +(0))b, ;)
< lllrflesololp {— onV,
(e = (c/wx(0))b,,)"

20 %Kl

po-1 c 1/y , ) b, 2
~(207) (Lw*(O)) ‘ (”K”Z (1‘ w*m)))‘
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It is proven in the optimal recovery theory that ¢, (0) = b, ; + [|K|ls. This
relation implies that 1 — b, ,/ ¥, (0) = ||K|la/ 4 (0). Finally, we obtain

1 1 c Ve e )2
limsup —log P, (If* — f(0)| > ¢) < — (202 ( ) ( )
wsup s Bl =10 ) = =) A7) 9.0
This proves the upper bound for g,(c).

To prove the lower bound, we have to revise Lemma 2. By analogy with
this lemma, introduce a parametric subfamily of the regression functions

f(t,0) = 6AP,(¢t/T), 10l<c+e,

where ¢ > 0 is arbitrarily small; ¢ + ¢ < B. If we choose the constants
A=1/¢,0) and T = ((c + &) /(L (0)/?, then f(¢,0) € (v, L, B) for
any 0:|6| < ¢ + &. The rest of the proof is the same as that in Lemma 2 with
the final constant

(13) liminf L1og P(16— 6] > ¢) (c+ &)’
iminf sup —log —0|>c¢c) = — —¢
R glcere 202 Ag, (t/T)ll3

From the definition of ,(¢) one has

I Aw (t/T)II5 = AT = (1/4,.(0))"((c + ) /(L. (0))) 7.
Thus the right-hand side of (13) is estimated from below by the constant
—(20%) 'LV ((c + &) /P, (0)* V7 -

The theorem is proved. O

ExXAMPLE. In the case 0 < y < 1 the explicit solution for i, (¢) is known
[see Donoho (1994)]: 4, (0) = ((2y + 1)(y + 1) /(4y?%))*/@¥* D This expression
turns the equality in Theorem 2 into

lim B,(c) = —(202) LY/ (4y)%/((2y + 1)(y + 1)).
In particular, for y = 1 we arrive immediately at the result of Theorem 1.

4. Asymptotic minimaxity for sup-norm loss. Assume that we want
to estimate a regression function f € X(y, L, B) from observations (1) in the
sup-norm; that is, the measure of discrepancy of f, — f is defined as

If, = fll. = sup |£.(t) — F(2)l.
O<t<1

In this case the minimax risk (2) must be substituted by
1 A
(14) BY(c) = inf  sup  —log Pf(llfn = flle > c), 0 <c<B.
fu festy,L,B) T

Note that the estimator fAn is obtained from all the observations Y, in (1) but
not from the observations in the interval 0 < ¢ < 1. This helps to avoid the
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edge effects, which is important since these effects influence dramatically the
final result.

THEOREM 3. For any ¢, 0 < ¢ < B, the minimax risk (14) satisfies

>

li () 9 2 —1L_1/y( )2+1/7
lim B7(c) = ~(20%) RO

where ,.(0) is the same as in Theorem 2.

PrOOF. The lower bound for B{”(c) follows from the lower bound at a
fixed point since ||f, — f,ll- = |£,(¢,) — f(¢,)] for any #,, 0 < ¢, < 1. To prove
the upper bound, define the kernel estimator f*(¢) at the points ¢, = k/n,
k=0,...,n, by

(15) fr=om £ k(5

j: —

similarly to that in (11). Extend f;(¢) to all the values of the continuous
argument ¢ € R! as a piecewise constant function:

£E(t) = £ (k/n) if(k—1)/n<t<k/n.
k k L
n n

n
li 11 P.(lIf li 11 P.(f L
lim —log Pr(llf, ~ fll- > ¢) < lim —log(nP;(1£,(0) = f(0)| > ¢ = L/n))

Note that

Pr(Ilfy = flle >¢) < i Pf(
k=0

Hence

1 A
= lim —log Py(1£,(0) = £(0)| > ¢).
Thus Theorem 2 applies and this proves the theorem. O

5. Discussion. If f is a constant observed in an additive (0, o ?)-
Gaussian noise, that is, if the observations are from the model Y; = f + &,
i=1,...,n, &'s are iid. (0, 0%?)-Gaussian, then the Bahadur efficiency is
determined by the constant —c? /(20 %) [Bahadur (1971) and Ibragimov and
Khas’minskii (1981), Section 1.9]. Comparing this with the right-hand side of
(4), we might consider 2¢n /(3L) as an “equivalent number of observations”
under the assumptions of Theorem 1. Under the assumptions of Theorem 2
this “equivalent number of observations” is n(c/L)”(i,(0)) 27 1/7. Note
that this quantity loses its dependence on ¢ and L as y — .

Consider the sequences of estimators (5), (11) and (15) achieving their
asymptotic minimax values in Sections 2, 3 and 4, respectively. Each of these
sequences is inconsistent. Indeed, they are the kernel estimators with the
finite bandwidths which are proportional to c/”. Moreover, the traditional
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kernel estimators which are optimal with regard to, say, the minimax
quadratic risk (3), turn out to be nonefficient in the sense of our minimax
risks. If we study the estimating problem in the L,-norm, then it can be
shown that the large deviations of ||f, — fllo are governed by the constant
—c?/(20?) as in the parametric case regardless of the value of y.

In the non-Gaussian case when §;’s in (1) have a “sufficiently good
distribution” with the Fisher information I, for y = 1 the following equality
is true:

lim lim ¢ 38,(¢) = —1,/(3L),

c—>0 nox

as shown recently in Korostelev and Leonov (1995).
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