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ORTHOGONALIZATION OF MULTIVARIATE LOCATION
ESTIMATORS: THE ORTHOMEDIAN

¨BY RUDOLF GRUBEL

Universitat Hannover¨
The coordinatewise median of a multivariate data set is a highly

robust location estimator, but it depends on the choice of coordinates. A
popular alternative which avoids this drawback is the spatial median,
defined as the value that minimizes the sum of distances to the individual
data points. In this paper we introduce and discuss another orthogonal
equivariant version of the multivariate median, obtained by averaging the
coordinatewise median over all orthogonal transformations. We investi-
gate the asymptotic behavior of this estimator and compare it to the
spatial median.

1. Introduction. In this paper we introduce and discuss a new multi-
variate location estimator which generalizes the familiar one-dimensional

Ž .median; see Small 1990 for a recent review, interesting historical material
and a wealth of references on this problem.

We will think of the median and its multivariate variants as quantities
associated with distributions on R or R d, d ) 1. By the median of a data set
x , . . . , x we mean the median associated with the distribution that assigns1 n
mass 1rn to each of the values x , . . . , x . To fix the notation we define the1 n
median associated with a one-dimensional distribution P with distribution
function F by

1 1 1Med P [ sup x g R: F x - q inf x g R: F x ) .Ž . Ž . Ž .� 4 � 4Ž .2 2 2

Multivariate versions of this concept differ with respect to their equivariance
properties. For a given class DD of transformations of R d we call T DD-equiv-
ariant if, for all distributions P,

T P D s D T P for all D g DD.Ž . Ž .Ž .

Here P D denotes the image of P under the transformation D, that is,
DŽ . Ž y1Ž ..P A s P D A . Shift equivariance, orthogonal equivariance and scale

equivariance arise if DD is specialized to the respective class of transforma-
tions.
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Perhaps the easiest multivariate version of the median is the coordinate-
wise median defined by

Med P Ž1.Ž .
..CoMed P [ ,Ž . .� 0Žd .Med PŽ .

where P Ž l . denotes the lth marginal of P. The coordinatewise median is shift
and scale equivariant, but it is not orthogonal equivariant. Its dependence on

Žthe choice of coordinates is illustrated in Figure 1 this figure will be used for
. Ž .illustration purposes throughout the paper : part a displays nine data

Ž .points in a fixed coordinate system, part d shows the respective coordinate-
wise medians if this system is turned by an angle of magnitude u s p ir180,
i s 0, . . . , 179. Usage of this estimator and recognition of its dependence on

Ž .coordinates date back to the beginning of this century; see Small 1990 for
historical details.

The coordinatewise median is obtained simply by applying the one-dimen-
sional median separately to each of the marginals. Other multivariate
versions of the median can be found via characterizing properties of the
one-dimensional median that do not make use of special aspects of the real
line such as its ordering. One such property is the fact that the median
minimizes the expected absolute distance. This leads to the L1-median,

5 5L1Med P [ arg min x y u P dx ,Ž . Ž .H
u

5 5where ? denotes Euclidean distance. As Euclidean distance does not change
under orthogonal transformations, the resulting estimator is orthogonal
equivariant. It is also shift equivariant, but not scale equivariant; see Brown
Ž .1983 and the references given there for uniqueness and other properties of
the L1-median. In the literature this estimator is often called the spatial
median.

The starting point of the present paper is the observation that an orthogo-
nal equivariant multivariate median can be constructed by averaging the
coordinatewise median over all orthogonal transformations, this being possi-
ble because the group of orthogonal transformations is compact. To be pre-

Ž .cise, let OO d be the group of orthogonal d = d matrices. We define the
orthomedian associated with the d-dimensional distribution P by

1 OrMed P [ AX CoMed P A dA.Ž . Ž . Ž .H
Ž .OO d

Ž .Here A9 denotes the transpose of A and H ??? dA refers to the unique Haar
Ž .measure on OO d with total mass 1. We can interpret this as the expected

coordinatewise median in a randomly chosen coordinate system.
The orthomedian is orthogonal equivariant ‘‘by construction’’: from the

coordinatewise median it inherits shift equivariance, but not scale equivari-
ance. Roughly, the orthomedian shares the equivariance properties of the
L1-median. Also, both have the same, optimal, finite sample breakdown point.
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FIG. 1. A numerical example.

For equivariance, breakdown points and general background on robust esti-
mation of multivariate location, see Hampel, Ronchetti, Rousseeuw and

Ž . Ž .Stahel 1986 and Lopuhaa and Rousseeuw 1991 .¨
In the following sections we investigate the properties of the orthomedian

and compare it to the spatial median. In the next section we first show that
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FIG. 1. continued.

Ž .the integral over OO d in the above definition can be reduced to an integral
over the boundary of the unit sphere in R d. Our main result in that section
gives conditions for asymptotic normality of the orthomedian and obtains the
limiting covariance matrix. In Section 3 this is applied to radially symmetric
distributions. Interestingly, for this class of distributions the asymptotic
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variances of orthomedian and L1-median coincide. Section 4 deals with a
class of elliptic distributions. Computational issues and local robustness are
considered in Section 5, and the final section collects some concluding re-
marks.

Ž . � d2. Asymptotic behavior of the estimator. Let S d [ x g R :
5 5 4 d dx s 1 be the boundary of the unit sphere in R . For P a distribution on R

Ž . aand a g S d , let P be the distribution on R defined by

a x d X� 4P y`, z [ P x g R : a x F z .Ž .Ž Ž .
This is the image of P under the mapping x ª aX x leading from R d to R. Let

X Ž .a , . . . , a be the columns of A , A g OO d . Then1 d

Med P a1Ž .
.A .CoMed P s ,Ž . .� 0adMed PŽ .

which implies
d

akOrMed P s Med P a dA.Ž . Ž .Ý H k
Ž .OO dks1

Ž .If A is uniformly distributed on OO d , then a , . . . , a are uniformly dis-1 d
Ž .tributed on S d . Hence, writing H ??? da for integration with respect toSŽd .

Ž .the uniform distribution on S d , we obtain

2 OrMed P s d Med P a a da.Ž . Ž . Ž .H
Ž .S d

This formula will also be of interest in connection with computational issues
Ž . Ž a.to be discussed later. Figure 1 c shows the vectors Med P a for the data in

Ž . Ž . Ž Ž . Ž ..Xpart a and a s a u s cos u , sin u , u s p ir180 with i s 0, . . . , 179. The
Ž .points in part d arise by adding two such vectors with angles u and h,

where h s u q pr2 modulo p .
Our main result in this section deals with the asymptotic behavior as

n ª ` of the orthomedian if the data are realizations of n independent and
identically distributed random vectors X , . . . , X . As explained in the Intro-1 n
duction, the orthomedian associated with X , . . . , X is obtained by applying1 n
the definition to the empirical distribution associated with these values.

Ž .We write OrMed X , . . . , X for the resulting random vector and ª1 n distr
Ž a. Ž .f or convergence in distribution. Let m [ Med P and define f: S d =a

Ž .S d ª R by

f a, b [ P x g R d : aX x F m , bX x F m .Ž . � 4Ž .a b

Ž .THEOREM 1. Assume that the distribution P is such that, for all a g S d ,
a Ž . Ž .P has a density f with the property that a, x ª f x is continuous ona a
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�Ž . Ž .4 Ž . Ž .a, m : a g S d . Assume further that f m ) 0 for all a g S d and leta a a
Ž . Ž .c a [ 1rf m . Let X , X , . . . be a sequence of independent random vectorsa a 1 2

with distribution P. Then

'n OrMed X , . . . , X y OrMed P ª Z,Ž . Ž .Ž .1 n distr

where Z has a normal distribution with mean vector 0 and variance matrix

X 1 X2EZZ s d f a, b y c a c b ab da db.Ž . Ž . Ž .Ž .H H 4
Ž . Ž .S d S d

The proof of the theorem combines results from empirical process theory
and a weak version of the delta method. We start with a sufficiently rich

Ž .central limit theorem CLT , then switch to an almost sure representation
and investigate the behavior of individual ‘‘paths.’’ This identifies an almost
sure limit for the representation: the distribution of this limit is the desired
limit distribution of the original quantities. Our basic reference for empirical

Ž .process theory is Pollard 1984 to which book we refer for terminology not
Ž .explained below. For the delta method, see Gill 1989 and the references

Ž .given there; see also Grubel 1988 , where an application to robust scale¨
estimation is given.

For the proof we need the following three lemmas. A lemma similar to the
first of these appears in many papers; in the form given here it follows from

Ž .Lemma 2 in Gill 1989 . From the literature I am aware of it seems that its
Ž .basic idea should be attributed to Vervaat 1972 .

LEMMA 1. Let F, F , F , . . . be distribution functions on the real line.1 2
Ž .Assume that the derivative of F exists and is positive at Med F . Then

'n F y F ª g uniformly on R with g : R ª R continuousŽ .n

implies
X'n Med F y Med F ª yg Med F rF Med F .Ž . Ž . Ž . Ž .Ž . Ž .Ž .n

LEMMA 2. Let F be a distribution function with the property that the
w Ž .derivative of F exists and is greater than or equal to « on Med F y

Ž . xd , Med F q d , « ) 0 and d ) 0. Then the following implication holds for all
distribution functions G:

5 5 < < 5 5F y G F d«r2 « Med G y Med F F 2 F y G r« .Ž . Ž .` `

Ž . 5 5PROOF. We may assume Med F s 0. Let x s F y G r« . Then 0 F x F`

Ž .d so that F x G 1r2 q « x, which gives

5 5G x G 1r2 q « x y F y G s 1r2;Ž . `

Ž . 5 5hence Med G F x. For the lower bound let x s y2 F y G r« . From yd F`

Ž .x F 0 we now obtain F x F 1r2 y « x, which yields

5 5 5 5G x F 1r2 y « x q F y G F 1r2 y F y G .Ž . ` `
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5 5 Ž . 5 5 Ž .If F y G s 0, then Med G s 0. If F y G ) 0, then G y - 1r2 for all` `

Ž .y F x; hence Med G G x. I

LEMMA 3. With P, f and m as in Theorem 1, the following holds:a a

< <'« ) 0, d ) 0 ;a g S d , x g R: x y m F d « f x G « .Ž . Ž .a a

Ž .PROOF. Assume that we have f x ª 0 and x y m ª 0 for somea an nn n

� 4 Ž . � 4 d Ž .sequences a in S d and x in R . Since S d is compact, we may assumen n
Ž . an a0that a ª a for some a g S d . As P converges weakly to P and asn 0 0

a0ŽŽ x.x ª P y`, x is strictly increasing in a neighbourhood of m , we havea0
Ž . Ž .m ª m , that is, a , m ª a , m . By the continuity assumption ona a n a 0 an 0 n 0

Ž . Ž . Ž .a, x ª f x this implies f m s 0, in contradiction to a previous as-a a a0 0

sumption. I

PROOF OF THEOREM 1. We define a class of real functions on R d by

< < XFF [ f ? z , a : z g R, a g S d , f x z , a [ 1 a x .� 4Ž . Ž . Ž . Ž .Žy` , z x

2Ž . dThis is a subset of the space LL P of P-square integrable functions on R .
2Ž .FF inherits from LL P the seminorm

1r22
r f , g s P f y g ,Ž . Ž .Ž .P

where, following the convention in empirical process theory, we have written
a measure applied to a function for the integral of the function with respect to
the measure. Let XX be the space of bounded real-valued functions on FF,
endowed with the supremum norm and the s-field generated by the open

Ž .balls in this norm, and let C FF be the subset of r -continuous elements ofP P
XX . From our assumptions on P it follows that none of the one-dimensional

a Ž .projections P has an atom. Using this, it is easy to see that z, a ª
Ž Ž < .. Ž .C f ? z, a is continuous if C g C FF .P
The random vectors X , X , . . . are defined on some probability space1 2

Ž .V, AA, P . The empirical distribution P is the random probability measuren
on R d that assigns mass 1rn to each of the points X , . . . , X . We regard P1 n n
as a mapping from V into XX . Formally,

n1
P v f s f X v .Ž . Ž . Ž .Ž . Ž .Ýn in is1

Ž .Similarly, P defines a deterministic function of FF.
� d X 4 Ž .The half-spaces x g R : a x F z , a g S d , z g R, form a Vapnik]Cervo-

nenkis class; FF is the class of the associated indicator functions. Hence our
w Ž .setup satisfies the assumptions of the empirical CLT Pollard 1984 , page

x157 which means that

'Z [ n P y P ª Z,Ž .n n distr

where Z is a Gaussian process, indexed by FF, with mean function 0 and
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covariance function

3 cov Z f , Z g s P fg y P f P g .Ž . Ž . Ž . Ž . Ž . Ž .Ž .
Moreover, all paths of Z are bounded and continuous with respect to r .P

wWe now invoke the Skorohod]Dudley representation theorem Pollard
˜ ˜ ˜ ˜ ˜Ž . x Ž .1984 , page 71 : there exist P , Z on a suitable probability space V, AA, Pn

˜ ˜' Ž .equal in distribution to P and Z, respectively, such that Z s n P y Pn n n
˜converges to Z almost surely, that is,

˜ ˜ ˜< <4 sup Z f y Z f ª 0 P-almost surely.Ž . Ž . Ž .n
fgFF

wWe skip some details from the theory of weak convergence of probability
Ž . xmeasures on nonseparable spaces such as XX ; see Chapter 4 in Pollard 1984 .

Ž . Ž .Fix an v from the probability-1 set in 4 and fix some a g S d . From now˜
Ž̃ Ž < ..on, drop v from the notation. The function z ª Z f ? z, a is continuous and,˜

Ž .by 4 , it is the uniform limit of the functions

˜' < <z ª n P f ? z , a y P f ? z , a .Ž . Ž .Ž . Ž .Ž .n

Note that the big brackets contain the difference of the distribution functions
a a ˜a aF and F associated with P and P , respectively. We are therefore in an n

position to apply Vervaat’s lemma, which gives

a a˜ ˜' <n Med P y Med P ª yc a Z f ? m , a .Ž . Ž . Ž .Ž .Ž .ž /n a

Lemmas 2 and 3 together imply the existence of constants « ) 0, d ) 0 such
Ž .that for all a g S d and all distribution functions G,

2
a a< < 5 55 Med G y Med F F G y FŽ . Ž . Ž . `

«

5 a 5 Ž .if G y F F d«r2. From 4 we obtain`

5 a a 5sup F y F ª 0`n
Ž .agS d

˜Ž . Ž . Ž .as n ª `; hence 5 applies. Using 4 again and the fact that f ª Z f is
bounded, it follows that

a a˜'sup n Med P y Med P s O 1 .Ž . Ž .Ž .n
Ž .agS d

Hence we can apply Lebesgue’s dominated convergence theorem and obtain

a a˜'n d Med P a da y d Med P a daŽ .Ž .H Hnž /Ž . Ž .S d S d

˜ <ª Y [ yd c a Z f ? m , a a da.Ž . Ž .Ž .H a
Ž .S d

Remember the dropped v: the above limit refers to almost sure convergence˜
˜with respect to P.
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The random vector Y is a bounded linear function of the Gaussian process
Z̃; hence it is a normal random vector with mean 0 and variance matrix

X 2 < < XEYY s d c a c b cov Z f ? m , a , Z f ? m , b ab da db.Ž . Ž . Ž . Ž .Ž . Ž .Ž .H H a b
Ž . Ž .S d S d

Ž .Using 3 and the definition of f we see that this is the asymptotic variance
in the assertion of the theorem. It remains to go back to the untilded
quantities where, due to the distributional equalities built into the construc-
tion, the same limit arises, now as the limit in distribution. I

The assumptions of the theorem are somewhat stronger than necessary.
For example, it is enough if the densities exist in a neighbourhood of the
respective median.

3. Symmetric distributions. In this section we take a closer look at the
variance of the limit distribution in the case of radially symmetric distribu-
tions. Assume that P satisfies the following condition:

P has a density f which can be written in the form
2 d dŽ . Ž5 5 .f x s h x y x for all x g R with some x g R ,SŽ . 0 0

w . Ž .h: 0, ` ª R, where sup h x - ` for some « ) 0.0 F x F «

Ž .Multivariate normal distributions with independent components arise if h
Ž . Ž .is a multiple of r ª exp yrr2 . If S holds, then the conditions of the

theorem are satisfied. The symmetry centre x is of no relevance to the0
variance matrix of the limiting normal distribution and may be taken to be 0
for notational convenience.

In this special case some explicit calculations can be carried out, resulting
in a formula for the limit variance in terms of h and d.

a Ž .Obviously, P does not depend on a g S d . Let

k r2
`p

k r2y1c k [ , c h , k [ h r r dr .Ž . Ž . Ž .H0 1G kr2Ž . 0

Ž5 5 2 . Ž . Ž .kThen H h x dx s c k c h, k so thatR 0 1

f 0 s h x 2 q ??? qx2 dx ??? dx s c d y 1 c h , d y 1 ,Ž . Ž . Ž .Ž .Ha 2 d 2 d 0 1
dy1R

which gives a formula for the c-function associated with P. To obtain f we
5 5first note that if X is a random vector with distribution P, then Xr X is

Ž .uniformly distributed on S d . The function f depends on P only through
the distribution of this standardized random vector, which means that we
may assume for the purpose of calculating f that P is the d-dimensional

< X < Ž X X .standard normal distribution. If a b - 1, then a X, b X has a bivariate
Ž .normal density to which Problem III.9.14 in Feller 1971 can be applied,
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resulting in

1 1
X X XP a X b X ) 0 s q arcsin a b .Ž . Ž . Ž .Ž .

2 p

Also,
X X 1 X Xf a, b s P a X F 0, b X F 0 s P a X b X ) 0Ž . Ž . Ž . Ž .Ž .2

in this situation, so we obtain

1 1
Xf a, b y s arcsin a b .Ž . Ž .

4 2p

Putting together what has been obtained so far we arrive at the following
expression for the asymptotic variance matrix:

d2
X X6 S s arcsin a b ab da db.Ž . Ž .H H2 2 Ž . Ž .S d S d2p c d y 1 c h , d y 1Ž . Ž .0 1

The double integral can be further evaluated. Write a for the components ofi
Ž . Ž .a g S d and let k [ H a arcsin a da. Suppose that the random vectori SŽd . i 1

Ž .X Ž . Ž .X s X , . . . , X is uniformly distributed on S d . Then k s EX arcsin X .1 d i i 1
The distribution of X remains unchanged if X is replaced by yX whichi i
implies that k s 0 for i / 1. Further, Y [ X 2 has a beta distribution withi 1

Ž .parameters 1r2 and d y 1 r2 so that

k s a arcsin a da s EY 1r2 arcsin Y 1r2Ž .H1 1 1
Ž .S d

1 Ž .y1 dy1 r2y11r2 1r2 Ž1r2.y1s B 1r2, d y 1 r2 y arcsin y y 1 y y dyŽ . Ž .Ž . Ž .H
0

y1y1s d y 1 B 1r2, d y 1 r2 B 1r2, dr2 .Ž . Ž . Ž .Ž .
Ž . Ž .To evaluate the inner integral in 6 consider a fixed b g S d and let

Ž . Ž .A g OO d be such that Ab s e . The uniform distribution on S d is invariant1
under orthogonal transformations, so the substitution of a by Aa leads to

arcsin aX b abX da s AX a arcsin aXe da bXŽ . Ž .H H 1ž /Ž . Ž .S d S d

s k AXe bX
1 1

s k bbX .1

X Ž .Using H aa da s 1rd I we getSŽd . d

k1X Xarcsin a b ab da db s IŽ .H H ddŽ . Ž .S d S d

and combining these calculations we obtain the following result.
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Ž .COROLLARY 1. Assume that P satisfies S . Then

'n OrMed X , . . . , X y OrMed P ª Z,Ž . Ž .Ž .1 n distr

where Z has a normal distribution with mean vector 0 and variance matrix

2
`dG dr2Ž .

X Ždy3.r2EZZ s I with c h [ h r r dr .Ž . Ž .Hd d2 2d 0d y 1 p c hŽ . Ž .d

We now compare the asymptotics of orthomedian and L1-median for
Ž . Ž .distributions satisfying S . Obviously, we may again assume L1Med P s

x s 0 by shift equivariance. First we note that orthogonal invariance of the0
distribution of the X-variates, together with orthogonal equivariance of the
estimator, implies orthogonal invariance of the limit distribution. As a conse-
quence the variance matrix of the limiting normal distribution will automati-
cally be a multiple of the identity matrix in the situation considered in this
section. This permits a very simple and direct comparison of the asymptotics

1 Ž .of orthomedian and L -median and sample mean, etc. for distributions
Ž .satisfying S . For an elaboration of this argument in the more complicated

context of affine equivariance and scale estimation, see Grubel and Rocke¨
Ž .1990 .

The asymptotic behavior of the L1-median has been investigated by Brown
Ž .1983 , who assumed that either d s 2 or that the underlying distribution is
normal. Brown’s somewhat informal proof can be extended to general sym-

wŽ .metric distributions and can be made precise as done by Pollard 1984 , page
x152 in the two-dimensional standard normal case, resulting in the statement

'n L1Med X , . . . , X y L1Med P ª Z,Ž . Ž .Ž .1 n distr

where Z is normal with mean 0 and variance matrix

d y2y1X 5 5EZZ s E X I .Ž . d2d y 1Ž .

How do the two multiples of the identity matrix compare? In the case of
Ž .the orthomedian the dependence on h is via f 0 , the value of the density of1

the first component of the random vector in 0. For the L1-median this
dependence is via the moment of order y1 of the distance from the origin.
However,

1 1 25 5E s h x dxŽ .H
d5 5 5 5X xR

d r2
`p

Ždy3.r2s h r r drŽ .H
G dr2Ž . 0

p 1r2 G d y 1 r2Ž .Ž .
s f 0 ,Ž .1G dr2Ž .
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Ž .which shows that for distributions satisfying S these two quantities are
Ž .closely related. Indeed, it follows from the above calculation that, if S holds,

orthomedian and L1-median have the same limit distribution.

4. Two-dimensional normal distributions. Let d s 2 and assume
that P is the normal distribution on R2 with zero mean vector and variance

1 0 Ž .matrix . These distributions have also been considered by Brown 1983ž /0 l

in connection with the L1-median, which enables us to compare the behavior
of orthomedian and L1-median for a class of distributions that are not
radially symmetric.

Let D be the diagonal matrix with diagonal elements d s 1 and d11 22's l . Using the calculations performed in Section 3 we see that, for the
above distribution P,

1 aXD2 b
5 5 5 5c a c b f a, b y s Da Db arcsinŽ . Ž . Ž .ž / ž /5 5 5 54 Da Db

Ž . Ž .for all a, b g S 2 . Further, S 2 can be parametrized by an angle u varying
from yp to p via

cos u
u ª a u [ .Ž . ž /sin u

Ž .This parametrization which has also been used in Figure 1 preserves
uniform distributions so that

p p1 f u , h f u , hŽ . Ž .11 12XEZZ s du dh ,H H2 ž /f u , h f u , hp Ž . Ž .yp yp 21 22

where

f u , h f u , hŽ . Ž . X11 12 s s u , h a u a h ,Ž . Ž . Ž .ž /f u , h f u , hŽ . Ž .21 22

Ž . Ž .and, abbreviating sin u , cos u to S , C and so forth,u u

C C q lS Su h u h2 2 2 2s u , h s C q lS C q lS arcsin .Ž . 'Ž . Ž .u u h h 2 2 2 2ž /C q lS C q lS'Ž . Ž .u u h h

Inspection shows

f yu , yh s yf u , h , f yu , yh s yf u , h ,Ž . Ž . Ž . Ž .12 12 21 21

so that the asymptotic variance matrix is of diagonal form. I have not been
able to find any further simplifications and resorted to numerical evaluation.
Table 1 gives some results; it also contains the values obtained by Brown
Ž . 11983 for the L -median.

In all cases considered, the variances for the L1-median are smaller than
the variances arising in connection with the orthomedian. However, for
moderately elliptic distributions the difference is very small and should be
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TABLE 1
Asymptotic variances for two-dimensional normal distributions

First component Second component

l L1Med OrMed L1Med OrMed

1 1.273 1.273 1.273 1.273
0.81 1.274 1.275 1.032 1.033
0.64 1.277 1.280 0.8175 0.8199
0.49 1.282 1.288 0.6293 0.6344
0.36 1.291 1.302 0.4668 0.4754
0.25 1.305 1.321 0.3295 0.3420
0.16 1.324 1.347 0.2168 0.2332
0.09 1.353 1.382 0.1280 0.1473
0.04 1.395 1.428 0.0624 0.0822
0.01 1.460 1.489 0.0195 0.0349
0.0025 1.507 1.527 0.00652 0.0164
0.0001 1.556 1.561 0.000624 0.003189

negligible for most practical purposes. This is confirmed by simulation experi-
ments.

5. Computational aspects and local robustness. For two-dimen-
Ž .sional data we can use the simple representation of S 2 from Section 4 to

Ž .approximate the integral in 2 by an associated Riemann sum to any desired
degree of precision. However, a naive extension of this approach to dimen-

Ž .sions greater than 2 can be very inefficient, and it is much better to use 2
Ž .directly with the uniform distribution on S d replaced by the empirical

distribution associated with N suitably chosen points a , . . . , a from the1 N
sphere. The orthomedian of the data set x , . . . , x can then be approximated1 n

Ž X X .by the mean of the projected medians Med a x , . . . , a x a , i s 1, . . . , N,i 1 i n i
multiplied by d. To ensure that these approximations are shift equivariant
for a given N, and not just in the limit as N ª `, it is advisable to center the
data about the mean first.

There are two main methods for choosing a , . . . , a . The ‘‘number]theo-1 N
Ž .retic method’’ NTM aims to choose these systematically and evenly spaced

Ž . Ž .on S d for given N and d, whereas simple Monte Carlo integration MCI
uses a sequence a , . . . , a of independent and uniformly distributed random1 N

Ž . Želements of S d here and in the following ‘‘random’’ occasionally refers to
pseudo-random quantities generated on the computer; what is meant should

. Ž .be clear from the context . The recent monograph by Fang and Wang 1994
explains NTM and provides sufficient detail to allow a relatively straightfor-
ward implementation for a variety of values of N and d. MCI can easily be
implemented without any restriction on N or d. Uniformly distributed ran-

Ž .dom elements Y of S d can be obtained by generating d independent
5 5 Žstandard normal variates X , . . . , X and using Y s Xr X , X s X , . . . ,1 d 1

.X Ž .X . Both methods will give OrMed x , . . . , x in the limit as N ª `, MCId 1 n
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with probability 1. For NTM, which is also known as quasi Monte Carlo
integration, theoretical results are available which predict that for suffi-

y1 wciently smooth integrands the approximation error is on the order N apart
Ž .xfrom logarithmic factors; see, e.g., Theorem 2.5 in Fang and Wang 1994 .

For MCI we only have the rate Ny1r2. Practical experience shows that both
methods are viable. Computation times are similar for both methods and
depend linearly on n, d and N. On a PC with Intel 90 MHz Pentium
processor, 0.656 seconds were needed for MCI with n s 200, d s 10 and
N s 1000.

The error introduced by these approximations will be negligible if N is of
larger order of magnitude than n, a situation somewhat similar to choosing
the number of resamples in a bootstrap procedure if we consider MCI. For
MCI, guidelines of a more quantitative nature can be developed on noting

Ž . Ž X X .that, conditionally on the data set, j with j [ d Med a x , . . . , a x a ,i ig N i i 1 i n i
is a sequence of bounded, independent and identically distributed random

Ž .vectors. The Monte Carlo approximation for OrMed x , . . . , x is the average1 n
of the first N of these, so an estimator for the covariance matrix of j1
together with the central limit theorem leads to confidence bounds for the
approximation error. The situation here is somewhat more complicated than
in the familiar one-dimensional case since we would need the quantiles of a
sum of d squared centered normals with nonunit variance, so we propose the
following simple alternative: the trace of the empirical covariance matrix SN

5 5 2associated with j , . . . , j is an unbiased estimate of E Z , where Z1 N n n
denotes the limit in distribution of

N1'N j y OrMed x , . . . , x , N ª `.Ž .Ý i 1 nž /N is1

y1 Ž .This leads to N tr S as an estimator for the expected squared distanceN
between the orthomedian and its Monte Carlo approximation. To give a
numerical example, for a sample of 200 ten-dimensional standard normal
random vectors the value obtained after 1000 Monte Carlo repetitions was
0.000254. The actual deviations obtained in five additional runs on the same
sample, with different sequences of random numbers, were 0.000332,
0.000430, 0.000244, 0.000172 and 0.000512. Here the result obtained with
N s 106 was taken to be the true orthomedian for the data set in question.
Incidentally, our theoretical results from the previous sections predict the

5 Ž . Ž .5 2value 0.082558 for the expectation of OrMed X , . . . , X y OrMed P if1 n
Ž .P s N 0, I , that is, in this situation the error introduced by MCI is small10 10

as compared to the error inherent in the estimation procedure.
Indeed, for moderate values of sample size and dimension, N s 1000

should be adequate, but, as is obvious from the timing given above, larger
values of N are entirely feasible. If interest is primarily in the detection of
outliers or if the orthomedian is just the first step in a multistep procedure
designed to combine robustness and high efficiency, then even lower values
for N should suffice.
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Again, comparison with the L1-median is illuminating. The latter is de-
fined, like many other multivariate variants of the median, as the minimizing
value of some nondifferentiable function; here

n
d 5 5c : R ª R, c u [ x y u .Ž . Ý i

is1

� 4One might think that the critical set x , . . . , x of c is negligible for1 n
computational purposes, but this is not the case: the minimizing value will be
x ifi

1
7 x y x - 1,Ž . Ž .Ý i j5 5x y xi jj/i

and this will happen with positive probability if, for example, the data values
are a sample from an absolutely continuous distribution such as a nondegen-

Žerate multivariate normal distribution. As a result, calculation of L1Med x ,1
. Ž .. . . , x is a nontrivial exercise; see Bedall and Zimmermann 1979 for an

good solution. The dependence of the computation time on sample size n and
Ž . 2dimension d of the data is of the form n log n d with this algorithm, but

this does not seem to matter unless sample size or dimension become truely
excessive. For example, computing the L1-median for a sample of 200 ten-di-

Žmensional standard normal random vectors took 0.104 seconds in contrast to
the above algorithms for the orthomedian, computation times now depend on

.the sample configuration .
The fact that the L1-median can be one of the data points also has

Ž .statistical consequences: if the sample configuration is such that 7 holds,
then configurations which arise by changing x slightly will also satisfy thisi
inequality, that is, x will continue to be the L1-median. This means that thei
local robustness properties of the L1-median are poor in the sense that, with
positive probability, a change of one of the data values will lead to a change

win the estimate of the same magnitude see Hampel, Ronchetti, Rousseeuw
Ž . xand Stahel 1986 for a discussion of local-shift sensitivity and related issues .

Although it is based on coordinatewise medians, which are similarly
susceptible to small fluctuations in the data, the local robustness properties
of the orthomedian are better than those of the L1-median. This is due to the
integration step}roughly, the orthomedian is a ‘‘mean of medians.’’ To

Ž .explain this, we invoke Figure 1 one last time: part b shows the index of the
Ž .data value leading to the projected median in part c as a function of the

angle u of rotation. Obviously, the influence of any particular data point x isi
restricted to a small part of the integration range. To obtain a geometric
understanding of the size of these intervals, imagine a line drawn through x .i
If the sample is from an absolutely continuous distribution, then it will be

Ž .possible with probability 1 to find such a line that splits the sample into two
halves of equal size. The angle by which this line can then be rotated about x i
without hitting some other x-value gives the range of influence of x . Thisi
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interpretation also makes it obvious that outlying observations have little
influence on the estimator.

6. Concluding remarks. In this section we indicate some possible ex-
tensions of the methods and results of the previous sections.

6.1. It has already been mentioned in Section 2 that our proof of asymp-
Ž .totic normality of the orthomedian is based on a weak differentiability

Ž .property of the functional P ª OrMed P . Properties of this type can also be
used to show that the bootstrap ‘‘works,’’ leading to associated confidence

Ž .regions; see Gill 1989 for the one-dimensional case and Section 4 of Arcones
Ž . Ž .and Gine 1992 and Chapter 3.9.3 of van der Vaart and Wellner 1996 .´

Ž . Ž .6.2. Averaging over OO d as in 1 produces orthogonal equivariant esti-
mators, even if the base estimator is not obtained by componentwise applica-
tion of some one-dimensional estimator as in the case of the orthomedian. In

Ž .this more general situation the reduction to S d explained at the beginning
of Section 2 might not be possible, but the basic idea for the Monte Carlo

Ž .approximation of the estimator given in Section 5 still applies. Using 1
Ž .instead of 2 requires a sequence of independent and uniformly distributed

Ž . Ž .elements of OO d rather than S d . Techniques to generate such random
Ž . worthogonal matrices are described in Heiberger 1978 see also Tanner and

Ž .x Ž .Thisted 1982 and Anderson, Ingram and Underhill 1987 . If the base
estimator is shift equivariant, then the resulting Monte Carlo approximations
will also be shift equivariant.

6.3. The method introduced in the previous sections can be used quite
generally to ‘‘lift’’ shift equivariant one-dimensional location estimators to
higher dimensions, resulting in shift and orthogonal equivariant multivariate

Ž .location estimators O-estimators, if one so wishes . This was carried out
above for the median, but other interesting possibilities exist. As a particular
case consider trimmed means: in dimension 1 it is quite clear what is meant
by removing the largest and smallest 10% of the data, but, as in the case of
the median, there is no canonical generalization of this procedure to dimen-
sions higher than 1, due to the lack of a suitable order structure. However,
the transition to an ‘‘ortho-trimmed mean’’ can be carried out in complete
analogy to the transition from one-dimensional median to orthomedian. The
techniques used above in the latter context can be adapted to the analysis of
estimators of this type. Asymptotic normality, for example, would again
follow from a delta method based proof of the one-dimensional result if this

Žcan be made to hold uniformly in all projections i.e., one would need the
corresponding variants of the lemmas in Section 2; the proof of the theorem

.then carries over almost literally . The comments on numerical aspects in
Section 5 apply without change.
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