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Maximum likelihood estimators for record-value data with a linear
trend are quite sensitive to misspecification of the error distribution. In-
deed, incorrect choice of that distribution can lead to inconsistent estima-
tion of the intercept parameter and produce estimators of slope that do
not enjoy the asymptotic convergence rate prescribed by the information
matrix. These properties and the importance of linearly trended records
lead us to suggest a distribution-free approach to inference. We show that
the slope and intercept parameters and the entire error distribution can
be estimated consistently, and that bootstrap methods are available. The
latter may be employed to estimate the variance of estimators of slope, in-
tercept and error distributions. The case of trends that increase faster than
linearly is also considered, but is shown to be relatively uninteresting in
the sense that the natural estimators have rather predictable properties.

1. Introduction. In some data-recording contexts the values that are of
greatest interest are the extremes, be they minima or maxima. Sometimes
those particular data are recorded in a very accessible form, and more com-
plete, detailed data are available only at the cost of searching more extensively.
This can be the case with records in sporting events, for example. In other con-
texts, such as on-line data recording by machine, where the capacity for data
retention may not be great, data that are not very recent and are not record
values may be automatically deleted, for all time.

Often, as a result of improvements in technology or technique, record-value
data may not be adequately modelled as successive extremes of independent
and identically distributed sequences. Incorporating a trend is often the sim-
plest way of allowing for a degree of nonstationarity. Smith (1988) argued
cogently and persuasively, on the basis of athletic data, that the case where
the trend is linear is often of greatest interest. Ballerini and Resnick (1985,
1987) also studied record-value models with linear trends, although in their
case the stochastic errors were modelled as stationary time series rather than
independent and identically distributed random variables. See too the work of
De Haan and Verkade (1987), where it was shown that the large-sample prop-
erties of linearly trended data may be similar to those of data without trend,
either because of a heavy-tailed error distribution or a particularly slow trend.
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Smith (1988) also examined trends that are expressible as increasing
quadratics or other increasing functions. He conducted statistical analysis by
fitting models, such as the Normal, to the error distribution and estimating
all parameters (those of the trend function and those of the distribution) by
maximum likelihood. This approach to analysis is very powerful, not least
because of the opportunities that it offers for analyzing a particularly wide
range of trends and error types. The method has some unusual properties,
however. In particular, it may be shown (see Section 5.6) that the parameter
estimators which arise out of fitting in this way may not all be consistent
if the error distribution is chosen incorrectly. For example, if the trend is
linear and if the errors are assumed to be normally distributed but actually
have another distribution (such as a Gumbel or generalized extreme-value
distribution, two of the other error types studied by Smith), then the es-
timator of slope in the fitted trend will be consistent, but the estimator of
intercept will not. This property is in stark contrast to the more traditional
behavior that is observed in model fitting under the assumption of specific
error distributions, where the choice of error distribution typically affects
only second-order asymptotic properties of estimators of trend parameters. In
such classical cases, misspecification of the error distribution does not even
influence the weak limit of the estimators; it certainly does not interfere with
consistency properties.

Furthermore, in the case of a linear trend, while the estimator of slope
will be consistent, it will not necessarily converge at the rate predicted by
the information matrix under a model for the error distribution, if that model
is incorrect. Thus, the asymptotic properties of estimators of both intercept
and slope can be rather different, should the model be incorrect, from those
for which one might hope. This leads to obvious difficulties in confidence pro-
cedures based on record values with linear trend. By way of contrast, the
problem does not arise in cases where the trend increases faster than linear.
There, convergence rates of estimators and also their limiting distributions
are typically unaffected by correctness of the choice of model for the error
distribution.

While elementary (although tedious) to derive, these properties are so strik-
ingly different from those that would usually be expected that they argue
persuasively for the development of a distribution-free theory of inference for
record-value data with trend. That is the approach adopted in the present
paper. We take a general viewpoint, considering models where the trend is
faster than linear (such as quadratic regression) as well as those where it
is only linear. Nevertheless, since the faster-than-linear context is relatively
uninteresting from the viewpoint of asymptotic theory, we do not emphasize
this case and instead devote almost all our attention to linear trends.

In that setting we develop distribution-free methods for estimating the gra-
dient and the intercept of the trend, the asymptotic variances of these esti-
mators and the entire error distribution. Our approach to estimation of the
latter employs a novel conditioning argument and produces root-n consistency.
(Here, n denotes sample size.) That fact gives rise to exciting opportunities for
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using resampling methods in this highly nonstandard problem. Our estimator
of slope is based on least-squares fitting and, like our estimator of intercept,
enjoys the same convergence rate as estimators obtained by maximum likeli-
hood methods under correctly specified models. In the case of slope, that rate
is n−3/2, owing to the high degree of leverage offered by a linear trend. The
techniques that we suggest employ only record values, since we have found it
quite awkward to use information about record times in a truly distribution-
free approach.

Like the properties of maximum likelihood estimators discussed earlier, our
general results divide sharply between the cases of linear trends and trends
which increase more rapidly than linear. In both, bootstrap methods may be
used to estimate the variance of our estimators. In the case of a linear trend,
the variance of our root-n consistent estimator of intercept depends directly
on the density of the sampling distribution and may be estimated consistently
but not with convergence rate n−1/2.

There is an extensive applied probability literature concerning the theory
of records from random samples. It includes particularly the work of Shorrock
(1972–1975) and Resnick [(1973a, b, c), (1975), (1987), Chapter 4]. Smith
(1988) gives an excellent introduction to work on statistical inference for record
values, particularly in the context of athletic events. See also Chatterjee and
Chatterjee (1982), Tryfos and Blackmore (1985) and Berred (1982). The paper
by Miller and Halpern (1982) also is of interest in the present context.

Section 2 develops our methodology, with particular reference to the case
of a linear trend. Numerical properties of our techniques are explored in Sec-
tion 3, and their theoretical foundation is laid down in Section 4. All technical
arguments are placed together in Section 5. They include an outline of the
theory behind our earlier assertions about maximum likelihood estimation.

2. Methodology.

2.1. Summary. Section 2.2 develops methods for inference under general
models for the trend, giving particular emphasis to the more interesting case
where the trend is linear. The latter context is taken up in detail in Section 2.3.
Bootstrap methods are developed in Section 2.4. Section 2.5 treats the special
case of a symmetric error distribution. There, nonparametric estimators of the
lower tail of the error distribution, which are generally inferior in quality to
those of the upper tail, may be replaced by estimators in the context of the
latter.

Assume that the underlying data, of which only the record values and record
times are available, are generated by the model

�2:1� Yi = t�i; β� +Xi; i ≥ 1;

where X1;X2; : : : are independent random variables with an identical dis-
tribution F and the trend in the mean, t�i; β�, depends only on i and the
estimable parameter β, most likely a vector. It is convenient to prevent con-
founding in the definition of location by asking that E�Xi� = 0. The value of
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the record at time i is

�2:2� Zi = max�Y1; : : : ;Yi�; i ≥ 1;

and this stochastic process is observed.

2.2. General trend functions. If the trend function t increases sufficiently
rapidly (which condition should be interpreted relative to the rate of decrease
of the upper tail of F), then, as we shall show in Section 4, the process ei ≡
Zi − t�i; β� is asymptotically stationary, for large values of i, in the following
sense. There exists a stationary process �εj, j ≥ 1�, such that as i→∞ the
joint distribution of �ei+1; : : : ; ei+n� converges to that of �ε1; : : : ; εn�, for any
n ≥ 1. This means that, except for determination of the location or intercept
term in the definition of t, inference about the trend function based on data
�Zi� is not dissimilar to that about a regression “mean” in a problem with
time series errors, such as

Y′i = t�i; β� + εi; i ≥ 1:

[The fact that E�εi� is nonzero, so that t�i; β� is not equal to the mean of Y′i,
is the root of problems in estimating intercept in a linear trend.] In principle
we can apply the bootstrap to enhance asymptotic methods in this regression
approach to the problem. There are at least two different ways of using the
bootstrap. Either we could employ the block bootstrap, which is problematical
unless the data are extensive, or we could try to simulate the time series �εi�,
or even the more basic nonstationary process �ei�, in a structural manner.
We shall call this the “structural bootstrap” for dependent data. Of course, we
know how the process was generated, in terms of maxima of independent and
identically distributed disturbances plus an estimable trend, but in general
we do not have direct access to the distribution F of those disturbances. If the
trend function t increases relatively rapidly (faster than linear) and if the up-
per tail of F is sufficiently light, then the εi’s are independent and identically
distributed and Zi = Yi with relatively high probability. Here, application
of the structural bootstrap is relatively straightforward, being similar to that
of the ordinary bootstrap in the case of regression with independent errors.
However, this context is somewhat uninteresting, at least from a theoretical
viewpoint, since the unusual character of record values disappears when they
occur as frequently as they do in the case of a rapidly increasing trend.

The case where t�i; β� is linear in i, say t�i; β� = a+ bi, where β = �a; b�,
is also of more practical value; see Smith (1988). For a linear trend the fol-
lowing alternative approach will form the basis for our structural bootstrap
algorithm. Note that the probability Fi�x� of the event Zi−�a+ bi� ≤ x, con-
ditional on Zi−�a+b�i+1�� ≤ x, is an asymptotic (for large i) approximation
to F�x�. To appreciate why, note that

P�Zi − �a+ bi� ≤ x� =
i∏

j=1

F�x+ b�i− j��
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and so Fi�x� = F�x�/F�x + bi�. The probability in the denominator here
converges to 1 as i increases and hence Fi → F as i → ∞. Of course, the
accuracy of the approximation depends on factors such as the size of b (it is
more accurate for larger b) and the weight of the upper tails of the distribution
F (it is more accurate for lighter tails).

Quite generally, for distributions ofXi with sufficiently light upper tails, the
unknown parameter β in the trend function t may be estimated consistently
by least squares, at least up to the value of an intercept. In particular, if ν ≥ 2,
β = �β1; : : : ; βν� and

�2:3� t�i; β� =
ν∑
j=1

βji
j−1;

then β2; : : : ; βν, but not necessarily β1, may be estimated by minimizing

�2:4� S�β� =
n∑
i=1

�Zi − t�i; β��2w�i�

for suitable weights w�i�. Except for the case ν = 2, the estimator of β1 is also
consistent. Moreover, if ν ≥ 3, then the in-probability convergence rate of any
estimator β̂k of any component βk of β is identical in the cases where the data
used to construct β̂k are the “ideal” values Y1; : : : ;Yn and where they are the
record values Z1; : : : ;Zn. Details will be given in Section 4.

2.3. Linear trend. Assume that β = �a; b� and t�i; β� = a+ bi. To ensure
identifiability of the parameter a we ask that E�X� = 0. Let us begin by
treating the problem as one of linear regression and define

�2:5� b̂ =
{ n∑
i=1

Zi�i− ī�
}/{ n∑

i=1

�i− ī�2
}
; â = Z̄− b̂ī;

where Z̄ = n−1∑n
i=1Zi and ī = 1

2�n + 1�. We shall show in Section 4 that if
the tails of F are sufficiently light, then â and b̂ both enjoy asymptotic Nor-
mal distributions, but only the latter estimator is consistent. The asymptotic
variances are, respectively, 4n−1σ2 and 12n−3σ2, where

�2:6� σ2 =
∑

−∞<i<∞
cov�ε0; εi� = var�ε0� + 2

∞∑
i=1

cov�ε0; εi�

and, as noted in Section 2.2, the stochastic process �εj� may be regarded as
the limit of the process �ei+j� as i→∞.

These properties motivate the problems of estimating σ2 and a consistently,
which we consider next. The solutions are relatively straightforward and el-
egant if the errors Xi have a bounded distribution. There, if E�X� = 0 and
P��X� < x0� = 1, then the process �εj� is m dependent, where m− 1 denotes
the integer part of 2x0/b. Then σ2 may be estimated as a finite series. Indeed,
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in view of (2.6) we may write σ2 = γ�0�+2
∑m
i=1 γ�i�, where γ�i� = cov�ε0; εi�.

A root-n consistent estimator of γ�i� is

γ̂�i� = �n− i�−1
n−i∑
j=1

�Zj+i − b̂�j+ i���Zj − b̂j� − �Z̄− b̂ī�2

and so a root-n consistent estimator of σ2 is

σ̂2 = γ̂�0� + 2
m̂∑
i=1

γ̂�i�;

where m̂ is an empirical approximation (generally somewhat ad hoc and an
overestimate) to m. Methodology and theory for estimating σ2 may be de-
veloped without the assumption of a finite error distribution. It could based,
for example, on estimating the spectrum of the process �εi�, although that re-
quires choice of smoothing parameter to be addressed. Alternatively, bootstrap
methods may be employed; see Section 2.4.

Consistent estimation of a may be regarded as a special case of estimation
of the moments of X + a, which in turn may be treated as an application of
estimation of the distribution G of X+a. We shall address the latter problem
first. A consistent estimator of G�x� is

�2:7� Ĝ�x� =
{ n∑
i=1

I�Zi − b̂i ≤ x�
}/[ n∑

i=1

I�Zi − b̂�i+ 1� ≤ x�
]
;

where b̂ is defined as in (2.5). Bias can be somewhat reduced, at the expense of
an increase in variance, by taking the series in (2.7) over only larger values of
i. This does not have any effect on first-order performance of the estimators,
however. By convention we take the ratio on the right-hand side of (2.7) to be
zero if the denominator vanishes.

The rth moment of X+ a, for positive integers r, is given by

µr = E
{
�X+ a�r

}
= r

∫ ∞
0
xr−1{1−G�x� + �−1�rG�−x�

}
dx;

of which an estimator is

�2:8� µ̂r = r
∫ ∞

0
xr−1{1− Ĝ�x� + �−1�rĜ�−x�

}
dx:

Since, assuming that E�X� = 0, we have µ1 = a, then a consistent estimator
of a is

�2:9� ã = µ̂1 =
∫ ∞

0

{
1− Ĝ�x� − Ĝ�−x�

}
dx:

We shall show in Section 4 that under appropriate regularity conditions, Ĝ and
µ̂r are root-n consistent for G and µr, respectively. Their asymptotic variances
depend on h = H′, the density of the distribution H of εi + a, and may be
estimated either directly, by kernel methods applied to the data �Zi�, or by
using the bootstrap.
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A predictor of the mean mi = a+bi of Yi, perhaps for i > n, is m̂i = ã+ b̂i.
This estimator is root-n consistent, provided that i = O�n� as n→∞.

2.4. Bootstrap. There are at least two approaches to the bootstrap, appro-
priate in cases where the trend increases at a polynomial rate faster than
linear and where it is linear, respectively. The former is simpler, since there
(for samples of sufficiently large size) the Zi’s are equal to the Yi’s with high
probability, as noted in Section 2.2. Hence, one may for many intents and
purposes consider the problem to be one of regression with independent er-
rors. The more important and more interesting case is that where the trend
is linear; then we suggest resampling via the estimator Ĝ of the distribu-
tion of X + a. Specifically, calculate b̂ as in (2.5), calculate Ĝ as in (2.9), put
G̃�x� = infy≥x Ĝ�y� in order to overcome any failure of monotonicity of Ĝ
(this can be a problem in the lower tail), let �Xi + a�∗; : : : ; �Xn + a�∗ be de-
rived by resampling independently and at random from the distribution with
distribution function G̃, conditional on the original data �Zi�, and define

Y∗i = �Xi + a�∗ + b̂i and Z∗i = max
1≤j≤i

Y∗j for 1 ≤ i ≤ n:

Bootstrap inference may be based on the Z∗i ’s. In particular, the variances
of ã, b̂ and m̂i may be estimated in the obvious way. Note that the estimators
of var�ã� and var�m̂i� will not be root-n consistent, since the asymptotic vari-
ances depend on h, for which root-n consistent estimators do not exist (unless
a parametric model is available for H). However the estimators of variance
are consistent if h is sufficiently smooth, as we shall show in Section 4.

Bootstrap methods may also be used in the obvious way to construct confi-
dence intervals for E�Yi� = a + bi and prediction intervals for future values
of Yi or Zi. (We suggest the percentile method, possibly calibrated by applica-
tion of the double bootstrap, since the slow convergence rate of estimators of
var ã makes percentile-t problematical here.) Assuming that i = o�n3/2� and
also the regularity conditions introduced in Section 4, these intervals have
asymptotically correct coverage.

It should be noted that likelihood-based confidence intervals for E�Zi�,
founded on a model for the distribution of X, are generally asymptotically
correct [provided i = o�n3/2�], even if the model is misspecified. However,
confidence intervals for E�Yi� derived by similar means are typically asymp-
totically in error.

2.5. Symmetric error distribution. One would expect there to be difficulties
with any distribution-free procedure applied to record-value data if either the
sample size or the value of b was too small. In such cases the manner in which
data are recorded will result in there being insufficient information about the
lower tail of the distribution of X, with consequent inaccuracies in estimation
of a. However, if we suppose that X has a symmetric distribution, then we
may replace the nonparametric estimator of the lower tail by that of the upper
tail, which is of course considerably more accurate.
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This procedure is very simple to implement in practice. Under the hypoth-
esis of symmetry, take the median of the distribution estimator Ĝ as the es-
timator of a; call this ǎ. Put Ǧ�x� = G̃�x� if x > ǎ and Ǧ�x� = 1− G̃�2ǎ− x�
otherwise. Then implement the bootstrap procedure described in Section 2.4
with Ǧ replacing G̃.

In principle it is possible, under the assumption of symmetry, to use infor-
mation from both tails to estimate either one. In practice, however, there is
generally so much less information in the lower tail compared with the up-
per that it does not seem worthwhile to attempt empirical calculation of the
weights with which these should be combined.

3. Numerical properties. The procedures discussed in Section 2 were
implemented on an SGI Challenge computer using the S statistical software
package; see Becker, Chambers and Wilks (1988). In particular, we imple-
mented the least-squares estimators b̂; â as defined in (2.5) for the slope and
intercept parameters of the model for record values data under the linear
trend t�i; β� = a + bi. We also implemented several variants of the intercept
estimator ã given in (2.9), which is based on the nonparametric estimator (2.7)
for the distribution function of X+a. These estimators were studied in detail
for a variety of distributions for the error terms (the X’s) and for a variety
of values for the parameters n, a and b using Monte Carlo methods. We also
conducted Monte Carlo trials to study the efficacy of bootstrap methods for
estimating the variances of these estimators. Finally, we applied our methods
to carry out a detailed analysis of data for the (yearly) world record times in
the men’s one mile run.

Tables 1 and 2 provide a selected summary of our Monte Carlo results for
the performance of the estimators b̂ and ã for samples of size n = 100;200;300
and values for slope of b = 0:25;0:5;0:75. In Table 1 the underlying distribu-
tion of the error terms �X1; : : : ;Xn� was taken to be N�0;1�, while in Table 2
the underlying distribution of the error terms was taken to be the standardized
uniform distribution 121/2U�−0:5;+0:5�. [The uniform distribution is used in
the record-values context, for example, in Tryfos and Blackmore (1985).] Due
to the invariance of our procedures in that parameter, the true value of the
intercept a was set equal to 0 in all trials reported here. For each combina-
tion of sample size n and slope b we generated 200 data sets, and for each
data set we computed, in turn, the corresponding sequences �X1; : : : ;Xn�,
�Y1; : : : ;Yn�, and finally �Z1; : : : ;ZN� in accordance with the model given in
(2.1) and (2.2) using the linear trend function t�i; β� = a + bi. For each set
of values for n and b, Tables 1 and 2 provide the mean, standard deviation
and root mean square error of the 200 computed values for each of the three
estimators. As expected—and readily apparent from the tables—the slope pa-
rameter b is estimated with exceptional accuracy, in full accordance with the
asymptotic theory.

Likewise (but not included in the tables) the least-squares estimator â was
found to be subject to very severe bias which does not diminish as the sample
size increases, although the bias does decrease slowly as increasing values of
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Table 1

Summary of Monte Carlo trials for estimation of the slope and intercept of the linear trend
t�i; β� = a+ bi for records data with N�0;1� distributed X’s

n b Est. Mean Std. dev. RMSE Bootstrap

100 0.25 b̂ 0.2508 0.0052 0.0053 0.0045
ã 0.136 0.332 0.358 0.29

0.50 b̂ 0.5009 0.0038 0.0039 0.004
ã 0.058 0.250 0.257 0.25

0.75 b̂ 0.7498 0.0043 0.0043 0.004
ã 0.067 0.261 0.270 0.23

200 0.25 b̂ 0.2503 0.0018 0.0018 0.0018
ã 0.119 0.253 0.279 0.20

0.50 b̂ 0.5002 0.0017 0.0017 0.0015
ã 0.044 0.198 0.203 0.18

0.75 b̂ 0.7503 0.0013 0.0013 0.0015
ã 0.008 0.158 0.158 0.18

300 0.25 b̂ 0.2501 0.0010 0.0010 0.0010
ã 0.102 0.229 0.251 0.18

0.50 b̂ 0.4999 0.0008 0.0008 0.0009
ã 0.072 0.150 0.167 0.16

0.75 b̂ 0.7501 0.0009 0.0009 0.0008
ã 0.025 0.156 0.158 0.13

Table 2

Summary of Monte Carlo trials for estimation of the slope and intercept of the linear trend
t�i; β� = a+ bi for records data with standard uniform 121/2U�−0:5;0:5� distributed X’s

n b Est. Mean Std. dev. RMSE Bootstrap

100 0.25 b̂ 0.2507 0.0033 0.0034 0.0037
ã 0.163 0.282 0.325 0.25

0.50 b̂ 0.5003 0.0038 0.0038 0.0037
ã 0.062 0.238 0.246 0.23

0.75 b̂ 0.7502 0.0037 0.0037 0.0034
ã 0.014 0.219 0.219 0.20

200 0.25 b̂ 0.2502 0.0013 0.0013 0.0012
ã 0.147 0.209 0.256 0.17

0.50 b̂ 0.5000 0.0013 0.0013 0.0013
ã 0.055 0.163 0.172 0.16

0.75 b̂ 0.7502 0.0014 0.0014 0.0013
ã 0.024 0.161 0.163 0.16

300 0.25 b̂ 0.2500 0.0007 0.0007 0.0007
ã 0.139 0.184 0.230 0.16

0.50 b̂ 0.5000 0.0008 0.0008 0.0007
ã 0.055 0.148 0.158 0.12

0.75 b̂ 0.7500 0.0007 0.0007 0.0007
ã 0.032 0.134 0.138 0.13
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b result in a larger percentage of record values. It is worth remarking here
that maximum likelihood estimation under a misspecified error distribution
would result in essentially similar bias characteristics for the estimator of the
intercept; see Section 5.6.

The bias of the estimator ã is very considerably less than that of â and
decreases (quickly) with b and (less quickly) with increasing sample size. The
variance of ã was found generally to be slightly higher than that of â, but this
is more than amply compensated by the large reduction in bias, resulting in
a mean-squared error substantially below that of the least-squares estimator.

Extensive numerical experiments were conducted to explore the behavior of
the estimator ã. Examination of many plots of the estimators Ĝ and G̃ for the
cdf of X+a revealed that estimation of G was very accurate above the median
for typical values of b and, to a lesser extent, somewhat below the median
as well for the larger values of b. However, the estimates for G below the
median deteriorated very rapidly, as would be expected. For this reason, the
positive and negative components of the expectation estimator defined in (2.9)
were examined separately. This was done in conjunction with two particular
options: namely, the choice of whether to use the raw (nonmonotone) Ĝ as
defined in (2.7) or to use the version G̃ that has been rendered monotone;
second, the choice of whether or not to drop lower values of the index i from
the sums appearing in (2.7). In using the monotone version G̃, we found quite
generally (and as expected) that the source of bias resulting in ã originated
almost entirely from within its negative component. When the non-monotone
version Ĝ was used, this bias was for all intents and purposes eliminated, but
at the cost of increased variance (especially in the negative component of ã)
resulting overall in a deterioration in terms of mean-squared error (or at best
no improvement). For this reason, all results reported here are in terms of the
monotone version G̃. Our findings concerning the dropping of lower values in
i from the sums in (2.7) were likewise problematical, generally showing little
potential for gain, with the increases in variance being accompanied by only
modest reductions in bias. For this reason as well, all results reported here
involve untruncated data, that is, no dropping of initial values. Finally, in the
case where the distribution of X is assumed to be symmetric, the value of a
may alternately be estimated as the median of the distribution function G̃.
It turned out, however, that this estimator did not in general outperform ã.
[This appears to be due to deterioration in the quality of estimate of G�x�
as x decreases.] In all the above cases, the quality of estimation depends
substantially upon the number of record values attained. We note here that
for the values b = 0:25, 0:5 and 0:75 the percentages of record values observed
were approximately 33, 50 and 64% for N�0;1� errors, and very similar for
the standard uniform.

The final columns in both Tables 1 and 2 summarize the results of some
bootstrap experiments for estimation of the variances of the estimators b̂ and
ã. From each combination of n and b reported above, 10 samples were se-
lected and 100 bootstrap subsamples were taken from each of these by draw-
ing �Xi+a�∗ values from the distribution G̃ that was computed for each of the
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samples. The variances of the estimators from each of the bootstrap samples
were computed and then averaged across the 10 trials and are reported as
the standard deviations shown in the final columns. The individual bootstrap-
estimated variances were found to vary over only a very narrow range across
the 10 trials in every case that we examined, and, as may be seen in the tables,
they provide excellent estimates for the sampling variability of the estimates
involved.

Finally, in Figure 1 we provide a summary of an analysis of the world record
times for the men’s one mile run using the methods that have been presented
in this paper. Our starting point was a data set of the 121 yearly best times
for the years 1860–1980 which was kindly supplied to us by Sidney Resnick.
With the value for 1860 included, this data set comprises 34 record values,
and these 34 values (together with the years in which they occurred) are the
data on which our analysis was based. Although there is some evidence of
slight nonlinearities in the trend function of this series and some evidence
of a modest decline in variability over the years, our analysis was based on
the full data set mentioned. The line drawn in the figure is based on the
least-squares estimator b̂ for the slope and the estimator ã of (2.9) for the in-
tercept computed without dropping any initial values and using the monotone
distribution function G̃. (Actually, the computations were first carried out us-

Fig. 1. Linear trend function fitted to the 34 � yearly� record values for men’s one mile run, 1860–
1980. The quadratic curves are bootstrap-determined �pointwise� confidence bands for the trend
function. The bottom graph shows only the � yearly� record values on which the linear fit is based.
The top graph is identical but shows all yearly best times. The vertical scale is actual run time �in
seconds� less 3 min. Filled dots are subsequent � yearly� records, 1981–1994.
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ing linearly transformed data, mainly so as to render the trend positive, and
then transformed back for presentation in our figure.) We have also drawn
the upper and lower “2-sigma” confidence bands for the value of the linear
trend function “a+ bi” up to the year 2010. These quadratic confidence bands
are based on 250 bootstrap resamples and were computed in the usual way,
based on the bootstrap-estimated sampling variances (and covariance) for ã
and b̂. Finally, with the kind assistance of Cecil Smith of the Ontario Track
and Field Association, the three additional (yearly) record values that have
occurred between 1981 and December 1994 were determined. (These occurred
in 1981, 1985 and 1993.) These values are plotted in distinct (filled) points in
the figure and are all seen to lie just below the lower quadratic band. This
location is very reasonable for these records, considering that the straight line
shown is intended to estimate the mean for both the record and the nonrecord
(yearly) values combined.

4. Theoretical justification. Our first result describes the asymptotic
stationarity of the process �ei�, introduced in Section 2.2. To simplify notation
we suppress the parameter β. Assume that t�i� is nondecreasing in i, that for
each j ≥ 0 there exists s�j� ∈ �0;∞� such that t�i+j�−t�i� → s�j� as i→∞,
that for constants C;ξ > 0 and all integers i and j ≥ 1, t�i+ j� − t�i� ≥ Cjξ
and that E�max�X;0�1/ξ� <∞, where X has the distribution of an arbitrary
Xi. We collectively call these conditions �C1). Note particularly that the value
s�j� = ∞ is allowed and in fact will occur for each j 6= 0 if t is a nonlinear
polynomial trend.

Without loss of generality the sequence �Xi� is doubly infinite. In this
notation, let ε1; ε2; : : : denote random variables with joint distribution given
by

P�ε1 ≤ x1; : : : ; εn ≤ xn� = P
[

max
0≤j<∞

�Xk−j − s�j�� ≤ xk; 1 ≤ k ≤ n
]
:

It may be proved that under the assumption that for constants C;ξ > 0,
s�j� ≥ Cjξ and E�max�X;0�1/ξ� < ∞ [both implied by conditions �C1)], the
quantity max0≤j<∞�Xj − s�j�� is a.s. finite. Therefore, the stochastic process
�εj� is well defined.

Theorem 4.1. Under conditions �C1� the finite-dimensional joint distribu-
tions of the stochastic process �ei+j; j ≥ 1� converge to those of �εj; j ≥ 1� as
i→∞.

The simplest examples of the application of Theorem 4.1 are furnished by
the case where t is a polynomial. If the polynomial is of precise degree p,
then we may take ξ = p. If p ≥ 2, then the function s is degenerate, satisfy-
ing s�j� = ∞ for j ≥ 1 and s�0� = 0. This means that the process �εj� has
the same distribution as �Xj� and, in particular, is a sequence of indepen-
dent random variables. However, when p = 1, the process �εj� is genuinely
dependent.
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Next we show that if the trend function t�·; β� increases sufficiently rapidly
(in essence, faster than linear) and if the upper tail of the sampling distri-
bution is sufficiently light, then the rate of convergence of any estimator of
β under the classical regression model, with independent and identically dis-
tributed errors, is preserved when the estimator is applied instead to record-
value data. In order to state this result, assume that t�i; β� is nondecreasing
in i, that there exist constants C;η > 0 such that t�i; β0� − t�j;β0� ≥ Ciη
for all 1 ≤ j ≤ i − 1, where β0 = �β0

1; : : : ; β
0
ν� denotes the true value of β;

that E�max�X;0��1/η�+1� < ∞ and that the distribution of X is continuous
with support either �−∞;∞� or �x0;∞� for some x0 > −∞. Collectively we call
these conditions �C2). The restriction on the support of X is imposed merely to
exclude highly pathological cases that could not conceivably arise in practice.
(For details, see the proof of Theorem 4.2 in Section 5.) This restriction may
be removed at the expense of a very mild but rather unattractive condition
on the structure of the estimator β̂ = �β̂1; : : : ; β̂ν�. We may consider the esti-
mator, which we take here to be completely arbitrary, as a function of either
independent data �Yi�, defined in (2.1) or record-value data �Zi�, defined in
(2.2). Let �δn� denote a sequence of positive constants converging to zero as
n→∞. The assertion β̂k − β0

k = Op�δn� means that

lim
λ→∞

lim sup
n→∞

P
(∣∣β̂k − β0

k

∣∣ > λδn
)
= 0:

Theorem 4.2. Assume conditions �C2�, and let 1 ≤ k ≤ ν. Then β̂k�Y1; : : : ;
Yn� − β0

k = Op�δn� if and only if β̂k�Z1; : : : ;Zn� − β0
k = Op�δn�.

To illustrate the application of this result, note that in the increasing poly-
nomial regression model (2.3) and assuming that the coefficient βν of the
term of highest degree is nonzero, there exists C > 0 such that t�i; β0� −
t�j;β0� ≥ Ciν−2 for all 1 ≤ j ≤ i − 1 < ∞. Therefore, provided ν ≥ 3 and
E�max�X;0�ν/�ν+1�� <∞, conditions �C2) hold.

It is straightforward, using methods employed in the proof of Theorem 4.2,
to show that for a wide range of specific estimator types and under conditions
�C2), the asymptotic distribution of β̂ is the same no matter whether the data
used are �Y1; : : : ;Yn� or �Z1; : : : ;Zn�. More specifically, if the trend function
consists of a sum of terms of the form biα, where α; b > 0 and the α’s are
known, then the parameters b may be estimated consistently by least squares,
minimizing the function S�β� defined in (2.4). Such estimators satisfy central
limit theorems. The asymptotic variance of b̂ is identical in the respective
cases where the data �Yi� or �Zi� are used if and only if the largest value of
α in the series representation of t�i; β� is strictly greater than 1. This result
also applies to cases where some b’s are negative, provided that the trend is
eventually strictly increasing in asymptotic proportion to const × iα, where
α > 0 denotes the largest exponent in the series. If the trend includes an
intercept term, then that too may be estimated consistently by least squares if
and only if the largest α exceeds 1. The principal regularity condition needed
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is that the distribution of X have sufficiently many finite moments, their
number increasing with decreasing value of the largest α.

Of course, conditions �C2) specifically exclude the case of a linear trend,
which we consider next. Assume that the trend is given by t�i; β� = a + bi,
where b > 0, and that E�X� = 0 and

E�max�X;0�4+δ� +E�max�−X;0��3/2�+δ� <∞
for some δ > 0. Collectively we call these conditions �C3). Let â, b̂ and σ2 be
given by (2.5) and (2.6), and put εi = max−∞<j≤i�Xj−b�i−j�� for−∞ < i <∞
and a′ = a + E�ε0�. (In the special case of a linear trend, this definition of
εi coincides with the definition of their distributions given more generally
just prior to Theorem 4.1.) Conditions �C3) are sufficient to ensure absolute
convergence of the series used to define σ2 in (2.6).

Theorem 4.3. Under conditions �C3), â − a′ and b̂ − b are asymptotically
normally distributed with zero means and variances 4n−1σ2 and 12n−3σ2,
respectively.

It is a little curious that Theorem 4.3 does not require the assumption
that the variables Xi have finite second moment. This condition is needed for
classical limit theory based on the “ideal” data �Yi�, rather than on the records
�Zi�. That it is not needed here (although an assumption more stringent than
finite second moment is required on the upper tail) is a consequence of the
manner in which distribution tails are distorted—with weight shifted from
the lower to the upper tail—by the operation of taking maxima.

Asymptotic theory for the consistent estimator of a, defined in (2.9), may
be developed as a corollary of that for estimating the marginal distribution H
of the stationary process �εi + a; −∞ < i < ∞� and so we treat the latter
problem first. Put

�4:1� Ĥ�x� = n−1
n∑
i=1

I�Zi − b̂i ≤ x�;

where b̂ is defined in (2.5). We claim that, on the space D�−λ; λ� of right-
continuous functions with left-hand limits, mapping the interval �−λ; λ� (for
arbitrary λ > 0) into the real line, the stochastic process n1/2�Ĥ − H� ∈
D�−λ; λ� converges weakly to a process H whose distribution we now define.
The conditions that we shall impose are sufficient to ensure that h ≡ H′ is
well defined, bounded and continuous on �−∞;∞�, and that for all x1; x2 ∈ R,
the series

π�x1; x2� ≡
∞∑

i=−∞
�P�ε0 ≤ x1; εi ≤ x2� −H�x1�H�x2��

converges absolutely. Let ζ1�·� and ζ2 denote, respectively, a Gaussian process
with zero mean whose covariance function is given by π, that is,

cov�ζ1�x1�; ζ1�x2�� = π�x1; x2�
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and a Normal random variable with zero mean and variance 3σ2, stochasti-
cally independent of ζ1�·�. Define H �x� = ζ1�x�+ζ2h�x�. The second term here
represents the contribution to the limit of Ĥ that arises from employing an
estimator of b, rather than the true value, in definition (4.1). Under the con-
ditions below, �π�x1; x2�−π�x1; x1�� = O��x1−x2�� as x2 → x1, which ensures
continuity of the process ζ1�·�.

Assume that for some x0 > 0 we have P��X� < x0� = 1, that the dis-
tribution of X is absolutely continuous with a bounded, continuous density
and satisfies E�X� = 0 and of course that the trend function t is given by
t�i; β� = a+bi, where b > 0. We call these conditions �C4). There is no serious
difficulty in substantially weakening the assumption of a bounded X distri-
bution in Theorem 4.4, by first truncating the variables both above and below
at levels depending on n and then showing that the chosen truncation does
not affect the first-order asymptotic theory. However, such weakening would
prove particularly inconvenient in later work. For this reason we have chosen
to work here, too, with the more stringent assumption, although it would be
enough here to ask that E��X�k� <∞ for k > 0 sufficiently large.

Theorem 4.4. Under conditions �C4� and for each λ > 0, the process

n1/2�Ĥ−H� converges weakly on D�−λ; λ� to H .

Next we consider properties of the estimators Ĝ and µ̂r, defined in (2.7) and
(2.8), respectively, of the distribution and moments ofX+a. First we define the
limiting distributions of these quantities, the former in terms of the stochastic
process to which it converges. Let H be as defined two paragraphs above and
put

G �x� =H�x+ b�−1�H �x� −G�x�H �x+ b��;
which is a Gaussian process with zero mean. Let

τ2
r = r2

∫ ∞
0

∫ ∞
0
�xy�r−1 cov���−1�rG �−x�−G �x��; ��−1�rG �−y�−G �y���dxdy:

Theorem 4.5. Under conditions �C4� and for each λ > 0, the process

n1/2�Ĝ−G� converges weakly on D�−λ; λ� to G . Furthermore, n1/2�µ̂r−µr� is
asymptotically normally distributed with zero mean and variance τ2

r .

Taking r = 1 in this result we see that ã is asymptotically Normal
N�0; n−1τ2

1�.
One corollary of the invariance principle for the process Ĝ is that, under the

hypothesis that the distribution of X is symmetric, the estimator ǎ discussed
in Section 2.5 is root-n consistent for a. Indeed, we may state a central limit
theorem as follows.

Corollary 4.5.1. Assume conditions �C4�, and thatG�a+x�+G�a−x� = 1
for all x. Write g = G′ for the density corresponding to G. Then ǎ is asymptoti-
cally normally distributed with zero mean and variance n−1g�a�−2 var�G �a��.



2670 A. FEUERVERGER AND P. HALL

The assumption that the distribution of X has bounded support is used
in a number of ways in the proof of Theorem 4.5 and seems difficult to relax
without a substantial amount of additional work. In particular, the assumption
implies that the integral in the definition of µ̂r may be taken over only a finite
range, without affecting the validity of our results. Additionally, it enables us
to disregard the possibility that, in the definition of G �x� and in technical
arguments related to that definition, the denominator term H�x+ b� is close
to zero. To appreciate why, note that H�x+b� is bounded above zero for values
of x such that H�x� > 0. This property fails if the distribution of X is not
bounded below.

Nevertheless, it is possible to establish rates of consistency of our estimators
of G and µr under weaker conditions than compact support of the X distribu-
tion, even though central limit theorems and weak convergence results seem
out of reach at present. In particular, if the distribution of X has all moments
finite, then it may be shown that the estimators of G, a and µr converge at
rate n−�1/2�+δ (the former uniformly on compacts) for each δ > 0.

The asymptotic variance of Ĝ�x� equals n−1τ�x�2, where

τ�x�2 =H�x+ b�−2[π�x; x� +G�x�2π�x+ b; x+ b�
− 2G�x�π�x; x+ b� + 3σ2h�x�2�1−G�x��2

]
:

Note particularly that both τ�x�2 and τ2
r depend on the unknown density h of

the distribution of εi + a. The latter may be estimated by kernel methods, for
example, as

ĥ�x� = �nl�−1
n∑
i=1

K��Zi − b̂i− x�/l�;

where l and K denote a bandwidth and kernel function, respectively. Alter-
natively, the bootstrap may be used. Our last result, which is stated without
proof since the argument is straightforward but somewhat tedious, asserts the
consistency of the bootstrap method. We assume conditions �C4) and that the
density f = F′ of the distribution of X is Hölder continuous; we shall refer
collectively to these assumptions as conditions �C5).

Theorem 4.6. Under conditions (C5�, the bootstrap estimators of τ�x�2 and
τ2
r are consistent.

5. Proofs.

Proof of Theorem 4.1. Observe that for any j0 ≥ 1 and i ≥ j0,

pi�x� ≡ P�ei+1 ≤ x1; : : : ; ei+n ≤ xn�

= P
[

max
0≤j≤i+k−1

�t�i+ k− j� − t�i+ k� +Xi+k−j� ≤ xk; 1 ≤ k ≤ n
]

= pij01�x� − pij02�x�;
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where

pij01�x� = P
[

max
0≤j≤j0

�t�i+ k− j� − t�i+ k� +Xi+k−j� ≤ xk; 1 ≤ k ≤ n
]

and

0 ≤ pij02�x� ≤
i+n−j0∑
j=1

P�t�j� − t�i+ 1� +Xj > min�x1; : : : ; xn��:

By hypothesis, t�i+ 1�− t�j� ≥ C�i+ 1−j�ξ for j ≤ i+ 1, and so if j0 ≥ n+ 1
is so large that C�j0 − n�ξ + 2 min�x1; : : : ; xn� > 0, then

pij02�x� ≤
∞∑

j=j0−n

{
1−F

( 1
2Cj

ξ
)}
:

The assumption that E�max�X;0�1/ξ� < ∞ is sufficient to ensure that the
series here converges and in fact that the series may be made less than an
arbitrary δ > 0 by choosing j0 = j0�δ� sufficiently large. Therefore,

�5:1� lim
j0→∞

lim sup
i→∞

pij02�x� = 0:

Since F is continuous and t�i+ j� − t�i� → s�j� as i→∞, then

pij01�x� → pj01�x� ≡ P
[

max
0≤j≤j0

�Xk−j − s�j�� ≤ xk; 1 ≤ k ≤ n
]

as i→∞. Now, pj01�x� = p∞1�x� + pj02�x�, where

p∞1�x� ≡ P
[

max
0≤j<∞

�Xk−j − s�j�� ≤ xk; 1 ≤ k ≤ n
]
;

0 ≤ pj02�x� ≤
∞∑

j=j0+1

P�X− s�j� > min�x1; : : : ; xn��

≤
∞∑

j=j0+1

{
1−F

( 1
2Cj

ξ
)}
;

the latter inequality following for sufficiently large j0 and using the fact that
s�j� ≥ Cjξ. Once again, the finiteness of E�max�X;0�1/ξ� ensures that the
series on the right-hand side converges and may be made arbitrarily small
by selecting j0 sufficiently large. Indeed, limj0→∞pj02�x� = 0. Theorem 4.1
follows from this result and (5.1).

Proof of Theorem 4.2. We prove only that β̂k�Y1; : : : ;Yn�−β0
k = Op�δn�

implies β̂k�Z1; : : : ;Zn� − β0
k = Op�δn�. Recall that β0 denotes the true value
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of β and observe that for any m ≥ 1,

P�Zi 6= Yi for some i ≥m�

= P
[

max
1≤j≤i−1

{
Xj + t�j;β0� − t�i; β0�

}
> Xi for some i ≥m

]

≤
∞∑
i=m

i−1∑
j=1

P
{
Xj + t

(
j;β0)− t

(
i; β0) > Xi

}

≤
∞∑
i=m

i−1∑
j=1

P
(
Xj −Xi > Ci

η
)
=
∞∑
i=m
�i− 1�P

(
X1 −X2 > Ci

η
)

≤ B
∫ ∞
mη
x�2/η�−1P�X1 −X2 > x�dx ≡ p�m�;

(5.2)

say, where the constant B does not depend on m. Therefore,

P�β̂k�Z1; : : : ;Zn� 6= β̂k�Z1; : : : ;Zm;Ym+1; : : : ;Yn�� ≤ p�m�
for all 1 ≤m ≤ n <∞. Hence, for each fixed m ≥ 1,

lim
λ→∞

lim sup
n→∞

P
{∣∣β̂k�Z1; : : : ;Zn� − β0

k

∣∣ > λδn
}
≤ p�m� + q�m�;

where

q�m� ≡ lim
λ→∞

lim sup
n→∞

P
{∣∣β̂k�Z1; : : : ;Zm;Ym+1; : : : ;Yn� − β0

k

∣∣ > λδn
}
:

In view of the assumption thatE�max�X;0��1/η�+1� <∞, the integral defining
p�m� converges and p�m� → 0 as m→∞. Hence, it suffices to prove that for
each m ≥ 1, q�m� = 0.

Suppose the latter result is false. Then there exists m ≥ 1, ε > 0 and a
sequence λn→∞ such that, along a subsequence �ni�,
�5:3� P

{∣∣β̂k�Z1; : : : ;Zm;Ym+1; : : : ;Yn� − β0
k

∣∣ > λnδn
}
≥ ε:

For real numbers x1; : : : ; xm, define

πn�x1; : : : ; xm� = P
{∣∣β̂k�x1; : : : ; xm;Ym+1; : : : ;Yn� − β0

k

∣∣ > λnδn
}
:

Since β̂k�Y1; : : : ;Yn� − β0
k = Op�δn�, then E�πn�Y1; : : : ;Ym�� → 0. Hence,

any given subsequence of n = 1;2; : : : contains a sub-subsequence such that
πn�Y1; : : : ;Ym� → 0 almost surely as n → ∞ through that subsequence.
Take the subsequence to be �ni� and let the sub-subsequence be �ni�j��. Now,
πni�j��Y1; : : : ;Ym� → 0 implies πni�j��Z1; : : : ;Zm� → 0, both convergences be-
ing almost sure. [Here we need the assumption that the distribution of X is
continuous with support �−∞;∞� or �x0;∞�, since it ensures that the support
Sx of X�m� = �X1; : : : ;Xm� equals the support Sy of Y�m� = �Y1; : : : ;Ym�.
Without the assumption we can produce particularly perverse estimators for
which the theorem fails. Indeed, if the distribution of X has atoms or is con-
tinuous with an appropriate support not equal to �−∞;∞� or �x0;∞�, then, by
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constructing β̂�u1; : : : ; un� to take the value β0+�1; : : : ;1� for particular com-
binations of �u1; : : : ; um� that lie in one of Sx and Sy but not in the other, we
may ensure that the theorem is violated.] Furthermore, πn ≤ 1. It follows that
E�πni�j��Y1; : : : ;Yn�� → 0 as j→∞. This contradicts (5.3) and so establishes
the theorem. 2

Proof of Theorem 4.3. We derive only the central limit theorem for b̂,
since that for â may be established similarly. Without loss of generality, the
process �Xi� is doubly infinite. The notation below is consistent with that
given earlier if we put a = 0 and drop the assumption that E�X� = 0:

ei = max
1≤j≤i
�Xl − b�i− j��; εi = max

−∞<j≤i
�Xj − b�i− j��;

1i = max
−∞<j≤0

�Xj − b�i− j��; V = max
−∞<j≤0

(
Xj + 1

2bj
)
;

s2 =
n∑
i=1

�i− ī�2; Y′i = bi+ εi:

Let b̂′ denote the version of b̂ in which �Yi� is replaced by �Y′i�. Our first task
is to prove that

�5:4� b̂′ − b̂ = op�n−3/2�:

Note that 0 ≤ εi−ei = max�1i−ei;0�, 1i ≤ V− 1
2bi and ei ≥Xi. Therefore,

s2�b̂′ − b̂� =
∣∣∣∣
n∑
i=1

�i− ī��εi − ei�
∣∣∣∣ ≤

n∑
i=1

�i− ī��εi − ei�

≤ 1
2�n− 1�

n∑
i=1

max
(
V− 1

2bi−Xi;0
)
:

(5.5)

The finiteness of E��X�3/2� implies that for each c; d > 0,

�5:6�
n∑
i=1

E�max�c− di−X;0�� = o�n1/2�:

Result (5.4) follows from (5.5) and (5.6).
In view of (5.4) it suffices to establish the claimed central limit theorem for

b̂′ rather than b̂. Put ε′i = εi −E�εi� and Si =
∑

1≤j≤i ε
′
j. Let θn�t� denote the

stochastic process obtained by interpolating linearly among the points

�0;0�; �1/n;S1/n
1/2�; : : : ; �i/n;Si/n1/2�; : : : ; �1; Sn/n1/2�:

Write W for a standard Brownian motion on the interval �0;1� and note that

s2b̂′ =
n∑
i=1

�i− ī�ε′i = 1
2�n+ 1�Sn −

n∑
i=1

Si:

The theorem will follow from this representation if we prove that θn converges
weakly to σW in the sense of convergence of continuous functions on the
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interval �0;1� equipped with the uniform metric. For that purpose it suffices
to prove that, with Fi denoting the sigma field generated by �X−i;X−i−1; : : :�,

�5:7�
n∑
i=1

[
E
{
E�ε′0�Fi�

}2]1/2
<∞;

n−1E
(
S2
n

)
→ σ2 and n−3s2 → 1/12. See Corollary 5.4 of Hall and Heyde

(1980). We shall outline only the derivation of (5.7).
Put

ε1i = max
−∞<j≤−i

�Xj + bj�; ε2i = max
−i+1≤j≤0

�Xj + bj�:

Then ε0 = max�ε1i; ε2i� and

0 ≤ E�ε0�Fi� −E�ε2i� = E��ε1i − ε2i�I�ε1i > ε2i��ε1i�

≤ E��ε1i −X0�I�ε1i > X0��ε1i� =
∫ ε1i

−∞
F�x�dx:

Therefore,

E�E�ε′0�Fi��2 ≤ E�E�ε0�Fi� −E�ε2i��2

≤
∫ ∫

P�ε1i > max�x1; x2��F�x1�F�x2�dx1 dx2

≤ C1

∫
P�ε1i > x�F�x�max�x;F�x��dx;

(5.8)

where the constants C1;C2; : : : do not depend on i and unqualified integrals
are over the entire real line. Now,

P�ε1i > x� ≤
−i∑

j=−∞
P�Xj + bj > x� =

∞∑
j=i
P�X > x+ bj�:

Therefore, since E�max�X;0�4+δ� <∞,

P�ε1i > x� ≤ C2





∞∑
j=i
�x+ j�−�4+δ�; if x > 0;

i−�2+δ�; if − 1
2bi < x ≤ 0;

1; if x ≤ − 1
2bi:

The assumption E�max�−X;0��3/2�+δ� <∞ implies that

F�x� ≤ C3�max�1;−x��−��3/2�+δ�
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and so by (5.8),

E�E�ε′0�Fi��2 ≤ C4

[ ∞∑
j=i

∫ ∞
0
x�x+ j�−�4+δ� dx

+ i−�2+δ�
∫ 0

−bi/2
�max�1;−x��−�3+2δ� dx

+
∫ −bi/2
−∞

�max�1;−x��−�3+2δ� dx

]

≤ C5i
−�2+δ�:

This bound leads directly to (5.7). 2

Proof of Theorem 4.4. We adopt notation from the proof of Theorem 4.3
and in particular take a = 0 and drop the assumption that E�X� = 0. Since
�X� ≤ x0, then Zi = Y′i for all i ≥ m0, where m0 denotes the integer part of
�2x0/b�+ 1. This result plays a role here similar to that assumed by (5.2) and
allows us to assert that with ζ2n = n3/2�b̂− b� and

Ĥ1�x;u� = n−1
n∑
i=1

I�εi ≤ x+ in−3/2u�

we have

�5:9� �Ĥ�x� − Ĥ1�x;U�� ≤ n−1m0:

Put

H1�x;u� = E�Ĥ1�x;u�� = n−1
n∑
i=1

P
(
ε0 ≤ x+ in−3/2u

)

=H�x� + 1
2n
−1/2uh�x� + o

(
n−1/2);

(5.10)

the o�n−1/2� term being of that size uniformly in �x�; �u� ≤ λ for each fixed
λ > 0. Let ζ3n�x;u� = n1/2�Ĥ1�x;u� −H�x��. The next step in our proof is to
establish a joint invariance principle for the pair �ζ3n�·; ·�; ζ2n� on the space
D��−λ; λ�×�−λ; λ��×�−∞;∞�, where D��−λ; λ�×�−λ; λ�� denotes the space
of right-continuous functions with left-hand limits, from �−λ; λ� × �−λ; λ� to
the real line, λ is any positive number and the function space is equipped with
the uniform metric.

It is straightforward to prove that ζ1n�x;u� ≡ n1/2�Ĥ1�x;u� −H1�x;u��
converges weakly, as a stochastic process defined on D��−λ; λ� × �−λ; λ��, to
the process ζ1�x� defined just prior to Theorem 4.4 (thus, the effect of u dis-
appears in the limit) and that this convergence is joint with that of ζ2n to 2ζ2.
The method of proof of convergence of finite-dimensional distributions of ζ1n,
jointly with that of the one-dimensional “process” ζ2n, utilizes m0 dependence
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of the summands in the definitions of both quantities. Tightness of ζ1n as a
stochastic process may be established by decomposing ζ1n in the obvious way
into a sum of m0 distinct processes, each having independent summands, es-
tablishing tightness of these component processes by following essentially the
standard route for proving tightness in the convergence of an empirical pro-
cess to its Gaussian limit (the only variant being a minor modification to take
care of the appearance of u as well as x) and combining the results to obtain
tightness of the original process ζ1n, noting that the maximum of a sum does
not exceed the sum of the maxima of individual summands.

This argument establishes weak convergence of the stochastic process
�ζ1n�x;u�, ζ2n� to �ζ1�x�;2ζ2�. In view of (5.10), this implies convergence of
ζ3n�·; ζ2n� to ζ1�·� + ζ2h�·�. The theorem follows directly from that result and
(5.9). 2

Proof of Theorem 4.5. Define H̃�x� = n−1∑
1≤i≤n I�Zi−b̂�i+1� ≤ x−b�.

An argument similar to that in the proof of Theorem 4.4 may be employed to
show that under conditions �C4), n1/2�Ĥ − H̃� → 0 in probability, uniformly
on the interval �−λ; λ� for each λ > 0. It follows that

�5:11� Ĝ�x� = Ĥ�x�/H̃�x+ b� = G�x� +J�x� + op�n−1/2�

uniformly in x ∈ S δ
x , where S δ

x denotes the set of all points that lie within a
sufficiently small distance δ > 0 of at least one point in the support Sx of X
and

J�x� =H�x+ b�−1�Ĥ�x� −H�x� −G�x��Ĥ�x+ b� −H�x+ b���:

Therefore, recalling the definition of µ̂r at (2.8) and remembering that (again
because of the compact support of the X distribution) the integral there may
be taken over only a finite range, we see that

�5:12� µ̂r − µr = r
∫ ∞

0
xr−1��−1�rJ�−x� −J�x��dx+ op�n−1/2�:

The theorem follows directly from (5.11) and (5.12). 2

Maximum likelihood estimation. We treat the case of a linear trend t�i� =
a+ bi, when a model is assumed for the distribution of X. Our proof outline
here will show that if the error distribution is misspecified but the assumption
of a linear trend is correct, then the maximum likelihood estimator (MLE) of
a converges in probability to a number different from a and that the MLE of
b is consistent but is so heavily biased that it converges at rate n−1, not the
n−3/2 suggested by the information matrix. By way of contrast, distribution-
free estimators of a and b suggested in Section 2 converge to the true values
at rates n−1/2 and n−3/2, respectively.

Let the assumed density of the error distribution be f�x� = c exp�−l�x��,
where c > 0 is a constant and l is a symmetric, nonnegative loss function. We
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particularly have in mind the case where l�x� = �x�α for some α > 0. Let F
denote the associated distribution function and put l1�x� = l�x� − log F�x� >
0. Employing both the record values Zi and the record indicators Ii (where
Ii = 0 or 1 according as Zi = Zi−1 or Zi > Zi−1), the negative log likelihood
multiplied by n−1 equals

L �a; b� = n−1
n∑
i=1

�l�Zi − a− bi� + �1− Ii�l1�Zi − a− bi��;

except for a constant not depending on a or b; see Smith [(1988), equation
(2.3)]. Write a0, b0 for the true values of a, b and put δa = a−a0, δb = n�b−b0�
and ε = max−∞<j≤0 �Xj + bj�. Then L �a; b� is asymptotic to L1�δa; δb� as
n→∞, where

L1�u; v� =
∫ 1

0
�E�l�ε− u− vx�� + pE�l1�ε− b− u− vx���dx:

If �u0; v0� denotes the minimizer of L1�u; v�, then â−a0 → u0 and n�b̂−b� →
v0 in probability as n→∞. Since the actual distribution of ε is arbitrary, we
may select it so that δa 6= 0 6= δb.
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