
The Annals of Statistics
1996, Vol. 24, No. 6, 2499–2512

A UNIVERSALLY ACCEPTABLE SMOOTHING FACTOR FOR
KERNEL DENSITY ESTIMATES

By Luc Devroye1 and Gábor Lugosi2

McGill University and Technical University of Budapest

We define a minimum distance estimate of the smoothing factor for
kernel density estimates, based on a methodology first developed by Yatra-
cos. It is shown that if fnh denotes the kernel density estimate on Rd for
an i.i.d. sample of size n drawn from an unknown density f, where h is
the smoothing factor, and if fn is the kernel estimate with the same ker-
nel and with the proposed new data-based smoothing factor, then, under a
regularity condition on the kernel K,

sup
f

lim sup
n→∞

E
∫
�fn − f�dx

infh>0 E
∫
�fnh − f�dx

≤ 3:

This is the first published smoothing factor that can be proven to have this
property.

1. Introduction. We are given an i.i.d. sample X1; : : : ;Xn drawn from
an unknown density f on Rd. We consider the Akaike–Parzen–Rosenblatt
density estimate

fnh�x� =
1
n

n∑
i=1

Kh�x−Xi�;

where K ≥ 0 is a fixed density (the kernel), Kh�x� = �1/hd�K�x/h� and h > 0
is the smoothing factor [Akaike (1954), Parzen (1962) and Rosenblatt (1956)].
Much ink has been spilled regarding the choice of h as a function of the data
[for surveys, see Devroye and Györfi (1985), Marron (1988, 1989), Park and
Turlach (1992), Turlach (1993), Cao, Cuevas and González-Manteiga (1994) or
Berlinet and Devroye (1994)]. Despite the flurry of activity, one has not been
able to date to exhibit a single data-dependent smoothing factor H (in which
the dependence on X1; : : : ;Xn is dropped) for which, for a finite constant γ,

sup
f

lim sup
n→∞

E
∫
�fnH − f�

infh E
∫
�fnh − f�

≤ γ:

This problem has been mentioned and discussed in the introduction of Dev-
roye (1987) and in the more recent papers of Berlinet and Devroye (1994)
and Devroye (1989, 1994). Particular choices of smoothing factors may do if
the supremum above is restricted to a subclass of well-behaved densities. In
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those cases, one often has γ = 1. For example, if f is restricted to a class
of univariate densities in which only a translation and scale parameter is
unknown, using h = anσ̂ for a function an (depending on the family), where
σ̂ is a data-based estimate of the scale factor, will do [see Deheuvels (1977a,
1977b) or Deheuvels and Hominal (1980)]. The smoothing factor h can also be
based on a plug-in of estimates of unknown functionals into a given formula.
This method has the given property if the supremum is taken over classes of
univariate densities restricted by smoothness and small tails [Hall and Wand
(1988)]. The double kernel estimate [Devroye (1989)] satisfies the property
mentioned above when the supremum is restricted as in the work of Hall and
Wand. Except for trivially restricted classes of densities, none of the L2-cross-
validated estimates in the literature [see Rudemo (1982), Bowman (1984) or
Stone (1984) for the early papers on this] possesses the property mentioned
above.

In this paper, we present the first smoothing factor that is known to be
universally expedient in the sense defined above. The estimate may not be
best possible by other criteria, and we are sure improvements will follow soon.
Nevertheless, we believe that the mere existence of such a smoothing factor
is worth reporting.

2. Relationship with minimax theory. The performance of an estimate
depends on f. It is quite a task to compare estimates with one another, because
of this dependence. To aid in this task, one could consider the minimax error

Mn�F � =def inf
f̂

sup
f∈F

E
∫
�f̂− f�;

where f̂ is an estimate and F is a given class of densities. The error Mn�F � is
the error any estimate has to make on at least one density in F . Unfortunately,
if F is too large, Mn�F � does not tend to 0 with n. Examples are given in
the minimax chapters of Devroye and Györfi (1985) or Devroye (1987). They
include the class of all densities on �0;1� bounded by 2, or all the unimodal
densities with infinitely many absolutely continuous derivatives, or the class
of all monotone densities on �0;∞� bounded by 1. The same is true for all
convex-shaped densities on �0;1�, or the class of all Lipschitz densities on
the real line with given Lipschitz constant. The class of all densities that are
normal scale mixtures is also rich in the sense that lim infn→∞Mn�F � > 0.
For smaller classes F , Mn�F � tends to 0 and one may meaningfully look for
estimates fn for which

sup
f∈F

E
∫
�fn − f� ≈Mn�F �;

where ≈means either “∼” or “= O�·�.” For key minimax bounds, see, for exam-
ple, Bretagnolle and Huber (1979), Ibragimov and Khasminskii (1982), Birgé
(1985, 1986, 1987a, b, 1989) and Assouad (1983). A survey and additional re-
sults can be found in Devroye (1987) and Hall (1989). Donoho, Kerkyacharian
and Picard (1995) review more recent work.
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Estimates that achieve the above minimax optimality may not necessarily
adapt well to all densities in the class. For adaptation, we may follow ideas
along the lines of those shown, for example, by Low (1992), and look at ratios
like

sup
F ∈G

lim sup
n→∞

supf∈F E
∫
�fn − f�

inf f̂ supf∈F E
∫
�f̂− f�

;

where G is a class of classes. For example, if F is the class of Lipschitz
densities with constant C and support on �0;1�, G may be the class of all F ’s
with all possible values of C. If the ratio above remains bounded, fn truly
“adapts” to all classes F in G . Even though every F must be “small” (by our
remark above), if we nest them, the union of F ’s may be sufficiently large,
but we will not really get a lot of information for the behavior with respect to
all densities.

In this paper, we really want to focus on density estimation without restric-
tions on the densities. As we will see, this can be done if we concentrate on a
particular class of estimates, such as the kernel estimates (which are known
to be optimal in several senses, and are optimal for the minimax error over
several smoothness classes). The only problem with the kernel estimate is the
selection of the bandwidth h. If we let F denote the class of all densities on
Rd and let fnH denote a kernel estimate with data-based bandwidth H, we
look at

sup
f∈F

lim sup
n→∞

E
∫
�fnH − f�

infh E
∫
�fnh − f�

:

The boundedness of this supremum shows that the bandwidth selector works
well for all f, without exception. As pointed out by a referee, there is a much
stronger uniform criterion one might want to keep bounded:

lim sup
n→∞

sup
f∈F

E
∫
�fn − f�

infh E
∫
�fnh − f�

:

This criterion is very strong as it measures how well the bandwidth selector
adapts to every density in f uniformly over all f. For the estimate given
in this paper, this limit supremum is ∞ because several parameters of the
bandwidth selector including a given interval range �an; bn� (defined below)
are picked as a function of n and not as a function of the data, as they should.
Additional adaptation (and further analysis) is necessary. Thus, this paper
does not answer the question of the boundedness of the last limit supremum.
However, if F is a given small subclass, the limit supremum is known to
stay bounded. All that is needed are precise uniform performance bounds on
the L1 error. Under sufficient smoothness and tail assumptions on f, the
behavior of the L1 error is well known. Bandwidth selectors for which the
last limit supremum remains bounded for such classes may be based on plug-
in [Hall and Wand (1988)] or on the double kernel method [Devroye (1989)].
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For the early work along these lines, see the adaptive bandwidth selector of
Bretagnolle and Huber (1979).

3. The estimate. In our estimate, we split the data set into a test set
of size m � n and a remainder. Then we use Yatracos’ minimum distance
projection of the empirical measure based on these m points to the class of
densities defined by the kernel estimates based on the remaining n−m points
to find an optimal h [Yatracos (1985)].

Let m < n be a positive integer, let K be a nonnegative kernel with∫
K�x�dx = 1, and let Fn be the class of densities

fn−m;h�x� =
1

n−m
n−m∑
i=1

Kh�x−Xi�;

with h ∈ �an; bn�, where the nonnegative numbers an; bn will be specified
later such that the optimal smoothing factor eventually falls in �an; bn� for all
densities. Next we cover the class Fn by finitely many densities as follows: let
δn > 0 be a parameter to be specified later, and let h1 = an and hi = hi−1�1+
δn� for all i = 2; : : : ;N, whereN is the largest integer with an�1+δn�N−1 ≤ bn.
The finite class of densities �fn−m;hi : i = 1; : : : ;N� is denoted by Gn.

Let µm be the empirical measure defined by the rest of the data points:
Xn−m+1; : : : ;Xn, that is, for any Borel set A ⊆ Rd,

µm�A� =
1
m

n∑
i=n−m+1

IA�Xi�;

where IA denotes the indicator function ofA. As is well known, theL1 distance
is equivalent to the twice the total variation distance. If we are to use the
empirical measure, we would thus be tempted to select h so as to minimize
the total variation

T =def sup
A

∣∣∣∣
∫
A
fn−m;h − µm�A�

∣∣∣∣:

As µm is an atomic measure,T ≡ 2 for all h. Following a clever idea of Yatracos
(1985), we take the supremum instead over a specially picked rich class of
subsets A , defined as the family of sets

�x: fn−m;hi�x� > fn−m;hj�x��; i; j ≤N:

The estimate fn is defined to be that fn−m;hi ∈ Gn for which

sup
A∈A

∣∣∣∣
∫
A
fn−m;hi − µm�A�

∣∣∣∣

is minimal. If the minimum is not unique, we choose among the minimizing
densities according to a prespecified rule, for example, we choose the one with
smallest index. Note that, in any case, our estimate optimizes over a given
finite set, and is thus defined with computional efficiency in mind.
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Choice of the parameters. It helps at this stage to pin down choices for an,
bn and δn. We stress that our choices are surely not the only ones—they make
the remainder a bit more readable. The choice is determined by the choice of
the kernel K. We assume the following: a kernel is said to be elegant if it is
nonnegative, if it is Lipschitz of constant C [i.e., �K�x� −K�y�� ≤ C�x − y�
for all x;y] and if K = 0 outside �−1;1�d. Then define an = e−n, bn = en,
δn = c/

√
n for a fixed constant c. This class contains the standard Deheuvels

kernel that is optimal in Rd and is of the form C′�1−�x�d�+. For more general
classes, we will show how to take the parameters in remarks below.

A computational remark. In most univariate cases, the sets A above are
finite unions of intervals. The number of such intervals can be rigorously con-
trolled if the kernel is polynomial on a compact set [such as with the celebrated
Epanečnikov–Bartlett kernel 3/4�1−x2�+]. The computations are much more
involved for d > 1, unless K is the indicator function of a unit square. The
class A has N2 members. A quick calculation shows that

N− 1 ≤ log�bn/an�
log�1+ δn�

≤ n�2+ δn�
δn

= n+ 2n3/2

c
:

A lower bound on the number of integrals over sets A (if we were to naively
minimize) would be of the order of n3. However, clever shortcuts are possible.

The set A . The set A cannot be replaced by the set of all rectangles of
Rd. This class is simply not rich enough, and Lemma 2 below would not be
valid.

4. The main result.

Theorem. Let K be an elegant kernel. Let an; bn be such that nan→ 0 and
bn → ∞. Assume that δn = c/

√
n for some constant c and that log�bn/an� ≤

c′na for some finite c′; a > 0. If
m

n
→ 0 and

m

n4/5 log n
→∞ as n→∞;

then the estimate fn defined above satisfies

sup
f

lim sup
n→∞

E
∫
�fn − f�

infh E
∫
�fn;h − f�

≤ 3:

This result is valid for any multivariate density. It may be possible to im-
prove the constant in the bound. With a bit of work, one may also be able to
replace fn in the result by fnH, where H is the smoothing factor used in fn.
The difference here is that fnH uses all n data points, while fn is the kernel
estimate based on H and X1; : : : ;Xn−m.

One may argue that the selected smoothing factor is not scale invariant.
This is easily taken care of by letting Mn denote the median of the

(
n−m

2

)
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distances �Xi−Xj�, 1 ≤ i, j ≤ n−m, and setting an =Mne
−n and bn =Mne

n.
As Mn is almost surely bounded away from 0 and ∞, one can verify that
the Theorem holds for this choice of interval. By not letting Mn depend on
Xn−m+1; : : : ;Xn, we are not jeopardizing Lemmas 1 through 3 below. The
remaining changes in the proof are minor and are left to the reader.

For convenience, we assumed that the kernel K is nonnegative. It is well
known, however, that some kernels taking negative values provide smaller
L1 errors for smooth densities. The above theorem is easily extended to such
kernels at the expense of further restrictions on the growth of m, depending
on the order of the kernel. The key properties required are those analogous
to Lemmas 1 and 5. Lemma 4 applies to bounded compact support negative
kernels as well. With these results in hand [see, e.g., Devroye (1988) for a
negative kernel version of Lemma 5], the proof may easily be modified to gen-
eralize the theorem for such kernels. We do not pursue this question further,
as this will add unnecessary noise to the development of the ideas.

Finally, there is quite a bit of freedom in the choice of all the parameters.
For example, δn does not have to tend to 0 at the rate 1/

√
n. Various constants

also need to be picked. For example, suitable data-based choices for an and bn
are necessary. It is clear that further analysis is needed to pin the parameters
down. We are afraid, however, that this can only be done by putting conditions
on the densities, and this is what we tried to avoid in the first place.

We prove the theorem by building on a series of lemmas.

5. Auxiliary results. We begin with a property of elegant kernels.

Lemma 1. If K is an elegant kernel, then, for any fn−m;h ∈ Fn, there is hi,
i ∈ �1; : : : ;N�, such that

∫ ∣∣fn−m;h − fn−m;hi
∣∣ ≤ C′δn;

where C′ = C2d
√
d+ d.

Proof. Clearly, for u > v > 0, u/v = b > 1,

�fn−m;u − fn−m;v� ≤
∫
�Ku −Kv� =

∫
�K−Kv/u� =

∫
�K�y� − bdK�by��dy

≤
∫
�K�y� −K�by��dy+

∫
�K�by� − bdK�by��dy

≤ C2d
√
d�1− b� + d�1− b�/b

≤ C′�1− b�:
Let hi be the smallest of the hj’s at least equal to h. Then, by the above,

∫ ∣∣fn−m;h − fn−m;hi
∣∣ ≤ C′

∣∣∣∣
hi − h
h

∣∣∣∣ ≤ C
′δn: 2

We have the following crucial property of the estimate.
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Lemma 2. For each density f and elegant kernel K, if δn = c/
√
n, C′ =

C2d
√
d+ d and fn ∈ Gn,

∫
�fn − f� ≤ 3 inf

h∈�an; bn�

∫ ∣∣fn−m;h − f
∣∣+ 5C′c√

n
+ 4 sup

A∈A

∣∣µm�A� −
∫
A
f
∣∣:

Proof. The class Gn is an infinite class of densities (kernel estimates)
covered by a finite number (N) of L1 balls of radius C′δn centered at the
densities in Fn (Lemma 1). A lemma of Yatracos (1985) [see Lemma 6.1 in
Devroye (1987)] states that, for any pair fnh and fnh′ in Gn, we must have

∫
�fnh − fnh′ � ≤ 4C′δn + 2 sup

A∈A

∣∣∣∣
∫
A
fnh −

∫
A
fnh′

∣∣∣∣:

Let f̄ be a member of Fn such that
∫
�f− f̄� ≤

∫
�f− g� for all g ∈ Fn:

Then
∫
�fn − f� ≤

∫
�f− f̄� +

∫
�fn − f̄�

≤
∫
�f− f̄� + 4C′δn + 2 sup

A∈A

∣∣∣∣
∫
A
fn −

∫
A
f̄

∣∣∣∣

≤
∫
�f− f̄� + 4C′δn + 2 sup

A∈A

∣∣∣∣
∫
A
fn − µm�A�

∣∣∣∣+ 2 sup
A∈A

∣∣∣∣µm�A� −
∫
A
f̄

∣∣∣∣

≤
∫
�f− f̄� + 4C′δn + 2 sup

A∈A

∣∣∣∣
∫
A
f̂− µm�A�

∣∣∣∣+ 2 sup
A∈A

∣∣∣∣µm�A� −
∫
A
f̄

∣∣∣∣
[
by the definition of fn, where f̂ ∈ Gn satisfies 2 supA∈A

∣∣∫
A f̂ −∫

A f̄
∣∣ ≤ C′δn; Lemma 1 guarantees that such an f̂ exists, since

by Scheffé’s theorem 2 supA∈A
∣∣∫
A f̂−

∫
A f̄

∣∣ ≤
∫
�f̂− f̄�

]

≤
∫
�f− f̄� + 4C′δn + 2 sup

A∈A

∣∣∣∣
∫
A
f̂−

∫
A
f̄

∣∣∣∣+ 4 sup
A∈A

∣∣∣∣µm�A� −
∫
A
f̄

∣∣∣∣

(by the triangle inequality)

≤
∫
�f− f̄� + 5C′c√

n
+ 4 sup

A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣+ 4 sup
A∈A

∣∣∣∣
∫
A
f̄−

∫
A
f

∣∣∣∣

(by the above property of f̂ and by the triangle inequality)

≤ 3 inf
h∈�an; bn�

∫ ∣∣f− fn−m;h
∣∣+ 5C′c√

n
+ 4 sup

A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣

(by Scheffé’s theorem);

proving Lemma 2. 2
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Lemma 3. If δn = c/
√
n and log�bn/an� ≤ c′na for positive constants c; c′; a,

then, if K is an elegant kernel,

E
∫
�fn − f� ≤ 3E

{
inf

h∈�an; bn�

∫ ∣∣fn−m;h − f
∣∣
}

+ 5C′c√
n
+ 8

√
log c′′ + �2a+ 1� log n+ 1√

2m
;

where c′′ = �1+ c′/2+ c′/c�2 and C′ = C2d
√
d+ d.

Proof. The class of sets A has not more than N2 members, where

N− 1 ≤ log�bn/an�
log�1+ δn�

≤ c
′na�2+ δn�

2δn
= c

′na

2
+ c

′na+1/2

c
:

Thus,

N2 ≤ �1+ c′/2+ c′/c�2n2a+1 =def c
′′n2a+1:

Thus, for each t > 0,

P
{

sup
A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣ > t
}
≤ c′′n2a+1 sup

A∈A
P
{∣∣∣∣µm�A� −

∫
A
f

∣∣∣∣ > t
}

≤ 2c′′n2a+1e−2mt2

by Hoeffding’s inequality [Hoeffding (1963)]. By the inequality EZ ≤ u +∫∞
u P�Z > t�dt for a nonnegative random variable Z and u > 0, standard

bounding of the integral and optimizing for u, we obtain

E
{

sup
A∈A

∣∣∣∣µm�A� −
∫
A
f

∣∣∣∣
}
≤ 2

√
log c′′ + �2a+ 1� log n+ 1√

2m
;

which, in conjunction with Lemma 2, proves Lemma 3. 2

We need two fundamental results on kernel estimates.

Lemma 4 [Devroye (1983)]. Assume K ≥ 0. If E
∫
�fnh − f� → 0 for some

density f and some sequence h, then h → 0 and nhd → ∞. Conversely, if
h→ 0 and nhd→∞, then E

∫
�fnh − f� → 0 for all densities f.

Lemma 5 [Devroye and Penrod (1984)]. Assume K ≥ 0. Then

inf
f

lim inf
n→∞

n2/5 inf
h

E
∫
�fnh − f� ≥ 0:86:

We note that Lemma 5 was only proved in the cited paper for d = 1. How-
ever, if f and fnh are a density and a kernel density estimate on Rd and if
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g and gnh denote the marginal densities for f and fnh (with respect to any
fixed component), then

E
∫
�gnh − g� ≤ E

∫
�fnh − f�

[Devroye and Györfi (1985)]. Interestingly, gnh itself is a valid univariate ker-
nel estimate with as kernel the marginal density of the original kernel. There-
fore, a universal lower bound for d = 1 of the type shown in Lemma 5 then
applies equally for all dimensions d.

Lemma 6. Let X and Y be independent random variables, and let EY = 0.
Then E�X+Y� ≥ E�X�.

Lemma 7 [Devroye and Györfi (1985), page 137]. Let Y1; : : : ;Yn be i.i.d.
zero-mean random variables. Then

E
{∣∣∣∣

n∑
i=1

Yi

∣∣∣∣
}
≥
√
n

8
E�Y1�:

The final missing piece is perhaps the most important one. Define

Jnh =def

∫
�fnh − f�:

It is absolutely necessary to have good universal bounds on the oscillation of
infh>0 EJnh as a function of n. The next lemma shows that this infimum is
indeed very stable. For fixed h, it is known that EJnh is nonincreasing in n
[Devroye and Györfi (1985), page 282]. Therefore, infh>0 EJnh is nonincreasing
in n. Still, as a function of n, the behavior could possibly be erratic; there could,
for example, be sudden big relative drops. In fact, this does not happen for any
density! Lemma 8 may seem to be obvious to those with deep intuitions, but
it certainly is not a superficial property. It is this lemma that allows us to get
away with the split sample methodology explained earlier, as for m = o�n�,
infh EJn−m;h is close to infh EJn;h. We have the following universal inequality,
valid for any density f and any dimension d.

Lemma 8. Let K be a bounded kernel. If m > 0 is a positive integer such
that 2m ≤ n, then

1 ≤ infh EJn−m;h
infh EJn;h

≤ 1+ 2m
n−m + 8

√
m

n
:

Proof. As the given ratio in the lemma is at least 1, by monotonicity, we
need only look at upper bounds for the ratio. Note the following:

inf
h>0

EJn−m;h ≤ inf
h>0

EJn;h × sup
h>0

(
EJn−m;h

EJn;h

)

= inf
h>0

EJn;h ×
(

1+ sup
h>0

EJn−m;h −EJnh
EJn;h

)
:
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The supremum is rewritten as follows:

sup
h>0

EJn−m;h −EJnh
EJn;h

≤ sup
h>0

E
∫
�fn−m;h − fnh�dx

EJn;h

≤ 2 sup
h>0

E
∫
�fn−m;h − fnh�dx

E
∫
�fnh −Efnh�dx

;

where we used a simple bound from page 23 of Devroye and Györfi (1985)
[see also Devroye (1989)]. Fix x and h for now. Introduce Yi =Kh�x−Xi� −
EKh�x−Xi�, and denote the partial sums of Yi’s by Sj = Y1 + · · · +Yj. We
will need the existence for fixed x and h of the first absolute moment of Y1.
That is satisfied for any bounded kernel. Then observe the following:

n�fn−m;h − fnh� =
∣∣∣∣
m

n−m�Y1 + · · · +Yn−m� − �Yn−m+1 + · · · +Yn�
∣∣∣∣

so that

E
{
n�fn−m;h − fnh�

}
≤ m

n−mE�Sn−m� +E�Sm�:

Also, n�fnh − Efnh� = �Sn�, which implies E�n�fnh − Efnh�� = E�Sn�. Still
holding x and h fixed, we bound the following ratio:

E�fn−m;h − fnh�
E�fnh −Efnh�

≤ �m/�n−m��E�Sn−m� +E�Sm�
E�Sn�

≤ m

n−m +
E�Sm�
E�Sn�

(because E�Sn� ≥ E�Sn−m�)

≤ m

n−m +
E�Sm�√

��n/m�/8�E�Sm�
(by Lemmas 6 and 7)

≤ m

n−m + 4
√
m

n
(if 2m ≤ n):

This implies that, for any fixed h,

E
∫
�fn−m;h − fnh�dx ≤

(
m

n−m + 4
√
m

n

)
E
∫
�fnh −Efnh�dx:

Lemma 8 now follows without work. 2

6. Proof of the theorem. Write

E
∫
�fn − f�

infh EJn;h
= E

∫
�fn − f�

infh∈�an; bn�EJn−m;h
×

infh∈�an; bn�EJn−m;h
infh EJn−m;h

× infh EJn−m;h
infh EJn;h

:

= I× II× III:

From Lemma 8 we immediately have that III → 1. From Lemma 4, any
smoothing factor h′ that minimizes EJn;h satisfies h′ → 0 and nh′d →∞, so
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that II → 1. Use Lemmas 3 and 5 and the condition m/�n4/5 log n� → ∞ to
verify that

E
∫
�fn − f� ≤ �3+ o�1�� inf

h∈�an; bn�
EJn−m;h;

and to conclude that lim supn→∞ I ≤ 3. The theorem is now proved. 2

7. Supplements. The theorem deals with fn = fn−m;H, not fnH. In other
words, the estimate does not use the full sample. In this section we show that
fnH and fn−m;H are asymptotically equivalent for all densities. We will show
the following.

Proposition. Let K be an elegant kernel. Let an; bn be such that nan → 0
and bn→∞. Assume that δn = c/

√
n for some constant c and that log�bn/an� ≤

c′na for some finite c′; a > 0. If
m

n
→ 0 and

m

n4/5 log n
→∞ as n→∞;

then

sup
f

lim sup
n→∞

E
∫
�fnH − f�

infh E
∫
�fn;h − f�

≤ 3:

To prove the proposition, we require one lemma.

Lemma 9. Let Jnh =
∫
�fnh − f� and Jn−m;h =

∫
�fn−m;h − f�. Then, if

h1; : : : ; hN are N arbitrary smoothing factors,

E
{

max
1≤i≤N

�Jnhi −EJnhi �
}
≤
√

2+ 2 log 2N
n

:

Similarly,

E
{

max
1≤i≤N

�Jn−m;hi −EJn−m;hi �
}
≤
√

2+ 2 log 2N
n−m :

Proof. We begin with the following exponential inequality from Devroye
(1991) [which in turn was a rather straightforward application of McDiarmid’s
inequality; see McDiarmid (1989)]:

P��Jnh −EJnh� > u� ≤ 2e−nu
2/2; u > 0:

From this, we have

P
{

max
1≤i≤N

�Jnhi −EJnhi � > u
}
≤ min

(
1;2Ne−nu

2/2); u > 0:

For a positive random variable Z, we have, for v > 0,

EZ ≤
√

EZ2 =
√

2
∫ ∞

0
uP�Z > u�du ≤

√
v2 + 2

∫ ∞
v
uP�Z > u�du:
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Replace Z by the maximum we are dealing with, and set v2 = �2 log 2N�/n.
Deduce that

E2
{

max
1≤i≤N

�Jnhi −EJnhi �
}
≤ 2 log 2N

n
+ 2

∫ ∞
v

2Nue−nu
2/2 du

= 2 log 2N
n

+ 2
n
:

This concludes the proof of Lemma 9. 2

Proof of the proposition. Let N be the cardinality of A , and let
h1; : : : ; hN be the smoothing factors from among which H is selected. We use
the notation Jnh introduced earlier. Note the following:

JnH =
N∑
i=1

JnhiIH=hi

=
N∑
i=1

�Jnhi −EJnhi�IH=hi −
N∑
i=1

(
Jn−m;hi −EJn−m;hi

)
IH=hi

+
N∑
i=1

(
EJn;hi −EJn−m;hi

)
IH=hi +

N∑
i=1

Jn−m;hiIH=hi

≤ N
max
i=1
�Jnhi −EJnhi � +

N
max
i=1
�Jn−m;hi −EJn−m;hi � +Jn−m;H

(by monotonicity of EJnh in n for fixed h):

We take expected values on the left- and right-hand sides and note that, by
Lemma 9,

E�JnH −Jn−m;H� ≤
√

2+ log 2N
n−m +

√
2+ log 2N

n
= O

(√
log n
n

)
:

Thus, by Lemma 5,

EJnH
infh EJnh

≤ EJn−m;H
infh EJnh

+O
(√

log n
n1/10

)
:

The proposition follows from the last inequality and the theorem. 2
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Birgé, L. (1989). The Grenander estimator: a nonasymptotic approach. Ann. Statist. 17 1532–
1549.

Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71 353–360.

Bretagnolle, J. and Huber, C. (1979). Estimation des densités: risque mimimax. Z. Wahrsch.
Verw. Gebiete 47 119–137.
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