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ADAPTIVE ESTIMATION IN TIME-SERIES MODELS

BY FEIKE C. DROST,1 CHRIS A. J. KLAASSEN AND BAS J. M. WERKER2

Tilburg University and University of Amsterdam

In a framework particularly suited for many time-series models we
obtain a LAN result under quite natural and economical conditions. This

Ž .enables us to construct adaptive estimators for part of the Euclidean
parameter in these semiparametric models. Special attention is directed to
group models in time series with the important subclass of models with
time varying location and scale. Our set-up is confronted with the existing
literature and, as examples, we reconsider linear regression and ARMA,
TAR and ARCH models.

1. Introduction. Consider estimation of a Euclidean parameter u in a
semiparametric model parametrized by u and an infinite-dimensional nui-
sance parameter g. To study what is best possible asymptotically, one needs
a bound on the asymptotic performance of estimators of u and an estimator
attaining this bound. A vast majority of models is Locally Asymptotically

Ž .Normal LAN . Then the Hajek]Le Cam convolution theorem yields an´
appropriate bound. On an ad hoc basis, it is often possible to find estimators
of u that have the right rate of consistency. Typically, such estimators may be
used to construct efficient estimators, which attain the bound of the convolu-
tion theorem. If this bound is the same as in the parametric model with g
known, then such estimators are called adaptive.

For the i.i.d. case, a comprehensive account on the present theory along
Ž . Žthese lines is given in Bickel, Klaassen, Ritov and Wellner 1993 henceforth

.BKRW . Survey papers in an econometric setting are, for example, Robinson
Ž . Ž . Ž .1988 , Newey 1990 and Stoker 1991 . There are only a few papers in a

Ž .general time-series context. Kreiss 1987a, b has developed the theory for
Ž . Ž .ARMA models. Engle and Gonzalez-Rivera 1991 and Linton 1993 have´

discussed ARCH models under rather stringent conditions and Steigerwald
Ž . w Ž . Ž .x1992 see also Potscher 1995 and Steigerwald 1995 has obtained some¨
results for more general time series. The most general set-up is by Je-

Ž . Ž . Ž .ganathan 1995 . His Assumptions A.1 ] A.5 in Section 4 are comparable to
our Assumptions A]D in Section 2 and lead to generalizations of LAN. The
LAN situations Jeganathan studies in detail are of the special location-scale

Ž . Ž .type 4.1 in Section 4 below with the scale fixed at s u s 1, and he derivest
adaptive estimators for these situations under symmetric densities. Adaptive
estimators in these location type time-series models have also been con-
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Ž .structed by Koul and Schick 1995 . Quite another approach is followed by
Ž .Wefelmeyer 1994, 1996 , who obtained efficiency results in a Markovian

context when only some moments are given and the innovations are assumed
to be martingale differences. Here we will focus on adaptive estimation
within a semiparametric framework which is well suited for time-series
models with i.i.d. errors, which yields the LAN property and which is more

Ž .general than the particular LAN situations studied in Jeganathan 1995 and
Ž . Ž .in Koul and Schick 1995 . Typically, adaptive estimation of part of the

Euclidean parameter u is possible in these models thanks to the indepen-
dence of the present innovation and the past. Criteria for parameters to be
adaptively estimable in principle have been given for these models in Drost,

Ž . Ž .Klaassen and Werker 1994 henceforth DKW . Their necessary condition is
derived from the specific structure of the score function in time-series models.
Here we will show that this necessary condition is also sufficient and we will
construct an adaptive estimator, indeed. Thus, we construct adaptive and

Ž .hence efficient estimators of part of the Euclidean parameter in a very broad
class of semiparametric models. In this way we include several well-known
adaptation results both in i.i.d. models, for example, regression with i.i.d.
regressors, and in models with time dependent data, for example, time-series
models such as ARMA and ARCH. Despite the generality of our set-up, it
results in conditions for the existence of adaptive estimators which are even
Ž .a little bit weaker in some examples than the classical conditions and never
stronger.

To carry out the program of proving a convolution theorem and construct-
ing adaptive estimators, we need a uniform LAN property, which is uniform
in u but assumes g fixed. This LAN result, Theorem 2.1, is given in Section
2, together with a discussion of the consequences of the convolution theorem.

'A one-step improvement procedure for n -consistent estimators in order to
obtain adaptive estimators is given in Theorem 3.1 of Section 3. It appears

' Ž . wthat the n -unbiasedness condition 7.8.19 , page 395 of BKRW see also
Ž .xKlaassen 1987 , which is necessary to construct semiparametric estimators

in an i.i.d. context, may be generalized to our time-series framework; see
Remarks 3.1 and 3.2. To enhance the interpretation of our general theory, we
have included several illuminating results for the class of group models in
time series; see the end of Section 2 and Example 3.1. Generally the parame-
ters of interest can be split up into two components for such models. The first,
say, component will describe the influence of past observations on the model
while the second part is comparable to the parameter in the corresponding
i.i.d. group model. In this paper we will focus on estimation of the parameter
describing the dependence structure of the model, and we will show that this
part of the parameter is adaptively estimable, that is, knowledge of the
infinite-dimensional parameter g will not help. Given such an adaptive
estimator, the estimation problem of the remaining i.i.d. type parameters is
completely equivalent to the estimation problem in i.i.d. group models. There-
fore, we do not repeat these respective results here, but we refer to Section
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4.2, pages 88]103 of BKRW. To relate our results to the existing literature we
reconsider, in Section 4, several examples fitting into the location-scale group
time-series framework: namely linear regression and ARMA, TAR, and ARCH
time-series models. The Appendix contains a few minor technical details.

2. LAN in time-series models. In this section we will derive a general
� 4uniform LAN theorem for a time-series model PP s P : u g Q, g g GG ,u g

where u denotes an unknown Euclidean parameter in some open subset Q of
R p and where g denotes the unknown density of the innovations in the

Ž .time-series model. As usual in a time-series context , we suppose that the
rather complex probability structure P can be obtained from the innova-u g

Ž . �tions in the following manner. Let V, SS be a measurable space and let P :g
4 Ž .g g GG be a set of probability measures on V, SS . Let the innovations

Ž .« , . . . , « be i.i.d. from a distribution with density g under P and indepen-1 n g
U Ž . n Ž U .dent of the random vector X , all defined on V, SS . Assume that FF s FF Xn 0 n

n n Ž .defines a filtration and put FF s FF k FF « , t s 1, . . . , n. The observedt ty1 t
random variables Y , . . . , Y and the observed starting conditions andror1 n
exogenous variables X of the time series are supposed to be measurablen
functions of u and the random variables on the underlying probability space.

Ž U . n Ž U .More precisely stated: X s X X , u g FF and Y s Y X , « , . . . , « , u gn n 0 t n 1 t
FF n, t s 1, . . . , n. These functions are assumed to be invertible, that is, undert

U U Ž . Ž . Ž .P , X s X X , u and « u s « X , Y , . . . , Y , u s « , t s 1, . . . , n.u g n n t n 1 t t
To prove a uniform LAN theorem, let u g Q be fixed, let u denote then0

˜ ˜' Ž .true parameter point, suppose u ª u , let u be such that n u y u ª l,n 0 n n n
and let L denote the log-likelihood ratio statistic of the observationsn

˜X , Y , . . . , Y for u with respect to u . The density g of the innovations isn 1 n n n
fixed; thus we actually study a parametric model. It will be convenient to

� q4embed g into some parametric family QQ s Q : z g Z ; R with dominatingz

Ž . Ž .measure m and corresponding densities q z s dQ rdm, such that g s q z .z 0

Ž . Ž .Put l z s log q z . Often, possibly after a suitable reparametrization, the
family QQ may be chosen such that the log-likelihood ratio statistic L can ben
written in the following form:

n
X s˜2.1 L s l z q W u y u « u y l z « u q L ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý ½ 5ž /n 0 nt n n t n 0 t n n

ts1

where W and Ls will be defined below. This expansion holds especially truent n
for group models in time series; see the discussion at the end of this section.
Observe that, under P , the innovations « are equal to the randomu g tn

Ž .variables « u , t s 1, . . . , n. So, when studying L under P , we mayt n n u gn
Ž .delete the argument u of « u . Unless indicated otherwise, expectationsn t n

and limits will be taken under the probability measure P . We introduce theu gn

following notation and assumptions.
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NOTATION AND ASSUMPTIONS.

A. Ls g FF n denotes some term with respect to X ; it satisfiesn 0 n

2.2 Ls ª 0.Ž . n P

� q4B. The parametric model QQ s Q : z g Z ; R is regular at z . Putz 0
Ž . Ž .1r2 Ž . Ž . Ž .s z s q z and let s z g L m be the Frechet derivative of s z at z .˙ ´0 2 0

Ž . Ž .The score is denoted by c s 2 s z rs z 1 and the information ma-˙ 0 0 �sŽ z .) 040
Ž . Ž .Xtrix J s Ec « c « is nonsingular.t t

˜Ž .C. The square-integrable random p = q-matrix W s W u , u is mea-nt t n n
surable with respect to the past, that is, W g FF n and depends both on unt ty1 n

˜and u .n
D. There exists a continuous matrix-valued information function I: Q ª

p=p Ž . nR and square-integrable p = q-matrices W s W u g FF , t s 1, . . . , n,t t n ty1
satisfying

n n
2Xy1 y1 < < y1 r22.3 n W JW ª I u ) 0, ; d ) 0: n W 1 ª 0,Ž . Ž .Ý Ýt t P 0 t �n <W < ) d 4 Pt

ts1 ts1

such that W converges to W , as n ª `, in the following sense:nt t

n
X 2˜< <2.4 W y W u y u ª 0.Ž . Ž . Ž .Ý nt t n n P

ts1

E. The score of the time-series model PP will be denoted by

˙2.5 l u s W u c « u , t s 1, . . . , n.Ž . Ž . Ž . Ž .Ž .t t t

To obtain the desired uniform LAN theorem at u g Q and g g GG we need0
˜� 4 � 4the assumptions above for arbitrary sequences u and u satisfying then n

prescribed conditions.
Assumption A states that the influence of the starting values andror

exogenous variables has a negligible effect on the asymptotic behavior of L .n
In our examples Assumption B will be fulfilled with z a location andror scale
parameter. The random matrix W in C will be obtained when the likelihoodnt
of the observations is written as the product of the conditional likelihoods.
Typically, the matrix W in Condition D can be obtained from W by takingt nt

˜ Ž .limits for u to u in the definition of W . Equation 2.3 allows us to applyn n nt
suitable weak laws of large numbers and central limit theorems to the score
Ž . Ž .2.5 . Assumption 2.4 will serve as the main key to prove LAN and the
existence of efficient estimators in these time series. This assumption appears

˜ ˜Ž .to be rather weak; if W u , u is smooth in u , then the difference W y Wt n n n nt t
Ž y1r2 . Ž .will be O n and typically the averaged sum of squares in 2.4 will bep

y1 ˙Ž .O n . The structure of the score, l s Wc , is a multivariate generalizationp

of the one considered in DKW.
We have the following result for time series; compare the uniform LAN

Proposition 2.1.2, page 16 of BKRW.



F. C. DROST, C. A. J. KLAASSEN AND B. J. M. WERKER790

Ž .THEOREM 2.1. Assume A]E and 2.1 and write
n n

2X X1y1r2 y1˙ ˙< <2.6 L s l n l u y n l l u q R ;Ž . Ž . Ž .Ý Ýn t n t n n2
ts1 ts1

then, under P ,u gn

1 X X2.7 R ª 0 and L ª N y l I u l, l I u l .Ž . Ž . Ž .Ž .n P n LL 0 02

� 4 � 4The sequences of probability measures P and P are contiguous. If˜u g u gn n
y1r2 ˜ y1r2Ž . Ž .A]E hold for all sequences u s u q O n and u s u q O n , thenn 0 n 0

the smoothness condition holds:
n ny1 y1y1 y1˜ ˜ ˙ ˜ ˙'2.8 n u y u q I u n l u y I u n l u ª 0.Ž . Ž . Ž .Ž . Ž .Ý Ýn n n t n n t n P½ 5

ts1 ts1

X X˜' Ž .PROOF. For notational simplicity, define U s W n u y u , U s W l,nt nt n n t t
Ž . Ž .and observe that by 2.3 , 2.4 and the nonsingularity of J,

n n
2 2y1 y1< < < < y1 r22.9 n U s O 1 , n U 1 ª 0Ž . Ž .Ý Ýt P t �n <U < ) d 4 Pt

ts1 ts1

and
n

2y1 < <2.10 n U y U ª 0.Ž . Ý nt t P
ts1

Write

2.11 T s 2 s z q ny1r2U « rs z « y 1 and c s c « .Ž . Ž . Ž . Ž . Ž .� 4Ž .nt 0 nt t 0 t t t

wUnder P , the log-likelihood ratio statistic can be written as compareu gn xBKRW, proof of Proposition 2.1.2, Appendix 9, page 511 :
n

1 sL s 2 log 1 q T q LŽ .Ýn nt n2
ts1

n n
2X X1y1r2 y1˙ ˙< <s l n l u y n l l uŽ . Ž .Ý Ýt n t n2

ts1 ts1
n

Xs y1r2q L q n U y U cŽ .Ýn nt t t
ts1

n
2 2X X1 y1 < < < <q n U c y U c� 4Ý t t nt t2

ts1

2.12Ž .

n
Xy1r2 nq T y n U c y E T ¬ FF� 4Ž .Ý nt nt t nt ty1

ts1
n

2X1n y1 < <q E T ¬ FF q n U cŽ .� 4Ý nt ty1 nt t4
ts1

n n
2X1 12 y1 3< <y T y n U c q a T .� 4Ý Ýnt nt t nt nt4 6

ts1 ts1
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Observe that the assumptions imply that, under P , the random characteru gn

of L is completely determined by XU and the i.i.d. innovations « , . . . , « .n n 1 n
Ž . Ž .Hence we may consider 2.12 under a fixed probability measure on V, SS ,

say P . In the remainder of the proof we will restrict attention to thisu g0

Žprobability measure when studying the limiting behavior of L as a functionn
U .of the nonobservable random variables X , « , . . . , « .n 1 n

To prove the required result we need the following four convergence
results.

Ž . Ž .LEMMA 2.1. Suppose ª refers to either ª , ª a.s. or ª and O 1P 1
Ž .to either tightness, boundedness a.s. or bounded expectations, respectively,

Ž . Ž .in equations 2.13 ] 2.15 .
Let X and Y , 1 F t F n, n g N, be random k-vectors satisfyingnt nt

n n
2 2y1 y1< < < < y1 r22.13 n Y s O 1 , ; d ) 0: n Y 1 ª 0Ž . Ž .Ý Ýnt nt �n <Y < ) d 4nt

ts1 ts1

and
n

2y1 < <2.14 n X y Y ª 0.Ž . Ý nt nt
ts1

k Ž . Ž .If w: R ª R is continuous at 0 with w 0 s 0 and if w ? is bounded, then
n

2y1 y1r2< <2.15 n X w n X ª 0.Ž . Ž .Ý nt nt
ts1

� 4If the process Y s Y : t g N is stationary with finite second moments thennt t
Ž .2.13 is satisfied.

Ž .PROOF. Let « ) 0. Without loss of generality, we assume 0 F w u F 1.
Ž .Since w is continuous at 0, there exists a d ) 0 such that 0 F w u F « q

1 . Since for all vectors a and b,� < u < ) d 4

< < 2 < < 2 < < 22.16 a q b 1 F 4 a 1 q b 1 ,Ž . ž /� < aqb < ) d 4 � < a < ) d r24 � < b < ) d r24

this yields
n

2y1 y1r2< <n X w n XŽ .Ý nt nt
ts1

n n
2 2y1 y1< < < < y1 r2F « n X q n X 1Ý Ýnt nt �n < X < ) d 4nt

ts1 ts1
n n

2 2y1 y1< < < <F 2« n Y q 2« n X y YÝ Ýnt nt nt
ts1 ts1

n
2y1 < < y1 r2q 4n Y 1Ý nt �n <Y < ) d r24nt

ts1
n

2y1 < < y1 r2q 4n X y Y 1 .Ý nt nt �n < X yY < ) d r24nt nt
ts1
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Ž .For the three different modes of convergence, the conclusion 2.15 is immedi-
Ž . Ž .ate from assumptions 2.13 and 2.14 .

To prove the final assertion concerning stationary sequences, note that the
Ž . Žfirst condition in 2.13 is trivially met. The second one follows from for n

.large and some fixed M :

n n
2 2 2y1 y1< < < < < <y1 r2n Y 1 F n Y 1 ª E Y 1 ¬ FF ,Ý Ý ž /t �n <Y < ) d 4 t � <Y < ) M 4 � <Y < ) M 4t t

ts1 ts1

Ž .where FF denotes the invariant sigma field. The second condition of 2.13 is
obtained by letting M ª `. I

�Ž n. 4LEMMA 2.2. Let X , F : 1 F t F n be an adapted, square-integrablent t
process. If

n
2 n2.17 E X ¬ FF ª 0,Ž . Ž .Ý nt ty1 P

ts1

then
n

22.18 X ª 0,Ž . Ý nt P
ts1

n
n2.19 X y E X ¬ FF ª 0.� 4Ž . Ž .Ý nt nt ty1 P

ts1

Ž .PROOF. Convergence 2.18 is implied by

n n n
22 n 2 nX F 2 X y E X ¬ FF q 2 E X ¬ FF� 4Ž . Ž .Ý Ý Ýnt nt nt ty1 nt ty1

ts1 ts1 ts1

Ž . Ž .and Theorem 2.23, page 44, of Hall and Heyde 1980 . Convergence 2.19
Ž .follows from Corollary 3.1, page 58, of Hall and Heyde 1980 . Compare

Ž .Theorem VIII.1, page 171, of Pollard 1984 . I

Ž . Ž .LEMMA 2.3. Under 2.9 and 2.10 ,

n
2X Xy1 n< <n E U c ¬ FF ª l I u l,Ž .Ž .Ý t t ty1 P 0

ts1

n
2X Xy1 < <n U c ª l I u l,Ž .Ý t t P 0

ts1

2.20Ž .

n
2X Xy1 n< <n E U c ¬ FF ª l I u l,Ž .Ž .Ý nt t ty1 P 0

ts1

n
2X Xy1 < <n U c ª l I u l,Ž .Ý nt t P 0

ts1

2.21Ž .
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n
2Xy1 n< < Xy1r22.22 ; d ) 0: n E U c 1 ¬ FF ª 0,Ž . Ý ž /t t �n <U c < ) d 4 ty1 Pt t

ts1
n

2Xy1 n< < Xy1r22.23 ; d ) 0: n E U c 1 ¬ FF ª 0,Ž . Ý ž /nt t �n <U c < ) d 4 ty1 Pnt t
ts1

with convergence under P .u gn

Ž . Ž .PROOF. First we prove the four conditional statements in 2.20 ] 2.23 .
Ž . Ž . Ž . Ž . Ž .Relation 2.20 is already given in 2.3 ; 2.21 follows from 2.20 , 2.10 and

Ž .Cauchy]Schwarz. Equation 2.22 follows from Lemma 2.1 with X s Y snt nt
U andt

< < 2 X2.24 w x s E c 1 ;Ž . Ž . t � < x c < ) d 4t

Ž .2.23 follows similarly with X s U and Y s U .nt nt nt t
Ž . Ž .The unconditional statements in 2.20 and 2.21 are immediate conse-

quences of the conditional statements and Theorem 2.23, page 44 of Hall and
Ž .Heyde 1980 . I

Ž .LEMMA 2.4. With the notation 2.11 , under P ,u gn

n
2Xy1r2 n< <2.25 E T y n U c ¬ FF ª 0,Ž . Ž .Ý nt nt t ty1 P

ts1
n

2Xy1r2< <2.26 T y n U c ª 0,Ž . Ý nt nt t P
ts1

< <2.27 max T ª 0.Ž . nt P
1FtFn

PROOF. Where possible we try to copy the proof of Lemma A.9.5, page 509
in BKRW and, therefore, we introduce a conditioning argument. We refer to
BKRW for the details on bounding the conditional terms and we will concen-
trate on the remaining part. We obtain

< y1r2 X < 2 nE T y n U c ¬ FFŽ .nt nt t ty1

5 y1r2 y1r2 X 5 2F 4 s z q n U y s z y n U s zŽ . Ž .˙Ž .0 nt 0 nt 0

y1 < < 2 y1r2F n U w n U ,Ž .nt nt

with

< <y2 5 X 5 2w x s 4 x s z q x y s z y x s z 1Ž . Ž . Ž . Ž .˙0 0 0 � < x < F14

2y2< < < < 5 < < 5q 4 x 2 q x ? s z 1 .Ž .˙Ž .0 � < x < )14

Ž . Ž .Application of 2.9 , 2.10 , Assumption B and Lemma 2.1 yields convergence
Ž .2.25 .

Ž .This implies 2.26 by the first part of Lemma 2.2.
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Ž . Ž .To prove 2.27 , note that by 2.16 ,
n n

2Xn y2 y1r2 n< < < <P T ) d ¬ FF F 4d E T y n U c ¬ FFŽ . Ž .Ý Ýnt ty1 nt nt t ty1
ts1 ts1

n
2Xy2 y1 n< < Xy1r2q 4d n E U c 1 ¬ FF .Ý ž /nt t �n <U c < ) d r24 ty1nt t

ts1

Ž .The first term at the right-hand side converges to zero by 2.25 and the
Ž . Ž .second one by 2.23 . The conclusion 2.27 is obtained from Dvoretzky’s

w Ž .xlemma see Lemma 2.5, page 45, Hall and Heyde 1980 ,
n

n< < < <P max T ) d F « q P P T ) d ¬ FF ) « ª « .Ž .Ý½ 5nt nt ty1½ 51FtFn ts1

This completes the proof of the Lemma. I

Now we continue the proof of our theorem. As in the previous lemma we
rely heavily on Appendix A.9 of BKRW, especially pages 509]513.

Ž .The convergence of the first two terms in the expansion 2.12 to the
Ž . Ž .required normal distributions is obvious from 2.20 , 2.22 and application of

Ž .Corollary 3.1, page 58, of Hall and Heyde 1980 .
Ž .The remainder term R defined in 2.6 consists of the last seven terms atn

Ž . sthe right-hand side of 2.12 . The term L concerning the initial variablesn
converges to zero by assumption. The second term of R converges to zeron

Ž .because of 2.10 and application of the second part of Lemma 2.2. Conver-
gence to zero of the third remainder term follows from Lemma 2.3. Conver-

Ž .gence of the next term follows from 2.25 and the second part of Lemma 2.2.
w Ž . xTo kill the fifth remainder term, note that cf. c , page 459 of BKRW :

n
2X1n y1 < <E T ¬ FF q n U cŽ .� 4Ý nt ty1 nt t4

ts1
n

2X1 2 n y1 n< <F E T ¬ FF y n E U c ¬ FFŽ . Ž .Ý nt ty1 nt t ty14
ts1

n
2 2X X1 y1 n< < < <q n E U c ¬ FF y U cŽ .½ 5Ý nt t ty1 nt t4

ts1
n

2 y1r2q s z q n U dmŽ .Ý H 0 nt
� Ž 4s z s00ts1

n
2X1 2 y1 n< <F E T y n U c ¬ FFÝ Ž .nt nt t ty14

ts1

n
2 2X X1 y1 n< < < <q n E U c ¬ FF y U cŽ .½ 5Ý nt t ty1 nt t4

ts1
n 2Xy1r2 y1r2q 2 s z q in U y s z y in U s z .Ž . Ž .˙Ž .Ý Ý 0 nt 0 nt 0

� 4 ts1ig y1, 1
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The second term at the right-hand side of this inequality converges to zero by
Lemma 2.3 and the last term at the right-hand side has been treated in the

Ž . Ž .argument leading to 2.25 . The first term converges to zero by 2.25 ,
y1 n < X < 2Cauchy]Schwarz and the tightness of n Ý U c as implied by Lemmats1 nt t

Ž . Ž .2.3. Similarly we obtain from 2.26 that the sixth remainder term of 2.12 is
negligible.

Ž .To show that the final term of R also converges to zero observe that 2.27n
implies that we can restrict attention to the set

1< <A s max T F .½ 5n nt 2
1FtFn

Ž .Then the variables a are all bounded by one. Moreover, note that 2.26 andnt
Ž . n 22.21 imply that Ý T is tight. Now the required relationship follows fromts1 nt

Ž .Slutsky’s lemma, 2.27 and

n n
3 2< <a T F max T T .Ý Ýnt nt nt nt

1FtFnts1 ts1

The contiguity and smoothness can be obtained along similar lines as in the
i.i.d. case; compare, for example, BKRW, page 513. This completes the proof of
the theorem. I

The uniform LAN property as shown above allows us to apply the convolu-
tion theorem. Hence, if g is known, the lower bound at u for regular0

Ž .y1estimators of u is given by I u . In the parametric model with g known,0
this is also the best attainable lower bound. In a semiparametric context,
with g unknown, the actual lower bound might be higher. In this case one
also needs the LAN property for submodels where g is allowed to vary with
sample size n. However, as we will see in Section 3 below, this is not

Ž .necessary in the time-series context discussed in this paper: part of the
parameter will be adaptively estimable and, hence, the same lower bound
applies as in the parametric case. We conclude this section with several
remarks with regard to group models in time series, since they fit perfectly
into the framework introduced in the first part of this section. Our main
assumption in this endeavor will be that the time-series model can be
obtained as a group model with predictable time dependent Euclidean param-
eter. This will be explained in detail below.

To show that group models in time series fit into the setting discussed
above, we adopt the notation for i.i.d. group models as given in Section 4.2,
pages 88]103 of BKRW. Let AA be a group of measurable transformations on
R m under composition. We assume that the elements a of AA are parametrized
by a parameter z g Z ; R q. The parameter value z yields the identity0
transformation. Let g g GG determine a fixed probability distribution G on

m Ž .R . Then the group model induced by AA, G is

QQ s Q s Gay1 : z g Z .� 4z z
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Let m be a measure on the Borel sets of R m such that may1 is equivalent to m
for all a g AA and such that m dominates G. Then, we have

dGay1 dG dmay1
z zy1y s a y y .Ž . Ž .Ž .zdm dm dm

This i.i.d. group model generates a time-series model in the following way. Let
X denote some observed starting conditions andror exogenous variables with

0 Ž .distribution P . Define FF s FF X . Furthermore, we observe Y , . . . , Y . Letu g 0 1 n
FF denote the filtration generated by X, Y , . . . , Y , t s 1, . . . , n. Finally, wet 1 t

Ž .are given a Z-valued predictable process Z u depending on the unknownt
parameter u such that the conditional distribution of Y given FF under Pt ty1 u g
is given by Q , t s 1, . . . , n.Z Žu .t

It will be convenient to introduce innovations in the following way. Define
Ž . y1Ž . n Ž Ž .. n« z s a Y , z g Z and « s « Z u . Note that under u the « aret z t t t t n n t

i.i.d. with distribution G and independent of X. Moreover, we have Y st
a « n. All this implies that the log-likelihood ratio statistic L of theZ Žu . t nt n ˜observations X, Y , . . . , Y for u with respect to u can be written as1 n n n

n y1dma rdmdG ˜Z Žu .t ny1 n nL s log a a « a «Ž .˜Ý Ž .n Z Žu . Z Žu . t Z Žu . ty1t n t n t n½ ž /dm dma rdmZ Žu .ts1 t n

dG
n sylog « q L ,Ž .t n5dm

where Ls denotes the log-likelihood ratio contribution of X.n
Ž . Ž .Since by definition ma B s m aB for all a g AA and B Borel, we have

dmay1 dmay1a˜ ˜
a« s « .Ž . Ž .y1 dmdma

Moreover, the group structure allows us to write

ay1 a s a X
y1

˜ ˜Z Žu . Z Žu . z qW Žu yu .t n t n 0 nt n n

for some W and hence the log-likelihood ratio statistic can be written asnt

n y1
XdmadG ˜z qW Žu yu .0 nt n ny1 n n

XL s log a « «Ž .˜Ý Ž .n z qW Žu yu . t t0 nt n n½ ž /dm dmts1

dG
n sylog « q LŽ .t n5dm

n y1
XdGa dG˜z qW Žu yu .0 nt n n n n ss log « y log « q L .Ž . Ž .Ý t t n½ 5dm dmts1

Ž .In this way we have shown the desired expansion 2.1 for group models in
time series.

In the group models PP in time series as introduced above, the Euclidean
Ž X X.Xparameter will typically consist of two parts, u s n , h , where h and z
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have the same interpretation and dimension. The latter part of the vector
Ž .Z u consists, for example, of the parameter z s h. In this case estimation oft

h is equivalent to estimation of z in the i.i.d. model QQ and the second block of
Ž X X .X Ž .W s W , W corresponding to the parameter h is a square, invertible1 2

q = q-matrix not depending on t. The special location-scale group structure
will be considered in more detail in Section 4. If the parametrization is not of
the given form, necessary and sufficient conditions can be derived along the
lines of DKW to obtain a reparametrization of the required form. For the
estimation problem of h, we will rely on the existing literature on i.i.d.
models. Here we will concentrate on the time-series parameter n , describing
the dependence structure of PP. The convolution theorem implies that the

Ž . Ž . Ž Ž .y1 . Ž .y1upper left p y q = p y q -block I u of I u is a lower bound for0 11 0
n . By Assumption D and the fixed character of the invertible matrix W this2
bound is equal to the probability limit of

n
Xy1n W JWÝ 1t 1t½

ts1

y1n n
y1X X Xy1 y1w xyn W JW W JW n W JWÝ Ý1t 2 2 2 2 1 s 5

ts1 ss1

2.28Ž .

y1Xn n n
y1 y1 y1s n W y n W J W y n W .Ý Ý Ý1t 1 s 1t 1 s½ 5ž / ž /

ts1 ss1 ss1

As a corollary of the results in the following section, we may construct an
Ž .estimator of n attaining the lower bound implied by 2.28 when g is not

known. That is, adaptive estimation of n with respect to g is possible.
Estimation of n in the model with both u and g unknown is not harder than

Ž .estimation of n in the model with only u unknown and g known . See
Example 3.1.

Adaptiveness of n with respect to the nuisance g in the model with u
unknown does not imply that n is also adaptive with respect to both h and g.

ŽIf both h and g are known, the lower bound for n decreases due to the
.absence of the nuisance parameter h to the probability limit of

y1n
Xy1n W JW .Ý 1t 1t½ 5

ts1

However, both limits agree if the average of the W ’s tends to zero and we1t
will have full adaptation of n with respect to both h and g. See also Exam-
ple 3.1.

An efficient estimator for u in our semiparametric model can be obtained
by combining the efficient estimator of h and the adaptive estimator of n .

3. Adaptive estimation. In this section the density g g GG of the inno-
vations is assumed to be a nuisance parameter. We will construct adaptive
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estimators for linear functions of u under some additional assumptions. In
Section 4 we show the validity of these assumptions in a wide class of

˙examples. The structure of the score, l s Wc , as given in Assumption E, is a
multivariate generalization of the one considered in DKW. Their derivations
concerning the possibility of adaptation carry over to this case.

In the typical situation discussed at the end of Section 2, the adaptiveness
Ž .condition 2.4 of DKW is satisfied since the covariance matrix

Xn n n
y1 y1 y1n W y n W W y n WÝ Ý Ýt s t sž / ž /

ts1 ss1 ss1

Ž . Ž .has q zero eigenvalues recall that W does not depend on t ; see 3.4 of their2
Theorem 3.1. This suggests that adaptive estimation of n with respect to g
Ž .in the presence of the nuisance parameter h is likely to be possible. In fact,
we will later obtain an estimator of n attaining the lower bound. Knowledge

Ž .of the infinite-dimensional parameter is not helpful at least asymptotically ;
see Example 3.1.

In the more general situation of estimating linear functions of u , we will
Ž .adapt the method proposed by Schick 1986 for i.i.d. models. As before,

expectations and limits will be taken under the probability measure P . Tou gn

apply this method we need the following additional notation and assump-
tions.

NOTATION AND ASSUMPTIONS.

Ž .F. There exists an estimator c s c « , . . . , « of c such that1 n

2< <3.1 E c « y c « ¬ « , . . . , « ª 0,Ž . Ž . Ž .Ž .1 n P

where « , « , . . . , « are i.i.d. from a distribution with density g.1 n
Let C g R q=r be an orthogonal matrix of full rank, where 0 F r F q and

'C s 0 if r s 0, such that the n -unbiasedness condition holds for theq
X Xestimator Cc of Cc ,

X'3.2 C n E c « ¬ « , . . . , « ª 0.Ž . Ž .Ž .1 n P

˜ ' Ž .G. u is a n -consistent discretized estimator under P .n u gn

Ž .H. The matrices W s W u , t s 1, . . . , n, do not depend on g and theret t n
Ž .exists a square-integrable W s W u , g such that0 0 0

n
y13.3 n W ª W .Ž . Ý t P 0

ts1

The first part of Assumption F is often satisfied in applications; see, for
example, Proposition 7.8.1, page 400 of BKRW. The second part of this
assumption is merely notation. Observe that the matrix C may span only a

'part of the space where n -unbiased estimation of c is possible. In principle,
Ž .we would like to use a nonparametric estimate of c which is completely

'n -unbiased. Often this will not be possible or we do not know the exact bias
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Ž .properties of c . The choice C s 0 renders 3.2 void, but forces someq

Ž . Ž .additional possibly not needed orthogonality restrictions in 3.6 below.
Ž .However, if 3.6 is fulfilled with C s 0 , then it is not necessary to botherq

'about an ‘‘optimal’’ estimator of c . The n -unbiasedness property of c and
'Ž .the orthogonality 3.6 yield a n -unbiasedness condition for time series

similar to the one in i.i.d. models; see Remark 3.1. Assumption G describes
the existence of a preliminary estimator needed to be able to apply a
Newton]Raphson step. Generally, moment estimators or estimators based on

'quasi maximum likelihood methods yield the n -consistency. Finally, As-
sumption H requires convergence of averages in addition to the tightness
implied by Assumption D.

In our construction of efficient estimators, we will adopt the principle of
sample splitting, not because of its elegancy but because it yields a relatively
easy way to obtain such estimators under minimal conditions. See also
Remark 3.4 for references to other constructions which might be preferable

˜for small sample sizes. Using u , compute the residuals « , . . . , « with˜ ˜n 1 n
˜Ž .« s « X , Y , . . . , Y , u , t s 1, . . . , n. Let a be an integer such thatt̃ n 1 t n n

Ž .a rn ª a g 0, 1 as n ª `. Split the time series of residuals in two parts:n
Ž . Ž .« , . . . , « and « , . . . , « . Use Assumption F to estimate c twice, using˜ ˜ ˜ ˜1 a a q1 nn n

the first and second part of the residuals separately. Call these estimators
ˆ ˆŽ . Ž .c s c « , . . . , « and c s c « , . . . , « , respectively. If the calculated˜ ˜ ˜ ˜n1 1 a n2 a q1 nn n

residuals would have been the innovations themselves with density g then
Ž .we would have by Assumption F

ˆ 2< <c x y c x g x dx ª 0, j s 1, 2.Ž . Ž . Ž .H n j P

˜This relation implies also that, if u is nonrandom, this convergence holdsn
true under P .ũ gn

Ž .To stress the dependence of the information matrix I u on g we will write
Ž .I u . Under the present conditions it is possible to estimate the informationg

˜matrix consistently; there exist estimators I satisfyingn

ˆ3.4 I ª I u .Ž . Ž .n P g 0

An explicit construction of such an estimator is given in the following lemma.
˜ ˆ ˆ ˜ ˜Ž . Ž . Ž . Ž .Abbreviate c s c « , c s c « , c s c « and denote W s W u .˜ ˜t t t t jt n j t t t n

y1r2 ˜Ž .LEMMA 3.1. Assume A]G for all sequences u s u q O n and u sn 0 n
Ž y1r2 .u q O n . Then the estimator0

a nn
X X X Xy1ˆ ˜ ˆ ˆ ˜ ˜ ˆ ˆ ˜3.5 I s n W c c W q W c c WŽ . Ý Ýn t 2 t 2 t t t 1t 1t t½ 5

ts1 tsa q1n

Ž .of the information matrix satisfies 3.4 .
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PROOF. By Assumption G it suffices to consider this equation for all
˜ ˜' Ž . Ž .nonrandom u such that n u y u s O 1 ; see, for example, Theorem 2.5.2,n n n

Ž . Ž .page 44, of BKRW. We prove that the first sum in 3.5 converges to I u0
under P . Write, with a g R p,ũ gn

an1 2X X˜ ˆ< <a W c y a I u aŽ .Ý t 2 t g 0an ts1

a an n1 12 2 2X X X X˜ ˜ ˜ ˆ ˜ ˜< < < < < <F a W c y a I u a q a W c y a W cŽ .Ý Ý ½ 5t t g 0 t 2 t t ta an nts1 ts1

a an n 21 12X X X˜ ˜ ˜ ˆ ˜< <F a W c y a I u a q a W c y cŽ .Ý Ý ž /t t g 0 t 2 t ta an nts1 ts1

an1
X X X˜ ˆ ˜ ˜ ˜q 2 a W c y c c W a .Ý ž /t 2 t t t tan ts1

The first term at the right-hand side is negligible by the unconditional part of
Ž .2.20 . The other terms converge to zero by Cauchy]Schwarz, Assumptions D
and F and the first part of Lemma 2.2 using the filtration FF n kt

ˆ ˜Ž .FF « , . . . , « . Note that we use here that, under P , c y c s˜a q1 n u g 2 t tn n

Ž .Ž .c « , . . . , « « y c and that, with E denoting expectation under P ,a q1 n t t 0 u gn 0
2 nŽ < Ž .Ž . < .E c « , . . . , « « y c ¬ FF , « , . . . , « is the same for t s 1, . . . , a .0 a q1 n t t t a q1 n nn n

Ž . pThe second sum in 3.5 can be treated similarly. Since a g R is arbitrary
ˆthis implies convergence of I under P . Contiguity yields the required˜n u gn

Ž .convergence 3.4 . I

Now we are ready to present our adaptive estimator.

Ž y1r2 .THEOREM 3.1. Assume A]H for all sequences u s u q O n andn 0
˜ y1r2Ž .u s u q O n and let A be a matrix satisfyingn 0

y1X X3.6 ; u g Q , g g GG : A I u W u , g I y CC s 0, P y a.s.Ž . Ž . Ž . Ž .g 0 u g

ˆ Ž .Then, with I some estimator of the information matrix satisfying 3.4 ,n

a nn
X X y1 y1˜ ˆ ˜ ˆ ˜ ˆn s Au q A I n W c q W cˆ Ý Ýn n n t 2 t t 1t½

ts1 tsa q1n

a an n1
X˜ ˆy W I y CC cŽ .Ý Ýs 2 tan ss1 ts1

3.7Ž .

n n1
X˜ ˆy W I y CC cŽ .Ý Ýs 1t 5n y an ssa q1 tsa q1n n
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is an adaptive estimator of n s AXu , that is, under P ,u gn

n
y1X X y1'3.8 n n y Au y A I u n W c ª 0.Ž . Ž .ˆ Ýn n g n t t P½ 5

ts1

Consequently,

y1X X'3.9 n n y Au ª N 0, A I u A .Ž . Ž .Ž .ˆ ž /n n LL g 0

PROOF. In view of the LAN property Theorem 2.1 and the Hajek]Le Cam´
Ž . w Ž .convolution theorem we need to prove 3.8 cf. Hajek 1970 and Theorem´

x Ž .2.3.1, page 24 of BKRW . Insert the expression 3.7 for n into the left-handn̂
Ž .side of 3.8 and observe that, by Assumption G, it suffices to consider this

˜ ˜' Ž . Ž .equation for all nonrandom u such that n u y u s O 1 ; see, for exam-n n n
ple, Theorem 2.5.2, page 44 of BKRW. Contiguity obtained in the LAN
Theorem 2.1 implies that it suffices to show convergence to zero under P .ũ gn

˜ Ž . Ž .Let E denote expectation under P and use 3.6 to rewrite 3.8 and obtainũ gn

n
y1X X y1'n n y Au y A I u n W cŽ .ˆ Ýn n g n t t½ 5

ts1

n ny1 y1X y1 y1˜ ˜ ˜ ˜'s A n u y u q I u n W c y I u n W cŽ .Ž . Ý Ýn n g n t t g n t t½ 5
ts1 ts1

ny1X y1 y1r2ˆ ˜ ˜ ˜qA I y I u n W cŽ . Ý½ 5n g n t t
ts1

n
y1X Xy1 y1r2ˆ ˜y A I y I u W I y CC n cŽ . Ž . Ý½ 5n g 0 0 t

ts1

a an n1
X Xy1 y1r2ˆ ˜ ˜q A I W y W I y CC n cŽ .Ý Ýn 0 s t½ ž /an ss1 ts1

n n1
X y1r2˜ ˜q W y W I y CC n cŽ .Ý Ý0 s t 5ž /n y an ssa q1 tsa q1n n

an
X Xy1 y1r2ˆ ˜ ˜ ˆq A I n W CC E c ¬ « , . . . , «˜ ˜Ýn s 21 a q1 nž /n½

ss1

n
Xy1r2 ˜ ˜ ˆqn W CC E c ¬ « , . . . , «˜ ˜Ý s 1n 1 až /n 5

ssa q1n
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an1
X Xy1 y1r2ˆ ˜y A I W I y CC nŽ .Ýn s½ an ss1

an

ˆ ˜ ˜ ˆ= c y c y E c ¬ « , . . . , «˜ ˜Ý ½ 52 t t 2 t a q1 nž /n
ts1

n1
X y1r2˜q W I y CC nŽ .Ý sn y an ssa q1n

n
ˆ ˜ ˜ ˆ= c y c y E c ¬ « , . . . , «˜ ˜Ý ½ 51t t 1t 1 až /n 5

tsa q1n

an
X y1 y1r2ˆ ˜ ˆ ˜ ˜ ˆq A I n W c y c y E c ¬ « , . . . , «˜ ˜Ý ½ 5n t 2 t t 2 t a q1 nž /n½

ts1

n
y1r2 ˜ ˆ ˜ ˜ ˆqn W c y c y E c ¬ « , . . . , « .˜ ˜Ý ½ 5t 1t t 1t 1 až /n 5

tsa q1n

ŽNow, this expression converges to zero under P and hence, by contiguity,ũ gn

ˆ. Ž .under P as desired in view of smoothness 2.8 , convergence of I tou g nn
Ž . Ž .I u , continuity and invertibility of I ? , the LAN property, tightness ofg 0 g

ŷ1I , convergence to zero of expressions liken

an1 ˜W y W ,Ý0 san ss1

X' Ž .the implied tightness of partial averages, the n -unbiasedness 3.2 of Cc
Ž .and by application of Assumptions D and F and 2.19 of Lemma 2.2 with

different filtrations to the final four sums at the right-hand side. This
completes the proof of the efficiency of n . In̂

Ž .REMARK 3.1. Together with 3.2 of Assumption F, the additional assump-
'Ž .tion 3.6 in Theorem 3.1 may be viewed as the n -unbiasedness condition in

time series, since it implies

y1X 'A I u W u , g n E c « ¬ « , . . . , « ª 0.Ž . Ž . Ž .Ž .g 0 1 n P

' w Ž .Just as with the n -unbiasedness condition in i.i.d. models see 7.8.19 and
xTheorem 7.8.2, pages 395]397 of BKRW , this latter expression arises from

X Ž .y1 y1 n Ž . Ž .the efficient score A I u n Ý W c . Observe that 3.2 and 3.6 estab-g ts1 t t' Žlish a trade-off between the n -unbiasedness condition for the nonparamet-
. Ž .ric estimator c and the orthogonality relation 3.6 . Together they will yield

'n -unbiasedness for time series. To obtain this property, it is not necessary
'to have a n -unbiased estimator of the complete nonparametric part c of the

score Wc . This observation will be particularly useful in time-series analysis
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when the error distributions are not symmetric or when the volatility of the
process is time dependent; see Section 4.

Ž .Finally, note that the matrix C in 3.2 is not uniquely determined. Apart
Žfrom trivial orthogonal transformations of C which will have no effect on the

'.estimator n , it is possible that the estimator c is also n -unbiased inn̂
Ž .directions for which the orthogonality property 3.6 holds true. Such direc-

tions may be either included or excluded from the linear span of C; the
adaptiveness of n will not be affected. In practical situations one will choosen̂

Ž . Ž .C such that joint verification of 3.2 and 3.6 is rather easy; see also
Example 4.2.

' Ž .REMARK 3.2. Theorem 3.1 shows that the n -unbiasedness condition 3.6
is a sufficient condition for adaptiveness of n with respect to the infinite-
dimensional parameter g. This condition is also necessary in the following
sense. Adaptiveness of the parameter n requires that the projection of the
tangent space with respect to g onto the tangent space with respect to u is

wcontained in the tangent space with respect to h this is a multivariate
Ž . xgeneralization of the necessary condition 2.4 for adaptation in DKW ; note

that this has to hold at all u and g. Let the fixed orthogonal matrix C from
Ž . XAssumption F have maximal rank possibly C s 0 such that Cc is orthogo-

nal to the tangent space implied by g, again at all g, suggesting that
X'n -unbiased estimation of Cc is possible. If moreover at all g, no linear

Ž X.combination of the components of I y CC c is orthogonal to the tangent
Žspace generated by g, then one may verify along the lines of Theorem 3.1 of

. Ž . Ž .DKW that the multivariate version of 2.4 of DKW is equivalent to 3.6
above.

˜REMARK 3.3. To improve on the initial estimator u by a one-stepn
Newton]Raphson method, the efficient influence function for n ,

X Ž .y1 y1 nA I u n Ý W c , is estimated byg n ts1 t t

a a ann n n1
X Xy1 y1ˆ ˜ ˆ ˜ ˆ ˜ ˆA I n W c q W c y W I y CC cŽ .Ý Ý Ý Ýn t 2 t t 1t s 2 t½ ants1 tsa q1 ss1 ts1n

n n1
X˜ ˆy W I y CC c .Ž .Ý Ýs 1t 5n y an ssa q1 tsa q1n n

aN ˜ n ˜Ž . Ž .At first sight the averages 1ra Ý W and 1r n y a Ý W appear-n ss1 s n ssa q1 sn

ing in this estimated influence function are surprising. However, writing the
X Ž .y1 y1 n � Ž .Ž X.4influence function for n as A I u n Ý W y W u , g I y CC c theg n ts1 t 0 n t

structure of n becomes more transparent. Furthermore, the proof of Theo-n̂
˜ ˆŽ .rem 3.1 shows that the bias terms, such as E c ¬ « , . . . , « , cancel due to˜ ˜2 t a q1 nn

the inclusion of the averages. The presence of these averages is essential as
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may be seen by the following argument. If these averages are excluded from
our estimator n , we are confronted with two additional remainder terms:n̂

a an n1
X Xy1 y1r2ˆ ˜ ˆA I n 1 W I y CC cŽ .Ý Ýn s 2 tan ss1 ts1

an
y1X y1 y1r2ˆ ˜s A I y I u n WŽ . Ýž /n g 0 s½

ss1

an
y1 y1r2 X˜ ˜ ˆqI u n W yW IyCC E c ¬ « , . . . , «Ž . Ž . ˜ ˜Ž .Ýg 0 s 0 21 a q1 nž /n5

ss1

qo 1 ,Ž .P

where the equality follows from Lemma 2.2. These remainder terms should
Ž .be of order o 1 for n to be an efficient estimator. One readily verifies thatˆP n

Ž 1r2 .the remainder term is in fact the product of a term of order o n and aP
Ž . Ž 1r2 .bias term which is of order o 1 . Examples show that the o n rateP P

˜cannot be improved, in general. Hence, if the averaged W are excluded froms
our estimator, it would be necessary to require the additional condition
' Ž Ž .Ž . . Ž .n E c « , . . . , « « ¬ « , . . . , « s O 1 . This condition is close to requiring1 n 1 n P
Ž .3.2 with C s I . In time-series models this condition will often be violatedq

Ž .while orthogonality relations like 3.6 are available. We conclude that dele-
tion of the average terms distorts the adaptiveness of n .n̂

˜Even if the limit W of averaged W is known, for example, W s 0,0 s 0
replacement of the averages by the limit W itself will usually destroy the0
efficiency of n . In that case one of the two remainder terms is given byn̂

a an n1
X Xy1 1r2ˆ ˜ ˆA I n W y W I y CC cŽ .Ž .Ý Ýn s 0 2 tan ss1 ts1

an
X Xy1 y1r2ˆ ˜ ˜ ˆs A I n W y W I y CC E c ¬ « , . . . , « q o 1 ,Ž . Ž .˜ ˜Ž .Ýn s 0 21 a q1 n Pž /n

ss1

which will not converge to zero, in general. In special circumstances, how-
ever, this term will converge to zero. This happens, for example, if the

y1r2 n Žmatrices W , t s 1, . . . , n, satisfy a central limit theorem, n Ý W yt ts1 t
'. Ž . Ž .W s O 1 , or if the n -unbiasedness condition 3.2 is fulfilled with C s I .0 p q

In such cases replacement of the estimated averages by W itself does not0
harm, but it will not improve the first order asymptotic properties of n̂n
either.

Ž . wREMARK 3.4. As noted in Schick 1987 see also BKRW, Theorem 7.8.3,
x Ž .page 403 , it is possible in i.i.d. models to avoid sample splitting as in 3.7 ,

Ž .however, at the cost of stronger conditions. See Koul and Schick 1995 for
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Ž .results along these lines in the linear time-series models of type 4.1 with
Ž .s u s 1.t

Ž .Next we will verify condition 3.6 in some specific situations where the
' Ž .classical n -unbiasedness of c is not needed C s 0 . The case of groupq

models in time series, as introduced at the end of Section 2, will be a
particular example; see Example 3.1 and also the discussion of various known
models in Section 4.

Ž y1r2 .COROLLARY 3.1. Assume A]H for all sequences u s u q O n andn 0
˜ y1r2 p=r p=qŽ .u s u q O n . Let A g R and B g R be matrices satisfyingn 0

X X Ž .A B s 0, with r arbitrary and q F p. If B W u is an invertible matrix nott
depending on t for all u g Q, then n s AXu is adaptively estimable with respect
to g.

PROOF. Without loss of generality we may assume that A and B are
Ž .y1 Ž .Xorthogonal matrices satisfying A, B s A, B . Note that Assumption H

implies BXW s BXW , t s 1, . . . , n. Hence, BXW is also invertible and As-t 0 0
sumptions H and D yield

y1X X X X X X� 4A W s A W JW B B W JW B B W0 0 0 0 0 0

y1n n
X X X X Xy1 y1¤ A n W JW B B n W JW B B WÝ ÝP t t t t 0½ 5

ts1 ts1

y1X X Xª A I u B B I u B B W ,Ž . Ž .� 4P g 0 g 0 0

under P . Contiguity givesu gn

-1X X X X3.10 A W s A I u B B I u B B W P -a.s.Ž . Ž . Ž .� 40 g 0 g 0 0 u g0

Using the formula for the inverse of a partitioned matrix, we obtain condition
Ž .3.6 of Theorem 3.1:

y1XA I u WŽ .g 0 0

y1X Xs I , 0 A , B I u A , B A , B WŽ . Ž . Ž . Ž .� 4Ž .r r=Ž pyr . g 0 0

y1y1X X X Xs A I u A y A I u B B I u B B I u AŽ . Ž . Ž . Ž .� 4½ 5g 0 g 0 g 0 g 03.11Ž .
y1X X X X= A W y A I u B B I u B B WŽ . Ž .� 4½ 50 g 0 g 0 0

s 0 P -a.s.u g0

To complete the proof of the corollary, take C s 0 in Theorem 3.1. Iq
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Ž y1r2 .COROLLARY 3.2. Assume A]H for all sequences u s u q O n andn 0
˜ y1r2Ž .u s u q O n .n 0

Ž .A. Let A and B be matrices with p rows. Suppose that A, B has rank p
and that AXB s 0. If

3.12 ; u g Q , g g GG : AXI u B s 0 and AXW u , g s 0 P -a.s.,Ž . Ž . Ž .g 0 u g

then n s AXu is adaptively estimable with respect to both h s BXu and g.
Ž .B. If W u , g s 0, P -a.s., for all u g Q, g g GG, then u is adaptively0 u g

estimable with respect to g.

Ž . Ž . Ž .PROOF. Formula 3.10 is trivially implied by 3.12 and, hence, 3.11
yields adaptiveness of n with respect to g. The block-diagonality of
Ž .X Ž .y1Ž .A, B I u A, B implies also the adaptiveness with respect to h. Ig

These corollaries are particularly useful in group models in time series. In
Ž .that case the matrix A, B is the identity matrix and the adaptivity results

apply to the first component of u . This is summarized in the following
example.

EXAMPLE 3.1. Consider the typical time-series model discussed at the end
Ž X X.X Ž pyq .qq Ž X X .X ŽŽ pyq .qq .=qof Section 2, where u s n , h g R and W s W , W g R1 2

are partitioned and where W is a square nonsingular matrix not depending2
Ž .on t. Then n is adaptively estimable with respect to g Corollary 3.1 .

Assume in addition also ny1Ýn W ª 0. Then n is adaptively estimablets1 1t P
Ž .with respect to both h and g Corollary 3.2.A .

4. Examples. In this section we will apply the results of Sections 2 and 3
to several well-known classes of time-series models. These examples include
many of the most important known results on semiparametric time-series

Ž .analysis and also some new to the best of our knowledge results. Since
location-scale models with completely unknown error distribution are often
used in econometric time-series applications, we will discuss these models
rather extensively. Subsequently we will discuss elliptic models shortly.

An important special case of our general theory is the class of location-scale
models. This class contains regression models, ARMA models and GARCH-
type models. We maintain the notation of Section 2 and consider applications
fitting into the following framework:

4.1 Y s m u q s u « ,Ž . Ž . Ž .t t t t

Ž Ž . Ž ..X nwhere the time dependent location-scale parameter m u , s u g FF ,t t ty1
t s 1, . . . , n, is supposed to depend on u , the observed starting value X sn
Ž U . nX X , u g FF and the first t y 1 observations, Y , . . . , Y . The « are i.i.d.n 0 1 ty1 t

Žwith completely unknown distribution apart from some regularity, to be
.discussed later . The time dependent location-scale parameter is supposed to

Ž .be differentiable with respect to u . In order to show how W as given in 2.1nt
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˜k ˜ ˜Žis obtained in this location-scale context, write u s u , . . . , u , u , . . . ,n n1 nk n, kq1
.Xu , k s 0, . . . , p, and define the p = 2-matrix W by its rows, k s 1, . . . , p,n p nt

y1y1¡ ˜s u u y uŽ . Ž .t n nk nk

k ky1 k ky1˜ ˜ ˜ ˜ ˜= m u y m u , s u y s u , if u / u ,Ž . Ž . Ž . Ž .ž /~ t n t n t n t n nk nk4.2 W sŽ . ntk
­y1 ˜ks u m u , s u ¬ , if u s u .Ž . Ž . Ž .Ž . ˜t n t t usu nk nkn¢ ­uk

Note that we now indeed have
Xy1X ˜ ˜ ˜W u y u s s u m u y m u , s u y s u .Ž . Ž . Ž .Ž . Ž . Ž .ž /nt n n t n t n t n t n t n

Ž .X Ž .XWith z s m, s a location-scale parameter and z s 0, 1 the log-likelihood0

˜ratio statistic of the observations, X , Y , . . . , Y , for u with respect to un 1 n n n
Ž .satisfies 2.1 ,

n
X s˜4.3 L s l z q W u y u « u y l z « u q L ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý ½ 5ž /n 0 nt n n t n 0 t n n

ts1

where

l z ? s log sy1 g ?y m rs ,Ž . Ž . Ž .Ž .
U ˜dP X X , udP XŽ . Ž .˜ ž /u g n nu g n 0nsL s log s log .n UdP X dP X X , uŽ . Ž .Ž .u g n u g n nn 0

It is clear that an appropriate choice for W as required in Assumption D ist
given by

­y14.4 W s s u m u , s u ¬ .Ž . Ž . Ž . Ž .Ž .Xt t n t t usu n­u

Note that W and W are both measurable with respect to FF n .nt t ty1
To be able to apply the results of Sections 2 and 3 we need to verify

Assumptions A]H. Throughout we assume that the starting conditions have
a negligible effect; for example, the distribution of X is assumed to ben
independent of u or to vary smoothly with respect to u . More precisely stated,
we assume the following.

AX. Ls ª 0, under P .n P u gn

ŽMoreover, we suppose that the family of GG of densities g with respect to
.Lebesgue measure is such that location-scale models generated by elements

of this family are regular; the following is a more precise formulation.

BX. The density g is absolutely continuous with derivative gX such that the
Ž . Ž X .2 Ž .Fisher information for location I g s H g rg g x dx and the Fisher infor-l

Ž . Ž X Ž ..2 Ž .mation for scale I g s H 1 q xg rg x g x dx are finite.s
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ˇ Ž .By the technique of pages 211]212 and page 214 of Hajek and Sidak 1967 ,´ ´
Ž .it can be proved that finiteness of I g yields regularity of the location modell

Ž .and finiteness of I g regularity of the scale model, respectively. Similarly its
Ž . Ž .can be shown that finiteness of both I g and I g , implies regularity of thel s

location-scale model. The corresponding score is given by
XX Xc x s y g rg x , 1 q xg rg x .Ž . Ž . Ž .Ž .

The definition of W and Conditions AX and BX yield Assumptions A]C; E isnt
merely notation and F is fulfilled by BX and Proposition 7.8.1, page 400 of

'BKRW. So we have to construct an initial n -consistent estimator as re-
Ž . Ž . Ž .quired in Assumption G and it suffices to verify 2.3 , 2.4 and 3.3 with

C s 0 under all sequences P . As is shown in the Appendix, these conver-q u gn

gences can be obtained by proving the set of sufficient convergence relations
Ž X. Ž X. Ž X. Ž .2.3 , 2.4 , 3.3 and A.1 under P . Usually these latter relations will beu g0

obtained from smoothness and an ergodicity argument.
One easily verifies that the arguments above also apply to either pure

location models or pure scale models. In such situations the conditions may
be relaxed somewhat. For example, in pure location models, define W bynt

Ž .deleting the second component at the right-hand side of 4.2 , define Wt
Ž .similarly, let z be a location parameter, write 4.3 around z s 0, and0

Ž . Žrequire that I g is finite scale is unimportant and may be absorbed into thel
.infinite dimensional nuisance parameter . The pure scale situation can be

treated analogously.
Ž .Finally, we will verify the additional requirement 3.6 . As said before, for

general group models in time series, the parameter u can usually be split up
Ž X X.Xinto two components, say u s n , h , where the second component h has the

same interpretation as z . In the location-scale context considered here, this
Ž .X Ž .means that h s m, s . Generally m respectively s will serve as an additive

Ž . Ž .multiplicative parameter in the time dependent location scale parameter
Ž .while this component does not appear at other places; that is, m u s m qt

U Ž . w Ž . U Ž .x Ž .m n s u s ss n . In such cases the last two components of 4.4 do nott t t
Ž .depend on t and one obtains 3.6 along the lines of Example 3.1.

Ž .We will apply our results to some specific classes of models satisfying 4.1 .
To be precise, we will consider the linear regression model, with possibly
dependent regressor sequences, and the ARMA, TAR and ARCH model. The

Ž .regression model has been studied in an i.i.d. context in Bickel 1982 .
ŽSemiparametric analysis of the ARMA model is discussed in Kreiss 1987a,

.1987b . Semiparametric ARCH type models have been discussed by Engle
Ž . Ž . Ž .and Gonzalez-Rivera 1991 , Linton 1993 and Drost and Klaassen 1997 .

All these models are easily analyzed using our general approach based on
time-series group models. Adaptive estimation in semiparametric TAR mod-
els has, to the best of our knowledge, not been studied before. The regression,
ARMA and TAR examples are pure location models while the ARCH model is
a pure scale model. By the arguments above it suffices to verify the set of

Ž . Ž . Ž . Ž .alternative conditions 2.39 , 2.49 , 3.39 and A.1 given in the Appendix and
'to construct an initial n -consistent estimator.
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Ž .EXAMPLE 4.1 Linear regression . Let X be a function generating square-
Ž X X .X Ž U .integrable regressors X s Z , . . . , Z s X X , u and consider the linearn 1 n n

regression model
4.5 Y s m q ZX b q « .Ž . t t t

X X Ž Ž . .Assume A, B location version, i.e., I g - ` andl
n

XX Xy1n Z , 1 I g Z , 1 ª I u ,Ž . Ž . Ž . Ž .Ý t l t P g 0
ts1

n
2y1 < < y1 r2; d)0: n Z 1 ª 0,Ý t �n < Z < ) d 4 Pt

ts1

where the convergences are under P . The conditions include quite general,u g0

possibly heavily dependent regressor sequences. Of course they are satisfied
in the classical situation, where regressors are i.i.d. If the regressors are
purely exogenous, then Ls s 0. This model fits into the general framework ofn

Ž X .X Ž .Section 2 with u s b , m . Moreover, it is a specialization of 4.1 with
Ž . X Ž .m u s m q Z b and s u s 1.t t t
The assumptions stated in the Appendix will be verified with W s W snt t

Ž X .X Ž . Ž . Ž X. Ž X.Z , 1 and W the last column of I u rI g . The relations 2.3 and 3.3t 0 g 0 l

are immediate from the corresponding ones about Z . The smoothness con-t
Ž . Ž X.ditions A.1 and 2.4 are trivially fulfilled. In addition, assume E « s 0g

2 y1r2 n Ž X .Xand E « - `. Then the conditions about Z ensure that n Ý Z , 1 «g t ts1 t t
converges in distribution and the ordinary least squares estimator is a
'n -consistent estimator of u . Discretization yields an estimator satisfying
Assumption G. From Example 3.1 we conclude that b is adaptively estimable
with respect to g. If the average of the regressors tends to zero, b will be also
adaptively estimable with respect to m. Observe that we do not require that
the densities g be symmetric. Therefore, there is loss of information for the
whole parameter u due to the nonadaptive location parameter m.

If it is known at the outset that the densities are symmetric, then there
exist estimators of c such that the bias is zero. With C s 1 we may conclude
from Theorem 3.1 that u can be estimated fully adaptively. Of course, the
estimation problem of m in the nonsymmetric case reduces to the i.i.d.
location problem with a completely unknown distribution.

The semiparametric linear regression model has been considered previ-
Ž .ously by Bickel 1982 , Examples 2 and 3. Our conditions allow more general

wŽ . xregressor sequences. In the symmetric case Bickel 1982 , Example 2 does
not need the additional assumption E « 2 - ` to obtain an initial estimator.g
Therefore, we can also dispense with the condition of finite second moments
here.

Ž .EXAMPLE 4.2 ARMA . Let X be a function generating square-integrable
Ž .X Ž U .starting values X s Y , . . . , Y , « , . . . , « s X X , u and consider then 0 1yp 0 1yq n

Ž .ARMA p, q process defined by

4.6 Y s r Y q ??? qr Y q « q f « q ??? qf « .Ž . t 1 ty1 p typ t 1 ty1 q tyq
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As usual, we assume that the orders of the process are known. Assume
2 X X Ž .E « s 0, E « - `, A, B location version and suppose that the parametersg g
Ž .are such that 4.6 permits a causal, invertible solution and that the AR and

MA polynomial have no common roots. Write
X

V u s Y , . . . , Y , « u , . . . , « u .Ž . Ž . Ž .Ž .t ty1 typ ty1 tyq

Then it is clear that the ARMA model fits into the general framework with
Ž X X.X Ž .X Ž . Ž .X Ž .u s r , f s r , . . . , r , f , . . . , f , m u s V u u , s u s 1 and1 p 1 q t t t

X
W u s V u q D u u ,Ž . Ž . Ž .t t t

Ž . Ž .where D u denotes the derivative of V u with respect to u . For z we mayt t
take a location parameter and the log-likelihood is written around z s 0.0

Ž . Ž . Ž pqq .=Ž pqq .To verify the conditions, define A u , B u g R by

0X u X
pqq

I , 0py1 Ž py1.=Žqq1.I , 0py1 Ž py1.=Žqq1.
XA u s , B u s ,Ž . Ž .

X 0pqqyu� 0 � 00 , I , 0 0 , I , 0Žqy1.=p qy1 qy1 Žqy1.=p qy1 qy1

and observe that
XX XV u s A u V u q Y , 0 , Y , 0Ž . Ž . Ž . Ž .t ty1 ty1 py1 ty1 qy1

XX Xs B u V u q « u , 0 , « u , 0 ,Ž . Ž . Ž . Ž .Ž .ty1 ty1 py1 ty1 qy1

X
D u s A u D u y 0 , V u , 0 .Ž . Ž . Ž . Ž .Ž .t ty1 Ž pqq .=p ty1 Ž pqq .=Žqy1.

Ž .The invertibility condition on the MA polynomial guarantees that A u has
Ž .all eigenvalues within the unit circle. Similarly, the eigenvalues of B u are

within the unit circle by the causality condition on the AR polynomial. This
Ž . Ž . Ž X . Ž X.ensures an ergodic solution of V u and D u and, hence, 2.3 and 3.3 aret t

Ž . Ž .fulfilled. Since W s 0 this also verifies 3.6 of Theorem 3.1. To verify 2.40
Ž . Ž .and A.1 , recall that the calculated residual « u is equal to the truet n

innovation « under P and observe that the following relations hold true:t u gn

˜ ˜ ˜V u y V u s A u V u y V uŽ . Ž .Ž . Ž . Ž .ž /t n t n n ty1 n ty1 n

XXX X˜y 0 , u y u V u , 0 ,Ž .Ž .ž /p n n ty1 n qy1

˜ ˜ ˜D u y D u s A u D u y D uŽ . Ž .Ž . Ž . Ž .ž /t n t n n ty1 n ty1 n

˜y 0 , V u y V uŽ .Ž .ž Ž pqq .=p ty1 n ty1 n

XX ˜qD u u y u , 0 ,Ž . Ž . /ty1 n n n Ž pqq .=Žqy1.

˜ ˜V u y V u y D u u y uŽ . Ž .Ž . Ž .t n t n t n n n

˜ ˜s A u V u y V u y D u u y uŽ . Ž . Ž .Ž . Ž .ž /n ty1 n ty1 n ty1 n n n

XXX X˜ ˜y 0 , u y u V u y V u , 0 .Ž .Ž . Ž .ž /ž /p n n ty1 n ty1 n qy1
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˜'Ž . Ž . Ž .Hence, using Lemma A.2, continuity of A u and B u and n u y u sn n
Ž .O 1 , we obtain subsequently, under P ,u gn

n n
2 2y1 y1< < < <n V u s O 1 , n D u s O 1 ,Ž . Ž . Ž . Ž .Ý Ýt n P t n P

ts1 ts1
n n

2 2˜ ˜< < < <V u y V u s O 1 , D u y D u s O 1Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýt n t n P t n t n P
ts1 ts1

and

n
2˜ ˜< <V u y V u y D u u y u s o 1 .Ž . Ž . Ž .Ž . Ž .Ý t n t n t n n n P

ts1

Ž . Ž .Equations 2.4 and A.1 are immediate from these results and from

n 2X ˜W y W u u y uŽ .Ž . Ž .Ý nt t n n n
ts1

n X˜ ˜ ˜s V u y V u y D u u y u uŽ . Ž .Ž . Ž .Ý ž /t n t n t n n n n
ts1

2X˜ ˜q u y u D u u y u ,Ž .Ž . Ž .n n t n n n

n
2y1n W u y W uŽ . Ž .Ý t n t 0

ts1
n

y1s n V u y V uŽ . Ž .Ý t n t 0
ts1

X 2Xq D u y D u u q D u u y u .Ž . Ž . Ž . Ž .Ž .t n t 0 n t 0 n 0

'An initial n -consistent estimator of u is easily obtained from the first
p q q q 1 autocovariances. From Lemma A.1 we conclude that u is adap-
tively estimable with respect to g.

In the proof above, symmetry of the densities is not necessary. If symmetry
is given in advance we may obtain the result in another way by taking an
appropriate symmetrized estimator of c with zero bias. Then knowledge of

Ž .W s 0 is not necessary to verify 3.6 . Moreover, this implies that replace-0
ment of C s 0 by C s 1 does not influence the adaptiveness of the estimator

'n . Note, however, that the use of n -unbiased estimates of c does notn̂
Ž .improve the first order asymptotics. To guard against possible nonsymme-

tries it seems better to use nonsymmetrized estimators of c and C s 0.
The semiparametric ARMA has been considered previously by Kriess

Ž . Ž . Ž . Ž1987a symmetric error distribution and Kreiss 1987b nonsymmetric AR
.case . Our conditions are somewhat more general and do not need the strict

positiveness of g on R.
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Ž . Ž U .EXAMPLE 4.3 TAR . Let X s Y s X X , u denote some starting valuen 0 n
and consider the threshold autoregressive model

k

4.7 Y s m q r Y I Y q « ,Ž . Ž .Ž .Ýt j j ty1 A ty1 tj
js1

where A , . . . , A is a measurable partition of R. See, for example, Tong and1 k
Ž .Lim 1980 for a discussion of the parametric model. Assume E « s 0,g

2 X X Ž . Ž .E « - `, A, B location version and suppose that 4.7 admits an ergodic,g
wstationary solution with finite second moments cf. Chan, Petruccelli, Tong

Ž . xand Woolford 1985 for a set of sufficient conditions . The TAR model is a
Ž . Ž X X.X Ž .Xspecial case of 4.1 with u s r , m s r , . . . , r , m , . . . , m ,1 k 1 k

k

m u s m q r Y I Y ,Ž . Ž .Ž .Ýt j j ty1 A ty1j
js1

Ž . Ž Ž . Ž . Ž .s u s 1 and W s W s I Y Y , . . . , I Y Y , I Y , . . . ,t nt t A ty1 ty1 A ty1 ty1 A ty11 k 1
Ž ..XI Y .A ty1k

The assumptions stated in the Appendix are immediate. The smoothness
Ž X. Ž X.conditions are trivial since W s W and 2.3 and 3.3 follow from ergodic-nt t

ity. An initial estimator is derived in Chan, Petruccelli, Tong and Woolford
y1 kŽ . w1985 . Put m s k Ý m and obtain from Corollary 3.1 with A s I yjs1 j 2 k

X X X X X X X X X X X Xy1Ž . Ž . Ž . x Ž .k 0 , 1 0 , 1 and B s 0 , 1 that r , m y m1 is adaptively es-k k k k k k k

timable with respect to g.
Just as in the regression example, adaptive estimation of the whole

parameter is possible if the densities are known to be symmetric. In that case
one needs to use a symmetrized estimator of c with zero bias. In the
nonsymmetric case, the estimation problem of the remaining nonadaptive
parameter is equivalent to the i.i.d. location problem with a completely
unknown distribution.

Ž . Ž .X Ž U .EXAMPLE 4.4 ARCH . Let X s Y , . . . , Y s X X , u denote somen 0 1yp n
Ž .starting values and consider Engle’s 1982 autoregressive conditional het-

eroskedastic model

Y s s u « ,Ž .t t t

s 2 u s s 2 1 q a Y 2 q ??? qa Y 2 .Ž . Ž .t 1 ty1 p typ

4.8Ž .

2 X X ŽAssume s , a , . . . , a ) 0, E « s 0, E « s 1, A and B scale version, i.e.,1 p g g

Ž . . Ž .I g - ` . Suppose also that 4.8 admits a stationary solution, that is,s
assume the necessary and sufficient condition E ln « 2 q ln s 2 qg

w Ž .xln max a - 0 see Nelson 1990 . Under this assumption, the solu-js1, . . . , p j

Ž .tion will also be ergodic. The ARCH model is a special case of 4.1 with
Ž X .X Ž .X Ž .u s a , s s a , . . . , a , s , m u s 0 and1 p t

X2 2 2 2s Y s Y 1n ty1 n typ
W s , . . . , , .t 2 2ž /s2s u 2s uŽ . Ž . nt n t n
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To be able to apply Lemma A.1 we will verify the set of sufficient equations
Ž X. Ž . Ž X. Ž . < < 2 Ž X. Ž X.2.3 , 2.4 , 3.3 and A.1 . Since W is bounded, 2.3 and 3.3 are directt

Ž .consequences of the ergodic theorem. The smoothness conditions 2.4 and
Ž .A.1 follow from

n 2X ˜W y W u y uŽ . Ž .Ý nt t n n
ts1

2n ­y1 ˜ ˜<s s u s u y s u y s u u y uŽ . Ž . Ž .Ž . Ž .Ý usut n t n t n t n nn½ 5­uts1

2 2 2 2n ˜s u rs y s u rsŽ .˜Ž .t n n t n ns Ý 2 22s u rsŽ .t n nts1

2˜s 2s u rs s u rs y s u rsŽ . Ž .˜ ˜Ž .n t n n t n n t n n
= y 1 y½ 5ž / ˜ ˜s s u rs q s u rs s u rs q s u rsŽ . Ž .˜ ˜Ž . Ž .n t n n t n n t n n t n n

2 2p p< < < <a y a s a y a˜ ˜ ˜n j n j n n j n jF n 2 y 1 q ª 0Ý Ýž / ž /2a s a q a˜n j n n j n jjs1 js1

and
n

2y1 < <n W u y W uŽ . Ž .Ý t n t 0
ts1

22 2pn 1 s s2 n 0y1 y1 y1 4s s y s q n Y yŽ . Ý Ýn 0 tyj 2 2ž /4 s u s uŽ . Ž .t n t 0ts1 js1

2p p < <1 a y a2 n j 0 jy1 y1F s y s q ª 0.Ž . Ý Ýn 0 2ž / ž /a4a n j0 jjs1 js1

Ž .An initial estimator is derived in Weiss 1986 . From Example 3.1 we con-
clude that a is adaptively estimable with respect to g. In this example it is

'not possible to obtain a n -unbiased estimator of c . In this model, the
Ž .additional parameter s yields the required orthogonality property 3.6 to

obtain adaptation. Given the estimation results for a , the estimation problem
for s reduces to estimation of scale in i.i.d. models.

Previous results for the semiparametric ARCH model are obtained in
Ž . Ž .Engle and Gonzalez-Rivera 1991 and Linton 1993 . They obtained the same´

result in a subset of our parameter space. Their proofs need the existence of,
2Ž .for example, second moments of Y implying s a q ??? qa - 1, which ist 1 p

clearly stronger than the condition leading to stationarity. Drost and Klaassen
Ž .1997 derive weak adaptiveness conditions for the more parsimonious gener-

Ž .alized ARCH model of Bollerslev 1986 .
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As a further example of semiparametric time-series group models we will
discuss elliptic models. For a discussion of these models in an i.i.d. context,
see BKRW, Example 4.2.3, pages 89, 90, 96]99. Elliptic models are important
in the analysis of financial markets since for these models mean-variance
analysis is fully compatible with expected utility maximization.

Ž .EXAMPLE 4.5 Elliptic model . The elliptic model is specified by

Y s m q S « ,t t t t

where the random d-vector m and the random d = d-matrix S are pre-t t
dictable and « has some elliptic distribution, that is, a Lebesgue absolutelyt
continuous distribution on R d invariant under orthogonal transformations.
In i.i.d. elliptic models adaptive estimation of both the location parameter m

X Ž X. wand the parameter Ý s SS rtrace SS is generally possible see BKRW,
xExample 4.2.3, page 96 . Using Theorem 3.1 with C the identity matrix, this

implies that adaptive estimation in a time-series context is possible as well,
provided that the time dependent location and scale m and S SX satisfyt t t
conditions like those in previous examples. The details under which these
conditions are satisfied are easily obtained by the reader. Comparing the
elliptic model with general location-scale models, we see that on the one hand
elliptic models allow for less general error distributions, but on the other
hand adaptive estimation of most of the covariance structure becomes
feasible.

APPENDIX

Ž . Ž . Ž .We show that the convergences 2.3 , 2.4 and 3.3 which are needed
under all sequences P may be replaced by the following sufficient set ofu gn

equations:

n
Xy1n W u JW u ª I u ) 0,Ž . Ž . Ž .Ý t 0 t 0 P 0

ts1

n
2y1 < < y1 r2; d ) 0: n W u 1 ª 0,Ž .Ý t 0 �n <W Žu . < ) d 4 Pt 0

ts1

X2.3Ž .

n X 2
X ˜ ˜2.4 W u , u y W u u y u ª 0,Ž . Ž .Ž . Ž .Ý ž /t n n t n n n P

ts1
n

X y13.3 n W u ª W ,Ž . Ž .Ý t 0 P 0
ts1

n
2y1 < <A.1 n W u y W u ª 0,Ž . Ž . Ž .Ý t n t 0 P

ts1
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where the convergences are under P . Since we consider convergence underu g0

Ž X. Ž X.a fixed probability measure, 2.3 and 3.3 will usually follow from a weak
Ž X.law of large numbers or from an ergodicity argument. Equation 2.4 is a

Ž . Ž .relaxation of 2.4 and relation A.1 is an additional smoothness condition.
The precise statement is given in the following lemma.

LEMMA A.1. Assume that Assumptions A]E hold for all sequences u sn
y1r2 ˜ y1r2 XŽ . Ž . Ž . Ž . Ž .u q O n , u s u q O n but replace 2.3 by 2.3 and A.10 n 0

Ž . Ž X.andror replace 2.4 by 2.4 . Then Assumption D is satisfied and hence the
conclusion of Theorem 2.1 remains valid.

Ž . Ž X . Ž .Additionally, assume F]H but with 3.3 replaced by 3.3 and A.1 . Then
Assumption H is satisfied and hence Theorem 3.1 is still applicable.

˜PROOF. Apply Theorem 2.1 with u s u , u s u and establish contiguityn 0 n n
Ž . Ž . Ž X. Ž .of P and P . Now, by A.1 , we obtain 2.3 from 2.3 . Relation 2.4 isu g u g0 n

Ž X.obtained in an analogous manner from contiguity and 2.4 . The final asser-
tion follows similarly. I

We conclude the Appendix with a technical lemma which will be handy in
time-series models with autoregressive parts.

Ž .LEMMA A.2. Let r A denote the spectral radius of a matrix A. Suppose
that X , Y are arrays satisfyingnt nt

A.2 X s A X q Y , t s 1, . . . , n ,Ž . nt n n , ty1 nt

Ž .where A is a sequence of square matrices with lim sup r A - a - 1.n nª` n
Then, for n sufficiently large,

n n
y2 y12 2 2< < < < < <A.3 X F 1 y a Y q a 1 y a X .Ž . Ž . Ž .Ý Ýnt nt n0

ts1 ts1

Ž .PROOF. Fix N ) 0 such that n G N implies r A F a . Then we have, forn
n G N,

< < < < < <X F a X q Ynt n , ty1 nt

and hence

12 2 2< < < < < <X F a X q Y .nt n , ty1 nt1 y a

Straightforward calculations complete the proof. I
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