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In problems where a high-dimensional design is projected into a
lower number of dimensions, the density of the new design is typically
not bounded away from zero over its support, even if the original one was.
Contexts where this problem arises include projection pursuit regression,
estimation in single index models and application of the projection-slice
method of Radon transform inversion. Theoretical work in these settings
typically involves ignoring data toward the ends of the support of the
projected design, but in practice that waste of information is not an
attractive option. Motivated by these difficulties, we analyze the way in
which local linear smoothing is affected by unboundedly sparse design
and apply the conclusions of that study to develop empirical, adaptive
bandwidth choice methods. Our results even add to knowledge in the
familiar case of a design density that is bounded away from zero, where
they provide adaptive bandwidth selectors that are optimal right to the
ends of the design interval.

1. Introduction. This paper is motivated by a problem which arises in
dimension reduction, when nonparametric curve estimation is applied to data
obtained by projection. The problem occurs in projection pursuit regression,
estimation in single index models, and the projection-slice method of Radon
transform inversion, to name only three contexts. Briefly, if design points have
a probability density which is bounded within a given multivariate region,
then the density of the projection of those points onto a lower-dimensional
Euclidean space usually decreases gradually to zero at the extremities of
its support. This is true even if the original high-dimensional density was
bounded away from zero on its support. Therefore, when using nonparametric
methods to recover a target function from its projection, one is forced to either
accommodate design densities that are arbitrarily low, or waste some of the
information in the multivariate data set by staying away from the ends of the
support of the projected design. Quite apart from the inefficiency of the latter
solution, it is awkward because it means ignoring different parts of the data
for different projections.

In this paper we present an account of nonparametric regression in settings
where the design density decreases to zero and apply it to the development
of empirical bandwidth choice methods which allow full use of the data. This
problem is distinctly different from more familiar ones of adaptive bandwidth
choice [e.g., Gasser, Kneip and Köhler (1991), Fan and Gijbels (1995)], where
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the theory on which the methodology is based assumes that the design density
is bounded away from zero. If that condition is violated, then both the order
of magnitude of the appropriate bandwidth and the rate of convergence of
the function estimator alter. We propose bandwidth selectors that adjust to
variability in both the target function and the design density, even when the
latter is very low, and which are nearly optimal in a mean-squared error sense.
By way of contrast, and even in the much simpler setting of a design density
that is bounded away from zero, some commonly used bandwidth selectors
address only variation of the density.

Our analysis demands new theoretical techniques for approximating the
variance of a nonparametric regression estimator when its numerator and de-
nominator are both close to zero. The variance does converge to zero at the
extremities of the design support, provided the bandwidth is chosen appropri-
ately, but its rate of decrease depends intimately on the unknown rate at which
the design density decreases. Our approach to adaptive bandwidth choice in-
volves implicitly estimating the density’s rate of decrease, as is made precise
in Theorem 2.1. We focus on local linear regression methods, because they are
fast becoming the most popular kernel-type approach. However, analogues of
our techniques may be developed for Nadaraya–Watson and Gasser–Müller
kernel weights, among others. They are discussed in a longer version of this
paper [Hall, Marron, Neumann and Titterington (1995)]. There it is shown
that neither of these alternative methods performs as well as local linear
smoothing. The former method generally suffers a larger order of bias, and
the latter from a larger order of variance, when the design density converges
to zero.

To set our work in context, suppose independent observations X =
��Yi;Zi�, 1 ≤ i ≤ n� are made of a vector �Y;Z�, where Y is a scalar and Z
a p-vector. It is desired to estimate gθ�x� = E�Y�θ ·Z = x�, where θ is a unit
p-vector and x is a scalar. (Versions of our results may also be developed in
the case where the Zi’s are projected into q dimensions, where 1 ≤ q < p.)
In the case of single index models [e.g., Brillinger (1983); Härdle, Hall and
Ichimura (1993)], �Y;Z� might be generated as Y = g�θ0 · Z� + ε, where
g is an unknown univariate function, θ0 is an unknown unit vector, and
the error ε is independent of Z, with zero mean. Here the main parameter
of interest is generally θ0, and the univariate function gθ is estimated for
various θ’s as a prelude to estimating θ0. In another setting, if θ is chosen to
optimize a measure of “interestingness,” often based on entropy or orthogonal
polynomials, then gθ represents the first step in developing a projection
pursuit approximation to E�Y�Z� [e.g., Friedman and Stuetzle (1981)]. To
understand the effect that projection has on the density of the θ ·Zi’s, suppose
the Zi’s are distributed over a region Z ⊆ Rp, with a p-variate density that is
bounded away from both zero and infinity there. Let ψθ denote the univariate
density of θ ·Z, with support Iθ. If Z is a rectangular prism and if the unit
vector θ is not parallel to one or other of its faces, then ψθ decreases to zero
at rate xp−1 (as x ↓ 0) at either end of Iθ. The rate is x�p−1�/2 if Z is an
ellipsoid.
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These sparse data problems also arise in errors-in-variables regression [e.g.,
Raj and Ullah (1981), Nicholls and Pagan (1985)]. There, data are available on
a pair �U;V�, related by the identity V = AU +B, and the variables �A;B�
have a joint distribution whose form is the subject of investigation. The joint
characteristic function φA;B is expressible via the conditional characteristic
function φR�2 of R = V/�1+U2�1/2 given 2 = arctanU, through the equation
φA;B�r cos θ; r sin θ� = φR�2�r�θ� (an example of the so-called projection-slice
theorem). An attractive method for estimating the joint density fA;B of �A;B�
is as follows. First estimate φR�2 using local linear smoothing, encountering
exactly the same sparse design problems as in the earlier discussion. Then
invert first a Fourier transform and then a Radon transform to obtain an
estimate of fA;B. (The conditional density ofR given 2 is the Radon transform
of fA;B.)

Curve fitting by local polynomials, of which the local linear method studied
in this paper is an example, is well known for its excellent computational and
theoretical features, discussed by (for example) Hastie and Loader (1993). It
has a long and distinguished history, going back 125 years, which is recounted
in an excellent survey paper by Cleveland and Loader (1996). It lies at the
heart of widely used software such as LOESS; see Cleveland (1979, 1993),
Cleveland and Devlin (1988), Cleveland and Grosse (1991) and Fan (1992).
This enduring numerical attraction and the minimax optimality of local linear
smoothing [Fan (1993)], have earned that method the accolade of the “golden
standard” for nonparametric regression [Seifert and Gasser (1996)].

Section 2 will present our main theoretical results on performance of curve
estimators when the design is sparse. The conclusions drawn there will be
developed into empirical bandwidth choice methods in Section 3. Numerical
work will be presented in Section 4. Technical arguments behind our main
result in Section 2 will be sketched in Section 5. Further details of proofs are
available in Hall, Marron, Neumann and Titterington (1995).

2. Formulas for variance and bias. We begin by introducing the model
and defining the estimator. The data �Yi, 1 ≤ i ≤ n� are assumed to be
generated as Yi =m�xi�+εi, where m is a smooth function, the design points
xi are conditioned values of independent and identically distributed random
variables with density f and, conditional on the xi’s, the random variables
εi are independent with zero mean and variance σ2. Here, f represents the
design density ψθ discussed earlier. We take the support, I ; of f to be the
interval �0;1�, and assume that f is bounded away from zero on �ξ;1− ξ� for
each ξ > 0. Put

wi�x� = vi�x�
{ n∑
j=1

vj�x� + δ�x�
}−1

;

where for a kernel function K we define vi�x� =K��x−xi�/h� �s2−�x−xi�s1�
and sk =

∑n
j=1K��x−xj�/h��x−xj�k (k = 1;2). The ridge parameter δ ≥ 0 is

chosen to be nonrandom. Fan (1993) suggests taking δ equal to n−2, and that
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choice would be appropriate for our purposes. In this notation, our estimator
of m is

m̂�x� =
n∑
i=1

wi�x�Yi:

Our main result in this section is Theorem 2.1, which shows that, as sample
size increases and bandwidth decreases at an appropriate rate, the variance of
m̂�x� decreases like �nhf�x ◦h��−1, where x ◦h = x∨h if 0 ≤ x ≤ 1

2 , x∧�1−h�
if 1

2 < x ≤ 1; and that bias decreases like h2. A sequence of remarks following
the theorem will describe its main implications.

We assume the following conditions.

Of the design density f,

�2:1�
f is continuous on �0;1�, bounded away from zero on �ξ;1−
ξ� for each ξ > 0 and satisfies f�x� ∼ c1x

α1 , f�1−x� ∼ c2x
α2

as x ↓ 0, where c1; c2 > 0 and α1; α2 ≥ 0:

Of the target function m,

�2:2� m′′ is bounded and uniformly continuous on �0;1�:
Of the error distribution,

�2:3� E�εi�=0; E
(
ε2
i

)
=σ2>0 for each i; E�εiεj�=0 for each i 6=j:

Of the kernel function K,

�2:4� K is bounded, symmetric, Hölder continuous, nonnegative
and supported on �−1;1�.

Of the bandwidth function h,

�2:5� for some η > 0, h�x� = O�n−η� and h�x�−1��x ∨ h�x��α1 ∧
��1− x� ∨ h�x��α2�−1 = O�n1−η� uniformly in 0 < x < 1.

Of the ridge function δ,

�2:6� sup
0<x<1

(
n2 h�x�6

[
�x ∨ h�x��α1 ∧ ��1− x� ∨ h�x��α2

])−1
δ�x� → 0 :

Next we introduce notation for dominant terms in formulas for variance
and bias. Put

qilk�w� =
∫
ukK�u�l

{
1 ∧w− �1 ∧w−1�u

}αi
+ du; w > 0;

vi =
(
q2
i12 qi20 − 2qi11 qi12 qi21 + q2

i11 qi22
)(
qi10 qi12 − q2

i11

)−2
;(2.7)

bi =
(
q2
i12 − qi11 qi13

)(
qi10 qi12 − q2

i11

)−1y(2.8)

and with r denoting either v or b, let r�x;h� = r1�xh−1� or r2��1 − x�h−1�
according as 0 < x ≤ 1

2 or 1
2 < x < 1.
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Theorem 2.1. Assume conditions (2.1)–(2.6). Then, for a sequence of design
points x1; x2; : : : arising with probability 1,

var�m̂�x�� = σ2�nh�x�f�x ◦h�x���−1�v�x;h�x�� + o�1��;(2.9)

E�m̂�x�� −m�x� = 1
2 h�x�2�m′′�x� b�x;h�x�� + o�1��;(2.10)

where the o�1� terms are of that order uniformly in 0 < x < 1.

We intend Theorem 2.1 to be interpreted conditional on the design sequence,
and our outline proof is for that setting. However, if the ridge parameter δ is
chosen appropriately (δ = n−2 is adequate) then the theorem has a direct
analogue for unconditional variance and bias.

Remark 2.1 (Properties of v and b). Condition (2.4) implies that v and �b�
are bounded uniformly in 0 < x < 1 and h > 0. Except in pathological cases,
the set of values �x;h� in �0;1� × �0;∞� such that b�x;h� = 0 is of mea-
sure zero, and v > 0. The classical variance and bias formulas, var�m̂� ∼
σ2�nhf�−1 κ1 and E�m̂� −m = 1

2 h
2m′′ κ2 + o�h2� where κ1 = �

∫
K2�/�

∫
K�2

and κ2 = �
∫
u2K�u�du�/�

∫
K�, are implied by Theorem 2.1 in regions where

f is bounded away from zero. Methods of Cheng, Fan and Marron (1996) may
be used to show that, using the triangular kernel and an appropriate band-
width, the mean-squared error for m̂�0� formed from the variance and the bias
given in Theorem 2.1 achieves the minimum possible value, in an asymptotic
sense.

Remark 2.2 (Order-of-magnitude approximations). Observe from (2.9)
and (2.10) that balancing variance against squared bias at x produces, in
order of magnitude terms, the identity �nh�x∨h�α1�−1 = h4 for 0 < x < ξ, any
fixed ξ > 0. The analogous result in the upper tail is also valid. Therefore, the
bandwidth h0 = h0�x� that minimizes E�m̂�x� −m�x��2, and the minimum
of the latter, satisfy

h0�x� '





n−1/�5+α1�; if 0 < x ≤ n−1/�5+α1�;

�nxα1�−1/5; if n−1/�5+α1� < x ≤ 1
2 ;

�n�1− x�α2�−1/5; if 1
2 < x ≤ 1− n−1/�5+α2�;

n−1/�5+α2�; if 1− n−1/�5+α2� < x < 1;

inf
h
E�m̂�x� −m�x��2 '





n−4/�5+α1�; if 0 < x ≤ n−1/�5+α1�;

�nxα1�−4/5; if n−1/�5+α1� < x ≤ 1
2 ;

�n�1− x�α2�−4/5; if 1
2 < x ≤ 1− n−1/�5+α2�;

n−4/�5+α2�; if 1− n−1/�5+α2� < x < 1:

Noting the comments in Remark 2.1 concerning zeros of b�x;h� we may show
that, except in pathological cases, the approximations above are accurate in
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the sense that in both, the ' signs may be interpreted as � signs for all but
a finite set of x’s. That is, except for those x’s the ratio of the left- and right-
hand sides above is bounded away from zero and infinity as n→ ∞. Typical
exceptional x’s will be near points of inflection of m.

This concise asymptotic interpretation of the approximations is valid uni-
formly on any set I \N , where N denotes any neighborhood, no matter how
small, of the finite set of exceptional points noted in the previous paragraph.
At those exceptional points, the optimal rate of convergence of infh E�m̂�x�−
m�x��2 is actually faster than that described by the approximation above, and
likewise, that approximation provides an upper bound to the fastest rate of
convergence throughout the neighborhood N . Arguing thus, it may be shown
that the locally optimized mean integrated squared error is given by

LOMISE =
∫ 1

0
inf
h
E�m̂�x� −m�x��2 dx

�





n−4/5; if α < 5/4;

n−4/5 log n; if α = 5/4;

n−5/�5+α�; if α > 5/4

� n−4/5
∫ 1/2

n−1/�5+α�
x−4α/5 dx;(2.11)

where α = max�α1; α2�. Note particularly that the ratio of the quantities on
the far left and far right sides of (2.11) is bounded away from zero and infinity
as n→∞. When α < 5/4, the asymptotic constants of proportionality in (2.11)
have particularly simple expressions, and indeed

LOMISE ∼ n−4/5
∫ 1

0
�b0v

2
0f
−2�m′′��2/5:

Similar expressions are readily developed when α ≥ 5/4, although they are
driven by behavior of f at the ends of I and are consequently more complex.

Remark 2.3 (Projection of high-dimensional designs on to lower-dimensional
structures). Here we return to the problem discussed in Section 1, that of
estimating m�x� = mθ�x� = E�Y�θ ·Z = x� from random data on the vector
�Y;Z�, where Y is a scalar, Z is a p-vector and θ is a unit p-vector. Suppose
the support of Z is a bounded, open, contiguous set Z ⊆ Rp and that Z has
a density that is uniformly continuous and bounded away from zero on Z. If
Z is a rectangular prism then, provided θ is not parallel to any of the sides
of Z, f satisfies (2.1) with α1 = α2 = p − 1. (The values are α1 = α2 = 0
when θ is parallel to an edge. Intermediate cases, where θ is parallel to a side
of Z but not to an edge, may be treated similarly.) If Z is an ellipsoid then
α1 = α2 = 1

2 �p− 1�. Noting these properties, we may deduce from (2.11) that
LOMISE = O�n−4/5� for all θ’s if and only if p ≤ 2 (when Z is a rectangular
prism) or p ≤ 3 (when Z is an ellipsoid).
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3. Empirical bandwidth choice. We begin by applying Theorem 2.1
to develop a formula for the optimal bandwidth. Observe that v�x;h� =
V�x;h�f�x ◦h� + o�1� and b�x;h� = B�x;h� + o�1�, where

V = �f2
12f20 − 2f11f12f21 + f2

11f22��f10f12 − f2
11�−2;

B = �f2
12 − f11f13��f10f12 − f2

11�−1;

and flk�x;h� =
∫
ukK�u�l f�x−hu�du. In that notation, E�m̂�x�−m�x��2 ∼

σ2�nh�x��−1V�x;h�+ 1
4 h�x�4m′′�x�2B�x;h�2:Minimizing this quantity takes

no account of zeros caused by points of inflection of m or zeros of B�x;h�.
Therefore, we suggest adjoining a small ridge parameter t > 0 to the quan-
tity m′′�x�2B�x;h�2, prior to minimization. Hence, we develop an empirical
approximation to the bandwidth ha that minimizes

�3:1� σ2�nh�−1V�x;h� + 1
4 h

4 �m′′�x�2B�x;h�2 + t� :

Let Ṽ and B̃ denote the versions of V and B, respectively, in which each
flk�x;h� is replaced by its unbiassed estimator

f̃lk�x;h� = �nh�−1
n∑
i=1

��x−Xi�/h�kK��x−Xi�/h�l:

There is a wide variety of ways of estimating σ2 [see, e.g., Gasser, Sroka and
Jennen-Steinmetz (1986); Buckley, Eagleson and Silverman (1988); Buckley
and Eagleson (1989); Hall and Marron (1990); Hall, Kay and Titterington
(1990); Carter and Eagleson (1992) and Seifert, Gasser and Wolf (1993)]. For
the sake of definiteness, we employ the root-n consistent estimator,

σ̂2 = �2ν�−1 ∑
ix ξ<xi<1−ξ

�Yi −Yi+1�2;

where ξ ∈ �0; 1
2�, ν denotes the number of summands in the series, and it is

assumed that the design points xi are indexed in order of increasing size. We
take m̃′′�x� to be the second derivative estimator constructed using a local
sth degree polynomial, as suggested by Ruppert and Wand (1994), employing
kernel K1 ≥ 0 and bandwidth h1 = h1�x�. Although Ruppert and Wand (1994)
imply that we should use s ≥ 3, we found that better numerical results were
achieved with s = 2. Finally, we take h̃a = h̃a�x� to be the minimizer of

�3:2� σ̂2�nh�−1Ṽ�x;h� + 1
4h

4 �m̃′′�x�2 B̃�x;h�2 + t�;

and let ĥa = h̃a if both h̃a and h̃−1
a ≤ n and ĥa = n−1/5 otherwise. (The

latter restrictions serve only to ensure that the empirical bandwidth selector
does not take grossly large or small values. The boundary of n−1 is somewhat
arbitrary and could be replaced by many alternatives.)

We close this section by showing that the estimator ĥa achieves first-order
minimization of the quantity at (3.1). Let ĥ = ĥ�x� denote a locally adaptive
empirical bandwidth function, representing an estimator of a deterministic
bandwidth h = h�x�. Write m̌ for the version of m̂ in which h is replaced
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by ĥ, and recall that in Theorem 2.1 the estimator m̂ was constructed using
bandwidth h. Theorem 3.1 below shows that first-order properties of deter-
ministic, locally adaptive bandwidths are preserved by general methods for
empirical choice, and that this result holds uniformly in x. From Theorem 3.2
we see that the particular method suggested above satisfies the conditions of
Theorem 3.1.

Theorem 3.1. Assume the conditions of Theorem 2.1, that the errors εi are
identically distributed and that all moments of the error distribution are finite.
Suppose too that m′′ is uniformly continuous; that for some C, ζ > 0,

�f�x� − f�y�� ≤ C
(
�x− y�/��x ∨ y� ∧ ��1− x� ∨ �1− y���

)ζ

× ��x ∨ y�α1 ∧ ��1− x� ∨ �1− y��α2�
(3.3)

for all x, y ∈ �0;1� and that for some ζ > 0 and all λ > 0,

P
{

sup
0<x<1

�ĥ�x�h�x�−1 − 1� > n−ζ
}
= O�n−λ�;(3.4)

P
[

sup
0<x<1

�ĥ�x� + ĥ�x�−1� ≤ n1/ζ
]
= 1:(3.5)

Then results (2.9) and (2.10) hold for m̌ as well as m̂.

Condition (3.3) is no more than the usual form of Hölder continuity assump-
tion for a function that, as x ↓ 0, decreases to zero like xα1 in the left-hand
tail and xα2 in the right-hand tail. The proofs of Theorems 3.1 and 3.2 may be
found in Hall, Marron, Neumann and Titterington (1995).

Our final result is in a form which applies to the left-hand half of the support
interval �0;1�, and for that purpose we assume that K1 is not a right-hand
kernel, that is, that K1�u� 6= 0 for some u < 0.

Theorem 3.2. Assume the conditions of Theorem 2.1, that f and m′′ are
Hölder continuous on �0;1�, that K1 satisfies

∫
K1 = 1 and is compactly sup-

ported and Hölder continuous on �−∞;∞�, that K1�u� 6= 0 for some u < 0,
that all moments of the distribution of the errors εi are finite and that for some
η > 0, h1�x� = O�n−η� and h1�x�−3�x ∨ h1�x��−α1 = O�n1−η�, where the “O”
terms are of that order uniformly in 0 < x < 1−ξ for some ξ ∈ �0;1�. Then, for
a sequence of design points x1; x2; : : : arising with probability 1, and for some
ζ > 0 and all λ > 0, results (3.4) and (3.5) hold.

The conditions of the theorem concerning h1 are satisfied if we take h1�x� ≡
n−γ, where 0 < γ < �3+ α1�−1.

Remark 3.1. (i) Note that formula (3.1), which is the basis for the data-
driven bandwidth choice, is also adequate in cases of low density without the
special assumption on the rate of decay of f. [This is in contrast to formula



764 HALL, MARRON, NEUMANN AND TITTERINGTON

(2.9), which in particular includes a term f�x ◦h�x�� in the case x ≤ 1/2,
and whose validity depends in some way on the monotonic decay of f�x� as
x → 0.] Actually (and quite surprisingly, because its derivation was based
on asymptotic considerations), the term σ2�nh�−1Ṽ�x;h� is exactly equal to
the conditional variance of m̂�x�, var�m̂�x�� = σ2∑

iw
2
i �x�. Hence, also in

the case of low density in the interior, its estimate σ̂2�nh�−1Ṽ�x;h� is a very
reliable estimate of var�m̂�x��.

(ii) More work could certainly be invested in studying different ways of
choosing the ridge constant. However, any such method is likely to be very
much ad hoc and to involve arbitrary features.

(iii) One referee was concerned about the finite-sample variance problems
associated with local polynomial estimators. These can be ameliorated if one
takes, if necessary, a larger bandwidth. Since we make a data-driven local
bandwidth choice, the problem of large variances should be in principle avoid-
able. This seems to be actually the case, because σ̂2�nh�−1Ṽ�x;h� is a very
good estimate of var�m̂�x��, as argued above. In this context note also that
our criterion based on minimization of (3.2) automatically rejects bandwidths
that lead to very high variances.

(iv) In view of the above discussion, it seems adequate to choose the band-
width based on σ̂2�nh�−1Ṽ�x;h� plus some reasonable estimate of the squared
bias. The bias part is perhaps “too asymptotic” for small values of n, since it in-
cludes only an estimate of m′′�x�. On the other hand, a completely “nonasymp-
totic” estimate like �m̂�x� −∑iwi�x�m̂�xi��2 (with m̂ computed using a larger
bandwidth), which would also not require the additional ridge parameter t,
while being a possible alternative, is not so elegant.

4. Numerical example. A numerical study was made of the effects of
implementing the ideas in this paper. In the illustration reported here the
true curve was the parabola m�x� = 1

2 x�1 − x�, and the design density was
chosen to be the piecewise quadratic, smooth, bell-shaped density defined by

f�x� =





16x2; if 0 ≤ x ≤ 1/4;

2− 4�1− 2x�2; if 1/4 ≤ x ≤ 3/4;

16�1− x�2; if 3/4 ≤ x ≤ 1:

Figure 1 displays results corresponding to sample size n = 10000 and noise
standard deviation σ = 0:05. Displayed in each frame in the figure are the
curve estimates from seven replications, along with their average (dashed
curve) and the true parabolic curve (solid curve). The noise variance was esti-
mated as described in Section 3. For the results in Figure 1(a), the bandwidth
was chosen to be constant, at a level that was locally effective for x in the
middle of the range. The instability of the resulting curve estimates near the
ends of the interval is clear. In the other two displays, the bandwidth was
chosen to vary with x, according to the methodology of Section 3. In Figure
1(b), the true value of m′′�x� was assumed known (= −1; for all x). Clearly, the
results are much better, although there remains, inevitably, some disparity in
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Fig. 1. Target curve �heavy solid line�, seven realizations of local linear estimates �thin solid line�,
and the average of the estimates �heavy dashed line�, based on n = 10;000 and σ = 0:05, using
(a) constant bandwidth, (b) location adaptive bandwidth based on true m′′; (c) location adaptive
bandwidth based on estimatedm′′; (d) root mean-squared errors associated with the three methods.

performance between the middle and the ends of the interval. In Figure 1(c),
m′′�x� was estimated by m̃′′�x�, as suggested in Section 3, and constructed
using a local quadratic. Not surprisingly, the results are degraded relative to
those in Figure 1(b), but they show an undeniable improvement over those in
Figure 1(a). For Figures 1(b) and 1(c), the ridge parameter t was set to zero.
Increasing t initially led to little change in the curve estimates, although the
values chosen for the bandwidth in the middle of the interval changed some-
what. Further increase in t led to increasingly noticeable biases in the curve
estimates. Figure 1(d) displays the estimated root mean-squared errors from
the three methods.

Figure 2 displays corresponding results for the case of n = 500 and σ = 0:02.
The case of n = 1000 and σ = 0:05, was also considered and led to qualitatively
similar conclusions.

In summary, for this particular true curve, the experiments showed that
the choice of smoothing parameter in the middle of the interval was not a
particularly sensitive issue, but that considerable disadvantage accrued if the
sparsity of the design near the ends was ignored by choosing too small a
bandwidth.
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Fig. 2. Target curve �heavy solid line�, seven realizations of local linear estimates �thin solid
line�, and the average of the estimates �heavy dashed line�, based on n = 500 and σ = 0:02, using
(a) constant bandwidth, (b) location adaptive bandwidth based on true m′′; (c) location adaptive
bandwidth based on estimatedm′′; (d) root mean-squared errors associated with the three methods.

5. Outline of proof of Theorem 2.1. Steps (i)–(iv) and (v) treat variance
and bias contributions, respectively.

Step (i). Preliminaries. Observe that var�m̂� = σ2�∑ v2
i �/�

∑
vi + δ�2. Put

Qlk�x� = �nh�−1 ∑��x− xi�/h�kK��x− xi�/h�l, for l = 1;2 and k = 0;1;2;3.
In this notation,

∑
vi = n2 h4�Q10Q12 − Q2

11� and
∑
v2
i = n3 h7�Q2

12Q20 −
2Q11Q12Q21 +Q2

11Q22�. Therefore, with δ1 = �n2 h4�−1 δ,

�5:1�
nh var�m̂�

= σ2�Q2
12Q20 − 2Q11Q12Q21 +Q2

11Q22��Q10Q12 −Q2
11 + δ1�−2:

Step (ii). Nominal expected value of Qlk. If we regard x1; : : : ; xn as inde-
pendent random variables with density f, then E�Qlk�x�� =

∫
ukK�u�l f�x−

hu�du, whence it follows that as h→ 0,

�5:2� sup
0<x≤1−ξ

∣∣E�Qlk�x��f�x ∨ h�−1 − qlk�xh−1�
∣∣→ 0 ;

for each ξ > 0, where

qlk�w� =
∫
ukK�u�l

{
1 ∧w− �1 ∧w−1�u

}α1

+ du :
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The analogous result, where the supremum in (5.2) is taken over ξ ≤ x < 1,
is also true, by the same argument.

Step (iii). Nominal error about mean of Qlk. Again treating x1; : : : ; xn as
independent random variables, we may show that, uniformly in 0 < x < 1,

nh var�Qlk�x�� ≤ C1

∫ 1

−1
f�x− hu�du ≤ C2�x ∨ h�α1;

where C1;C2; : : : denote positive generic constants depending only on f, K, σ
and any indicated arguments. Therefore, applying Rosenthal’s inequality [see
Hall and Heyde (1980), page 23], we obtain for each r ≥ 1,

E�Qlk�x� −E�Qlk�x���2r ≤ C3�r�
[{
�nh�−1 �x ∨ h�α1

}r + �nh�−�2r−1� �x ∨ h�α1
]
:

It follows that if h = h�x� is chosen so that inf 0<x<1 h�x��x∨h�x��α1 > C4 n
η1−1

for some η1 > 0, then

sup
0<x<1

�x ∨ h�x��−2rα1 E�Qlk�x� −E�Qlk�x���2r = O�n−rη1�

for all k ≥ 1. If k is even, then E�Qlk�x�� ≥ C5�ξ��x ∨ h�α1 uniformly in
0 < x ≤ 1− ξ. Hence by Markov’s inequality,

sup
0<x≤1−ξ

P
[
�Qlk�x� −E�Qlk�x��� > η2�E�Qlk�x���

]
= O�n−λ�

for all even k and all η2, λ > 0. The identity is valid for all k ≥ 1 if we
replace η2�E�Qlk�x��� by η2�x∨ h�α1 . Therefore, if A = A �n� represents any
set consisting of O�na� elements of �0;1 − ξ�, for arbitrary but fixed a > 0,
then for even m,

P
[

sup
x∈A

∣∣Qlk�x� −E�Qlk�x��
∣∣∣∣E�Qlk�x�

∣∣−1
> η2

]
= O�n−λ�

for all η2; λ > 0. The Hölder continuity of K may be used to extend the
supremum to all x ∈ �0;1− ξ�:

P
[

sup
0<x≤1−ξ

∣∣Qlk�x� −E�Qlk�x��
∣∣∣∣E�Qlk�x�

∣∣−1
> η2

]
= O�n−λ� :

It follows that there exists a class X1 of sequences �x1; x2; : : :� such that
P��x1; x2; : : :� ∈ X1� = 1 if we regard x1; x2; : : : as independent and iden-
tically distributed random variables with density f, and also,

�5:3� sup
�x1;x2;:::�∈X1

sup
0<x≤1−ξ

∣∣Qlk�x� −E�Qlk�x��
∣∣ ∣∣E�Qlk�x��

∣∣−1 → 0 :

The analogous result for the upper tail follows by the same argument. [Result
(5.3) is valid for all even k ≥ 0 and for all k ≥ 0 if the factor �E�Qlk�x���−1 is
replaced by �x ∨ h�−α1 .]



768 HALL, MARRON, NEUMANN AND TITTERINGTON

Step (iv). Asymptotic variance of m̂. By (5.2) and (5.3),

sup
�x1;x2;:::�∈X1

sup
0<x≤1−ε

∣∣Qlk�x�f�x ∨ h�−1 − qlk�xh−1�
∣∣→ 0 :

Provided that sup0<x≤1−ξ
[
n2h�x�4�x ∨ h�x��2α1

]−1
δ�x� → 0, this result and

(5.1) ensure that

sup
�x1;x2;:::�∈X1

sup
0<x≤1−ξ

�nh�x�f�x ∨ h� var�m̂�x�� − σ2v�x;h�x��� → 0 :

Formula (2.9) follows from this fact and its analogue for the right-hand tail.
Step (v). Calculation of bias. Note that

E�m̂� −m =
{∑

vi�mi −m� − δm
}/(∑

vi + δ
)
;

where mi =m�xi�. By Taylor expansion,

�5:4�
∑
vi�mi −m� = 1

2 n
2 h6{m′′

(
Q2

12 −Q13Q11
)
+
(
R1Q12 −R2Q11

)}
;

where

Rj�x� = �nh�−1
n∑
i=1

��x− xi�/h�j+1�m′′�x+ θi�xi − x�� −m′′�x��K��x− xi�/h�

and θi (depending only on x, xi and m) satisfies 0 ≤ θi ≤ 1. The argu-
ment leading to (5.2) and (5.3) and uniform continuity of m′′ may be em-
ployed to prove that there exists a set X2 of sequences �x1; x2; : : :� such that
P��x1; x2; : : :� ∈ X2� = 1 (if x1; x2; : : : are regarded as independent and iden-
tically distributed random variables with density f) and

�5:5� sup
�x1;x2;:::�∈X2

sup
0<x≤1−ξ

�Rj�x���x ∨ h�−α1 → 0 :

Results (5.2)–(5.5) imply that provided

sup
0<x≤1−ε

�n2 h�x�6�x ∨ h�x��2α1�−1 δ�x� → 0;

we have

�5:6�
sup

�x1;x2;:::�∈X3

sup
0<x≤1−ξ

h−2
∣∣E�m̂� −m− 1

2 h
2m′′

(
q12 − q13 q11

)

×
(
q10 q12 − q2

11

)−1∣∣→ 0

as n→∞, where X3 = X1 ∩X2, the functions h, m, m′′ and m̂ are evaluated
at x and the functions qlk are evaluated at xh�x�−1. Result (2.10) follows from
(5.6) and its analogue in the upper tail.
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