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A new graphical model, called a vine, for dependent random variables is
introduced. Vines generalize the Markov trees often used in modelling high-
dimensional distributions. They differ from Markov trees and Bayesian belief
nets in that the concept of conditional independence is weakened to allow for
various forms of conditional dependence.

Vines can be used to specify multivariate distributions in a straightforward
way by specifying various marginal distributions and the ways in which
these marginals are to be coupled. Such distributions have applications in
uncertainty analysis where the objective is to determine the sensitivity of
a model output with respect to the uncertainty in unknown parameters.
Expert information is frequently elicited to determine some quantitative
characteristics of the distribution such as (rank) correlations. We show that
it is simple to construct a minimum information vine distribution, given such
expert information. Sampling from minimum information distributions with
given marginals and (conditional) rank correlations specified on a vine can
be performed almost as fast as independent sampling. A special case of the
vine construction generalizes work of Joe and allows the construction of a
multivariate normal distribution by specifying a set of partial correlations on
which there are no restrictions except the obvious one that a correlation lies
between −1 and 1.

1. Introduction. Graphical dependency models have gained popularity in
recent years following the generalization of the simple Markov trees to belief
networks and influence diagrams. The main applications of these graphical models
has been in problems of Bayesian inference with an emphasis on Bayesian learning
(Markov trees and belief nets), and in decision problems (influence diagrams).
Markov trees have also been used within the area of uncertainty analysis to build
high-dimensional dependent distributions.

Within uncertainty analysis, the problem of easily specifying a coupling be-
tween two groups of random variables is prominent. Often, only some information
about marginals is given (e.g., some quantiles of a marginal distribution); extra
information has to be obtained from experts, frequently in the form of correlation
coefficients. In [5, 20, 22, 2], Markov trees are used to specify distributions used
in uncertainty analysis (alternative approaches are found in [11, 10]). They are
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FIG. 1. A belief net, a Markov tree and a vine.

suitable for rapid Monte Carlo simulation, thus reducing the computational burden
of sampling from a high-dimensional distribution. The bivariate joint distributions
required to determine such a model exactly are chosen to have minimum informa-
tion with respect to the independent distribution with the same marginals, under
the conditions of having the correct marginals and the given rank correlation spec-
ified by an expert. The use of the minimum information principle to motivate the
use of a distribution with given correlation coefficient fits into the long-standing
tradition established by Jaynes (see [12, 9]) in which subjective distributions are
specified using moment information from an expert by maximizing entropy.

In this paper we show that the conditional independence property used in
Markov trees and belief nets can be weakened without compromising ease of
simulation. A new class of models called vines is introduced in which an expert
can give input in terms of, for example, conditional rank correlations. Figure 1
shows examples of (a) a belief net, (b) a Markov tree, and (c) a vine on three
elements. In the case of the belief net and the Markov tree, variables 1 and 3
are conditionally independent given variable 2. In the vine, in contrast, they are
conditionally dependent, with a conditional correlation coefficient that depends on
the value taken by variable 2.

An important aspect is the ease with which the required information can be
supplied by the expert—there are no joint restrictions on the correlations given
(by contrast, for product moment correlations, the correlation matrix must always
be positive definite). Our main result shows precisely how to obtain a minimum
information vine distribution satisfying all the specifications of the expert.

Besides introducing the notion of a vine as a graphical model for conditional
dependence, the paper shows how to construct joint distributions satisfying the
conditional dependence specifications in a vine. The major element of this
construction is the inductive generation of multivariate distributions with given
marginals.

Sections 2 and 3 collect results for bivariate tree specifications. Section 4 intro-
duces a more general type of specification in which conditional marginal distri-
butions can be stipulated or qualified. The tree structure for bivariate constraints
generalizes to a “vine” structure for conditional bivariate constraints. A vine is
a sequence of trees such that the edges of tree Ti are the nodes of Ti+1. Mini-
mum information results show that complicated conditional independence prop-
erties can be obtained from vine specifications in combination with information
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minimization. Sampling from minimum information distributions given marginal
and (conditional) rank correlations specified on a vine can be performed at a speed
comparable to independent sampling.

A vine is a convenient tool with a graphical representation that makes it easy to
describe which conditional specifications are being made for the joint distribution.
The existence of distributions satisfying these constraints is proven more easily by
generalizing the construction to Cantor trees, as is done in Section 5. The existence
of joint distributions satisfying Cantor tree specifications is shown, and a formula
for the information of such a distribution (relative to the independent distribution
with the same marginals) is proven. This section also contains a particular way
of constructing joint distributions from given, overlapping, marginals. Section 6
shows that the regular vines are special cases of Cantor tree constructions, and
that Cantor trees can be represented graphically by vines. Finally, Section 7 gives
specific results for rank and partial correlation specifications. It is shown that
for these hierarchical constructions there are no restrictions on rank or partial
correlation specifications, except for the obvious one that correlation must be
between −1 and 1. In particular, a joint normal distribution can be specified
without worrying about positive definiteness considerations.

Sections 2 to 4 are based on, or developed directly from [3].
The general topic addressed in this paper, that of specifying a distribution with

given marginals, has been addressed elsewhere. In particular, Li, Scarsini and
Shaked [18, 19] develop alternative ways of coupling distibutions on overlapping
sets of variables. Joe [13, 14] gives a number of methods for generating
distributions with given marginals. In particular the construction of Section 4.5
in [14] corresponds to the most simple type of vine as shown in Figure 2. In
the Appendix to [13] he uses this same type of simple vine structure to specify
a multivariate normal distribution—a construction that we call the standard vine,
and that we generalize. Other authors have looked at alternative ways of specifying
multivariate distributions. For example, [1] gives a survey of methods in which
conditional distributions are used to define, or at least partially specify, the
multivariate distribution.

2. Definitions and preliminaries. We consider continuous probability distri-
butions F on R

n equipped with the Borel sigma algebra B . The one-dimensional
marginal distribution functions of F are denoted Fi (1 ≤ i ≤ n), the bivariate dis-
tribution functions are Fij (1 ≤ i �= j ≤ n), and Fi|j denotes the distribution of
variable i conditional on j . The same subscript conventions apply to densities f

and laws µ. Whenever we use the relative information integral, the absolute conti-
nuity condition mentioned below is assumed to hold.

DEFINITION 2.1 (Relative information). Let ν and µ be probability measures
on a probability space such that ν is absolutely continuous with respect to µ with
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Radon–Nikodym derivative dν
dµ

, then the relative information or Kullback–Liebler
divergence, I (ν|µ) of ν with respect to µ is

I (ν|µ)=
∫

log
(
dν

dµ
(x)

)
dν(x).

When ν is not absolutely continuous with respect to µ we define I (ν|µ)= ∞.

In this paper we shall construct distributions that are as “independent” as
possible given the constraints. Hence we will usually consider the relative
information of a multivariate distribution with respect to the unique independent
multivariate distribution having the same marginals.

Relative information I (ν|µ) can be interpreted as measuring the degree of
“uniformness” of ν (with respect to µ). The relative information is always
nonnegative and equals zero if and only if µ= ν. See, for example, [17] and [8].

DEFINITION 2.2 (Rank or Spearman correlation). The rank correlation
r(X1,X2) of two random variables X1 and X2 with joint probability distribu-
tion F12 and marginal probability distributions F1 and F2 respectively, is given
by

r(X1,X2)= ρ
(
F1(X1),F2(X2)

)
.

Here ρ(U,V ) denotes the ordinary product moment correlation given by

ρ(U,V )= cov(U,V )/
√

var(U)var(V ),

and defined to be 0 if either U or V is constant. When Z is a random vector we
can consider the conditional product moment correlation of U and V , ρZ(U,V ),
which is simply the product moment correlation of the variables when conditioned
on Z. The conditional rank correlation of X1 and X2 given Z is

rZ(X1,X2)= r(X̃1, X̃2),

where (X̃1, X̃2) has the distribution of (X1,X2) conditioned on Z.

The rank-correlation has some important advantages over the ordinary product-
moment correlation:

• The rank correlation always exists.
• Independent of the marginal distributions FX and FY it can take any value in the

interval [−1,1] whereas the product moment correlation can only take values
in a subinterval I ⊂ [−1,1] where I depends on the marginal distributions FX

and FY .
• It is invariant under monotone increasing transformations of X and Y .



VINES—A NEW GRAPHICAL MODEL 1035

These properties make the rank correlation a suitable measure for developing
canonical methods and techniques that are independent of marginal probability
distributions.

The rank correlation is actually a measure of the dependence of the copula
between two random variables.

DEFINITION 2.3 (Copula). The copula of two continuous random variables
X and Y is the joint distribution of (FX(X),FY (Y )).

Clearly, the copula of (X,Y ) is a distribution on [0,1]2 with uniform marginals.
More generally, we call any Borel probability measure µ a copula if µ([0,1]2)= 1
and µ has uniform marginals.

An example of a copula is the minimum information copula with given
rank correlation. This copula has minimum information with respect to the
uniform distribution on the square, amongst all those copulae with the given rank
correlation. The functional form of the density and an algorithm for approximating
it arbitrarily closely are described in [21]. A second example is the normal copula
with correlation ρ, obtained by taking (X,Y ) to be joint normal with product
moment correlation ρ in the definition of a copula given above.

DEFINITION 2.4 (Tree). A tree T = {N,E} is an acyclic graph, where N is
its set of nodes, and E is its set of edges (unordered pairs of nodes).

Note that we do not assume that T is connected. We begin by defining
a tree structure that allows us to specify certain characteristics of a probability
distribution.

DEFINITION 2.5 (Bivariate tree specification). (F ,T ,B) is an n-dimensional
bivariate tree specification if:

1. F = (F1, . . . ,Fn) is a vector of one-dimensional distribution functions.
2. T is a tree with nodes N = {1, . . . , n} and edges E.
3. B = {B(i, j)|{i, j} ∈ E}, where B(i, j) is a subset of the class of copula

distribution functions.

DEFINITION 2.6 (Tree dependence).

1. A multivariate probability distribution G on R
n satisfies, or realizes, a bivariate

tree specification (F ,T ,B) if the marginal distributions of G are Fi (1 ≤ i ≤ n)
and if for any {i, j} ∈ E the bivariate copula Cij of G is an element of B(i, j).

2. G has tree dependence of order M for T if whenever m ≥ M and i, j ∈ N

are joined by edges {i, k1}, . . . , {km, j} ∈ E we have that Xi and Xj are
conditionally independent given any M of k , 1 ≤  ≤ m; and if Xi and Xj

are independent when there are no such k1, . . . , km (i, j ∈ N ).
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3. G has Markov tree dependence for T if G has tree dependence order M for
every M > 0.

One approach, implemented, for example, in [16], is to take B(i, j) to be the
family of all copulae with a given rank correlation. This gives a rank correlation
tree specification.

DEFINITION 2.7 (Rank correlation tree specification). (F ,T , t) is an n-
dimensional rank correlation tree specification if:

1. F = (F1, . . . ,Fn) is a vector of one-dimensional distribution functions.
2. T is a tree with nodes N = {1, . . . , n} and edges E.
3. The rank correlations of the bivariate distributions Fij , {i, j} ∈E, are specified

by t = {tij | tij ∈ [−1,1], {i, j} ∈E, tij = tj i , tii = 1}.
The following three results are proved in [22]. The first is similar to results about

influence diagrams [24], the second uses a construction of [6].

THEOREM 2.1. Let (F ,T ,B) be an n-dimensional bivariate tree specifica-
tion that specifies the marginal densities fi , 1 ≤ i ≤ n, and the bivariate densities
fij , {i, j} ∈ E, the set of edges of T . Then there is a unique density g on R

n with
marginals f1, . . . , fn and bivariate marginals fij for {i, j} ∈ E such that g has
Markov tree dependence described by T. The density g is given by

g(x1, . . . , xn)=
∏

(i,j )∈E fij (xi, xj )∏
i∈N(fi(xi))d(i)−1 ,(2.1)

where d(i) denotes the degree of node i, that is, the number of neighbors of i in
the tree T .

The following theorem states that a rank correlation tree specification is always
consistent.

THEOREM 2.2. Let (F ,T , t) be an n-dimensional rank correlation tree
specification, then there exists a joint probability distribution G realizing (F ,T , t)

with G Markov tree dependent.

Theorem 2.2 would not hold if we replaced rank correlations with product
moment correlations in Definition 2.7. For arbitrary continuous and invertible one-
dimensional distributions and an arbitrary ρ ∈ [−1,1], there need not exist a joint
distribution having these one-dimensional distributions as marginals with product
moment correlation ρ.

The multivariate probability distribution function FX of any random vector X
can be obtained as the n-dimensional marginal distribution of a realization of
a bivariate tree specification of an enlarged vector (X,L).
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THEOREM 2.3. Given a vector of random variables X = (X1, . . . ,Xn)

with joint probability distribution FX(x), there exists an (n + 1)-dimensional
bivariate tree specification (G,T ,B) on random variables (Z1, . . . ,Zn, L) whose
distribution GZ,L is Markov tree dependent, such that

∫
GZ,L(x,  ) d = FX(x).

3. Relative information of Markov tree dependent distributions. From
Theorem 2.1 it follows by a straightforward calculation that for the Markov tree
dependent density g given by the theorem,

I

(
g

∣∣∣∣ ∏
i∈N

fi

)
= ∑

{i,j }∈E
I (fij | fifj ).

If the bivariate tree specification does not completely specify the bivariate
marginals fij , {i, j} ∈ E, then more than one Markov tree dependent realization
may be possible. In this case relative information with respect to the product
distribution

∏
i∈N fi is minimized, within the class of Markov tree dependent

realizations, by minimizing each bivariate relative information I (fij | fifj ),
{i, j} ∈ E.

In this section we show that Markov tree dependent distributions are optimal
realizations of bivariate tree specifications in the sense of minimizing relative
information with respect to the independent distribution with the same marginals.
In other words, we show that a minimal information realization of a bivariate tree
specification has Markov tree dependence. This follows from a very general result
(Theorem 3.4) stating that relative minimum information distributions (relative to
independent distributions), subject to a marginal constraint on a subset of variables,
have a conditional independence property given that subset.

To prove this theorem, we first formulate three lemmas. We assume in this
analysis that the distributions have densities. Throughout this section, Z, Y and X

are finite dimensional random vectors having no components in common. To recall
notation, gX,Y,Z(x, y, z) is a density with marginal densities gX(x), gY (y), gZ(z),
and bivariate marginals gX,Y , gX,Z and gY,Z . We write gX|Y for the conditional
density of X given Y .

LEMMA 3.1. Let gX,Y,Z be a density and define

g̃X,Y,Z(x, y, z)= gX(x)gY |X(x, y)gZ|X(x, z).

Then g̃X,Y,Z satisfies

g̃X = gX, g̃Y = gY , g̃Z = gZ,

g̃X,Y = gX,Y , g̃X,Z = gX,Z

and makes Y and Z conditionally independent given X.
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PROOF. The proof is a straightforward calculation. �

LEMMA 3.2. With g as above, let pX(x) be a density. Then∫
gY (y)I (gX|Y | pX)dy ≥ I (gX | pX),

with equality holding if and only if X and Y are independent under g, that is, if
gX|Y (x, y)= gX(x).

PROOF. By definition,∫
gY (y)I (gX|Y | pX)dy ≥ I (gX | pX)

is equivalent to∫∫
gY (y)gX|Y (x, y) log

gX|Y (x, y)
pX(x)

dx dy ≥
∫

gX(x) log
gX(x)

pX(x)
dx

and hence to∫∫
gX,Y (x, y) loggX|Y (x, y) dx dy ≥

∫∫
gX,Y (x, y) loggX(x) dx dy.

This can be rewritten as∫∫
gX,Y (x, y) log

gX|Y (x, y)
gX(x)

dx dy ≥ 0

or equivalently ∫∫
gX,Y (x, y) log

gX,Y (x, y)

gX(x)gY (y)
dx dy ≥ 0.(3.1)

The left-hand side of the last inequality equals I (gX,Y | gXgY ). Inequality (3.1)
always holds and it holds with equality if and only if gX,Y = gXgY (see [17]).

�

REMARK. The quantity on the left-hand side of (3.1) is also called mutual
information.

LEMMA 3.3. Let gX,Y,Z(x, y, z) and g̃X,Y,Z(x, y, z) be two probability
densities defined as in Lemma 3.1. Then:

(i) I (gX,Y,Z | gXgY gZ)≥ I (g̃X,Y,Z | gXgY gZ),
(ii) I (g̃X,Y,Z | gXgY gZ)= I (gX,Y | gXgY )+ I (gX,Z | gXgZ).
Equality holds in (i) if and only if g = g̃.
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PROOF. By definition we have

I (gX,Y,Z | gXgY gZ)=
∫∫∫

gX,Y,Z(x, y, z) log
gX,Y,Z(x, y, z)

gX(x)gY (y)gZ(z)
dx dy dz

which by conditionalization is equivalent with∫∫∫
gX,Y,Z(x, y, z) log

gX,Y (x, y)gZ|X,Y (x, y, z)

gX(x)gY (y)gZ(z)
dx dy dz

= I (gXY | gX,gY )+
∫∫∫

gX,Y,Z(x, y, z) log
gZ|X,Y (x, y, z)

gZ(z)
dx dy dz.

The second term can be written as∫∫∫
gX,Y (x, y)gZ|XY (z) log

gZ|X,Y (x, y, z)

gZ(z)
dz dx dy

=
∫∫

gX,Y (x, y)I (gZ|XY | gZ)dx dy

=
∫

gX

∫
gY |X(x, y)I (gZ|XY | gZ)dy dx ≥

∫
gXI (gZ|X | gZ)dx

=
∫∫

gXgZ|X log
gZ|X(z)gX(x)
gZ(z) gX(x)

dz dx = I (gXZ | gX gZ)

where Lemma 3.2 is used for the inequality. Hence

I (gX,Y,Z | gXgY gZ)≥ I (gXY | gXgY )+ I (gXZ | gXgZ)(3.2)

with equality if and only if Z and Y are independent given X, which holds for g̃
(Lemma 3.1). �

We may now formulate the following theorem.

THEOREM 3.4. Assume that gX,Y is a probability density with marginals
fX and fY that uniquely minimizes I (gX,Y | fXfY ) within the class of distribu-
tions B(X,Y ). Assume similarly that gX,Z is a probability density with marginals
fX and fZ that uniquely minimizes I (gX,Z | fXfZ) within the class of distribu-
tions B(X,Z). Then gX,Y,Z := gY |XgZ|XgX is the unique probability density with
marginals fX , fY and fZ that minimizes I (gX,Y,Z | fXfY fZ) with marginals gX,Y

and gX,Z constrained to be members of B(X,Y ) and B(X,Z) respectively.

PROOF. Let fX,Y,Z be a joint probability density with marginals fX , fY , fZ ,
whose two-dimensional marginals satisfy the constraints B(X,Y ) and B(X,Z).
Assume that f satisfies I (fX,Y,Z | fXfYfZ) ≤ I (gX,Y,Z | fXfY fZ). Then by
Lemma 3.1 and Lemma 3.3(i) we may assume without loss of generality that
fX,Y,Z = f̃X,Y,Z := fXYfZ|X . By Lemma 3.3(ii) we have

I (f̃X,Y,Z | fXfYfZ)= I (fX,Y | fXfY )+ I (fX,Z | fXfZ).
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But

I (fX,Y | fXfY )+ I (fX,Z | fXfZ)
≥ I (gX,Y | fXfY )+ I (gX,Z | fXfZ)
= I (gX,Y,Z | fXfYfZ)
≥ I (f̃X,Y,Z | fXfYfZ)
= I (fX,Y | fXfY )+ I (fX,Z | fXfZ).

By the uniqueness of gX,Z and gX,Y , this entails gX,Y,Z = fX,Y,Z. �

COROLLARY 3.5. Let (F ,T ,B) be a bivariate tree specification. For each
(i, j) ∈ E, let there be a unique density g(xi, xj ) which has minimum information
relative to the product measure fifj under the constraint B(i, j). Then the unique
density with minimum information relative to the product density

∏
i∈N fi under

constraints B(i, j), {i, j} ∈ E, is obtained by taking the unique Markov tree
dependent distribution with bivariate marginals g(xi, xj ) for each {i, j} ∈ E.

PROOF. Using the notation of Theorem 2.1, the proof is by induction on n. For
n = 2 there is nothing to prove. For n= 3 the result follows from Lemma 3.3(ii).

Assume now that we have a tree with n + 1 nodes. Assume also that there is
a node with degree 1 (otherwise all nodes have degree 0, there are no constraints
and the result holds trivially). Let Z be the variable corresponding to this
node, X the variable corresponding to its unique neighbor, and Y the vector of
variables corresponding to the other n − 1 nodes. Applying the Lemma 3.3(i)
we see that the information is minimized by the distribution making Y and Z

conditionally independent given X. Since by induction the marginal gXY is
minimally informative, Lemma 3.3(ii) implies that gXZ also must be minimally
informative as claimed. �

If B(i, j) fully specifies g(xi, xj ) for {i, j} ∈ E, then the above corollary says
that there is a unique minimum information density given (F ,T ,B) and this
density is Markov tree dependent.

4. Regular vines. Tree specifications are limited by the maximal number
of edges in the tree. For trees with n nodes, there are at most n − 1 edges.
This means we can constrain at most n − 1 bivariate marginals. By comparison
there are n(n− 1)/2 potentially distinct off-diagonal terms in a (rank) correlation
matrix. We seek a more general structure for partially specifying joint distributions
and obtaining minimal information results. For example, consider a density in
three dimensions. In addition to specifying marginals g1, g2 and g3, and rank
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FIG. 2. A regular vine.

FIG. 3. Another regular vine.

correlations r(X1,X2), r(X2,X3), we also specify the conditional rank correlation
of X1, and X3 as a function of the value taken by X2:

rx2 = r(X1,X3 | X2 = x2).

For each value of X2 we can specify a conditional rank correlation in [−1,1] and
find the minimal information conditional distribution, provided the conditional
marginals are not degenerate. (We ignore measurability constraints here, but
return to discuss them later.) This will be called a regular vine specification,
and will be defined presently. Sampling such distributions on a computer is
easily implemented; we simply use the minimal information distribution under
a rank correlation constraint, but with the marginals conditional on X2. Figures 2
and 3 show regular vine specifications on 5 variables. Figure 2 corresponds to
the structure studied by Joe [13]. Each edge of a regular vine is associated with
a restriction on the bivariate or conditional bivariate distribution shown adjacent to
the edge.

Note that the bottom level restrictions on the bivariate marginals form a tree T1
with nodes 1, . . . ,5. The next level forms a tree T2 whose nodes are the edges E1
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of T1, and so on. There is no loss of generality in assuming that the edges Ei ,
i = 1, . . . , n − 1, have maximal cardinality n − i, as we may “remove” any edge
by associating with it the vacuous restriction.

A regular vine is a special case of a more general object called a vine. A vine is
used to place constraints on a multivariate distribution in a similar way to that in
which directed acyclic graphs are used to constrain multivariate distributions in the
theory of Bayesian belief nets. In this section we define the notion of a regular vine.
The more general concept of a vine will be developed in the next section, together
with existence and uniqueness results for distributions satisfying vine constraints.

DEFINITION 4.1 (Regular vine, vine). V is a vine on n elements if:

1. V = (T1, . . . , Tm).
2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.
3. For i = 2, . . . ,m, Ti is a tree with nodes Ni ⊂ N1 ∪E1 ∪E2 ∪ · · · ∪Ei−1 and

edge set Ei .

A vine V is a regular vine on n elements if:

1. m = n.
2. Ti is a connected tree with edge set Ei and node set Ni = Ei−1, with #Ni =

n− (i − 1) for i = 1, . . . , n, where #Ni is the cardinality of the set Ni .
3. The proximity condition holds: for i = 2, . . . , n − 1, if a = {a1, a2} and b =

{b1, b2} are two nodes in Ni connected by an edge (recall a1, a2, b1, b2 ∈ Ni−1),
then #a ∩ b = 1.

It will be convenient to introduce some labeling corresponding to the edges and
nodes in a vine, in order to specify the constraints. In order to do this we first
introduce a piece of notation to indicate which nodes of a tree with a lower index
can be reached from a particular edge.

The edge set Ei consists of edges ei ∈Ei which are themselves unordered pairs
of nodes in Ni . Since Ni ⊂ E0 ∪E1 ∪E2 ∪ · · · ∪Ei−1 (where we write N1 = E0
for convenience), there exist ej ∈ Ej and ek ∈ Ek (j, k < i) for which

ei = {ej , ek}.
DEFINITION 4.2. For any ei ∈Ei the complete union of ei is the subset

Aei =
{
j ∈ N1 =E0 | ∃1 ≤ i1 ≤ i2 ≤ · · · ≤ ir = i and eik ∈ Eik (k = 1, . . . , r),

with j ∈ ei1, eik ∈ eik+1 (k = 1, . . . , r − 1)
}
.

For a regular vine and an edge ei ∈ Ei the j -fold union of ei (0 < j ≤ i − 1) is the
subset

Uei (j)= {
ei−j ∈ Ei−j | ∃ edges ek ∈Ek (k = i − j + 1, . . . , i − 1),

with ek ∈ ek+1 (k = i − j, . . . , i − 1)
}
.

For j = 0 define Uei (0)= {ei}.
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We can now define the constraint sets.

DEFINITION 4.3 (Constraint set). For e = {j, k} ∈ Ei , i = 1, . . . ,m − 1, the
conditioning set associated with e is

De =Aj ∩Ak,

and the conditioned sets associated with e are

Ce,j = Aj −De and Ce,k =Ak −De.

The constraint set for V is

CV = {
(Ce,j ,Ce,k,De) | i = 1, . . . ,m− 1, e ∈Ei, e = {j, k}}.

Note that Ae = Aj ∪ Ak = Ce,j ∪ Ce,k ∪ De when e = {j, k}. For e ∈ Em the
conditioning set is empty.

The constraint set is shown for the regular vines in Figures 2 and 3. At each
edge e ∈ Ei , the terms Ce,j and Ce,k are separated by a comma and given to the
left of the “|” sign, while De appears on the right. For example, in Figure 2, the
tree T5 contains just a single node labeled 1,5|234. This node is the only edge of
the tree T4 where it joins the two (T4-)nodes labeled 1,4|23 and 2,5|34.

In the rest of this section we shall discuss properties of regular vines. The
existence of distributions corresponding to regular vines will be dealt with in a later
section on vines.

LEMMA 4.1. Let V be a regular vine on n elements, and let e ∈ Ei . Then
#Ue(j)= j + 1 for j = 0,1, . . . , i.

PROOF. The statement clearly holds for j = 0 and j = 1. By the proximity
property it follows immediately that it holds for j = 2. We claim that in general

#Ue(j) = 2#Ue(j − 1)− #Ue(j − 2), j = 2,3, . . . ,

after which the result follows by induction. To see this we represent the Ue(j) as
a complete binary tree whose nodes are in a set of nodes of V. The repeated nodes
are underscored, and children of underscored nodes are underscored. Because
of proximity, nodes with a common parent must have a common child. Letting
X denote an arbitrary node we have the situation shown in Figure 4.

Evidently the number of newly underscored nodes on echelon k (i.e., nodes
which are not children of an underscored node) is equal to the number of
nonunderscored nodes in echelon k − 2. Hence, the number of nonunderscored
nodes in echelon k is 2#Ue(k − 1)− #Ue(k − 2). �

LEMMA 4.2. If V is a regular vine on n elements then, for all i = 1, . . . , n−1
and all e ∈ Ei , the conditioned sets associated with e are singletons, #Ce,j = 1.
Furthermore, #Ae = i + 1, and #De = i − 1.
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FIG. 4. Counting edges.

PROOF. By Lemma 4.1 we have #Ae = i + 1. The proof of the other claims is
by induction on i = 1, . . . , n − 1. The statements clearly hold for i = 1. Suppose
they hold for m, 1 ≤ m< i. Let e = {j, k}, where j = {j1, j2} and k = {k1, k2}. By
the proximity property one of j1, j2 equals one of k1, k2, say j1 = k1. We have

Ae = Aj1 ∪Aj2 ∪Ak1 ∪Ak2 .

By induction,

#Dj = #(Aj1 ∩Aj2)= i − 2,

and #Aj1 = #Aj2 = i − 1 and

#Aj = #(Aj1 ∪Aj2)= i.

Hence Aj2 − Aj1 contains exactly one element, and similarly for Ak2 − Ak1 .
Moreover, these two elements must be distinct, since otherwise Aj = Ak, which
would imply that #Ae = i in contradiction of Lemma 4.1. Hence

#Ae = #(Aj ∪Ak)= i + 1, #De = i − 1 and De =Aj1 =Ak1 . �

LEMMA 4.3. Let V be a regular vine on n elements and j, k ∈ Ei . Then
Aj =Ak implies j = k.

PROOF. Suppose not. Then there is a largest x such that Uj(x) �= Uk(x)

and Uj(x + 1) = Uk(x + 1). Since #Uj(x + 1) = x + 2 there can be at most
x + 1 edges between the elements of Uj(x + 1) in the tree Ti−x−1. But since
#Uj(x) = #Uk(x) = x + 1 we must have that Uj(x) = Uk(x) because otherwise
this would contradict Ti−x−1 being a tree. �

Using a regular vine we are able to partially specify a joint distribution as
follows:

DEFINITION 4.4 (Regular vine specification). (F ,V,B) is a regular vine
specification if:

1. F = (F1, . . . ,Fn) is a vector of continuous invertible distribution functions.
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2. V is a regular vine on n elements.
3. B = {Be(d) | i = 1, . . . , n − 1; e ∈ Ei} where Be(d) is a collection of copulae

and d is a vector of values taken by the variables in De.

The idea is that given the values taken by the variables in the constraint set De,
the copula of the variables XCe,j

and XCe,k
must be a member of the specified

collection of copulae.

DEFINITION 4.5 (Regular vine dependence). A joint distribution F on
variables X1, . . . ,Xn is said to realize a regular vine specification (F ,V,B) or
exhibit regular vine dependence if for each e ∈ Ei , the copula of XCe,j

and XCe,k

given XDe is a member of Be(XDe), and the marginal distribution of Xi is Fi ,
i = 1, . . . , n.

We shall see later that regular vine dependent distributions can be constructed.
However, in order to construct distributions (as opposed to simply constrain
distributions as we do in the above definition) it is necessary to make an additional
measurability assumption. This is that for any edge e, for any Borel set B ⊂ [0,1]2,
the copula measure of B given XDe is a measurable function of XDe . A family
of conditional copulae indexed by XDe with this property is called a regular
conditional copulae family.

A convenient way, but not the only way, to constrain the copulae in practice is
to specify rank correlations and conditional rank correlations. In this case we talk
about a rank correlation vine specification. Another way to constrain the copulae
is by specifying a partial correlation. This will be discussed in Section 7.

The existence of regular vine distributions will follow from more general result
given in the next section, but we illustrate briefly how such a distribution is
determined using the regular vine in Figure 2 as an example. We make use of
the expression

g12345 = g1g2|1g3|12g4|123g5|1234.

The marginal distribution of X1 is known, so we have g1. The marginals of X1
and X2 are known, and the copula of X1, X2 is also known, so we can get g12, and
hence g2|1. In order to get the third term g3|12 we determine g3|2 similarly to g2|1.
Next we calculate g1|2 from g12. With g1|2, g3|2, and the conditional copula of X1,
X3 given X2 we can determine the conditional joint distribution g13|2, and hence
the conditional marginal g3|12. Progressing in this way we obtain g4|123 and g5|1234.

We note that a regular vine on n elements is uniquely determined if the nodes N1
have degree at most 2 in T1. If T1 has nodes of degree greater than 2, then there
is more than one regular vine. Figure 2 shows a regular vine that is uniquely
determined, and the regular vine in Figure 3 is not uniquely determined. The edge
labeled [25|3] could be replaced by an edge [45|3].
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For regular vines it is possible to compute a useful expression for the
information of a distribution in terms of the information of lower dimensional
distributions. The results needed to do this are contained in the following lemma.

Recalling our standard notation, and moving from densities to general Borel
probability measures, µ is a Borel probability measure on R

n, µ1,...,k de-
notes the marginal over x1, . . . , xk, µ1,...,k−1|k,...,n denotes the marginal over
x1, . . . , xk−1 conditional on xk, . . . , xn. Finally, E1,...,k denotes expectation taken
over x1, . . . , xk taken with respect to µ1,...,k .

The following lemma contains useful facts for computing with relative informa-
tion for multivariate distributions. The proof is similar in spirit to the proofs of the
previous section, and will be indicated summarily here.

LEMMA 4.4. Suppose that I (µ |∏n
i=1 µi) <∞. Then:

1.

I

(
µ

∣∣∣∣
n∏

i=1

µi

)
= I

(
µk,...,n

∣∣∣∣
n∏

i=k

µi

)
+Ek,...,nI

(
µ1,...,k−1|k,...,n

∣∣∣∣
k−1∏
i=1

µi

)
.

2.

I

(
µ

∣∣∣∣
n∏

i=1

µi

)
=

n−1∑
j=1

E1,...,j I (µj+1|1,...,j | µj+1).

3.

E2,...,nI (µ1|2,...,n | µ1)+E1,...,n−1I (µn|1,...,n−1 | µn)

=E2,...,n−1
(
I (µ1,n|2,...,n−1 | µ1|2,...,n−1µn|2,...,n−1)

+ I (µ1,n|2,...,n−1 | µ1µn)
)
.

4.

2I

(
µ

∣∣∣∣
n∏

i=1

µi

)
= I

(
µ2,...,n

∣∣∣∣
n∏

i=2

µi

)
+ I

(
µ1,...,n−1

∣∣∣∣
n−1∏
i=1

µi

)

+E2,...,n−1I (µ1,n|2,...,n−1 | µ1|2,...,n−1µn|2,...,n−1)

+ I (µ | µ1µnµ2,...,n−1).

5.

I

(
µ

∣∣∣∣
n∏

i=1

µi

)
= I

(
µ2,...,n

∣∣∣∣
n∏

i=2

µi

)
+ I

(
µ1,...,n−1

∣∣∣∣
n−1∏
i=1

µi

)

− I

(
µ2,...,n−1

∣∣∣∣
n−1∏
i=2

µi

)

+E2,...,n−1I (µ1,n|2,...,n−1 | µ1|2,...,n−1µn|2,...,n−1).
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PROOF. We indicate the main steps, leaving the computational details to the
reader. Since I (µ | ∏n

i=1 µi) < ∞ there is a density g for µ with respect to∏n
i=1 µi . We use the usual notation for the marginals, etc., of g.

1. For µ on the left-hand side fill in g = g1,...,k−1|k,...,ngk,...,n.
2. This follows from the above by iteration.
3. The integrals on the left hand side can be combined, and the logarithm under

the integral has the argument
gg

g2,...,ng1,...,n−1g1gn
.

This can be rewritten as
g1,n|2,...,n−1

g1|2,...,n−1gn|2,...,n−1

g1,n|2,...,n−1

g1gn
.

Writing the log of this product as the sum of logarithms of its terms, the result
on the right-hand side is obtained.

4. This follows from the first and the previous statement by noting

E2,...,n−1I (µ1,n|2,...,n−1 | µ1µn)= I (µ | µ1µnµ2,...,n−1).

5. This follows from the previous two statements by noting

I

(
µ

∣∣∣∣
n∏

i=1

µi

)
= I (µ | µ1µnµ2,...,n−1)+ I

(
µ2,...,n−1

∣∣∣∣
n−1∏
i=2

µi

)
. �

As an example consider the regular vine shown in Figure 2. We have

I (µ12345 | µ1 · · ·µ5) = I

(
µ1···4

∣∣∣∣
4∏

i=1

µi

)
+ I

(
µ2···5

∣∣∣∣
5∏

i=2

µi

)

− I

(
µ2···4

∣∣∣∣
4∏

i=2

µi

)
+E2···4I (µ1,5|2···4 | µ1|2···4µ5|2···4)

= I

(
µ123

∣∣∣∣
3∏

i=1

µi

)
+ I

(
µ234

∣∣∣∣
4∏

i=2

µi

)
+ I

(
µ345

∣∣∣∣
5∏

i=3

µi

)

− I (µ23 | µ2µ3)− I (µ34 | µ3µ4)

+E23I (µ1,4|23 | µ1|23µ5|23)+E34I (µ2,5|34 | µ2|34µ5|34)

+E234I (µ1,5|234 | µ1|234µ5|234)

= I (µ12 | µ1µ2)+ I (µ23 | µ2µ3)+ I (µ34 | µ3µ4)

+ I (µ45 | µ4µ5)

+E2I (µ13|2 | µ1|2µ3|2)+E3I (µ24|3 | µ2|3µ4|3)
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+E4I (µ35|4 | µ3|4µ5|4)

+E23I (µ1,4|23 | µ1|23µ5|23)+E34I (µ2,5|34 | µ2|34µ5|34)

+E234I (µ1,5|234 | µ1|234µ5|234).

This expression shows that if we take a minimal information copula satisfying each
of the (local) constraints, then the resulting joint distribution is also minimally
informative. The calculation can be generalized to all regular vines, as is shown
in the next result. As it is a special case of a more general result, the Information
Decomposition Theorem, to be given in the next section, we give no proof.

THEOREM 4.5. Let µ be a Borel probability measure on R
n satisfying the

regular vine specification (F ,V,B), and suppose that, for each i, e = {j, k} ∈ Ei ,
and d ∈ De, µCe,j ,Ce,k |d is a Borel probability measure minimizing

I (µCe,j ,Ce,k |d | µCe,j |dµCe,k |d).(4.1)

Then µ satisfies (F ,V,B) and minimizes

I

(
µ

∣∣∣∣
n∏

i=1

µi

)
.(4.2)

Furthermore, if any of the µCe,j ,Ce,k |d uniquely minimizes the information term
in (4.1) ( for all values d of De), then µ minimizes the information term in (4.2).

5. Cantor specifications and the Information Decomposition Theorem.
The definition of a regular vine can be generalized to that of a vine to allow a wider
variety of constraints than is possible with a regular vine. The main problem we
then face, however, is that arbitrary specifications might not be consistent. The
situation is analogous to that for a product moment correlation matrix where
the entries can be taken arbitrarily between −1 and 1 but have to satisfy the
additional (global) constraint of positive definiteness. We wish to define a graphical
structure so that one can build a multivariate distribution by specifying functionally
independent properties encoded by each node on a vine. Furthermore, we wish
to define a general structure that allows the decomposition of the information in
a similar way to that given in Theorem 4.5.

An example of the problems that can arise when one attempts to generalize the
definition of a regular vine is shown in Figure 5. This figure shows a vine with
a cycle of constraints giving, for example, two specifications of the distribution
of (X1,X2,X4) which need not be consistent. This example is a vine under the
definition given in the last section: Take T1 with edge set {e1 = {1,2}, e2 = {2,4},
e3 = {2,3}}, T2 with edge set {{e1, e3}, {e1, e2}}, and T3 with edge set {{e2, e3}}.
An example that allows an inconsistent specification but that contains no cycles is
given in Figure 6. Here, the joint distribution of (X2,X3,X5) is specified in two
distinct ways, by the 2,5|3 and the 24,56|3 branch.
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FIG. 5. Inconsistent vine representation.

We shortly give another approach to building joint distributions that will avoid
this problem, and which allow us to build vines sustaining distributions. This
second approach is a “top-down” construction called a Cantor tree (as compared
with the “bottom-up” vine construction). We first give a general definition of
a coupling that enables us to define joint distributions for pairs of random vectors.
Recall that the usual definition of a copula is as a distribution on the unit square
with uniform marginals. A copula is used to couple two random variables in
such a way that the marginals are preserved. Precisely, if X1 and X2 are random
variables with distribution functions FX1 and FX2 , and if C is the distribution
function of a copula then

(x1, x2) �→C
(
FX1(x1),FX2(x2)

)
(5.1)

is a joint distribution function with marginals FX1 and FX2 .

DEFINITION 5.1. Let (S,S) and (T ,T ) be two measurable spaces, and
P (S,S) and P (T ,T ) the sets of probabilities on these spaces. A coupling is

FIG. 6. Another inconsistent vine representation.
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a function

C :P (S,S)× P (T ,T )→ P (S × T,S ⊗ T )

(where S ⊗ T denotes the product sigma-algebra), with the property that for any
µ ∈ P (S,S), ν ∈ P (T ,T ) the marginals of C(µ,ν) are µ and ν respectively.

Genest et al. [7] show that the natural generalization of (5.1), in which the
Xi are replaced by vectors Xi (and FXi

by multivariate distribution functions),
cannot work unless C is the independent copula because the function defined in
this way is not in general a multivariate distribution function. Hence we have to
find a different way of generalizing the usual construction of a copula. Here we
give one approach. There are other approaches, for example discussed in [18]
and [19]. We assume that all spaces are Polish, to be able to decompose measures
into conditional measures.

DEFINITION 5.2. Let µ1 and µ2 be probability distributions supported on
probability spaces V1 and V2, and let ϕi :Vi → R (i = 1,2) be Borel measurable
functions. If c is a copula then the (ϕ1, ϕ2, c)-coupling for µ1 and µ2 is the
probability distribution µ on V1 × V2 defined as follows: let Fi be the distribution
function of the probability µi ◦ϕ−1

i , and denote by µi|u the conditional probability
distribution of µi given Fiϕi = u. Then µ is the unique probability measure such
that∫

f (v1, v2) dµ(v1, v2)=
∫∫∫

f (v1, v2) dµ1|u1(v1) dµ2|u2(v2) dc(u1, u2),

for any characteristic function f of a measurable set B ⊂ V1 × V2.

REMARK. An alternative way to construct a random vector (X1,X2) with
distribution µ is as follows: define (U1,U2) to be random variables in the unit
square with distribution c. Let Fi be the distribution function of a random
variable ϕi(Yi) where Yi has distribution µi . Then, given Ui = ui , define Xi

to be independent of X3−i and U3−i with the distribution of Yi conditional on
Fiϕi(Yi)= ui , i = 1,2. This is shown in the Markov tree in Figure 7.

FIG. 7. Markov tree for coupling.
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It is easy to see that the marginals of the (ϕ1, ϕ2, c)-coupling are µ1 and µ2. We
have therefore defined a coupling in the sense of Definition 5.1.

Clearly we could take ϕi to be the distribution function of µi when Vi is a subset
of Euclidean space. When additionally V1,V2 ⊂ R, the definition reduces to the
usual definition of a copula. The above definition is important for applications
because ϕi might be a physically meaningful function of a set of random variables.
The definition could be generalized to allow ϕi(xi) to be a random variable
rather than constant. For simulation purposes however it is practical to take
deterministic ϕi , as this allows precomputation of the level sets of ϕi , and hence
of the conditional distributions of Xi given Ui .

One of the motivations for this approach is that the random quantities may
represent physical quantities (e.g., temperature, pressure, etc.). Physical laws, for
example the ideal gas law

PV = nRT,

where P is pressure, V is volume, n is number of moles, T is temperature,
and R is the ideal gas constant can be used to give an approximate relationship
between variables. Suppose that two vessels of uncertain volume containing an
uncertain number of moles of an ideal gas under unknown pressure are placed
in the same building. In this case the temperatures of the two vessels would be
highly correlated, and one might build a subjective probability model in which the
distributions on the quantities Pi , Vi , and ni for vessel i, i = 1,2 are coupled via
a copula model for the temperatures Ti . The functions ϕi would be

Ti = ϕi(Pi,Vi, ni)= PiVi

niR
.

We shall also need the notion of a conditional coupling. We suppose that VD is
a probability space and that d ∈ VD .

DEFINITION 5.3. The (ϕ1|d, ϕ2|d, cd)-family of conditional couplings of
families of marginal distributions (µ1|d,µ2|d) on the product probability space
V1 × V2, is the family of couplings indexed by d ∈ VD given by taking the
(ϕ1|d, ϕ2|d, cd)-coupling of µ1|d and µ2|d for each d .

We say that such a family of conditional couplings is regular if ϕi|d(xi) is
a measurable function of (xi, d), i = 1,2, and if the family of copulae cd is
a regular family of conditional probabilities [i.e., for all Borel sets B ⊂ [0,1]2,
the mapping d �→ cd(B) is measurable].

The next lemma uses the notation of Definitions 5.2 and 5.3. It shows that we
really have defined a (family of) couplings, and under what circumstances we can
define a probability measure over V1 ×V2 ×VD that has the appropriate marginals.
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LEMMA 5.1.

1. For any d , the marginal distribution of the (ϕ1|d, ϕ2|d, cd)-coupling measure on
Vi is µi|d , i = 1,2.

2. Suppose that we are given
(a) joint distributions µ1,d and µ2,d on V1 ×VD and V2 ×VD respectively with

the same marginal µd on VD , and
(b) a regular family (ϕ1|d, ϕ2|d, cd) of conditional couplings.

Then there is a joint distribution µ1,2,d,u1,u2 on V1 ×V2 ×VD × [0,1] × [0,1],
such that µi,d are marginals, i = 1,2, and that the induced conditional distribution
µu1,u2|d = cd for almost all d .

PROOF. 1. This follows easily immediately from the remark after Defini-
tion 5.2.

2. Define a random vector (xi, d) with distribution µi,d , and then simply define
µi,d,ui to be the distribution of (xi, d,Fi|d(ϕi|d(xi))), where Fi|d is the conditional
distribution function for ϕi|d(xi) given d . We can now form the conditional
probabilities µi|d,ui and the marginal µd , and then define

µ1,2,d,u1,u2 =µ1|d,u1µ2|d,u2cdµd. �

DEFINITION 5.4 (Cantor tree). A Cantor tree on a set of nodes N is a finite
set of subsets of N , {A∅,A1,A2,A11,A12,A21,A22, . . .} such that the following
properties hold:

1. A∅ =N .
2. (Union property) Ai1···in = Ai1···in1 ∪Ai1···in2, with Ai1···in1 − Ai1···in2 �= ∅ and

Ai1···in2 −Ai1···in1 �= ∅ for all i1 · · · in.
3. (Weak intersection property) Di1···in := Ai1···in1 ∩ Ai1···in2 is equal to

Ai1···in1in+2···im and Ai1···in2i′n+2···i′m′ for some in+2 · · · im and i′n+2 · · · i′m′ .
4. (Unique decomposition property) If Ai1···in = Aj1···jk then, for all t1 · · · tm,

Ai1···int1···tm =Aj1···jkt1···tm.

5. (Maximal word property) We say that i1 · · · in1 and i1 · · · in2 are maximal if
Di1···in = ∅. For any two maximal words i1 · · · in and j1 · · · jk , we have

Ai1···in ∩Aj1···jk �= ∅ implies Ai1···in =Aj1···jk ,

and #Ai1···in = 1.

The name “Cantor tree” has been chosen because the sets are labeled according
to a Cantor set type structure, the binary tree. This is illustrated in Figure 8. In order
to make the notation more suggestive concerning the relation between Cantor trees
and vines, we introduce the notation Ci1···inj =Ai1···inj −Di1···in for j = 1,2.
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FIG. 8. Cantor tree.

DEFINITION 5.5 (Cantor tree specification). A Cantor tree specification of
a multivariate distribution with n variables is a Cantor tree on N = {1, . . . , n} such
that the following properties hold:

1. (Marginal specification) If j1 · · · jk is maximal then the joint distribution of Xi

(i ∈Aj1···jk ) is specified.
2. (Conditional coupling specification) For each i1 · · · in the conditional coupling

of the variables XCi1···in1 and XCi1···in2 given the variables XDi1···in is required to
be in a given set of conditional couplings Bi1···in (XDi1···in ).

3. (Unique decomposition property) If Ai1···in = Aj1···jk the conditional coupling
or marginal specifications are identical.

DEFINITION 5.6 (Cantor tree dependence). We say that a distribution F

realizes a Cantor tree specification, or exhibits Cantor tree dependence, if it
satisfies all constraints, that is for all i1 · · · in, the conditional coupling of Ci1···in1

and Ci1···in2 given Di1···in is a member of the set specified by Bi1···in , and the
marginals of F are those given in the Cantor tree specification.

NOTATION. We say that Ai1···in is at level n. We write B ≤ C if B =
Ai1···inin+1···im and C = Ai1···in , and say that B is in the decomposition of C (note
that if B ≤ C then B ⊆C but that the reverse does not have to hold). If B ≤ C and
B �=C then we write B <C.

We begin by showing that the regular vines of Figures 2 and 3 can be modelled
by a Cantor tree.

EXAMPLE 1. Here we have N = {1,2,3,4,5}. The table gives, on each line,
a word ∗, followed by the sets A∗, C∗,1, C∗,2 and D∗.
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∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 1 5 234
1 1234 1 4 23
2 2345 5 2 34

11 123 1 3 2
12 234 2 4 3
21 345 3 5 4
22 234 2 4 3

111 12 1 2 ∅

112 23 2 3 ∅

121 23 2 3 ∅

122 34 3 4 ∅

211 34 3 4 ∅

212 45 4 5 ∅

221 23 2 3 ∅

222 34 3 4 ∅

The constraints here are precisely the same as those determined by the regular vine
in Figure 2.

EXAMPLE 2. This is an example with N = {1,2,3,4,5}.

∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 1 5 234
1 1234 1 4 23
2 2345 4 5 23

11 123 1 3 2
12 234 2 4 3
21 234 2 4 3
22 235 2 5 3

111 12 1 2 ∅

112 23 2 3 ∅

121 23 2 3 ∅

122 34 3 4 ∅

211 23 2 3 ∅

212 34 3 4 ∅

221 23 2 3 ∅

222 35 3 5 ∅

This corresponds to the vine in Figure 3.

Not all Cantor tree constructions are realizable by regular vines. The point is
that the sets Ai1···in1 −Ai1···in2 need not be singletons, as in the next example.



VINES—A NEW GRAPHICAL MODEL 1055

FIG. 9. Vine representation of Example 3.

EXAMPLE 3. This is an example with N = {1,2,3,4,5}. A vine correspond-
ing to this example is shown in Figure 9.

∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 12 5 34
1 1234 12 4 3
2 345 5 3 4

11 123 1 3 2
12 34 3 4 ∅

21 45 4 5 ∅

22 34 3 4 ∅

111 12 1 2 ∅

112 23 2 3 ∅

As seems reasonable from the first two examples given above, the constraints
determined by a regular vine can always be written in terms of a Cantor
tree specification. This will be proven in the next section. Hence Cantor
tree specifications are more general than regular vines. We shall show soon
however that all Cantor trees can be graphically represented by vines (though
not necessarily regular vines). First, however, we prove some results about the
existence of Cantor tree dependent distributions.

LEMMA 5.2. Suppose distributions µAi1···in1 and µ′
Ai1···in2

are given and that

the marginals µDi1···in and µ′
Di1···in are equal. Suppose also that a regular family

of conditional couplings (ϕ1|d, ϕ2|d, cd) is given (indexed by the elements d

of Di1···in ).
Then there is a unique distribution µAi1···in which marginalizes to µAi1···in1 and

µ′
Ai1···in2

and which is consistent with the family of conditional couplings.

PROOF. This follows directly from Lemma 5.1 by integrating out the
variables u1, u2. �

THEOREM 5.3. Any Cantor tree specification, whose coupling restrictions
permit a regular family of couplings for each word i1 · · · in, is realized by a Cantor
tree dependent distribution over the variables {Xi | i ∈N}.
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PROOF. The proof is by induction from the ends of the tree. At any level
i1 · · · in in the tree, we assume by induction that the marginals µAi1···in1 and µ′

Ai1···in2

are given. By the weak intersection property, the marginal on the intersection
Di1···in has already been calculated earlier in the induction, and by the unique
decomposition property the marginals µDi1···in and µ′

Di1···in are equal.

The induction argument works whenever Di1···in �= ∅. If Di1···in = ∅ the
maximal word property and the unique decomposition property imply a consistent
specification. This proves the theorem. �

REMARK. We have defined Cantor trees in such a way that the underlying
trees are binary, that is, the tree splits in two at each branching point. As
a referee pointed out, this is not a necessary requirement. One could easily define
a construction with higher order branching. This would involve having several sets
C∗,1, . . . ,C∗,k , all with the same set D∗, for any word ∗. The definition of a Cantor
tree is adapted in the obvious way.

We now show that there is a simple expression for the information of
a distribution realizing a Cantor tree specification. Recall that when A1 and A2
are specified we use the notation C1 =A1 −A2, C2 =A2 −A1, and D =A1 ∩A2.

LEMMA 5.4.

I
(
µ
∣∣∣ ∏µi

)
= I

(
µA1

∣∣∣∣ ∏
A1

µi

)
+ I

(
µA2

∣∣∣∣ ∏
A2

µi

)

− I

(
µD

∣∣∣∣ ∏
D

µi

)
+EDI (µC1C2|D | µC1|DµC2|D).

The proof follows in the same way as that of Lemma 4.4(5).

THEOREM 5.5 (Information Decomposition Theorem). For a Cantor tree
dependent distribution µ, we have

I
(
µ
∣∣∣ ∏µi

)

= ∑
{Ai1···in ,Di1···in }

EDi1···in I
(
µCi1···in1Ci1 ···in2|Di1···in

∣∣µCi1···in1|Di1···inµCi1···in2|Di1···in
)
.

The index of the summation sign says that the terms in the summation occur
once for each {Ai1···in ,Di1···in}, that is, the collection of pairs Aj1···jk , Dj1···jk with
Ai1···in = Aj1···jk and Di1···in = Dj1···jk contributes just one term to the summation.
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When the conditioning set Di1···in is empty then the conditional information term
is constant and the expectation operation gives (by convention) that constant value.

PROOF OF THEOREM 5.5. Consider first the expression obtained by applying
Lemma 5.4 repeatedly from the top of the tree. We have

I
(
µ
∣∣∣ ∏µi

)
= I

(
µA1

∣∣∣∣ ∏
A1

µi

)
+ I

(
µA2

∣∣∣∣ ∏
A2

µi

)

− I

(
µD

∣∣∣∣ ∏
D

µi

)
+EDI (µC1C2|D | µC1|DµC2|D)

= I

(
µA11

∣∣∣∣ ∏
A11

µi

)
+ I

(
µA12

∣∣∣∣ ∏
A12

µi

)

− I

(
µD1

∣∣∣∣ ∏
D1

µi

)
+ED1I (µC11C12|D1 | µC11|D1µC12|D1)

+ I

(
µA21

∣∣∣∣ ∏
A21

µi

)
+ I

(
µA22

∣∣∣∣ ∏
A22

µi

)

− I

(
µD2

∣∣∣∣ ∏
D2

µi

)
+ED2I (µC21C22|D2 | µC21|D2µC22|D2)

− I

(
µD

∣∣∣∣ ∏
D

µi

)
+EDI (µC1C2|D | µC1|DµC2|D).

We expand in this way until we reach terms for which Di1···in = ∅.
In carrying out this expansion we obtain negative terms of the form

−I

(
µDi1···in

∣∣∣∣ ∏
Di1···in

µi

)
.

The weak intersection property says however that every nonempty Di1···in is equal
to two Aj1···jk later in the expansion. Hence the −I (µDi1···in |∏Di1···in µi) term is
added to a

2I

(
µDi1···in

∣∣∣∣ ∏
Di1···in

µi

)

term arising later in the expansion of the summation.
We now claim that each term arising in the expansion has multiplicity equal

to one. Suppose we have two words i1 · · · in and j1 · · · jk with Ai1···in = Aj1···jk
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and Di1···in = Dj1···jk . Write i1 · · · im for the longest words common to i1 · · · in
and j1 · · · jk , that is, i = j for  = 1, . . . ,m and (without loss of generality)
im+1 = 1 �= 2 = jm+1. Then Ai1···in ⊆ Ai1···im1 and Aj1···jk ⊆ Ai1···im2. Hence
Ai1···in ⊆ Di1···im and, by Lemma 5.6 below, Ai1···in is in the decomposition of
Di1···im . The same holds for Aj1···jk . This shows that one of the two terms in the
summation arising from Ai1···in and Aj1···jk will be cancelled by a negative term
occurring in the expansion of the −I (µDi1···im |∏Di1···im µi) term.

Note that if there are three words with identical Ai1···in then they cannot all share
a common longest word, so the argument of the previous paragraph can be used
inductively to show that the extra terms are cancelled out.

This proves the theorem. �

LEMMA 5.6. Suppose B <Ai1···in and B ⊆Di1···in . Then B ≤ Di1···in .

PROOF. The statement will be proved by backward induction on n. When
B =Di1···in the lemma is obvious, so we assume from now on that B �=Di1···in .

When i1 · · · in is a maximal word or i1 · · · inin+1 is maximal then the statement
holds trivially.

Now take a general n. For ease of notation we denote Di1···in simply by D.
Since we have B < Ai1···in and D < Ai1···in , there are words i1 · · · inbn+1 · · ·bn′
and i1 · · · indn+1 · · ·dn′′ such that

B =Ai1···inbn+1···bn′ and D =Ai1···indn+1···dn′′ .

Among all such possible words choose a pair with the longest common starting
word i1 · · · inin+1 · · · im. Clearly m ≥ n. In fact, m ≥ n + 1 since B ≤ Ai1···inin+1

and by the properties of a Cantor tree, D ≤ Ai1···inin+1 .
We now have that B ≤ Ai1...im and D ≤ Ai1···im . Since B ⊂ D we must have

B < Ai1···im . Assume for a contradiction that B �≤ D, then also D < Ai1···im . The
maximality of m then implies that (without loss of generality)

B ≤ Ai1···im1, D �≤ Ai1···im1

and

D ≤ Ai1···im2, B �≤ Ai1···im2.

But now since B ⊂ D we must have B ⊂ Di1···im and by the induction hypothesis
B ≤ Di1···im so that also B ≤ Ai1···im2. This contradicts maximality of m. �

COROLLARY 5.7. If, for all i1 · · · in and almost all d ∈ Di1···in , the condi-
tional distribution µCi1···in1Ci1···in2|d has minimum information (relative to the inde-
pendent joint distribution), then the Cantor tree dependent distribution has min-
imum information amongst all Cantor tree dependent distributions satisfying the
Cantor tree specification.
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6. Vine representations and Cantor trees. The purpose of this section is to
show that regular vines can be represented by Cantor trees, and that Cantor trees
can be represented by vines.

We first show:

THEOREM 6.1. Any regular vine dependent distribution can also be repre-
sented by a Cantor tree dependent distribution.

PROOF. It is enough to show that any regular vine constraints can be encoded
by Cantor tree constraints.

Let V be a regular vine. We construct a Cantor tree corresponding to V by
defining a mapping φ from binary words to nodes in the vine.

We set φ(∅) to equal the single node in Tn. The map φ is defined further by
induction. Suppose that φ is defined on all binary words of length less than m. Let
w be a word of length m − 1, with φ(w) = e = {j, k}. We define φ(w1) = j and
φ(w2)= k arbitrarily.

Now, for any binary word w we define Aw = Aφ(w), and claim that the
collection {Aw} so formed is a Cantor tree.

The union property follows because when e = {j, k}, we have Ae = Aj ∪ Ak .
The weak intersection propery follows from the proof of Lemma 4.2. The unique
decomposition property follows from Lemma 4.3. When w is maximal, Aw is
a singleton, so that the maximal word property holds trivially.

It is now easy to see that this Cantor tree specification is the same as the regular
vine specification, and the theorem follows. �

REMARK. Short words correspond to nodes in high level trees in the regular
vine, while long words correspond to nodes in low level trees. This arises
because a Cantor tree is a “top-down” construction, while a vine is a “bottom-up”
construction.

This result implies that the proof of existence of Cantor tree dependent
distributions given in the last section applies also to regular vine dependent
distributions.

We now show that Cantor tree specifications can also be represented by
vines. As an example, Figure 9 shows the vine representation of the Cantor tree
specification given in Example 3. Checking the formal definition of a vine, we see
that for this example one can choose m = 4 and further:

1. T1 = (E1,N1) with

N1 = {1,2,3,4,5}
and

E1 = {{1,2}, {2,3}}.
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2. T2 = (E2,N2) with

N2 = {{1,2}, {2,3},3,4,5
}

⊂ E1 ∪N1,

and

E2 = {{{1,2}, {2,3}}, {3,4}, {4,5}}.
3. T3 = (E3,N3) with

N3 = {{{1,2}, {2,3}}, {3,4}, {4,5}}
⊂ E2 ∪E1 ∪N1,

and

E3 =
{{{{1,2}, {2,3}}, {3,4}}, {{3,4}, {4,5}}}.

4. T4 = (E4,N4) with

N4 =E3 ⊂ E1 ∪N1

and

E4 =
{{{{1,2}, {2,3}}, {3,4}}, {{3,4}, {4,5}}}.

More generally, one can always construct a vine representation of a Cantor
tree specification in this way, as will be shown below (the main problem is to
show that at each level one has a tree). A vine is a useful way of representing
such a specification as it guarantees that the union and the unique decomposition
properties hold. The only property that does not have to hold for a vine is the weak
intersection property. The vine in Figure 6 does not have the weak intersection
property.

THEOREM 6.2. Any Cantor tree specification has a corresponding vine
representation.

PROOF. Let m be the maximum length of a maximal word. Define T1 =
{N1,E1}, where N1 = N and e = {j, k} ∈ E1 if and only if for some word w

of length m− 1,

Aw1 = {j} and Aw2 = {k}.
More generally, e = {j, k} ∈ E if and only if e /∈ E −1 ∪ · · · ∪ E1 and for some
word w of length m−  , Aw1 equals the complete union of j and Aw2 equals the
complete union of k. This inductively defines the pairs Ti = (Ni,Ei), i = 1, . . . ,m.
However, it remains to be shown that these are trees, that is, that there are no cycles.
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Suppose for a contradiction there is no cycle in Tm, . . . , T +1, and there is
a cycle in T . Without loss of generality there are nodes Ai1···in and Aj1···jk on
the cycle with i1 = 1, j1 = 2 and such that Ai1···in �<A2, Aj1···jk �<A1. Then there
must be at least two nodes in the cycle that are subsets of D. Then by Lemma 5.6,
they are in the decomposition of D and hence also in the decomposition of A1
and of A2. There must also be a path joining these two nodes by nodes in the
decomposition of D. Hence there is a cycle containing the two nodes with one
of the two arcs joining the two nodes made up of nodes just in the decomposition
of A1 (say), and the other arc of the cycle is made up of nodes in the decomposition
of D and thus also of A2. But then the nodes in T +1 which are the edges of the
cycle form a cycle in T +1. This contradicts the assumption that  was the largest
integer for which T contains a cycle. �

7. Rank and partial correlation specifications. In this section we discuss
vine constructions in which we specify correlations on each vine branch.

7.1. Partial correlation specifications. We first recall the definition and
interpretation of partial correlation.

DEFINITION 7.1 (Partial correlation). Let X1, . . . ,Xn be random variables.
The partial correlation of X1 and X2 given X3, . . . ,Xn is

ρ12|3···n = ρ12|4···n − ρ13|4···nρ23|4···n
((1 − ρ2

13|4···n)(1 − ρ2
23|4···n))1/2

.

If X1, . . . ,Xn follow a joint normal distribution with variance covariance matrix
of full rank, then partial correlations correspond to conditional correlations. In
general, all partial correlations can be computed from the correlations by iterating
the above equation. Here we shall reverse the process, and for example use
a regular vine to specify partial correlations in order to obtain a correlation matrix
for the joint normal distribution.

DEFINITION 7.2 (Partial correlation vine specification). If V is a regular vine
on n elements and e ∈ Ei , then a complete partial correlation specification is
a regular vine with a partial correlation pe specified for each edge e. A distribution
satisfies the complete partial correlation specification if, for any edge e = {j, k} in
the vine, the partial correlation of the variables in Ce,j and Ce,k given the variables
in De is equal to pe.

A complete normal partial correlation specification is a special case of a regular
vine specification, denoted triple (F ,V, ρ), satisfying the following condition: for
every e and vector of values d taken by the variables in De, the set Be(d) just
contains the single normal copula with correlation ρe (which is constant in d).
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REMARK. We have defined a partial correlation specification without refer-
ence to a family of copulae as, in general, the partial correlation is not a property
of a copula. For the bivariate normal distribution, however, this is the case.

As remarked above, partial correlation is just equal to conditional correlation for
joint normal variables. The meaning of partial correlation for nonnormal variables
is less clear. We quote Kendall and Stuart ([15], page 335): “In other cases (that is,
nonnormal), we must make due allowance for observed heteroscedasticity in our
interpretations: the partial regression coefficients are then, perhaps, best regarded
as average relationships over all possible values of the fixed variates.”

If V is a regular vine over n elements, a partial correlation specification

stipulates partial correlations for each edge in the vine. There are (
n

2 ) edges in

total, hence the number of partial correlations specified is equal to the number of
pairs of variables, and hence to the number of ρij . Whereas the ρij must generate
a positive definite matrix, the partial correlations of a regular vine specification
may be chosen arbitrarily from the interval (−1,1).

The following lemma summarizes some well-known facts about conditional
normal distributions (see, e.g., [23]).

LEMMA 7.1. Let X1, . . . ,Xn have a joint normal distribution with mean
vector (µ1, . . . ,µn)

′ and covariance matrix 6. Write 6A for the principal
submatrix built from rows 1 and 2 of 6, etc., so that

6 =
(

6A 6AB

6BA 6B

)
, µ =

(
µA

µB

)
.

Then the conditional distribution of (X1,X2)
′ given (X3, . . . ,Xn)

′ = xB is normal
with mean µA +6AB6

−1
B (xB −µB) and covariance matrix

612|3···n =6A −6AB6
−1
B 6BA.(7.1)

Writing σij |3···n for the i, j -element of 6AA, the partial correlation satisfies

ρ12|3···n = σ12|3...n√
σ11|3···nσ22|3···n

.

Hence, for the joint normal distribution, the partial correlation is equal to the
conditional product moment correlation. The partial correlation can be interpreted
as the correlation between the orthogonal projections of X1 and X2 on the plane
orthogonal to the space spanned by X3, . . . ,Xn.

The next lemma will be used to couple normal distributions together. The
symbol 〈v,w〉 denotes the usual Euclidean inner product of two vectors. The
proof works by embedding the first set of n-dimensional vectors in R × R

n−1 ⊂
R × R

n−1 × R, and the second set in R
n−1 × R ⊂ R × R

n−1 × R.
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LEMMA 7.2. Let v1, . . . , vn−1 and u2, . . . , un be two sets of linearly indepen-
dent vectors of unit length in R

n−1. Suppose that

〈vi, vj 〉 = 〈ui, uj 〉 for i, j = 2, . . . , n− 1.

Then given α ∈ (−1,1) we can find a linearly independent set of vectors of unit
length w1, . . . , wn in R

n such that:

(i) 〈wi,wj 〉 = 〈vi, vj 〉 for i = 1, . . . , n− 1;
(ii) 〈wi,wj 〉 = 〈ui, uj 〉 for i = 2, . . . , n;

(iii) 〈w′
1,w

′
n〉 = α, where w′

1 and w′
n denote the normalized orthogonal

projections of w1 and wn onto the orthogonal complement of the space spanned
by w2, . . . ,wn−1.

The corollary to this lemma follows directly using the interpretation of a positive
definite matrix as the matrix of inner products of a set of linearly independent
vectors.

COROLLARY 7.3. Suppose that (X1, . . . ,Xn−1) and (Y2, . . . , Yn) are two
multivariate normal vectors, and that (X2, . . . ,Xn−1) and (Y2, . . . , Yn−1) have
the same distribution. Then for any −1 < α < 1, there exists a multivariate normal
vector (Z1, . . . ,Zn) so that

(i) (Z1, . . . ,Zn−1) has the distribution of (X1, . . . ,Xn−1),
(ii) (Z2, . . . ,Zn) has the distribution of (X2, . . . ,Xn), and

(iii) the partial correlation of Z1 and Zn given (Z2, . . . ,Zn−1) is α.

We now show how the notion of a regular vine can be used to construct a joint
normal distribution.

THEOREM 7.4. Given any complete partial correlation vine specification for
standard normal random variables X1, . . . ,Xn, there is a unique joint normal
distribution for X1, . . . ,Xn satisfying all the partial correlation specifications.

PROOF. We use the Cantor tree representation of the regular vine. The proof
is by induction in the Cantor tree. Clearly any two normal variables can be
given a unique joint normal distribution with the product moment rank correlation
strictly between −1 and 1.

Suppose that for any binary word w longer than length k, the variables in Aw can
be given a unique joint normal distribution consistent with the partial correlations
given in the vine. Consider now a binary word v of length k − 1. Since the vine is
regular, we can write Av as a disjoint union

Av =Cv1 ∪Cv2 ∪Dv,
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where Cv1 and Cv2 both contain just one element. The corresponding node in the
regular vine specifies the partial correlation of Cv1 and Cv2 given Dv .

By the induction hypothesis there is a unique joint normal distribution on the
elements of Av1 and similarly a unique joint normal distribution on the elements
of Av2, all satisfying the vine constraints on these elements. Furthermore, the
distributions must both marginalize to the same joint normal distribution on Dv .
Hence we are in the situation covered by Corollary 7.3, and we can conclude that
the variables of Av can be given a joint normal distribution which marginalizes to
the distributions we had over Av1 and Av2, and which has the partial correlation
coefficient for Cv1 and Cv2 given Dv that was given in the specification of the vine.

�

COROLLARY 7.5. For any regular vine on n elements there is a one to one
correspondence between the set of n× n positive definite correlation matrices and
the set of partial correlation specifications for the vine.

We note that unconditional correlations can easily be calculated inductively by
using (7.1). This is demonstrated in the following example.

EXAMPLE 4. Consider the vine in Figure 10.
We consider the subvine consisting of nodes 1, 2 and 3. Writing the correlation

matrix with the variables ordered as 1, 3, 2, we wish to find a product moment
correlation ρ13 such that the correlation matrix

 1 ρ13 0.6
ρ13 1 −0.7
0.6 −0.7 1




has the required partial correlation. We apply (7.1) with

6B = (1), 6A =
(

1 ρ13
ρ13 1

)
, 6AB =

(
0.6

−0.7

)
,

613|2 =
(

σ 2
1|2 0.8σ1|2σ3|2

0.8σ1|2σ3|2 σ 2
3|2

)
.

This gives σ1|2 = 0.8, σ3|2 = 0.7141 and

ρ13 = 0.8σ1|2σ3|2 − 0.42 = 0.0371.

Using the same method for the subvine with nodes 2, 3 and 4, we easily calculate
that the unconditional correlation ρ24 = −0.9066. In the same way we find that
ρ14 = −0.5559. Hence the full (unconditional) product moment correlation matrix
for variables 1, 2, 3 and 4 is


1 0.6 0.0371 −0.5559

0.6 1 −0.7 −0.9066
0.0371 −0.7 1 0.5

−0.5559 −0.9066 0.5 1


 .
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FIG. 10. Partial correlation vine.

REMARK. As this example shows, for the standard vine on n elements (of
which Figures 2 and 10 are examples) in which each tree is linear (i.e., there are no
nodes of degree higher than 2), the partial correlations can be conveniently written
in a symmetric matrix in which the ij th entry (i < j ) gives the partial correlation
of ij | i + 1, . . . , j − 1. This matrix, for which all off-diagonal elements of the
upper triangle may take arbitrary values between −1 and 1, gives a convenient
alternative matrix parameterization of the multivariate normal correlation matrix.

The partial correlations in a vine specify the complete correlation matrix, even
with no assumptions of joint normality. This is stated in the following result which
may be proved by induction using the formula for partial correlation given in
Definition 7.1.

THEOREM 7.6. Let (X1, . . . ,Xn) and (Y1, . . . , Yn) be vectors of random
variables satisfying the same partial correlation vine specification. Then for i �= j ,

ρ(Xi,Xj )= ρ(Yi, Yj ).

Our notion of a partial correlation vine specification generalizes a construction
of Joe [13] who, in our terminology, defined a partial correlation specification on
a standard vine.

7.2. Rank correlation specifications.

DEFINITION 7.3 (Rank correlation specification). If V is a regular vine on
n elements, then a complete conditional rank correlation specification is a triple
(F ,V, r) so that for every e and vector of values d taken by the variables in De,
every copula in the set Be(d) has conditional rank correlation re(d), (|re(d)| ≤ 1).

In Proposition 7.7 below we show that if re(d) is a Borel measurable function
of d then the conditional copula family formed by taking the minimal information
copula with given rank correlation for a.e. d is a regular conditional probability
family.

We now turn to rank correlation specifications.
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PROPOSITION 7.7. Suppose that X1, X2 are random variables, and that XD

is a vector of random variables. Suppose further that the joint distributions of
(X1,XD) and (X2,XD) are given, and that the function

XD �→ rXD
(X1,X2)

is measurable. Then the conditional copula family formed by taking the minimal
information copula with given rank correlation for a.e. XD is a regular conditional
probability family.

PROOF. The density function of the minimal rank correlation at any given
point varies continuously as function of the rank correlation [21]. Hence for any
Borel set B , the minimal information measure of B is a continuous function of
the rank correlation. Then the minimal information measure of B is a measurable
function of XD . �

THEOREM 7.8. Suppose that we are given a rank tree specification for
a regular vine for which the conditional rank correlation functions are all
measurable, and the marginals have no atoms. If we take the minimal information
copula given the required conditional rank correlation everywhere, then this gives
the distribution that has minimal information with respect to the independent
distribution with the same marginals.

PROOF. Note first that information is invariant under bimeasurable bijections.
Hence, whenever F and G are the distribution functions of continuous random
variables X and Y , the information of the copula for X and Y (with respect to
the uniform copula) equals that of the joint distribution of X and Y with respect
to the independent distribution with the same marginals. It is easy to see that all
marginal distributions constructed using minimal information copulae with given
rank correlation are continuous. The result now follows from Theorems 5.5, 6.1
and Proposition 7.7. �

8. Conclusions. Conditional rank correlation vine specifications can be
sampled on the fly, and the minimum information distribution consistent with
a rank correlation specification is easily sampled using bivariate minimum
information copulae. Moreover, a user specifies such a distribution by specifying(n

2

)
numbers in [−1,1] which needn’t satisfy any additional constraint. In the

minimum information realization, a conditional rank correlation of zero between
two variables means that the variables are conditionally independent. From
a simulation point of view conditional rank correlation specifications are attractive
ways to specify high dimensional joint distributions.

One of the more common ways to define a multivariate distribution is to
transform each of the variables to univariate normal, and then to take the



VINES—A NEW GRAPHICAL MODEL 1067

multivariate normal distribution to couple the variables. The disadvantage of this
procedure is that the conditional rank correlations of the variables are always
constant (reflecting the constancy of the conditional product moment correlation
for the multivariate normal). With vines it is possible to define nonconstant
conditional rank correlations, and therefore to generate a much wider class of
multivariate distributions.
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