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Recently, estimating ratios of normalizing constants has played an
important role in Bayesian computations. Applications of estimating ra-
tios of normalizing constants arise in many aspects of Bayesian statistical
inference. In this article, we present an overview and discuss the current
Monte Carlo methods for estimating ratios of normalizing constants. Then
we propose a new ratio importance sampling method and establish its
theoretical framework. We find that the ratio importance sampling method
can be better than the current methods, for example, the bridge sampling
method (Meng and Wong) and the path sampling method (Gelman and
Meng), in the sense of minimizing asymptotic relative mean-square errors
of estimators. An example is given for illustrative purposes. Finally, we
present two special applications and the general implementation issues
for estimating ratios of normalizing constants.

1. Introduction. Let 7,(0), i = 1,2, be two densities, each of which is
known up to a normalizing constant:
pi(©
(1.1) () = L, 0cq,,
c

13

where (), is the support of 7r; for i = 1,2. Then, the ratio of two normalizing
constants is defined as

c
(1.2) r=—.

Ca

In this article, we also use the parameter A to index different densities:

O\,
(6INn;) = p( ) fori =1,2
c(N\;)
and then the ratio is
c(A
(1.3) = (_1)
c(Ny)

Estimating ratios of normalizing constants is extremely challenging and
very important, particularly in Bayesian computations. Such problems typi-
cally arise in likelihood inference, especially in the presence of missing data
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[ef. Meng and Wong (1996)], in computing the intrinsic Bayes factors [see
Berger and Pericchi (1996)], in the Bayesian comparison of econometric
models considered by Geweke (1994), in Gibbs sampling [see Chen (1994a)],
and in estimating marginal likelihood [cf. Chib (1995)]. For example, in
likelihood inference, this ratio is viewed as the likelihood ratio and in the
Bayesian model selection, the ratio is called the Bayes factor.

The 7,(0) and 7(0|\;) are often very complicated and therefore, the ratio
defined by either (1.2) or (1.3) is analytically intractable [see Meng and Wong
(1996), Gelman and Meng (1994), and Geyer (1994)]. However, without
knowing the normalizing constants, ¢; or c¢(\;), i = 1,2, the distributions,
7;(0) or w(B|\,), i = 1,2, can be easily sampled by means of the Markov
chain Monte Carlo (MCMC) methods, for example, the Metropolis—Hastings
algorithm [see Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
and Hastings (1970)], the Gibbs sampler [c¢f. Geman and Geman (1984) and
Gelfand and Smith (1990)], and the various hybrid algorithms [cf. Chen and
Schmeiser (1993), Miller (1991) and Tierney (1994)]. Therefore, simulation-
based methods for estimating the ratio, r, seem to be very attractive because
of their general applicability.

Recently, several Monte Carlo methods for estimating normalizing con-
stants have been developed, which include bridge sampling of Meng and
Wong (1996), path sampling of Gelman and Meng (1994), a data augmenta-
tion-based method of Chib (1995), and reverse logistic regression of Geyer
(1994). Section 2 gives a brief summary of these methods. In Section 2, we
also discuss how the importance-weighted marginal density estimation of
Chen (1994b) and the reverse logistic regression of Geyer (1994) can be
adapted for estimating ratios of normalizing constants and we further find
that the reverse logistic regression is essentially equivalent to optimal bridge
sampling.

The remainder of this article is organized as follows. In Section 3 we
propose a new ratio importance sampling method for estimating r and
explore the properties of the ratio importance sampling estimators. We show
that ratio importance sampling is better than either bridge sampling or path
sampling in the sense of minimizing asymptotic relative mean-square errors
(or variances) of estimators. In Section 4, a theoretical example is used for
comparing ratio importance sampling with simple importance sampling,
bridge sampling, and path sampling. Two special applications and implemen-
tation issues are presented in Section 5. Finally, brief concluding remarks are
provided in Section 6.

2. Current Monte Carlo methods. In this section, we give a brief
overview of the current Monte Carlo methods for estimating the ratios of
normalizing constants and discuss their properties.

2.1. Importance sampling. The standard method for estimating the ratios
of normalizing constants is importance sampling [see, e.g., Geweke (1989)].
We present two versions of the importance sampling methods.
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VERSION 1. Choose two importance sampling densities 7/(0), i = 1,2,
which are completely known, for 7,(0), i = 1,2, respectively. Let 6,,,0,,,...,
0,,1=12 be two independent draws from 7/(0), i = 1,2. Then a consis-
tent estimator of r is

(1/n1)Z51, pa(0y;)/71(81;)
(1/n5) 2721 P5(05;)/73(85;)

The performance of the estimator, 7, depends heavily on the choices of the
w1(0). If the 7/(0) are good approximations of the ,(@), this importance
sampling method works well. However, it is often difficult to find 7/(8) to
serve as good importance sampling densities [see Geyer (1994), Green (1992)
and Gelman and Meng (1994)]. When the parameter spaces, Q;, i = 1,2, are
constrained, good completely known importance sampling densities, 7/(0),
i =1,2, are not available or are extremely difficult to obtain [see Chen
(1994a) or Gelfand, Smith, and Lee (1992) for practical examples].

(2.1) =

VERSION 2. Let ® be a random variable from 7,. When (), C (},, we have
the identity:

c (0]
(2.2) r=—1=E2{M},
Co p2(O)
where E, denotes the expectation with respect to m; (i = 1,2). Let 0,,
055,...,0,, be a random draw from 7. Then the ratio  can be estimated by
1 2 py(0,,
(2.3) poly Pal®a)

n /71 pa(9s;)

It is easy to see that when the two densities 7, have very little overlap [here,
meaning E,(7(0)) is very small], this importance sampling-based method
will work poorly.

2.2. Bridge sampling. The generalization of (2.2) given by Meng and
Wong (1996) is

Co - El{p2(®)a(®)} ’

where «(0) is an arbitrary function defined on Q; N Q, such that

Jue

1

(2.4) 2! E2{l’1(®)a(®)}

0<

_a(0)py(0)p(0) b <=

Then, letting 0,1,0,5,...,0;,

estimator 7, of r is given by
nylyr 0,,) (0,

(2.5) - %1n1p1(2) (2)
ny Xl ps(0y)a(0y;)

be a random draw from =, for i = 1,2, an
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Let n =n, + n, and s; = n,;/n and assume lim s; >0, i=1,2. Meng

n— 13

and Wong (1996) showed that the optimal choice for « is given by

(2.6) aui(0) = 5,7,(9) —T-SQ’]TZ(G) ’

0 QnNQy,c#0,

which minimizes the relative mean-square error

(27) RE*(7,) - 2 T

where E denotes the expectation taken over all random draws, and the
asymptotic minimal relative mean-square error is

m1(0)7,(0 -
(2.8) (nslsz)l[{fﬂ (9)72(9) dﬂ} —1].

N0, $171(0) + 5,7,(0)

Because c; and ¢, are unknown, the optimal «,, is not directly usable.
Meng and Wong (1996) constructed the following iterative estimator:

AL+D) _ (l/nz)zfﬁ1p1(92i)/(31P1(92i) + 32%31”2(92;‘))
t = - - .
¥ (l/nl)zii1p2(01i)/(31p1(91i) + 32’”531’2(010)

They showed that for each ¢ (> 0)7{’!} » provides a consistent estimator of r
and that the unique limit, 7,,;, achieves the asymptotic minimal relative
mean-squared error given in (2.8). Meng and Wong (1996) also considered
several noniterative choices of a such as a« =1, a = (py, py) */? and a =
(py +py) 7"

As in the second version of the importance sampling method, the bridge
sampling estimator 7, given in (2.5) will be unstable when 7, and 7, have
little overlap. For such cases, the following path sampling method of Gelman

and Meng (1994) will substantially improve the simulation efficiency.

(2.9)

2.3. Path sampling. In this subsection, we use p(0|\;) for the unnormal-
ized density for i = 1,2. As discussed in Gelman and Meng (1994), we can
often construct a continuous path to link p(8|A;) and p(8|\,). Instead of
directly working on r, Gelman and Meng (1994) proposed the path sampling
method to estimate the logarithm of r, that is,

&= —log(r) = —log(c()\l)/c()\z)).

First, we consider A to be a scalar quantity and use A instead of A.
Without loss of generality, assume that A € [0,1], A; = 0 and A, = 1. Gelman
and Meng (1994) developed the following identity:

c(\}) U(O,A)
=10 £ el -2 Sy

where U(0, 1) = (d/d Mlog( p(8|A)), m,()) is a prior density (completely known)
for A € [0, 1], and the expectation is taken with respect to the joint density
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(0, ) = w(8|)m(A). Let (0,,A,), i =1,2,...,n, be a random draw from
(0, A). Then, under certain regularity conditions, they derived the following
consistent estimator of ¢:

L 1 Ue;, A,
2.11 E=—Y)Y —=
( ) n ;7 m(Ay)
The Monte Carlo variance of é is
N 1| 1 EJ{U?(6, 1))}
2.12 = — " dA— &2
(2.12) var(€) = [ €

where the expectation E, is taken with respect to 7(0|/A). They found the
optimal prior density pt(/\) given by

VE{U*(©, 1))
JWEAU(O, 1)) dA”

which minimizes the Monte Carlo variance Var(€) given in (2.12). The
minimum value of Var(¢) is

(2.14) Var,,( [([ {U2(0, 1)) d/\)2 - 521.

As discussed by Gelman and Meng (1994), it is difficult in general to find the
optimal path, it is intuitive that the optimal Monte Carlo variance cannot be
arbitrary small, and must be bounded below by a distance between 7 (0|A,)
and 7(0|A,). The following lemma confirms this conjecture.

(2.13) mP(A) =

LEMMA 2.1. Under certain regularity conditions, we have

(2.15) Var(£) > —f[\/ﬂ'(OM ) — (8l ] de
for any prior density WA(/\) with support [ Ay, A,].

Proor. Without loss of generality, assume A, = 0 and A, = 1. Letting
c(A) = [p(B]A) dO, we have

1| d
§=f0[alogc()\)}d/\
and

al1 ?
I ogc(A)] .

d 2
(2.16) E\(U*(O,))} = f[dAlogw(OlA)} w(01) d6 +

Equations (2.12) and (2.16) lead to

nVar ff[ logﬂ-(OI/\)} m(01A) dodAi

m(X)
In

(2.17)

+

d 1 )
d/\log c( /\)} Y &1,
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Using the Cauchy—Schwarz inequality and [jm(A) dA = 1, we have
L een] —Lanr - e
[ |gxtog () YRR

1 (d/dM)log c(A) L
Z[/o NEEY md%_g_o'

(2.18)

Similarly,

j;)l[[%logw((ﬂ)\)} W;?L);) de da

- [l grveom]

1
m(A)

do dAa

Vm(A)
1d 2
=4f[f0 5\/77(9“‘) d/\} de
= 4[[y7(0In,) — Ym(oln,) | do.

Thus, the lemma follows from (2.17), (2.18) and (2.19).

(2.19) > 4/[[1(‘”&)” m (611 V(A d% e
0

REMARK 2.1. The lower bound of Var(£) given in (2.15) indeed equals
(4/n)H?(m,, m,), where H(m,, m,) is the Hellinger distance between 7, and
m,. We note that Gelman and Meng (1994) proved inequality (2.15) when
m,(A) is a uniform prior density on A.

Second, we consider A to be d-dimensional. Assume that a continuous path
in the d-dimensional parameter space that links p(6|\;) and p(@|A,) is
given by

AN(E) = (N(t),..., Ngq(t)) forte[0,1]; A(0) =N, and A(1) =A,.

Under some regularity conditions, Gelman and Meng (1994) obtained the
identity

c(N\;) 1 d
) } —fOEw)LgAk(t)Uk(e,Mt))

where A,(¢) = (dA,(t)/dt) and U,(0, A(£)) = ( log p(8|N))/dA, for k=
1,2,...,d. Then, a corresponding path sampling estimator for £ is given by

(2.20) &= —log{ dt,

b

d
(2.21) = . ) [ L A(t) U (0, M(2:)
k

i=1 =1

s |
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where the t’s are sampledA uniformly from [0,1] and 0, is a draw from
(0| N(¢;)). The variance of ¢ is

(2.22)  Var(§)

n ij=1

1l a1 & o
fo( X gij()\(t)))‘i(t))‘j(t)) dt_le,

where gij()\(t)) = EW){Ui(G), )\(t))UJ-((D, A(2))}. The path function A(¢) that
minimizes the first term on the right-hand side of (2.22) is the solution of the
following Euler-Lagrange equations with the boundary conditions A(¢) = A\,
for t =1,2:

(2.23) i g, (N(2))A(2) + f} [, k1A (¢)A;(t) =0 fork=1,2,...,d,

i=1 i,j=1

where A(t) denotes the second derivative with respect to ¢ and [ij, k] is the
Christoffel symbol of the first kind:

.. 1| dgin(N) g () dg;;(N\)
[5.4] = & : -
2| ox N, oA,

J 13

. i, k=1,2,...,d.

In general, it is not trivial to find the optimal path from (2.23). Also, if A,
and A, are far away from each other, the path sampling method might work
poorly since simulation efficiency could be lost in averaging over a “long”
path.

2.4. Marginal likelihood. In the context of Bayesian inference, the poste-
rior is typically of the form

m(0lx) = L(x,0)7(0)/m(x),

where L(x,0) is the likelihood function, x is the data, 0 is the parameter
vector, 7(0) is a prior and m(x) is the marginal density (marginal likelihood).
Clearly, m(x) is the normalizing constant of the posterior distribution 7(0|x).
Calculating the marginal likelihood, m(x), plays an important role in the
computation of Bayes factors.

Chib (1995) considered the following identity:

L(x,0)m(0)
7(0|x)
Let 0* be the posterior mean or the posterior mode and also let 7(0*|x) be an

estimator of the joint posterior density evaluated at 0*. Chib (1995) obtained
the following estimator for m(x):

L(x,0%)m(0%)
 w(0%x)
Then, Chib (1995) developed a data augmentation technique [cf. Tanner and

Wong (1987)] to estimate #(0*x) by introducing latent variables. Chib’s
method is particularly useful for multivariate problems when the full condi-

(2.24) m(x) =

(2.25) M x)
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tional densities are completely known. Indeed, #(0*|x) can also be estimated
by using the importance-weighted marginal density estimation (IWMDE)
method of Chen (1994b). The IWMDE method does not require completely
known full conditional densities.

Further, the IWMDE method can be used to estimate m(x) directly. Let
0,,i=1,2,...,n,be a sample from 7(0]x). Such a sample can be obtained by
employing MCMC methods (for example, the Gibbs sampler or a Metropolis—
Hastings algorithm). Then, IWMDE yields a consistent estimator for m(x),

i e we) 7

(2.26) Mywype(X) = n igl L(x,0,)7(8;) )

where w(0) is a weighted density function (completely known) with the
support O, € Q_ .., [the support of the posterior distribution 7(:/x).] Chen
(1994b) also provided an empirical procedure to achieve a fairly good w.
Compared to (2.25), (2.26) does not require the selection of 0* and thus (2.26)
might lead to a more efficient estimator for m(x), especially when parameter
spaces are constrained.

Chib’s estimator works if a good approximation 7(0*/x) and a good point
0* are chosen and the IWMDE method works if a good weighted density
function w is selected. Obviously, the above methods can be used to estimate
the ratio of two marginal likelihoods, and this is useful in the calculation of
Bayes factors.

2.5. Reverse logistic regression. In this subsection, we discuss how re-
verse logistic regression of Geyer (1994) can be adapted for estimating ratios
of normalizing constants.

Let {®,;,, j=1,...,n}, i = 1,2, be independent random draws from m,,
i = 1,2, respectively. Also let n = n, + ny, s; =n,/n and s, = ny/n. Con-
sider a mixture distribution with density

p1(9) P2(90)

(2.27) Toin(0) = 57— + 5,
1 Co
Define
q.(0,7) = s1p1(9) /¢, _ s1P1(9)
(2.28) o $1P1(0)/c1 +5305(0) /¢y 51P1(0) + 73, p5(0)
’ Sy D2(0) /¢y sy pP2(0)
QZ(O’ 7‘) = -

$101(0) /¢y +5,05(0) /¢y 51p1(0) + 75, py(0)

and also define the log quasi-likelihood as

2 n;
(2.29) L(r) =Y Y logq(0;,r).

i=1j=1
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Then the reverse logistic regression estimator, Fp;p, of r is obtained by
maximizing the log quasi-likelihood [,(r) in (2.29). Clearly, 7y, satisfies the
following equation:

% 51P1(93))
(2.30) J=1 i:RLR(Slpl(@Qj) + ’A'RLRSZPZ(QZJ'))
| < 53 P2(01;)

_ \ - 0.
jgl $1P1(O1;) + Frirss P2(O1;)

Therefore, when 7; and 7, overlap, that is,

J mi(8)7y(0) d6 > 0,
Q

and under some regularity conditions, we have
(2.31) FrLr = T a.s.asn — o,

and the asymptotic value of E((Fg g — r)?/r?) is

(2.32) ! l{ 71(8)7(6) de} —1}.

ns; sy | |/as;m,(0) + s,7,(0)

From (2.30) and (2.32), we can see that the reverse logistic regression
estimator, 7y g, is exactly the same as the optimal bridge sampling estima-
tor, 7, , given by (2.5) and (2.6). Note that when 7, and 7, do not overlap,
the reverse logistic regression method does not work directly.

3. A new ratio importance sampling identity and theory. In this
section we present a new ratio importance sampling identity for the ratio
r =c,;/cy,. Based on this simple identity, we propose a ratio importance
sampling estimator for r, and then explore its theoretical properties.

Denote 2 = Q; U Q,. Let 7(0) be an arbitrary density over () such that
7(0) > 0 for 0 € Q. Then, we have the identity

_a _ E{p(8)/7(0))
(3.1) " E{py(©)/7(0))

where E_ denotes the expectation with respect to 7. We call (3.1) and = (0)
the ratio importance sampling identity and the ratio importance sampling
density, respectively. Note that if 7 = p,/c,, then (3.1) leads to the impor-
tance sampling identity (2.2). Therefore, the ratio importance sampling iden-
tity is a generalization of the simple importance sampling identity (2.2).
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Given a random draw 0,,0,,...,0, from 7, which can often be facilitated
by the MCMC methods (e.g., the Gibbs sampler or a Metropolis—Hastings
algorithm), the ratio importance sampling estimator for r = ¢, /¢, is
. Li1p.(8;)/7(9;)

X pa(0,)/7(0;)

For any 7 with the support (), 7_ is a consistent estimator of r. Even for a
dependent sample {0,,0,,...,0,}, under mild conditions (for example, ergo-
dicity) the consistency for 7_ still holds. One feature of (3.2) is that the
estimator 7_ can be obtained by using one single random draw from =
instead of 7, or m,. Such a property is useful in Gibbs sampling when the
posterior density contains an analytically intractable constant that depends
on the hyper-parameters [see Gelfand, Smith and Lee (1992) and Chen
(1994a)].

Because the ratio importance sampling estimator 7_ depends on m, it is
interesting to determine the optimal ratio importance sampling density 7,
of 7. We use the relative mean-square error similar to (2.7):

A 2
(3.3) RE*(7,) = E”(r:—zr)
The analytical calculation of (3.3) is typically intractable. However, under the
assumption that the 0, are independently and identically distributed from =,
we can obtain the asymptotic form of RE%(#_). Let f(0) = p,(0)/7(8) and
2(0) = py(0)/7(0). Then, we have E_f(®) = ¢, and E_g(0) = c,.

(3.2)

THEOREM 3.1. Let {0®;,i=1,2,...,n} be i.i.d. random variables from
. Assume [43|p(0) —a p,(0)|dO >0 for every a >0, E_((f(®)/c;) —
(g(®)/cy))? < © and E {f(0)/g(0®))? < . Then we have

E,(f, —r)°
lim {nREz(ﬁT)} = limn

n— o n—w

7"2

(3.4)

i E{ (0) _5(©) }
and 1 ’

0 0) )\
(835) Vn(#,-r)—>, N O,rQE,,{f( ) _ &l )} asn — .
If, in addition, E_((f(®))/c; — (g(©))/cy)* < @ and E,g*(®) < «, then
E, (%, —r)*
RE(7,) =~ o)
(3.6) :
1 0 (0) 1
=—E#{f( )_g( )} +O(—2) asn — .
n ¢, Cy n

The proof is given in Appendix A. Note that if [,|p,;(®) — ap,(0)|d6 = 0
for some a > 0, then ¢; = ac,, and therefore 7 = r = a.
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Using (3.4) or (3.6), we have the asymptotic form of RE2(#_):

1 (©) /e, — py(©) /e, )
3.7) Lk, {p( )/772(@};)( )/¢s}

Note that when Q; € Q, and 7(0) = 7,(0) = p,(0)/c,, (3.7) returns the
exact value of RE2(#_). For this case, (3.2) becomes the importance sampling
estimator (2.3) for r, and the corresponding relative mean-square error is

2
1 7(0) — 7,(0
(3.8) RE}(#) = — [ (ma(®) — 72(8))_ 4
n-a, 772(0)
which is the chi-squared distance x?2(m,, 7,) between 7, and ;.
The following theorem gives the optimal ratio importance sampling density
T,pe that minimizes the asymptotic relative mean-square error (3.7).

THEOREM 3.2. Assume [4|p(0) —ap,(0)|d0 > 0 for every a > 0. The
asymptotic relative mean-square error (3.7) is minimized at

|p1(9)/01 - pz(ﬁ)/02|
JalP1(0") /ey — p2(0) /cy|d0’

with the asymptotic minimal value
2
de} .

p.(9) P2(9)
L=

¢ Cy
Proor. By the Cauchy—Schwarz inequality, for an arbitrary density = (-),

pi(®)  pu(0)| 1°  [pu(8)/ci — py(8)/cy]?
/Q - de} s/ﬂ

(39) Wopt(ﬂ) =

1
(3.10) -

d()jﬂﬂ'(ﬂ) de.

€1 Co m(0)
Thus,
{P1(®)/C1 —p2(®)/02}2 p1(9) p2(9) ’
(3.11) E, 5(0) }z fQ e de}

with equality holding if and only if (up to a zero-measure set)

p1(9) _ P2(9)

7(0) . -
1 2

b

that is, 7(0) = 7,,,(0). This proves (3.9). Replacing = by =, in (3.7) gives
(3.10). O

It is interesting to see that (3.10) is (1/n)L3(w,, m,) where L(m,, m,) is
the L;-distance between 7; and m,. From Theorem 3.2 and Equations (3.8)
and (3.10), we also have L%(w,, m,) < x2(my, 7).

Now, we compare the ratio importance sampling method with the bridge
sampling method. The following theorem says that the ratio importance
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sampling estimator (3.2) with the optimal =, given in (3.9) has a smaller
asymptotic relative mean-square error than the bridge sampling estimator
(2.5) with the optimal choice «,,; given in (2.6).

THEOREM 3.3. For 0 <s,, s, <1 and s; + s, = 1, we have

p1(9) p2(0)
L= -

€1 Co

< (8182)_1{{/0 7T1(9)772(0) d(‘)} . 1}-

2
de

(3.12)

N0, 8171(0) + 5,7,(0)

ProoF. Noting that
71(0)7,(0)
L Ly, 5 0)  50ma0)
_ (827m1(0) + 5175(0))(517,(0) + 5,75(0)) — 7,(0)75(0)
- fﬂ $171(0) + s,75(0) 40

de

(3.13) $15,m2(8) + 5,5,2(0) + (2 + 52— 1)y(8) my())

_

- '/;z (5171(0) + 5,75(0))

_ (m1(8) — my(8))’

—n 2'[031771(9) + 5,7,(0) @,

we have that the right-hand side of (3.12) equals

[ Lri) - me) / [mOm®
¢ Qs

1 8171(0) + 5,75(0) 171(0) + s,75(0)

de

de

(m1(8) — ,(0))°
/

a81m(0) + s,m,(0)

m1(0)my(0
(3.14) Xfﬂ(sﬂﬁ(e) +5,m,5(0)) de/fgslﬂ'l(ﬁ() )+ 32(7,-2(9) a6

g l7,(0) — 75(0)]
- fQ Vs171(0) + s,75(0)
2 m1(0)my(0
X\/Slﬂ'l(e) *5275(8) d"} /fQ 81771(;) )"' 32(772(0) @0

(3.15) = [fﬂh‘rl(ﬂ) — my(0)] de] /fgslwzlﬂ()e)—:::z(e) de,
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where (3.14) is obtained by the Cauchy—Schwarz inequality. From (3.13) it is
easy to see that

(3.16)

[ (078 a1
Q

10, 8171(0) + 5,7,(0)

Now (3.12) follows from (3.15) and (3.16). O

Next, we compare the ratio importance sampling method with the path
sampling method. Gelman and Meng (1994) pointed out that the asymptotic
variance § is the same as the asymptotic relative mean-squared error of 7,
that is, lim, ,,.nVar(¢) =lim, . nE(# — r)?/r% Thus, the next theorem
shows that the asymptotic relative mean-square error of the ratio importance
sampling estimator (3.2) with the optimal 7, is less than the lower bound,
given on the right-hand side of (2.15), of the variance of ¢ given in (2.12).

THEOREM 3.4. Defining 7,(0) = —p,(0)/c; = w(0|A,) for i = 1,2, we have

J,

(3.17)

pl( ) p2( )‘del <4f[‘/77(9|/\1) —\/77(9|/\2 ] de.

Proor. By the Cauchy—-Schwarz inequality, we have that the left-hand
side of (3.17) equals

[ V@ = ym@) (V@) + ym ) der
< [ Vm® —ym@] aof [V (0) + /m ()] do.

(3.18)

It is easy to see that

[ [Vmi(®) + ym ()] e
- fQ[Trl(ﬂ) +2¢/7,(0)7,(0) + 7,(0)] db < 4.

Thus, (3.17) follows from (3.18) and (3.19). O

(3.19)

From Theorem 3.4, we can see that L3(mr,, m,) < 4H (1, m,). From Theo-
rem 3.4, the optimal ratio importance sampling estimator fwopt is always
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better than the bridge sampling estimator and Pﬁopt is also better than any
path sampling estimator. However, m,,, depends on the unknown normaliz-
ing constants ¢; and c,. Therefore, 7, ~is not directly usable. We will

address implementation issues in Section 5.

4. A simple example. In this example, we consider two case studies; the
first one was also used in Meng and Wong (1996) to illustrate bridge
sampling and in Gelman and Meng (1994) to illustrate path sampling.

Case 1 [N(0,1) and N(D,1]. Let p,(0) =exp(—02/2) and p,(0) =
exp(— (0 — D)?/2) with D a known positive constant. In this case, c¢; =
¢, = V27 and, therefore, r = 1 and ¢ = —log(r) = 0. For path sampling, we
consider p; and p, as two points in the family of unnormalized normal
densities: p(A|\) = exp{—(0 — w)?/20 2}, with X = (u, o), A; =(0,1), and
A, =(D, D).

As discussed in Gelman and Meng (1994), in order to make fair compar-
isons, we assume that (i) with importance sampling-version 2, we draw n
ii.d. observations from N(D,1); (ii) with bridge sampling, we draw n/2
(assume n is even) i.i.d. observations from each of N(0,1) and N(D,1); (iii)
with path sampling, we first draw ¢,, i = 1,2,..., n uniformly from (0, 1) and
then draw an observation from N( u(¢,), o %(¢;)) where N(¢) = (u(¢), o(¢))' is
a given path and (iv) with ratio importance sampling, we draw n 1iid.
observations from the optimal ratio importance sampling density:

|p(6) — ¢(6 — D)
Copt(D) ’

(41) Wopt(e) =
where

cou(D) = [ 16(8) = (6~ D) d6 = 2(®(D/2) ~ ©(~D/2))
- 2(20(D/2) — 1),

(4.2)

and ¢ and ® are the N(0,1) probability density function and cumulative
distribution function, respectively. Since the cumulative distribution function
for m,,(0) is

(®(0) —P(6-D))/2(20(D/2) —1), for6<D/2,
(43) M, (0)={1-(P(0) —®(6-D))/2(2®(D/2) - 1),
for 6>D /2,

then the generation from m,,; can be done easily by the inversion method
[see, e.g., Devroye (1986), pages 27-35].
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Since the asymptotic variance of g? is the same as the asymptotic relative
mean-square error of 7 (i.e., lim, . nVar(¢) = lim, . nE(# — r)?/r?), then,
using the results given by Gelman and Meng (1994), and (3.10) and (4.2), we
obtain Table 1.

We define the relative simulation efficiency as follows:

m, . \/nE(f —r)?/r? for method j

lim, ., VnE(? — r)®/r® for method i
fori,j=1,2,...,1.

(4.4) e(i,j) =

Then, e(7,j), j=1,...,6, versus D are plotted in Figure 1. Note that when
e(i,j) = 1, method j has a greater asymptotic relative mean-square error
than method i, and therefore, method i is more efficient than method j. It is
easy to verify that e(7, j) > \/%/2 = 1.2533 for j = 1,2,...,6. It is interest-
ing to note that lim,, ,, e(7,j) = V27 /2 = 1.2533 for all j = 1,2,...,6. The
lower bound of path sampling in (2.15) is quite close to the asymptotic
relative mean-square error of the ratio importance sampling method with the
optimal 7. The ratio importance sampling method is significantly better
than the bridge sampling method, especially for D > 3, and it is also better
than the path sampling method. In this case, both ratio importance sampling
and path sampling are much better than importance sampling-version 2.

Case 2 [N(0,1) and N(0,A?)]. Without loss of generality, we consider
A > 1 only. Let p,(0) = exp(—602%/2) and p,(0) = exp(—02/2A%) with A a
known positive constant. In this case, ¢; = Ve, cy = V27 A and, therefore,
the ratio r = ¢;/cy = 1/A. For path sampling, £ = log A, let p(8|\;) = p,(6)
and p(6|\,) = py(6) with A; = (0,1) and A, = (0,A)".

TABLE 1
Comparison of asymptotic relative mean-square errors (I)

Index Method! lim VnE(# - r)?/r?

n—ow

1 Importance sampling-version 2 {exp(D?) — 1}1/2 1o

. . . - 2
9 Bridge sam-phng%r with @ = (p,py) /> 2 exp D_ 1

(geometric bridge)
3 Brid ling with optimal brid o[ DexR(DY/8)

ridge sampling with optimal bridge «
B(D)er

4 Path sampling with optimal path in p-space
5 Path sampling with optimal path in (u, o)’-space {log V 1 ) }
6 Lower bound of path sampling in (2.15) V8(1 — exp(—D?2/8))1/2
7 Ratio importance sampling with optimal 7, 220(D/2) - 1)

'In method 3, B(D) = (1/7)[; (exp(— 62 /2D?)/cosh(6,/2)) d6.
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Fic. 1. Relative simulation efficiency plot (I).

For importance sampling-version 2, bridge sampling and path sampling,
we use the sampling schemes similar to those in Case 1 by using N(0, A?) to
replace N(D, 1). For ratio importance sampling, the optimal density is

lp(0) — (1/A)p(6/A)]
5 (8 = O = (/N (0/8)

copt( A) ’
where

cop(8) = [ |0(0) - %¢(§)‘da

2log A 1 2log A
=4(P(/ —— Ol —
1-1/A Ay 1-1/A

o
©

(4.6)

|
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The corresponding optimal cumulative distribution is

(cp(g) - CID(H))/cOpt(A), for 6 < -1 12_10—1g/AAZ,

00 - 0[5 )| o).

(4.7) T1,,,(6) — f \/W 0 AT
or — ]_——1/A2 <0< V 1——1/A2 s

1- (cp(e) - @(E))/coptm), for 0> 12_10—1g/AA2 .

Thus, the inversion method can be employed for generating a random variate
0 from II,,.

In this case Gelman and Meng (1994) derived the optimal path in (w, o)'-
space; that is, w(¢) = 0 and o(¢) = A’ for 0 < ¢ < 1. Then, using (2.8), (2.14),
(2.22), (3.10), (4.6) and algebra, we derive the asymptotic relative mean-square
errors (variances) for importance sampling, bridge sampling, path sampling,
and ratio importance sampling, which are reported in Table 2.

The relative simulation efficiencies defined in (4.4) are calculated and
e(7,)),j=1,2,...,6, versus A are also plotted in Figure 2.

It is easy to verify that lim, , e(7, j) = Vew /2 = 1.461 and e(7, j) > 1 for
all j =1,2,...,6. Therefore, the optimal ratio importance sampling method
is better than all five counterparts. Once again, the lower bound of path
sampling and the asymptotic relative mean-square error of optimal ratio
importance sampling are very close. Note that it is not necessary that optimal
bridge sampling be better than importance sampling-version 2 due to our
sampling scheme. However, it is true that

1
— +
2

1/2

2 27 -1
2fx (exp(6%/2) + Aexp(492/2A2))_1 do

sﬁ\/(Az/\/2A2—1)—1.

So, when one density has a heavier tail than another, drawing samples from
the heavier tail one is always beneficial. Furthermore, for this case, we can
see that even the simple importance sampling method (version 2) is better
than the optimal path sampling method. Therefore, path sampling is advan-
tageous only for the cases where the two modes of 7, and 7, are far away
from each other. Finally, we notice that reverse logistic regression has the
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TABLE 2
Comparison of asymptotic relative mean-square errors (II)

Index Method lim VnE(# - r)?/r?

n—oow

1 Importance sampling- ‘/ ( A%/y/20% — 1 ) -1

version 2
Bridge sampling with V2 (A-1)

9 B A

a=(pipy) " VA

1/2

3 Bridge sampling with 5 V2 1

optimal bridge «, o _ N

P 88 dopt 2] (exp(6%/2) +Aexp(62/24%)) " de

4 Path sampling with optimal /2 log A

path in pu-space
Path sampling with optimal

5 pathin ( u, o)’-space V2 log A

L bound of path
6 ower bound of pa 2\/5(17 2A/(1+A2))

sampling in (2.15)

Ratio importance sampling 21og A
7 with optimal 4@ 1-1/A2

1/2

1 2log A
Al 1-1/A

-

same limn_m\/ nE(F — r‘)2 /r? as bridge sampling with optimal bridge «,
for both cases.

pt

5. Applications and implementation. In this section we present two
interesting applications and discuss general implementation issues for esti-
mating ratios of normalizing constants.

5.1. Applications. In Section 1 we discuss many applications of estimat-
ing ratios of normalizing constants. Here, we consider two special practical
problems.

The first problem arises in Markov chain Monte Carlo (MCMC) sampling
from a posterior distribution for a Bayesian hierarchical model with con-
strained parameter spaces. Let the posterior distribution be of the form

(5.1) 7(0, Mx) o L(x,0)7(0IN)m(N) /e(N),

where 7(0|\) and 7(A) are priors, ¢(N) = [¢7(8]N) dO, and S is the con-
strained space for 0. In (5.1), A is a hyper-parameter vector. Notice that
7(0|\) is a proper probability density function over the whole parameter
space. Because analytical evaluation of ¢(\) is often not available, the Gibbs
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sampler cannot be used directly for generating (0, A) from the posterior
distribution (5.1). A natural alternative is the Metropolis-within-Gibbs sam-
pler [cf. Miller (1991)]. But this sampling scheme needs to evaluate ratios of
normalizing constants for each Metropolis step within each Gibbs iteration.
The second problem arises in estimating marginal Bayesian posterior
densities. Chen (1994b) proposed the importance-weighted marginal density
estimation IWMDE). Let {(0,, A,), 1 < i < m} be a realization of the Markov
chain Monte Carlo sample from (0, A|data) given in (5.1). Then the value of

the joint marginal density of A at A* can be estimated by

(5.2)

7 ( N*|data) =

1
m .

m(0;IN*) m(N*) e(N;)

m
P w(A;10,
-1

13

)W(Bi“\i) m(N;) ¢(A*)’
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where w(A|0) is a conditional density given 0. See Chen (1994b) for details
about IWMDE. Once again, IWMDE requires evaluating ratios of two nor-
malizing constants c¢(A*) and ¢(\;) at different grid points A* and different
observed values A ;.

The main feature of these two applications is that we need to evaluate
many ratios of normalizing constants because in the Metropolis-within-Gibbs
sampler such ratios change from one Gibbs iteration to another Gibbs itera-
tion and also because IWMDE needs to be evaluated at many points A* for
each \; in (5.2). Therefore, it is very expensive to employ bridge sampling or
path sampling for such practical problems. However, ratio importance sam-
pling is very useful. We can choose a fairly good ratio importance sampling
density, m,, and then generate samples from w, for estimating all these
ratios. Thus, the ratio importance sampling method greatly eases the compu-
tational burden. However, a globally good 7, may not exist or may be difficult
to obtain. Therefore, an adaptive scheme is often required. Chen (1994a)
developed an adaptive scheme for Gibbs sampling, and such an adaptive

scheme is also applicable for obtaining IWMDE. See Chen (1994a) for details.

5.2. Implementation. In this subsection, we present the exact and ap-
proximate optimal schemes for obtaining the optimal ratio importance sam-
pling estimators. We also present other “nonoptimal” implementation
schemes.

EXACT OPTIMAL SCHEME. In Sections 3 and 4, we showed that ratio impor-
tance sampling is better than importance sampling-version 2, bridge sam-
pling, and path sampling. As we pointed out in Section 3, the optimal ratio
importance sampling estimator 7, = is not directly usable. However, the
following two-stage sampling scheme is a practical method leading essen-
tially to 7 .

Let 7(0) be an arbitrary density over Q such that 7(0) > 0 for 0 € Q.
Given a random draw 0,,0,,...,0, from 7, define

Z:?=1p1(9i)/77(9i)

5.3 T, = =, .
(5:3) Li1p2(0;)/7(9;)
Also let
|p(0) — 7, 0)]
(54) 5(0) = PN =P
Jalpy(8") = 7,p5(0")1dO
Then, make a random draw 3, , 9, ,,...,7,, from i, and define the

“optimal” estimator 7, as follows:

A LoD, ) /(9 )
" Z?ZIPZ(ﬁn,i)/lr[fn(an,i) '

(5.5)
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THEOREM 5.1. Suppose that there is a neighborhood U, of r such that the
following conditions are satisfied:

i inf 0) — 0) do > 0;
) Jnf f( 1p4(0) = apy(®) d0 > 0;
3 pi(0) +p3(0)

de < o
w /QGS;lgr |p1(0) — ap,(0)] =
Pi(0)Ip1(0) — apy(0)l
(iii) asggr /Q » % ) do < «

Then we have

p1(9) B p2(0)

J,

n—© r

2
dﬂ} a.s.

REMARK 5.1. Theorem 5.1 says that the “optimal” estimator 7, obtained
by the two-stage sampling scheme has the same optimal relative mean-square
error as 7, . Note that sampling from i, can be facilitated by the Metropo-
lis— Hastmgs algorithm or the Gibbs sampler.

(5.6) lim nE( M

91,02,...,9n)=

The proof is given in Appendix B.

REMARK 5.2. In the two-stage sampling scheme, sample sizes in stage 1
and stage 2 need not be the same. More specifically, we can use n, in (5.3)
and (5.4) (the first-stage sample size) and n, in (5.5) (the second-stage sam-
ple size). Then (5.6) still holds as long as n; = O(n) and n; - ©, where n =
ny + n,.

APPROXIMATE OPTIMAL SCHEME. Let 7/(0), i = 1,2, be good importance
sampling densities for 7,(0), i = 1,2, respectively. Then, the optimal ratio
importance sampling dens1ty, Topt> CAN be approximated by

(5.7) Topi(0) o [71(0) — m3(0)].

When the 7/(0) are normal importance sampling densities, sampling from
(5.7) can proceed in a way similar to the one we used for sampling from (4.3)
and (4.7). Let 0,0,,...,0, be a random draw from ngt Then an approximate
optimal ratio importance samphng estimator is given by

. X 1p1(8;)/17{(8;) — 75(8,)l
(5.8) T = P 1py(0;)/1m{(8,) — w5(0,)
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Note that when m; and 7, do not overlap, we can choose 7,.,(8) = {7{(6) +

73(0)} /2 because m,,(0) = {m,(8) + 7,(8)} /2. For such cases, sampling from
WO{)t is straightforward.

OTHER “NONOPTIMAL” SCHEMES. First, assume that 7; and 7, do not
overlap, that is, [, p;(8)p,(0) d6 = 0. For this case, the IWMDE method of
Chen (1994b) would give a reasonably good estimator of r. Let w,(0) be a
weighted density, which roughly mimics p;, for i = 1,2. An empirical proce-
dure for obtaining such a w is given in Chen (1994b). Also let {0,;, j =
1,2,...,n,;}, i = 1,2, be independent random draws from ;, i = 1,2, respec-
tively. Then, a consistent estimator of r is

ng T2 1w,y(0y;)/pa(0y))
nflzyi1w1(91j)/pl(elj) '

(5-9) fIWMDE =

In this case, path sampling is also useful (if it is applicable). See Gelman and
Meng (1996) for the implementation details.

Second, assume that [, p;(0)p,(0) dO > 0; that is, 7; and =, do overlap.
We propose a bridge sampling type estimator as follows. Let {0, i =
1,2,..., n} be a random draw from a mixture density:

(5.10) Tmix(0) = P71(0) + (1 — ) my(0),

where 0 < ¢y < 1 is known (for example, iy = 1/2). Note that we can easily
sample from ;. (0) by a composition method without knowing ¢, and ¢,. Let

P2 (90;)
p1(0;) +7(1 — ¢)py(6;)

p1(9)
Ypi(0;) + (1 — ¥)py(8,)’

Ian

- Ly

(5.11)

X

Then, a bridge sampling type estimator 7, , of r is the solution of the
following equation:

rpz(ﬂ-)
¥p1(8;) +r(1—¢)py(9;)
r p1(9;)

"X Up0) F (- 9)pa(0)

Since S,(0) = —n/¢ <0, S,(0) =n/(1 — ) > 0, and
p1(0;) p2(9;)

n 0’
El {(yp(0,) + (1 — ¥)py(8)) -

py
(5.12) -

dsS (r)

(5.13)



ESTIMATION OF NORMALIZING CONSTANTS 1585
there exists a unique solution to the equation (5.12). The solution 7, ,, can be

easily obtained by, for example, the bisection method. The asymptotic proper-
ties of 7, , are given in the next theorem.

THEOREM 5.2. Suppose that [, p(0)p,(0) d0 > 0. Then, we have
(5.14) f,>r a.s.asn —

If, in addition, E, (p(©)/p,(0))* < =, then

- (Fa =) o (mi(0) — 7y(9))’
(5.15) AT T2 _jn¢w1(0)+(1—¢)w2(e)d9 .
Xf m1(0)7,(0)
Q

Ypmi(0) +(1—y)my(0)

The proof is given in Appendix C.

6. Concluding remarks. In this article, we present an overview of the
current Monte Carlo methods for estimating ratios of normalizing constants
and we also discuss the relationships among those methods. Then, we pro-
pose a ratio importance sampling method and show that ratio importance
sampling is better than simple importance sampling, bridge sampling, re-
verse logistic regression, and path sampling. Finally, we provide practical,
easy-to-use implementation schemes. Although all our inferences are based
on independent draws, under certain mild conditions (e.g., ergodicity), the
consistency for all estimators still holds. Indeed, the “independent” sam-
ples are still available even if we use the Gibbs sampler or the Metropolis—
Hastings algorithm. Such “independent” observations can be obtained by
taking every Bth Gibbs (or Metropolis—Hastings) iterate and B is chosen so
that the autocorrelations among those observations disappear, which can be
assessed by using, for example, the IMSL subroutine, ACF.

APPENDIX A

Proof of Theorem 3.1. Write

Clnfl/zz?zl{f(Gi)/ﬁ - g(®i)/02}

(A1) n(f,—r) = (1/n)xr_,2(0,)
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From the central limit theorem it follows that

n {f(®i) 3 g(®i)}

nv2 Y

i=1 €1 Cy

(82 f(0) £(8))’
—>9N0,EW{—— } asn —> ®
€1 Cy
and by the law of large numbers,
(A.3) (1/n) Y. g(0,) >c, as.asn — »,

i=1

Then (3.5) follows from (A.2) and (A.3). To prove (3.4), it suffices to show that
{n(#_ — r)?, n > 1} is uniformly integrable. In this case, by (3.5), we shall
have Eﬂ{\/;(fﬂ —r)} =0(1) as n — . Thus

() £(0)

€1 Cq

2
1
’A—ZE,T{n(f7T - r)2> - Ew{ } as n — o,

which gives (3.4). We show below the uniform integrability of {n(#, — r)?,
n > 1}. Rewrite

n=128r Le, f(0,) — ¢,8(0,)}
co(1/n)X7_18(09;)

and let U, = n /22" {c, f(O®,) — ¢,8(0,)} and V, = n"'L"_,g(0,). By (A.4),
for every A > 2,

(A.4) Vn (f,—r) =

A 2
E'n’[n( Fo= 1) Lns,—ry2= AZ)]

E b I
- L cgvnz (U, = cAV,}

(A5) ,

——1
2172 AUl 2 AV, V2 ¢ /2}
c; V), n

2
n

= Eﬂ' + Err C2Vn2 I(IUn\ 2 AcyV,, V,<cy/2)

—4 2 o 2
< 4c, E‘n’[Un Ly - Acg/Z}] + Eﬂ[n("w —r) I{V"<c2/2)]’

where I, ; _,)2. 42 is an indicator function. It is well known that {U?, n>1)
is uniformly integrable. Hence

(A.6) lim B (U, . acs /2] = 0.

n
A—>»
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Noting that 7, < X7, f(0,)/g(0,), we have
A 2
E'n’[n(rw - ’") I(Vn<cz/2)]

<nE [(P2+ 1)Ly, <c, /2]

<nk,
(A7)

{’"2 tn i (f(®i)/g(®i))2}I{V”<02/2):|

i=1

= n|:r2P7T(Vn < 02/2) tn Z Ew{(f(Gi)/g(®i))21{):h§ig(®j)< ncz/Z)}}
i=1

r2P_(V, < cy/2) + n?E_(f(©)/g(0))*P,

=n

n.zlg((aj) < n02/2)],

where P_ is the probability measure with respect to 7. Using the Chebyshev
inequality, we get

P,(V, <¢,/2) P,,( ¥ (E,4(0) - 4(0,) > nc2/2)

(A.8)

IA

infexp( —tcon/2)E,
>0

exp( '_il {Ewg(®i) - g(®i)}”

(tiilofexp( —tcy/2)E, exp(t(cy — g(@)))) .
From E_(c, — g(0)) = 0, it follows that
e = infexp(—tcy/4)E, exp(t(c, — g(0))) < 1.
t>0

Thus, P,(V, < ¢,/2) < &". Similarly, for n > 3, we have

P’TT

n—1
2 8(0)) < nc2/2)
-1

j=

A9) =P

”i {E.g(0;,) —2(0,)} > (n - 2)02/2)
j=1

n—1
< (tiilgexp(—(n — 2)tc,/2(n — 1))E_ exp(t(cy — g(@)))))
<e" L
Putting together the above inequalities yields
(A.10) E [n(f, = 1)’ Ly, <., n| = O(n%") = o(1).

Therefore, (3.4) follows from (A.5), (A.6) and (A.10).
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Next we prove (3.6). We have

nE (7, — 1) = ¢;*E {c, f(®) — ¢c,2(0))

E {Z?=1(czf(®i) —¢18(9;)) }2
i X ,18(09;)

=c§2n

—E,,{ L 1(e2f(0;) —c,8(9,)) }

(All) . -
= ZT E. (;1 (CZf(Gi) - C1g(®i))) ‘§1 (‘32 _g(®i))
X __il(cz +8(09,)) ('—i1g(®i)) H
and
e - E (Z?=1(62f(®i) - clg((@i)))22?=1(02 _g(®i))2ncz}
T (Z12(0,))"
_E (Zi-1(ca f(0;) - C1g(®i)))2(2?:1(02 _g(®i)))2
i (Z-18(0,))°
_2E, (Z?:l(czf(Gi) - Clg(®i))) Xi_i(cy —8(9)))
(ncy)
(A.12)

+ 2E, (gn: (czf(Gi) - clg(®i))) gn: (02 _g(®i))

)

(Z?: 1(ca f(0;) — clg(®i)))2(2?:1(02 - g(®i)))2
(Z12(0))

x ((nc2)2 ~[Leco)

oo £.00)

-E

o

“def 8n,1 + 8n,2 + 8n,3‘
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It is easy to see that

En1 = 2(”‘32)71Ew ('il(czf((ai) - clg(®i))2

+2 ) (sz(®i)_C1g(®i))(czf(®j)_clg(®j)))

1<i<j<n

X X (ez ~ £(0))

(2£(0,) — ¢2(,)) ) Y (e g(@»)}

i=1

= 2(n02)_1Eﬂ{(

i

{(c2£(©,) = €18(9,))°

1

i

= 2(nc2)_1Eﬂ{(

(A.13) —Eﬂ(sz((ai) - C1g(®i))2}) gn:l (Cz - g(®i))}

= (ney) 'O

E{( Y {(c2f(0,) - c12(8,))’

i=1

—E. (c,f(0;) - C1g(®i))2>)}

n

<. £ (e —g(@»)}z

i=1

1/2)

E, (il (sz(®i) - C1g(®i))) (il (‘72 _g(®i)))

-1

- 0(1).

For &, ,, we have

le, ol =2

(;n‘,g(@i))

ot $ a0

i=1

2
< 12(ncy) °E,

(i_fl(czf(&) - qg(@»))z(i_il(cz —g(@»))

(A.14)  +2

E, (.il(%f(@i) - clg(®i))) (.il(cz _g(®i)))
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9\ —1

X

ncy + i g(®i)) nc2(._i1g(®i)

i=1

I(Vn < 62/2)}

< 12(ney) > E,T{ _i (c2f(©;) — clg(®i))}

1/2

X Ew{é (cy = g(&))}4

+4( ncz)SE,T

" 2
¢, ey ) f(®i)/g(®i)) I(V,L<c2/2)}
i=1

=0(1) + O(n%") = 0(1),
where the last inequality is from (A.8) and the proof of (A.7). Similarly, we
have
(A.15) g, 3 =0(1).
Thus, (3.6) follows from the above inequalities. O

APPENDIX B

Proof of Theorem 5.1. Write f,(0) = p,(0)/,(0) and g,(0) =
p5(0)/1.(0). By (A.11), we have

(7, — 1)

7"2

nE( 91,92,---,%) - r’Zcz"‘fQ{czfn(O) —¢18,(0)) ¢,(0) d0

= 62_4"_2”_1E{( 'il (cafn(V, ;) — clgn(an,i)))

B' n n
(B X _Z (c2 _gn({}n,i)) ; (¢ +gn(ﬁn,i))
X Tn}

£ e(0,.0]

— -4 -2
Zdet C2 T M-
From the law of large numbers it follows that

(B.2) T, >Tr a.s.asn — %,
Therefore

lim r~2c;* [ {e,£,(8) — ¢18,(0)) v,(0) d6
Q

f p1(9) B P2(9)
Q

51 Cy

(B.3)

2
dﬁ} a.s.
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To complete the proof of the theorem, it suffices to show that

(B.4) m, >0 as.asn — o«
Let

Gn = Zgn(an,z) and Tn = Z (Can(ﬁn,i) - clgn(ﬁn,i))'
i=1

i=1
Note that

[n,| =

{Tr?(nCZ - Gn)(nCZ + Gn) }
E 5 T,
nG;

< 6n’1E{TnZIuTnI > n”’)'T”}

(B.5) +6( ncz)_ln_lE{Tnzmcz - Gn|I(Gn2nc2/2)I{\T,L|2n2/3}|Tn}
2 _ 2
+ 2(”’02) n 1E<(Tn/Gn) I(G"5n02/2}|7n}
< nilE{Tn2I(|Tn‘Zn2/3}|Tn} + 602’1n’2/3E{|n02 — Gn| |’Tn}

2 2
+2(n02) n 1E'{(T'n/c;n) I{Gn§n02/2)|7n} “def nn,l + 77n,2 + 77n,3'

Since T, is a partial sum of i.i.d. random variables under the given 7,, by
(B.2) and (i1), we have

M1 < K(n™'/1%)
2
+ E{(Cz fu(D,1) —c18,(9,.1)) I{|02f,l(0n11)—clg"(\‘)",1)\2n1/15} Tn})

2
n-1/15 4 |C2p1(0) ¢1p5(0)] de

(0: lcs p1(0)— ¢y po(0)]> /13y, () ,(0)

-0 as.asn — o,

(B.6)

<K

where K denotes a positive constant not depending on n. Similarly, one has
(B.7) limn, , =0 as.
n— o

Note that for any positive random variable X with EX = u and EX? = ¢?2
and for any 0 < ¢ < 1,

Eexp(t(p — X))

<E{l1+¢t(p—-X)+ (t(M—X))2/2 + ) wl{ﬂ)bm}
k=3 :

<1+ t2EX? + (ut)’exp(tp) < exp(t?(EX? + exp(4n))).

Hence, for 0 < a < EX? + e**,

aZ

4(EX* + exp(4u))

(B.8) ingexp( —ta)Eexp(t(pn — X)) < exp|—
t>
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By (B.8) and similarly to (A.9), we have

n—1 ne
p Z gn(ﬁn,j) =< 72 Tn
j=1
n—1
(B.9) < (infexp(—te;/4) Efexp(c; ~ g,(3,1))Ir.})

(n —1)cj
64(exp(4c,) + E{g1(9,,1)I7,}) )
Thus, in terms of (B.2) and the conditions (ii) and (iii)

limsup 7, 3 < Klim Supn?)E{(fn(an,1)/gn(§n,1))2|7’n}
(B.10) n%

< exp( -

— (n = Ves ) =0 as
64(exp(4c,) + E{g2(9, 1)I7,}) -

Putting the above inequalities together yields (B.4). O

X exp

APPENDIX C

Proof of Theorem 5.2. Let

x
RN ey +p<1( —)l!f)tpz(x) |

Since S,(#,) = 0, we have
(c.1) ilz(ei,m) - n.
Note that for each fixed x, Z( ;c: ) is decreasing. Hence, V x > 0,
(C.2) {f,,Zx}={2n:§(6i,x)2n}.
In particular, V 0 < & < r, o
(C.3) P(f,>r+¢,i.0.) =P(i§(0i,r+a) Zn,i.o.)
and o
(C4) P(f,<r—eg,i.0.) =P(i {(Oi,r—a)Sn,i.o.).

i=1

Noting that for x > 0,
E,. {(0,x)

(C.5) PO (ymi(0) + (1 - y)my(0)) [ <L ifa>r,
@+ A o) d"{;}; A
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and by the strong law of large numbers, we have

i=1

P( Y. (0,7 + &) =n, i.o.) =0
and
P( Y ((0,,r—¢) <n, i.o.) =0.
i=1

This proves (5.14).
Write M(x) = E, (£(®, x) — 1. Then, by (C.5), A(r) = 0 and

. dA(x
AMX) =ger d(x )
(C.6) a-w D1(0)po(8) (Y y(8) + (1 — ) my(0)) 76
O (p(0) (L= 0)apy(0)’

Cqy
c

In particular,
] m1(0)m,(0)
(C.7) Mr)=—(1- l!’)( )/Q Py(0) + (1 — ¢)my(0) @0

By a strong Bahadur representation of He and Shao (1996) [cf. also, Janssen,
Jureckova and Veraverbeke (1985)],

1

1 r .
F,—r= - > (2(0;,r) —1)/Mr) +o(n ' log® n) as.,
i=1

which implies immediately, by the central limit theorem
(C8) Vi (7, = r) =5 N(0,07),

where
ar({(el’ 7‘))
(A(r))

2 2
m(0) — 7,(0 m(0)75(0
I GO O 0w |
aymy(0) + (1 — ¢)my(0) aymy(0) + (1 — ¢)my(0)
In terms of (C.2), as in the proof of Theorem 3.1, one can show that
{n(#, — r)?, n > 1} is uniformly integrable. Thus, (5.15) follows from (C.8). O

c?2=V
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