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We propose simple estimators for the transformation function A and
the distribution function F of the error for the model

AY)=a+Xp + e.

It is proved that these estimators are consistent and can achieve the
unusual n~1/2 rate of convergence on any finite interval under some
regularity conditions. We show that our estimators are more attractive
than another class of estimators proposed by Horowitz. Interesting decom-
positions of the estimators are obtained. The estimator of F is indepen-
dent of the unknown transformation function A, and the variance of the
estimator for A depends on A only through the density function of X.
Through simulations, we find that the procedure is not sensitive to the
choice of bandwidth, and the computation load is very modest. In almost
all cases simulated, our procedure works substantially better than median
nonparametric regression.

1. Introduction. Consider the model
(1) AY) =XB + &,

where A(y) is a strictly increasing function of y and & is random noise with
an unknown distribution F, and is independent of the random vector X.
Following Efron (1982), we refer to model (1) as the general transformation
model. For different forms of A and F, this model generates many different
parametric families of models. For example, if A takes the form of a power
function and F a normal distribution, (1) reduces to the familiar Box—Cox
transformation models [see Box and Cox (1964, 1982), Bickel and Doksum
(1981) and Hinkley and Runger (1984)]. Many models related to this family
are given in Caroll and Ruppert (1988). Another important subfamily is the
parametric proportional hazards models where F takes an extreme value
distribution [see Doksum (1987)] and their extension to proportional hazards
models with random effects [Heckman and Singer (1984) and Murphy (1994,
1995)]. In this paper, we will primarily study the estimation of A and F
assuming that B is a known quantity, and give some simulation results for
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the case of unknown . To make the model identifiable, we will assume that
F(0) = 0.5 and Z = XB has nonzero variance.

Several important contributions were made recently in nonparametric
estimation of A and F that achieves n~!/? rate of convergence, a result
relatively unusual in estimating nonparametric components. Wang and Rup-
pert (1995) studied the transform-both-sides model, a model closely related
to (1),

AY) = A(u(X,B)) + «.

They showed that a root-n estimation for A is possible by first estimating its
derivative A’. A recent work by Horowitz (1996) proposed a similar type of
estimator for both A and F in (1) and established the result of the n~1/2
consistency and asymptotic normality for these estimators. Unfortunately,
Horowitz’s estimators suffer several serious drawbacks and they perform
poorly in practice. The goal of this paper is to provide alternative n~!/%-con-
sistent estimators for A and F to overcome the difficulties faced by Horowitz’s
estimators.

To estimate A, Efron (1982), Wang and Ruppert (1995) and Horowitz
(1996) study the partial first-order derivative of the conditional density of Y
given X. Let Z = X in (1). Efron (1982) and Horowitz (1996) find that

(ylz)
Gy(yl2)
holds for every (z, y), where G'(y | z) and G,(y | z) are the first-order partial
derivatives of G(Y | Z), the distribution function of Y conditioned on Z, with

respect to Y and Z, respectively. Based on this relationship, Horowitz (1996)
estimates A by

A(y) = -

A ¥ Gi(vlz)
2 A = w(z)z———dzdv
(2) =[ .01
by using the estimates of partial derivatives, with a weight function w(z)
that has support on S,. Horowitz established the result of n~1/2 rate of
convergence for A and F. However, the estimator (2) has several shortcom-
ings. One major problem is in its use of derivatives in the estimation,
especially in the denominator. It is well known that the derivatives are
difficult to estimate, especially in small-sample situations. The estimator may

be highly unstable if é/z(v | z) is near 0. Even remedies such as thresholding
are inadequate to solve the problem. The second drawback for this estimator
is its integral form (or CUSUM form). Based on such a construction, an
estimation error in G'(y 12)/G5(y | z) for y* would persist for all y > y*.
Therefore, the result of n~1/2 consistency and asymptotic normality requires
the existence of very high order derivatives (up to the ninth order) of the
unknown quantities. The requirement for high-order derivatives is mostly
theoretical, but it implies that the underlying functions have to be very
smooth. Due to these difficulties, the estimator performs poorly in practice.
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The method we propose in this paper is related to that of Doksum (1987),
who utilizes the additive structure (or ANOVA structure) of the general
transformation models, that is,

(3) Ay) =z +F (G(ylz2))

and estimates A by replacing G(y | z) by its estimate G(y | z) and averaging
over different z’s, assuming known F. In this paper, we propose an estimator
for F that achieves the n~'/? rate and then estimate A(y) by replacing F in
(3) by F. Therefore, we focus on the estimation of F and its influences on the
estimation of A(y). The estimators are shown to overcome the difficulties
with Horowitz’s estimators and perform quite well in simulations.

We also carry out simulations for the more realistic case of unknown f,
and the improvement based on the new estimator is still quite substantial.
The coefficient B can be obtained in two different ways. A straightforward
procedure is to plug in an n~!/2-consistent estimator for the direction of B,
such as a projection pursuit regression estimate [Friedman and Stuetzle
(1981), Duan (1990) and Chaudhuri, Doksum and Samarov (1994)] or the
average derivative estimate (ADE, Hardle and Stoker (1989)]. Due to the
additive structure of our estimators, the error in estimating A and F should
still be of the same order. A potentially better approach utilizes the estimate
of A and F obtained here and obtains B by a pseudo-MLE method as
established in Wang and Ruppert (1996) for the transform-both-sides models.

The rest of the paper is arranged as follows. Our estimators are proposed
in Section 2. Section 3 deals with the theoretical aspects of them. Simulation
results and discussions on the implementation details of the algorithm are
presented in Section 4. In Section 5, several alternative algorithms are given
and discussed.

2. The basic algorithm. Assume that z,, z,,...,2z, are distributed
with a density function d(z) which is supported on the interval [a, b].
Without loss of generality, we assume that ¢ = 0 and b = 1. Let G(y | z) be
the distribution function of y given z and g¢,(2) be its pth quantile. To
motivate our estimators, note that

2,(2) =AY (z+F'(p)),

which is another expression of (3). Using the initial condition that F~1(0.5) =
0, we have

A(qo5(2)) =z,
which implies that, for 0 < A < 1 and z €[0,1 — A],
F(-A) =F(A(q05(2)) — (2 + 4))
= P(e < Aqos(2)) — (2 + A))
=P((z+ 1) + &< AM(qo5(2)))
= G(qo5(2) |z + A).

(4)



NONPARAMETRIC rn~!/2.CONSISTENT ESTIMATION 2685

go.5(2)
qF(—-A)(Z)

Fic. 1. Illustration of (4).

As Figure 1 illustrates, the error distribution is determined by shifting the
conditional medians of y given z. Since the same quantity F(—A) can be
determined from (4) using different z’s, we can average the right-hand side of
(4) across z to combine the information:

1 1-
(5) F(=8) = 5=3 [ P(y = a0s(2) |2 + A) dz.

Note that (4) is valid only for z between 0 and 1 — A. Similar expressions can
be derived for —1 < A < 0 and for other quantiles.

Let 6, =[cn"] be a sequence of positive integers, where r falls between
1/4 and 1/3 for reasons to be discussed in Section 3, and [a] indicates
the largest integer less than or equal to a. Let zﬁn =(—-1/2)/8, for
Jj=12,...,8, be a grid of points in [0,1]. Denote by I,(z) the interval
(z—-1/2)1/6,,(z + 1/2)1/45,). If the context is clear, we will suppress the
subscript n for 2z}, and I,(z), and use z; and I(z) instead. By expression (5),
the cumulative error distribution function F(—A) can be estimated by

80y, < Go5(20), 2, € 1(2) + A)}

6 FCN=-pa-n] & #{1(20 + 4))

for 0 < A < 1, where #{S} is the number of observations in the set S and
Go5(2)) is the sample median of y in the interval I(z)). For —1 <A <0, a
similar estimate for F(—A) is given by

. 1 ),
€) F(-8)= 8,(1—A) j:[zanA] #{I(ZJQ — A)}

Since F(0) = 0.5, the condition that F1(0.5) = 0 is automatically satisfied.
Another interesting property of this estimator is that it is independent of

the transformation A. This is best seen by converting the raw data into

ranks. Since the quantiles and percentiles depend only on ranks and the
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ranks are invariant under monotone transformations, F is independent of A.

The medians q,5(z}) and §,5(z}) are used in (4), (5), (6) and (6'). Any
other quantiles q p(z;’) and c}p(zf), p € (0,1) can also be used. From Theorem
1 in Section 3, one will see that the median is usually a reasonable choice.
In our simulations, it is used for all cases. Different choices of §,;(z}),
j=1,...,8,, may be used in (6). One may apply a monotonic smoothing
to §o5(z)) to ensure that §,5(z;) is monotonically increasing in j.

To estimate F' consistently on an arbitrarily wide interval, we can “splice”
the preceding estimate using different quantiles. (The shifted median estima-
tor proposed previously can be used only on the range —1 < A < 1.) More
specifically, we have the following algorithm:

(A1) Choose a 0 < 5 < 1.

(A2) Estimate F(—A), A €[—mn,n], using medians by the preceding
algorithm.

(A3) Estimate F(—A), A € (kn,(k + Dnl, k =1,2,..., by

90590y, £4,,(29). 2 £ 1(2) + )}
-] #1(0+ ) |

(7) F(-4) =

using the p,th quantile, where p, = ﬁ(—kn) is estimated from the previous
step.
(A4) Similarly, estimate F(—A), A€ (=k — D, —knl, e =1,2,..., by

ar an 1 on #<yi <4,(2)), 2z €1(2) - A)}
F(-A) = 5,(1—A) J_:[Z(W #{1(4? - A)} ’

using the p,th quantile, where p, = F(kn) is estimated from the previous
step.

(A5) Repeat until & = &, is large enough so that F(—k,n) and F(k,n) are
sufficiently close to 0 and 1, respectively.

The only requirement in (A1)—(A5) is that n should not be too close to
either 0 or 1. If the distribution of Z is symmetric, a sensible choice for 7
would be median(Z)—at least half of the observations are available for
estimating F(A) for A in the “basic range” [ — 7, nl.

To estimate A(y), observe that (1) implies (3) for all z. This relationship is
used in Doksum (1987) to define his estimator for A for known F. Averaging
(3) over z € [0, 1], we have

A(y) = /01(2 +F1(G(yl2)))dz.

Therefore, to estimate A(y), we simply replace F~! and G(y | z) by their
estimates. For a preselected 0 < y < kym, the estimator for A(y) is then
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defined to be
N 1

A(y) = 5
Yw(G(y 1 1(2])
. EEEl
Xj_lw(G(y | I(zf)))[z}’ + Ffl(G(y I I(zjo)))],
where
Gy 11(2)) = #{; S#?}(Z;)E}I(Z)}’
(9)

w(p) = | b if p € (F(—v),F(v)),
0, otherwise.

The role of the weight function w(p) here is to control the behavior of the
estimator and to avoid the difficulty in estimating F~(p) for very small or
large p. If y is chosen close to 0, then only the quantile information of F near
p = 0.5 is used, and A would be close to the median nonparametric regres-
sion. The larger the vy is, the more quantile information is used. On the other
hand, since F~!(p) cannot be estimated well for p near 0 or 1, increasing vy
over a certain limit may only increase the noise. Thus, a reasonable selection
of v would be important. Based on our limited experience, however, other
nonuniform weighting functions different from w( p) given previously may be
better. For example, letting p; = G(y | I(2})), the weighting function

@) wipy = [ FIED))R=p), i 5 (F=7), (),
, otherwise

would provide appropriate adjustment to the variance of G( y | 2).
For the purpose of prediction, one can obtain the conditional median of y

given z by inverting A:

Ail(‘z) = inf{y = [yo’ yl]’f\(y) SZ}’

where y, and y; are two preselected constants defining the range of the
possible values of A 1.

REMARK. A key issue encountered in the estimation is the selection of the
bandwidth, that is, the width of intervals for data grouping. From the
theoretical results in Section 3, the number of intervals should be propor-
tional to n”, with r being in the interval (1/4, 1/3). Thus, the estimate is
relatively robust for different choice of r. We will show this later in the
simulation studies.

Instead of estimating G(y | 2) by G in (9), alternative estimates may be
used, such as an isotonic smoothing of Gj(y | ZJ(-]), j=1,...,8, , using the

s “no
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number of observations #{I(z})} as the weights, so that éj( y |1 2}) is mono-
tonically decreasing in j. In the simulations, the isotonization often improves
the final estimates for A and F' substantially. The estimates F and A can be
also isotonized to guarantee their monotonicity.

A recursive procedure that reiterates the new procedure with the median
estimates from the previous cycle may lead to further improvement of the
final estimates. We will not pursue this fine tuning here.

3. Theoretical results. In this section, we present the theoretical re-
sults on the estimators of A and F proposed in Section 2. In order to make
the result more transparent, we rewrite (6) in a slightly different form

A 1 [8,(1—a)] #{yi < 60.5(2;)), z, € I(z](-) + A)}
)= 5,(1—=4) 3 #{I(z}’ + A)}

F( :
where we ignore the difference between [5,(1 — A)] and §,(1 — A) since it is

of a negligible order o(n~1/2). The following assumptions are needed to
obtain the desired theoretical results.

AssumpTION 1. {2,}/=/'” is a sequence of independently identically dis-
tributed (iid) random variables with the density function d(z) which is
bounded away from 0 and + on [0, 1], that is, 0 < m,; < d(2) < M, < 4.

ASSUMPTION 2. (z;,y,), i =1,2,..., are iid realizations of model (1).

AsSUMPTION 3. A(y) is twice differentiable, and

(a) AMy) = A’(y) satisfies the condition that 0 < m, < A(y) < M, < +~ on
the interval [A71(0) — K, A~1(1) + K] for some positive constant K.
(b) A”(y) is bounded from above on the same interval.

ASSUMPTION 4. F is twice differentiable, and

(a) f(e) = F'(¢) exists and is bounded away from 0 and +o, that is,
0<m;<f(2) <M;< +» on the interval (—§,,5,) for some constants
8y, 85 > 0.

(b) F"(z) is bounded from above.

The main role of the boundedness conditions in Assumptions 1, 3 and 4 is
to guarantee that A and F' do not have zero or infinite slope. An infinite slope
in A or a zero slope in F might lead to difficulty or nonuniqueness in
estimating the conditional quantile of G(y |z). A zero slope in A or an
infinite slope in F (a jump) would generate a point mass which would lead
to nonseparability in quantile estimation.

The second-order differentiability requirement is needed for the existence
of the Bahadur representation of the conditional quantiles.
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ASSUMPTION 5. 1/4 <r < 1/3, where r is the rate the bandwidth 1/,
shrinks: §, = [¢en"].

This assumption is a major departure from most existing literature in
nonparametric regression, including the class of estimators proposed by
Horowitz (1996). It indicates that the bandwidth selection is not as important
as it is in most other cases. The upper bound, » = 1/3, is to guarantee that
the estimated quantiles will behave well enough so that the reminder term in
the Bahadur representation would be negligible; and the lower bound, r =
1/4, is assumed so that the distribution of y in each subinterval approxi-
mates the conditional distribution G(y | z) well enough. The reason for the
insensitivity to the bandwidth is due to aggregation of the quantile curves.
However, the estimators are not totally independent of the bandwidth. Obvi-
ously, if r =1, there would be too few points in each interval such that
G(y|z) =0or1for all z values. If r = 0, the approximation is too crude and
so the bias is too large.

This assumption is an important result itself. It indicates that the effect of
bandwidth is only of secondary importance within a reasonable range. There-
fore, for some constant ¢, if the number of intervals is between 3.16¢ and
4.64c¢ for n = 100, or between 5.62¢ and 10c¢ for n = 1000, the performance
of the estimators is affected only to an order smaller than the main error
term.

We will discuss the assumptions in more detail later in the sketch of the
proofs. Under the preceding assumptions, we can establish the convergence
properties of the estimators of A and F.

THEOREM 1. For any given constant 0 < n < 1, we have
plim sup |F(A) — F(A)l=0.

n—ox —n<A<0
Moreover,

n'/2[F(A) - F(A)] =, H(A)

for —m < A <0, where =  indicates process convergence, H,(A) is a zero-
mean tight Gaussian process with covariance function

Rl(s’ t) = COV(HI(S)’ Hl(t))
1
T (L+s)(1+0)

L1 f(s)f(¢) 1 14 1
aoy  FOOFO e Tae i e
f(s)F(t) r1+4s 1
(s +t>-1) 2£(0) ft d(z)dz

FOF(s) p1ee 1
M e d}}
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where —n <t <s < 0. Furthermore, [F(A) — F(A)] has the representation

(11) F(A) — F(A) = n"Y2H¥(A) + n~Y2H%(A;05) + o(n™1/?),

where
. n-1/2 1(e; < A) = F(A)
(&) = mzie(gA,l) d(z;) ’
. ' _ n_l/zf(A) (8 < F~ 1(p))
Hi;(A; p) f(F_l(p))(l +A) ZLE(O,Z(1+A)) d(z,) s

and 1(x < y) is the indicator function for x < y.

The representation (11) consists of two major additive parts: the first part
is the estimation error when the medians are known exactly, which is
comparable in size to the estimation error for the ordinary empirical distribu-
tion; the second part is the error induced from the estimation of the medians,
which is the loss in accuracy we sustain for not knowing A(y). A nice
property of this estimator is that the distribution of nY/?[F(A) — F(A)] is
independent of the function A, as discussed in Section 2. We can also see this
property from the asymptotic representation. It is worth noting that R 1(0,0)
= 0, which is consistent with the initial condition that F(0) = 0.5. Further-
more, the covariance function has a rather simple form and can be estimated
consistently.

Since we use the shifted-median estimator, the denominator for the second
part of (11) is f(0). If we estimate F' by shifting the pth quantile, it would be
f(F~1(p)). This suggests that the shifted-mode estimator, if the mode is
known, may be better to use. Another inflator of the overall error in (11) is
1/(Q + A) for A € [—n,0]. Thus, it is important to keep 1 away from 1 and
use the recursive algorithm (A1)—(A5) if needed. .

Results similar to Theorem 1 can be obtained for F(A), A € [0, n]. For the
recursive algorithm (A1)-(A5), we have the following corollary:

COROLLARY 1. Let F(A), A € [—(k + D, —kn), be obtained from (7) for
k=1,2,...,K,

plim sup |F(A) — F(A)| =0.

n—>% —(k+1n<A<—kn

Moreover,

n'/2[F(A) — F(A)] =, Hy(A)
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for —(k + Dn < A < —kmn, where H,(A) is a zero-mean tight Gaussian pro-
cess. Furthermore,
F(A) = F(A) = n™ 2| Hy(A + k) + Hfy(A + kn; py)
11’
. IO el o
f(—kn) ’
where p) = F(—kn).

Thus, F is n~1/2 consistent on any given finite interval.

THEOREM 2. Assume that y € (0, kyn] in (9). For any y' > A"*(—v) and
y" < A71(1 + y), we have

plim sup [A(y) — A(y)l =0,

nox y' <y<y”

Moreover,
2 [A(y) = A(»)] =& Hy(y)

over the interval (y', y"), where Hy(y) is a zero-mean tight Gaussian process.
Here A(y) — A(y) has the representation

(12) /A\(y) — A(y) = n*I/ZH;I(y) + n71/2H2>x<2(y) + O(nfl/z)’

where
n-1/? (e < A(y) —2) —F(A(y) — 2)
H* - )
12(y) R(y) \zi—A(y)lgzy:, 2c10.1] f(A(y) —z;,)d(z;)
min(1, A(y)+y) Hi(A(y) — 2)
Hx _ _ -~ 7 7
2(¥) fmax(O,A(y)—y) f(A(y) —2) ©

max(A(y)— 1, —y) H1(2)
—dz

min(A(y), y) 4

and R(y) =min(1, A(y) + y) — max(0, A(y) — v) satisfies the inequality
R(y) = min(A(y") + v,1 — (A(y") — y)) > 0.

Therefore, if [—c,c] is an interval such that F(—c — «) >0 and
F(c + a) < 1 for certain « > 0, by choosing v = ¢ in (9), the estimator A(y)
is consistent on the interval [A7'(—c), A"1(¢)]. Thus, if f(g) > 0 for ¢ €
(—o, +), A is consistent on any finite interval in the support of A.
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Again (12) consists of two additive parts. The first part is the error
incurred by the estimation of G(y | z), assuming that F is known. From the
expression (12),

1 rmax@ agney F(A(y) —2)(1 - F(A(y) — 2))
R(y) max(0, A(y)—1vy) f2(A(y) _Z) d(z)

L o FOA-FG)
R(y) Imaxa(p-1,-9 [2(2) d(A(y) —2)

One can see that the variance of A does not depend on the derivative of A
directly, in the sense that, if Z is uniformly distributed, Var(H}(y)) is
constant over the range y < A(y) < 1 — y. The second part, H},(y), which is
the amount of accuracy we lose for not knowing F, is a Gaussian random
process that is constant on y < A(y) < 1 — y. This implies that not knowing
F results in a random constant shift in the vertical direction in the estimate
of A(y) on this range. The magnitude of this shift depends on the weighted
integral of F' — F. Although the covariance function of the overall error H,(y)
is more complex, it is still true that it depends on A only through the density
function of z. Therefore, if d(z) is uniform, the variance of A is constant on
the range A 1(y) <y < A '(1 — y) and is independent of the value and
derivative of A. This would imply that the variance of the prediction function
A~ is approximately proportional to the reciprocal of the derivative of A.

u

Var(Hs(y))

SKETCH OF PROOF OF THEOREM 1. The theorem is proved in several steps:

1. The discrepancy F(A) — F(A) can be decomposed into two major and some
minor terms. The minor terms are smaller than n~!'/? uniformly. The
assumption that d(z) > m, > 0 is necessary since the denominator #I1(z)
needs to go to infinity at a certain rate.

2. The first major part consists of the random variation around the true
quantile curve, which is the shifted true median curve. The behavior of
this component is the same as the ordinary empirical cumulative distribu-
tion and is completely unrelated to bandwidth (i.e., the number of inter-
vals). Root-n consistency and asymptotic normality are straightforward to
establish.

3. The second major part is related to the discrepancy between the true and
estimated median curves. Since both curves run through the data set, one
can infer that the total discrepancy can be expressed as the corresponding
probability plus a random variation that is uniformly smaller than n~1/2
More accurately, the random variation term is of order n 3?~"/4In n.
Thus, it is required that r < 1/3.

4. The total probability of the discrepancy in part 3 can be expressed as the
area between the true and estimated median curves. A uniform Bahadur
representation of the quantiles is obtained. The reminder term has order
n~3077/41n n, which is smaller than n~!/2 for r < 1/3. The main compo-
nent, which is H},(A, p), is of order n~!/% and asymptotically normal. The
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second-order differentiability is needed for the existence of the representa-
tion and to bound the minor terms, and the assumption that r > 1/4
makes sure that the interval approximation to the conditional distribution
is accurate enough. If we use the shifted pth quantile estimator, the
assumption that f(F~!(p)) > 0 is necessary.

SKETCH OF PROOF OF THEOREM 2. Since the estimator involves F~1( p), the
condltlon that f(6) > m ;> 0 is a necessary one to ensure the uniqueness of

F~1(p). It is only necessary for 8 such that f(8) € (—y——c,y+c¢) for a
constant ¢ > 0.

1. The assumption that » > 1/4 is necessary so that the approximation error
of G(y 1 1(20) = [, c y,,) G(y | 2) dz to G(y | z) is of order o(n~'/?).

2. Another part of the error derives from the weight function, which uses
F(y) instead of F(y). This requires that F' has no point mass at 7.

3. The main part of the discrepancy A(y) — A(y)is F~1(H(y)) — F 1(p(y)).
This can be factored into two parts. The first part involves p(y) — p(y),
and the second part involves F~!(p) — F~'(p). The second part is ac-
counted for by Theorem 1. The first part, with the assumption that
r < 1/3,is of order O(n~1/2).

4. Implementations and simulations. In this section, we present sim-
ulation results and discuss some tricks in the practical use of the algorithm.

We assume that Z is a scalar with the standard normal N(0, 1) distribu-
tion. Three error distributions are considered:

1. £ ~N(0,1);
2. & ~ Uniform(—2, 2);
3. & ~ Cauchy distribution with density 1/7(1 + £2).

Strictly speaking, & ~ Uniform(—2,2) satisfies Assumption 4 only on the
interval (—2,2), but the procedure still works well for estimating F on a
larger interval, too. The transformations we use are:

1. A(y) =y;
2. A(y) = log(y);
3. A(y) = (1/13)sinh(2y).

These transformation functions are also used in Horowitz (1996). The weight-
ing function w(p) for estimating A is defined to be

1, if p €(0.1,0.9);
0, otherwise.

w(p) - |
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For comparison purposes, we compute the estimates obtained by the
median nonparametric regression (MNR) and the estimator by Horowitz
(1996). Following Horowitz, let

Ky(x) = 81— x2)’1(Ix] < 1),
Kg(x) = 25.(15 — 140x% + 378x* — 396x° + 143x%)1(]x| < 1),

where 1(x <y) is the indicator function for x <y. For MNR, A 1(z2) is
estimated by the median of the following estimate of the conditional CDF
of Y:

™=

Zi—z)

F(yl2) = [nhp(2)]” P

1(Y; sy)Kz(

i=1

where

P =o)L P

and A is a bandwidth parameter. In the simulations, the bandwidth &
minimizes the mean integrated squared error (MISE) of the median function
A" defined later. Given two bandwidths %, and 4, let

n Z, —z
G(ylz) = [nh,p,(2)] " Z Ks( ; )
A n Y, —y Z, —z
Gy 12) = [h.hpi(2)] T X1 ﬂ%(h )K% - y
— y 2
N IG(y | 2)
Go(ylz) = ——.
Horowitz’s estimator for A is
G (v | z
Aly) = — y/ Al( ) dzdv,
v 'S, Gy(vlz)

where y, = A"1(—2) and S, is the support for w(z) = 0.5-1(Jz| < 1). The
settings and the bandwidths used here are taken to be the same as in
Horowitz (1996).

The unmodified estimator as described in the simulation section of Horowitz
(1996) works very poorly. One reason is that G, (v | z) is often close to 0,
which blows up the estimator completely. The natural modification is to use a
truncated version of it. Thus, in the following simulation, G, (v | 2) is re-
placed by G (v |z) = min(G, (v | 2), —d), where d > 0. Notice that, for A
increasing, G, (v | z) < 0. The value of d is taken to be 0.1 for n = 100 and
0.05 for n = 1000 since the minimal value of G, (v |z) is about —0.3.
Smaller values of d would yield worse results.
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TABLE 1

Comparisons of MISE for A"l, n = 100 (the SEs of the MISE based on
1000 simulations are given in parentheses)

Test function
Linear Log Sinh
Normal Horowitz 0.56 (0.022) 3.89(0.115) 1.67 (0.068)
MNR 0.36 (0.007) 2.48 (0.063) 0.43 (0.013)
SQE 0.22 (0.005) 1.59 (0.044) 0.35(0.012)
MSQE 0.20 (0.005) 1.48(0.044) 0.29 (0.012)
MLE 0.09 (0.003) 0.98 (0.052) 0.11 (0.004)
Uniform Horowitz 0.83 (0.030) 5.03 (0.139) 2.68 (0.103)
MNR 0.64 (0.012) 3.82(0.101) 0.88 (0.028)
SQE 0.33 (0.008) 2.25 (0.067) 0.60 (0.021)
MSQE 0.34 (0.009) 2.21 (0.065) 0.59 (0.022)
Cauchy Horowitz 0.71 (0.024) 5.33(0.147) 3.81(0.149)
MNR 0.59 (0.004) 3.47(0.131) 0.76 (0.026)
SQE 0.51 (0.002) 2.76 (0.079) 0.74 (0.034)
MSQE 0.48 (0.010) 2.48 (0.068) 0.57 (0.024)

Table 1 compares different methods for estimating A. The criterion for
comparison is the mean integrated squared error

R 1000 9 R 9
MISE(A) = 10 L 2(A;l(z) ~ A"Y(2)) de,
t=1"—

where A;! is the tth Monte Carlo replicate. This criterion puts equal weight
for all z € (—2,2). Note that the average is taken with respect to both the
error ¢ and Z. The SQE (shifted quantile estimator) is the procedure pro-
posed in Section 2. The MSQE is the modified version of SQE with median
estimate ¢,5(z) in (6) obtained from MNR. It is an attempt to smooth the
medians slightly before being used for estimating F. Maximum likelihood
estimates are also obtained from the parametric model

A, -«
A(y)=%=z+s

under the assumption of known A, and F and unknown a and B. This is
equivalent to knowing the transformation up to a location and a scale.
Included in the parentheses are the standard error (SE) corresponding to
each MISE. For SQE, the number of intervals is 6, = 20 for n = 100. We will
discuss further the bandwidth selection later. In all cases, MISE is small-
er for the SQE and MSQE than for MNR, which is, in turn, better than
Horowitz’s estimator. Although the new procedure with the medians from
MNR works better than that with simple medians in most cases, the differ-
ence is usually not very large.
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TABLE 2

Comparisons of MISE for /A\_l, n = 1000 (the SEs of the MISE based on 100 simulations
for Horowitz’s estimator and 1000 simulations for all others are given in parentheses)

Test function
Linear Log Sinh
Normal Horowitz 0.070 (0.0077) 1.480(0.148) 0.166 (0.020)
MNR 0.057 (0.0011) 0.581(0.017) 0.064 (0.002)
SQE 0.025 (0.0006) 0.233 (0.008) 0.039 (0.002)
MSQE 0.023 (0.0005) 0.232 (0.007) 0.033 (0.001)
MLE 0.009 (0.0003) 0.093 (0.004) 0.009 (0.0004)
Uniform Horowitz 0.089 (0.010) 1.032(0.116) 0.232 (0.030)
MNR 0.112 (0.002) 1.009 (0.030) 0.153 (0.005)
SQE 0.043 (0.001) 0.390 (0.014) 0.075 (0.003)
MSQE 0.042 (0.001) 0.360 (0.012) 0.069 (0.003)
Cauchy Horowitz 0.263 (0.033) 1.682(0.193) 0.516 (0.067)
MNR 0.088 (0.002) 1.093 (0.043) 0.106 (0.003)
SQE 0.081 (0.002) 0.709 (0.022) 0.093 (0.003)
MSQE 0.078 (0.002) 0.763 (0.024) 0.079 (0.003)

Table 2 gives the comparison for n = 1000. The number of replications is
100 for Horowitz’s estimate, due to the long computation time it takes, and
1000 for the others. This factor partly explains the difference in the standard
error in Table 2. For SQE, the number of intervals is §, = 50. It is interesting
to notice that the improvement of the new estimators over the MNR is more
for n = 1000 than that for n = 100 in most cases. This verifies the theoretical
result discussed in Theorem 2 on the rate of convergence of the estimators.

We now consider the bandwidth selection. Our theoretical results indicate
that for §, in a reasonable range, the effect of bandwidth is only secondary.
Table 3 gives the MISE(A) and MISE(F) for different values of §, for three
representative cases: normal-linear, uniform-logarithmic and Cauchy-sinh.
It can be seen that they are not sensitive to the choice of §,. An intuitive
explanation for this is that the estimators proposed here are integral-type
estimators. As indicated in (9), if §, is large, the quantile and percentiles

TABLE 3
MISE(A) and MISE(F) for SQE for different values of 5,, n = 100

5, 5 15 25 35
Normal-linear A 0.258 0.222 0.220 0.228
F 0.0168 0.0138 0.0144 0.0160
Uniform-log A 2.493 2.284 2.307 2.362
F 0.0253 0.0208 0.0226 0.0249
Cauchy-sinh A 0.819 0.732 0.745 0.819
F 0.0319 0.0288 0.0317 0.0358
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TABLE 4
Comparisons of MISE(F) for n = 100 based on 1000 simulations

Error SQE MSQE
Normal 0.0139 (0.0004) 0.0102 (0.00029)
Uniform 0.0197 (0.0005) 0.0163 (0.00048)
Cauchy 0.0297 (0.0010) 0.0189 (0.00056)

estimates are more unstable, but there are more intervals for summation; if
8, is small, there are fewer intervals for summation but the quantile and
percentiles estimates are more stable. The two factors balance out and thus
the result is relatively robust against different choices of §,. One can see that
the MISE(A) stays within 120% of the minimum for §, from below 10 to 30
in almost all cases. Therefore, we fix §, = 20 for n = 100 and §, = 50 for
n = 1000 in Tables 1 and 2.

Tables 1 and 2 show that the MSQE may have better performance than
the SQE in the estimation of A~!. This improvement is more substantial for
the estimation of F. The MSQE uses the median estimate §,(z) obtained
from median nonparametric regression with optimal bandwidth 4. Table 4
compares the SQE and MSQE for n = 100, §, = 20 and & taken to be
optimal. The comparison is in terms of the MISE over the range (—25,2.5).
Table 5 gives the MISE(F) for different values of h under the MSQE, again
indicating that the choice of % is unimportant for F' as it is in a reasonable
range. Note that F is independent of A; thus, A does not appear in Tables 4
and 5.

We have not studied theoretically the case of multiple X-variables, that is,
model (1) with unknown B. One may infer that the root-n rate should still
hold in this case since B can be estimated at a root-n rate, resulting in a
discrepancy of order root n between Xf and XP. Some simulations will be
carried out here to study the effect of the estimation error in B on the
performance of our new procedures. We measure the performance using the
empirical mean square error (EMSE) of the estimate median, that is,

2

M=

1 . R
_ -1( .. AL
EMSE = — (A1(x:B) — A" *(x,8))

i=1

TABLE 5
Comparison of MISE for F using MSQE for different values of h, n = 100

h 0.5 0.75 1.0 1.25 1.5
Normal 0.0107 0.0101 0.0102 0.0108 0.0121
Uniform 0.0168 0.0162 0.0163 0.0170 0.0186

Cauchy 0.0204 0.0193 0.0189 0.0191 0.0197
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Note that this criterion puts more weight in neighborhoods with more obser-
vations. The simulation model is

A(Y) — a
B
We consider only the normal-logarithmic case. Four cases are simulated:

1. B;=1,B8,=0, X;;, X;, ~N(,1) are independent;
2.8,=1,B,=0, X;;, X;5 ~N(0,1) with correlation p = 0.5;
3.B,=1/V2,B, =1, X,;, X;;, ~ N(0, 1) are independent;

4. B, =1/V3,B, =1, X;;, X,5, ~ N(0,1) with correlation p = 0.5,

and o = 0 for all cases. The coefficients are chosen so that Xp ~ N(0,1). We
estimate B by a simple average derivative estimator [ADE, Héardle and
Stoker (1989)]:

=X;1 + By Xis + 5.

1

Ew(xl) Ew(xi)Bi’

i

g =

where B’ is the regression coefficient using observations in the neighborhood
of x;, with radius 1 and w(x,) = 1 if the number of observations is more than
5 and 0 otherwise.

Table 6 compares the MSQE and MNR for n = 100, §, = 20 and the
bandwidth of MNR £ is optimal. The MSQE still performs better than the
MNR by a significant amount when B is unknown and has to be estimated,
although the improvement is somewhat smaller than the improvement when
B is known.

To sum up, the simulation shows that the new methods give better
estimates of the unknown quantities and have a better rate of convergence
than standard median nonparametric regression. The new method based on a
stable median estimate gives the best result and is quite robust against
choices of bandwidth parameters.

Figure 2 plots the true and estimated A for n = 100 for all nine combina-
tions of A and F, with the 5-50-95% bands calculated from 1000 simula-
tions. Results for A~! and F are plotted in Figures 3 and 4. The estimates are
quite close to the true underlying models.

TABLE 6
Comparisons of the EMSE for n = 100 based on 1000 simulations

Error MSQE MNR

Known B, 0.19 (0.006) 0.27 (0.007)
Case 1 0.27 (0.008) 0.33 (0.007)
Case 2 0.26 (0.007) 0.32(0.007)
Case 3 0.29 (0.008) 0.35 (0.007)

Case 4 0.27(0.007) 0.33 (0.008)
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Fic. 2. The 5-50-95% curves of A for n = 109C)for (a) Aly) =y, (b) A(y) =1log(y) and
(¢) A(y) = sinh(2* y) /13, each estimated under three types of error distributions. The line types
are the same for all three plots.

Another interesting result from Section 3 is that if the distribution of Z is
uniform over its range, the variance of A is then constant over the range
y < A(y) <1 — v. To verify this, we take A(y) = log(y), Z ~ U(-5,5), & ~
N(0,1) and n = 1000. The 5-50-95% bands of A(y) — A(y) are plotted in
Figure 5 for y €[0.5,8] and one can see that bands are quite stable, which
confirms our theoretical result.

Horowitz (1996) uses only the normal case with n = 100 due to the heavy
computation load of his estimators as he describes it. Our estimators require
much less computation. Using FORTRAN 77, our estimators take about 0.1
second each simulation for n = 100 and 1-2 seconds for n = 1000, depending
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Fic. 3. The 5-50-95% curves of A= for n = 10Q for (a) A(y) =y, (b) A(y) =log(y) and
(¢) A(y) = sinh(2* y) /13, each estimated under three types of error distributions. The line types
are the same for all three plots.

on §,, on a SPARC 10/41. The relative computational savings could be even
more significant for our estimators if one takes into account, the robustness of
our estimators against different bandwidths.

5. Alternative algorithms. In this section, we propose several alterna-
tive methods. These alternative estimators also utilize the additivity property
of the model (1), and thus resemble the one in Section 2 in spirit and may be
even more efficient. Therefore, they should have similar behavior.



NONPARAMETRIC rn~!/2.CONSISTENT ESTIMATION 2701

Normal Distribution Uniform Distribution

1.0

08
N

0.6

04

02

0.0

Cauchy Distribution

1.0

08
1

0.6

04
!

02

=]
c

2 A 0 1 2
Fic. 4. The true F and the 5-50-95% curves (@j F for n=100 for (a) F~ N(,1),
(b) F ~ Uniform(—2,2) and (¢) F ~ Cauchy(0, 1). F is independent of A.

Note that (1) implies

(13) y=4q,(2) = A (z+F'(p)).
Solving (13) for z, we have
(14) 7, (y) = A(y) = F'(p),

where g, ~1(y) is the value of z such that G(y |z) = p for given y and p.
Although theoretically g, '(y) is defined for all y and p, in the finite-sample
case it is defined only on a limited range. Equation (14) is an additive
function of A(y) and F~'(p). Let y?,y9,...,y) be a grid of points in the
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Fic. 5. The 5-50-95% curves of A(y) — A(y) for A(y) = log(y) and Z ~ Uniform(—5,5) and
n = 1000.

interval (min(y;), max(y,)) and let p?, p3,..., py, be a grid of points in the
interval [0, 1]. Define

4, (¥o) = argmin (1 p(y < y,1I(2)) - pl),

where argmin,(-) is the value of z that minimizes the expression in the
parentheses. Applying the standard (unbalanced) ANOVA, we can then
obtain the estimates of A(y)), A(yd), ..., A(y)) and F *(p}

F Y (pY),..., F 1(p°) using the model

Gpd (') = M) = F7(p])-

The difficulty of this algorithm lies in finding ¢, 1(y) for every y and p. To
avoid this, we rearrange (3) and obtain

= A(g,(2)) —F'(p).

Substituting q,(z) by ¢(y | I(2)) gives

=~ A(4,(y 11(2))) = F'(p).

We can apply standard techniques for estimating additive models, possibly
with an isotonization, to obtain A and F~!. To further reduce the computa-
tion load, we can restrict our attention to only a small set of p’s in (0,1). A
fitting procedure using a weight, such as w(p) = p(1 — p), is often desirable
to account for the heterogeneous variability in estimating q,(2).
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Many possible extensions exist for the procedures proposed in this paper.
The first and probably the easiest one is to censored data regression. Since
the quantiles and percentiles can be estimated using Kaplan—Meier estima-
tors if the data are censored, the extension is straightforward. Another
possible extension is to the stationary semiparametric ARMA model. Al-
though the estimators can be calculated exactly in the same way as in Section
2, the proof could be quite different.

Our remarks in Section 1 on the extension to the multiple regressor also
apply to the model with the heteroscedastic error term &; = (a + bx,)e,
where &' ~ F and a and b are unknown parameters, since the parameters a
and b can also be estimated at the root-n rate [see, e.g., Shen (1997)].

APPENDIX
Define
Jis) G(y 12) d(2) dz
fl(z)d(z) dz ’
#{(y; <y, 2 €1(2))}
#{I1(z)} ’
where I(z) = (z — 1/(26,), z + (1/28,)) is the interval of width 1/5, cen-

tered at z. Let q,(I(2)) and §,(I(2)) be the pth quantile and sample quantile
of y on the interval I(z), that is,

G(ylI(z)) =

G(yI(z)) =

q,(1(z)) =inf{y; G(y 1 I(2)) = p},
4,(1(2)) = inf{y; G(y | I(2)) = p}.

Let 1(:) be an indicator function and, following Pollard (1984), we write
a, < b, for sequences {a,} and {b,} if a,/b, = 0 as n — .

Proor oF THEOREM 1. The proof is for the shifted median estimator. The
process is exactly the same for more general shifted pth quantile estimators.
Reexpress F(—A) into the following:

F(—A) —F(-A)
1 G0, o f1(e < —A) — P(e < —A))

— W, + W, +

(1-14)s, j=1 nd(z;) /8,
1(g; < —A) —P(e< —A)
W+ Wyt ———— % ,
! ? (1-A4)n z,€(A,1) d(z;)
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where
—_— 1 1-4)s, Zziel(zj(-)JrA)[l(yi = ffo,s(l(zjo))) - Uy < QO.5(Zi))]
(1-1), j=1 #{I(zj(-)—kA)}
1 1-A)s, 1

)

T B #ie )
X | I(ZQ A){l(yl < q05(I( ))) - 1(y; < qo5(2:))
~[6ldos(2(=0)) [ 1(z + 1))
~Glaoal1(:5)) | 1(21 + )]
Zn{G(éOﬁ( ‘[z +A)

1 (1-4)8

(1-4)s, ;=5
~Glaos(1(2)))|1(2f + 1))

=Wy, + Wy,
and
1 1-A)s, 1 1
W, = — _
P(1-4)3, jgl zielgj(-’-%—A) #{I(ZJQ +A)} nd(zi)/‘snw

X{l(g < —A) —P(e < —A)}.
Based on Lemmas 4-7, since A(g{;(z})) =z}, we restate (11):

F(—A) — F(-A)

1 g Mes=d) —Ples —a)
(11) ¢ — MLl d(z;)
F(-A 1 1(g; <0) — 0.5
(=4) ¥ (e ) +o(n~1?2).

CFOA -, gy d(z)

It is worth noting here that 0 < A < 1 < 1 and that d(2) > m, > 0 from the
assumptions. Notice also that if A = 0, we have F(0) — F(0) = o(n"'/2) from
the preceding discussion, which is consistent with the initial condition that
F(0) = F(0) = 0.5. To prove the uniform convergence of the first part of the
right-hand side of (11), it is adequate to show the uniform convergence of

icn 1(g; < —A) = P(e< —A)
-1 d(z;)

-1/2

n 1(A <z, <1),
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which is true by Theorem 2.14 of Pollard (1984) if
(e < —A) —P(e < —A)
d(z)
form an Euclidean class. Since the indicator function 1(e < —A) and I(A <
z; < 1) both form Euclidean classes, by Lemma 2.14 of Pakes and Pollard
(1989), h(z, £; A) is Euclidean. The convergence thus follows. By Lemma 8,
we then also have the convergence of the first part of the right-hand side of
(11) to a Gaussian process. The convergence of the second part can be proved
by the same argument.
Using the previous result, it is then straightforward to show that

VIR 1(g; < —A) = P(e < —A)
z;€(A,1) d(z;)
where H;;(—A) is a Gaussian process with zero mean and covariance func-

tion

1 1
R, (—s,—t) = Cov(H(—s),Hy(—t)) =F(—t)(1 - F(—- —dz,
u(=s, =#) = Cov(Hy(=s), Hy(=1)) = F(=)(1 = F(=9)) [ g d=
where 0 < s < ¢ < 7 < 1. Similarly,
. 1(s; <0) — 05
2;€(0,1-A) d(z;)

h(z,e;A) = 1(A<z;<1)

=g Hy(—4),

=4 Hi,(—A),

where H,,(—A) is a Gaussian process with zero mean and covariance func-
tion

1 .-+ 1
Ryy(—s, —t) = Cov(Hy,(—s), Hyy(—t)) = Zfo m dz,
where 0 < s <t < i < 1. The covariance between H,; and H,, is

Cov(Hyy(—s), Hyy(—t))

1
0.5F(—s)ft1 i

0, otherwise.

dz, fort<1-—s,

Putting these together, we have
nVA(B(=A) = F(~A)) =, Hy(~A)

for 0 < A < n, where H,(—A) is a zero-mean Gaussian process with covari-
ance function (10). The proof is thus complete. O

ProOOF OF COROLLARY 1. We will prove the result for £ = 1. Recursive
application of the same proof can be used to obtain the results for other k. Let
p, = F(n) and denote n* = F~(p,). By Theorem 1 with p = p,, we have

n'2[F(n + A) = F(n* + A)] = Hiy(A) + Hy(4; 5,) + o(n™1/?)
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from (11), for A € [— 7, 0). Thus,
n'/2[F(n + A) = F(n+ A)] = Hi(8) + Hiy(4; b,)
+[F(n* +A) —F(n+ A)] +o(n"1/?).
By applying the Taylor expansion for [F(n* + A) — F(n + A)] and the uni-
form convergence of F(A) over the range [0, + (1 — 1)/2], the desired
result (11’) can thus be proved. O
PROOF OF THEOREM 2. Let p(y) = G(y | 1(z?)) and p{y) = G(y|I(2?)).

2 ~ w(ﬁj(y))

B

A(y) = j:1[z}) +F_1(ﬁi(y))]m
5, . . 0 w(p;(y)
=j21[zj +F (G(ylzj))]m
3, N . o w Aj( )
FX[F R - F (G(ylzf))]%'
Since A(y) =z + F7'(G(y | 2)), we have
Ay) =A(y) + U,
where
U JZl[F (Pj(y)) (pJ(y))] (ﬁ(y’zj()))
w(ﬁj(y))

3 74 (a0) - P60 15)]

- U, + U,

Putting together Lemmas 9-11, after straightforward but tedious calcula-
tions similar to that in the proof of Theorem 1, and noting that A (y) =
A(y) —z + o(n™") for z € I(2}), we restate (12):

A(y) = A(y)
w(pj(y)) {ﬁj(y)_l)j(y) 12 Hl(Aj(y))}

=T | FA) " AA(0))

+o(n"1/?)
1 > {ﬁj(y) - pi(y)
R(y) nzf- A<y, j=1,..., 5, f(Aj(y))
(12) e Hi(A(9))

-n~V m}—i—o(n/)
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_ 1 5> 1(e; < A(y) —2;) — F(A(y) — 2;)
I’LR(y) lz;— A<y, z;,€[0,1] f(A(y) - Zi) d(zi)

min(1, A(y)+vy) HI(A(y) - Z)
max(0, A(y)—1y) f(A(y) - Z)
Vi(y) + Va(y) +o(n™1/2)

—n /2 dz + o(n~ %)

uniformly. The uniform convergence and the convergence of n'/?V,(y) to a
Gaussian process can be proved by showing that of the process

12y (g < A(y) —z;) —F(A(y) — 2;)
i f(A(y) —2;)d(z)

which is immediate from Lemma 12, Theorem 2.14 of Pollard (1984) and
Lemma 8. Letting n'/2V,(y) =, H,(y)and 0 <y, <y, < 1, we have

Ry1(y1,¥2) = Cov(Hy(y1), Hyi(y2))
1
R(y1)R(y5)

fmax(l Aty F(A(y) —2)(1 = F(A(ys) — 2))
max(0, A(yy)—y) f(A(yl) - Z)f(A(yZ) _Z)d(z) ‘

1(lz; = A(y)l <),

On the other hand,
VRV (y) . fmln(l—A(y) v) Hl(_z)
max(—A(y), —y) f( _Z)

is the integral in a Gaussian process and therefore is a Gaussian process
itself, In fact, for y such that v < A(y) < 1 — y, we have

1/2 YH( 2)
SO N v o

which is a zero-mean Gaussian random variable independent of y with
variance

-0
Ram 1 i

The proof is thus complete. O

LEMMA 1.

#{I.(2)}

1-r

- n’f d(z)dz| <n 3" 7/2nn
n (2)

uniformly for all z € [0, 1].
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Proor. Since #{I,(z)} = L,1(z; € I,(2)), the function class 7, = 1(z; €
I (2)) is a Euclidean class [Pakes and Pollard (1989)], and

El(z, €1,(2)) = [ d(z)dz<M;/8,=Mn"
I.(2)
for some constant M. Thus, by Theorem 37 of Pollard (1984), we have

1
—#{I (2)) — d(z)dz < n A+ 2In n., |
S#L@) - [ d(2)

LEmMA 2.
|G(ylI(2)) — G(ylI(2))| < n C"/2Inn
uniformly for all z € [0, 1].

Proor. Let 7, ={1(y; <y, 2z, €1(2)); y € (—», +x), z €[0,1]}. &, is
then a Euclidean class with

El(y, <y,z,€1(2)) = [ G(ylz)d(z)dz <M,/8, =Mn"’
I(z)
for some constant M. By Theorem 37 of Pollard (1984),
1
—#{(yi <y 2 €l(2)) - [ G(ylz)d(z)ds <n "/ nn
n 1(2)

uniformly for all z € [0, 1]. From Lemma 1, we have
c#{1(2)}
n'=7(8, 1, d(z) dz)
uniformly, and 8, [y, d(2) dz = m > 0, the required result then follows. O

—1/—-0

LEMMA 3.
|4,(1(2)) — q,(I(2))| < n "% n uniformly forz = z{,j = 1,2,..., ,.

ProoF. By definition, G(y | I(zj(-))), j=1,...,n, are continuous and have
densities

gly11(2)) = [, F(A(y) = 2)A(y) d(2) dz/fl(zo)d(z) dz
=f(A(y) —z"(¥))My)

by the mean value theorem, where z*(y) € I(z JQ). It is also easy to see that

1 1
qp(l — 2_3,1 <qp(I(z)) <q,lz+ 2_5n)

Thus,
mem, < f(A(q,(1(2)) —2*(a,(1(2)))A(q,(1(2)) < MM,
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for n large enough. This shows that the conditional density g(y | I(z})) is
bounded, which allows the application of Lemma 2.5.4B in Serfling (1980).
Let &, ; = #I(2}) and

4(Ink, ;)

E .=
n,.Jj
m,m,k, ;

By an argument similar to that for Lemma 2.5.4B in Serfling (1980),

P(14,(I(2)) = a,(I(2))| > &, ;| k, ;) < 73

Let k), ;= ;n' "m,. We have

J=1...,
2
| +P(#{1(Z;)}<k;”))
Jj=1,...,6, n,j
mgAa-n
<8, —ga=yy T G ce”

for some constants c¢; and c,. The last inequality follows from the Bern-
stein inequality [see Pollard (1984)]. The required result follows from the
Borel-Cantelli lemma and the assumption that »r < 1/3. O

LEMMA 4. Wy, = o(n~1/?) uniformly.

ProoF. For given positive constants c;, ¢, and c3, let

0 ’ " ’
Wu(zj,A,m ,m ,c)

- L {ln=m) - I(y=m

—[G(m 11(z0 + 8)) = 6(m" 11(20 + 4))]},

where m’, m” and ¢’ are such that

C!

— -1
Cy

<cyn "7 21n n.

(15) Im'" —m"| <c;n" "7/ 2Inn,

Let
d(z,y;2),0,m',m",¢') = I[z elI(z) + A)][l(y <m') —1(y <m")]
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and
F = {d(z,y;zJQ,A,m',m",c’);j= 1,...,8;

Ae (0, 1- z](-)); m',m", ¢’ satisfies (15)}.

It is then straightforward to show that graphs of the function in %, form a
polynomial class of sets using Lemma 2.15 of Pollard (1984) and that

Ed(z,y; z),A,m, m”,c’) c—l,[G(m’ |I(ZJ(-] + A)) - G(m" |I(ZJQ + A))]

2
< —M|m' —m"|=0(n"*""/%In n)
)

for n large enough and for some positive number M. Therefore, by Lemma
2.25 and Theorem 2.37 of Pollard (1984),

Wll(zjo, A,m',m", c’)| < n 3477/4(In n)2

supn”
Z,

n

almost surely. By Lemmas 1 and 3,

o
n o

#{I(20 + A)}) _

d(Z,y;z}),A,éo_s(l(zjo))’q0-5(1(210))’ v

almost surely. Therefore,

n

#{I(20 + A)
a1 8l s, S
< n—1/2—(1—3r)/4(1n n)2 <« pn- /2

uniformly over all A €[0,1] and j = 1,2, §, with probability 1. The desired
result then follows. O

LEMMA 5. W, = o(n~'/%) uniformly.

Proor. Reexpress W, to be

1 1-2)s,

T (1-4)s,

W,

1 1
j=1 #{I(ZJQ + A)} - n[l(z}?) d(Z) dzw

X Y {l(g < —A) —P(e< —A)}

z;€I(z0+A)

1 (1—2A:)5n 5 [ 1 B 1 l

+ -
(1-24)s, Il se1Go+n) 1 f120 d(z) dz nd(z;)/8,

X{1(g < —A) —P(e< —A)}
=Wy + Wy,.
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Using Theorem 37 of Pollard (1984), it is straightforward to show that

< n A*/21n pn

Y {l(a&=-4)-P(e< 1)}

z;€1(z)+A)

sup —
A

almost surely. By Lemma 1, we also have
n 1
#{I(z}) + A)} J1¢z9) d(z)dz

< n—(l +r)/2+2r1n n.

Therefore,
W, <n ' (Inn)® <n /2

uniformly. On the other hand,

Wy, = ﬁigll(zi ezl +A- 2—;,2(01_&8” + A+ 2—;))
1
* S, J1zp) d(2) dz B d(z;) l{l(gi =-8) ~Ple=—a)),
where z; is the value of z] that minimizes |z} — z;|, j = 1,..., §,. Denote by
d(z, £; A) the function inside the summation sign. Since

1 1
T = -
{ anfl(zg) d(Z) dz d(zj) }

contains only one function, it is obviously Euclidean class. Therefore, 7, =
{d(z, £; A)} is an Euclidean class by Lemma 2.14 of Pakes and Pollard (1989),
with

Ed(z,¢&;A)
=F(—-A)(1-F(-4))
1-24)5, 1 1 2
: El E{Snfz(zy) d(z)dz d(z)} I(Z €1(z ))
<Mn"

for some positive constant M. By Theorem 2.37 of Pollard (1984), we have
sup Wyl <n 3+ 2Inn < n~ /2,
Ae(0,1)

The desired result thus follows. O

LEMMA 6.
1 Z J 0 4 A4 J 1
S 0 4 — S —
(1-1)s, - g(CIo.5 | 2; ){%.5 %.5} (1—-A)s,

W12 = Z Dr{’
J
1

where D! < n~'/2 uniformly with probability 1.
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ProoF. To avoid excessive notation, denote §f; = §,5(I1(z))) and g¢f; =

q05(I1(2))). Expanding G(§{; | z) about g5 by second-order Taylor expan-
sion, we have

G((%ﬁ |Z) - G(Qéﬁ |Z)

= {d3.5 - qg.S}f

I(z_?+A)

" .12 , .
+{Q6.5 - %.5} '[I(Z.?ergy(%’% | Z) d(z) dz//;(z}umd(z) dz,

g(qis12)d(z) dz//;(zo+A)d(z) dz

where

£i(5012) =L = P(Aye) — 2)A(50) + F(A(ye) — 2)X(30)

dy

Yy=Yo

and q{% € (g5, §{5). Substitute the first-order Taylor expansion of g about
z= z]‘? + A into the first term on the right-hand side, and note that by
Lemma 3 we have

G(%.s |Z) - G(Qéﬁ |Z) = g(‘]({ﬁ | Z]Q + A){‘%.5 + q{;.5} + Dr{’

D= s~ abef ), giats e [ dcer

+{4 —qgﬁ}fl(zhmg;(qgfg | z)(z —z{ - A) d(z) dz/j;(ZQ+A)d(z) dz.

By Lemma 3 and Assumptions 3 and 4, we have

Sup |D}L]| — O(nmax(f(1+r)/2,rfl)1n n) < nfl/Z

almost surely for n large enough. O

LEMMA 7.

N ﬁ(qg.s)_0-5 ‘R
905 — 4905 g(qég | I(zf)) nj»

where R, ; < O(n=*"~"/*In n) uniformly. Furthermore,

y A 1(e; < 0) — 0.5
dts—ats=—- X —r g T s
2,1z (z:)&(qbs12;)

!

where again R, ; < O(n=?1~"/*Inn) < n~'/2,
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ProOOF. The proof of the first part can be carried out in the same way as
the original Bahadur representation [see Bahadur (1966) or Serfling (1980)
for references], with slight modifications to account for the uniformity across
Jj=12,...,8, in the same way as in Lemma 3.

The second equality can be obtained from the first equality by bounding
the reminder terms, using an argument similar to that for Lemma 5. O

LEMMA 8. If the set of functions &, = h(z,y;A), A €(0,1), forms a Eu-
clidean class and {(z;, y;), i = 1,2, ...}, are independent realizations from the
independent random vector (Z,Y), then

1 i=n
H, = /2 2 h(z;, yi54)
i=1

converges to a Gaussian process indexed by A.

PrOOF. See part b of the proof of Theorem 1 in Horowitz (1996), utilizing
Lemma 2.16 of Pakes and Pollard (1989). O

LEMMA 9. U, < n~ /2 uniformly with probability 1.

Proor. After straightforward calculation using second-order Taylor ex-
pansion, we have

pi(y) —G(y12))=0(n"?")

uniformly for all y and j. In view of Lemma 2, there exists a positive constant
n with probability 1 so that, if w(p,(y)) = 1,

pi(¥),G(y120) € (F(v) — n, F(y) + n).
Therefore, we have
|F1(p() = FHG(y129))[w(p(»)) = (n27) < n1/2
uniformly for all ¥ and j. The desired result thus follows. O

LEmMMA 10. With probability 1, for all j such that w(py)) = 1, we have
F () = F ' (pi(9))

1
= () P TR — (A ()] + e(n )

uniformly, where X (y) = F'_l(ﬁj(y)), A(y) = F~"(p(y)). The same results
hold for w(p;i(y)) = 1.
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Proor. If w(p(y)) =1, A(y) € (—y,y). From the definition of A(y)
and A ,(y), we have

F(8,(9)) = F(8,(9)) = () = p;(») = (F(8,(3)) ~ F(4,(9)))-
In view of Lemma 3 and Theorem 1 and the preceding equation,
F(Ai(y)) —F(A)(y)) =0(n"*""%Inn)
uniformly almost surely. Furthermore, using Assumption 2(a), with probabil-
ity 1, if w(p;(y)) = 1, there exists a positive constant c¢;, A (y) € (—y — ¢,
v + ¢;) uniformly over all j and y for n large enough, and

Xj(y) = Aj(y) = O(n " ""In n)

uniformly. By Theorem 1 and the equicontinuity property of the Gaussian
processes, we have

F(&(9)) = F(A,(9)) = 5;(y) = pj(y) — n Y2 H (A,(y)) + o(n1/?)
uniformly for n large enough. It is thus straightforward that, with probabil-
ity 1,

1
Ni(y) —Ai(y) = m{ﬁj(y) —pi(y) —n Y2H,(A)(¥))} + o(n"1/?)

holds uniformly for all y and j such that w(p,(y)) = 1. O

LEMMA 11. Let

w(p(y)) = {1’ ifp e (F(—v), F(v)),

0, otherwise.

Then ¥; | w(ﬁj(y)) — w(pj(y))l = O(n n). Furthermore, with probability 1,
there exists a constant 0 < R(y) < +« such that

Tw(p,(y) = R(3)8, + O(1)

uniformly for all y € [A"*(a), A~1(b))].
PrOOF. Assume that F(—vy) < F(y), since it holds with probability 1. For

w(p,(y) —w(p,(y) # 0 to be true, either p,(y) or p,(y) must be in one of
the following sets:

(F(=v),F(-7)), (F(-v),F(-v)), (F(v),F(v)), (F(v),F(v)),

while the other must not be.
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From Theorem 1 and Lemma 2, there exist positive constants ¢, and c,, so
that, with probability 1,

IF(A) = F(A) < c;n 2Inn
for A = +y and
16,(y) —pj(y) <cyn " %Inn.

By the mean value theorem, we have

0 1 0 1
Zj_2_6n’Gy Zj+2_5n ,

which implies that there exists a constant cj, so that
IG(y12) —pj(y) <czn™".

Note that » < (1 — r)/2 for r < 1/3. Putting together the previous inequali-
ties, there exists a constant c,, so that, for w(p,(y) — w(p,(y)) # 0 to be
true, with probability 1,

F(A) —en"Inn <G(ylz) <F(A) +cyn"Inn

pi(y) = G(y11(20)) € (G(y

for either A = —vy or A = y uniformly for y. By the assumptions, there exists
a cg, so that

z€ (A(y) +A—czn"Inn,A(y) + A+ csn"Inn)

for A = + vy, which contains at most 2(c;n""1n n)8, = O(In n) of intervals of
length 1/6,,.

Following the same line of arguments, there exists a constant cg, such that
for every z] such that

max(0,A(y) — y+cen ") <z <min(1,A(y) + v —cen™"),

we have w(p;(y)) = 1. Thus, there exists a constant 0 < R(y) < +, such
that

Yw(py(¥)) = R(5)8, + 0(1)

uniformly for all y, where

R(y) = min(1,A(y) + v) — max(0,A(y) — v)
min(1,A(y) + v), if A(y) —y<0,
= {27, if —y<A(y) <7,
1 - max(0,A(y) —vy), ifA(y)+y>1,

using the fact that 8, = [en”]. It is obvious that R(y) is an equicontinuous
function of y. O
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LEMMA 12. The class of functions
1(e<T-2)—-F(T-=2)
f(T —z) d(z)

h(z,e;T) = 1(lz =TI < v)

for 0 < T <1 is Euclidean.

PrOOF. The result follows immediately from Lemmas 2.13 and 2.14
of Pakes and Pollard (1989) using the facts that both 1(¢ < T — z) and
1(Jz — T'| < v) are Euclidean and T has bounded range. O
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