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AN UNBIASED TEST FOR THE BIOEQUIVALENCE PROBLEM

By Lawrence D. Brown,1 J. T. Gene Hwang2 and Axel Munk3

University of Pennsylvania, Cornell University and Ruhr-Universität Bochum

It is shown that the standard two one-sided tests procedure for bioe-
quivalence is a biased test. Better tests exist. In this paper, an unbiased
α-level test and other tests which are uniformly more powerful than the
two one-sided tests procedure are constructed. Its power can be noticeably
larger than that of the α-level two one-sided tests procedure.

1. Introduction. Recently there has been great interest in the problem of
demonstrating bioequivalence of treatments, especially in the pharmaceutical
industry. One of the reasons is that developing a marketable drug which is
bioequivalent (i.e., equivalent in efficacy) to a well-established drug typically
costs 1 percent or less relative to the cost of developing a new one.

The statistical formulation of the problem is by now agreed upon to be
the following hypothesis testing problem. Let m1 and m2 be the parameters
corresponding to the two treatments. For example, the parameter of interest
may be one of the pharmacokinetic parameters (AUC, Cmax or Tmax) of the
concentration–time curves. Here AUC, Cmax and Tmax stand for the area under
the curve, the maximum concentration level and the time until the maximum
concentration level is achieved.

Bioequivalence of the two treatments is defined as 11 ≤ ρ ≤ 12, where
ρ =m1/m2 and 1i, i = 1;2, is the tolerance limit prespecified by a regulatory
agency. The statistical problem is then to test

H0x ρ ≥ 12 or ρ ≤ 11 versus H1x 11 < ρ < 12:

If one can reject H0, then one can declare bioequivalence. The regulatory
agencies in both the United States and the European community use 11 = 0:8
and 12 = 1:25.

It is also recommended that a logarithmic transformation be applied and
hence the ratio problem is turned into a difference problem, that is,

θ = ln�ρ� = µ1 − µ2

where µi = lnmi. For the aforementioned recommended choice of 11 and 12
of the regulatory agencies, the hypotheses become

H0x �θ� ≥ 1 versus H1x �θ� < 1;(1.1)

Received July 1995; revised May 1997.
1Supported in part by NSF Grant DMS-96-26118.
2Formerly Jiunn T. Hwang. Supported in part by NSF Grant DMS-91-07842 and by Taiwan

National Science Council Grant NSC-82-0208-M-007-136.
3Supported in part by the Deutsche Forschungsgemeinschaft Grant Br655/4-2.
AMS 1991 subject classifications. Primary 62F04; secondary 62P10.
Key words and phrases. Two one-sided tests procedure, uniformly more powerful, pharmacoki-

netic parameters.

2345



2346 L. D. BROWN, J. T. G. HWANG AND A. MUNK

where 1 = ln 1:25. Note that in this special case the transformation leads
to a symmetric interval of θ. In general, even if an asymmetric interval is
obtained, one can make a simple location transformation to turn it into a
symmetric interval. Therefore symmetry in (1.1) can be assumed without loss
of generality.

The standard test recommended in the United States [FDA (1992)] and the
European Communities [EC-GCP (1993)] is the two one-sided tests procedure.
To describe this test, let D be an estimate of θ with

D ∼N�θ; σ2�(1.2)

and S2 be an independent observation such that

S2/σ2 ∼ chi squared distribution with v degrees of freedom:(1.3)

The above canonical form applies to many different models such as the gen-
eral linear model, ANOVA and crossover designs. One of the simplest special
cases involves a 2× 2 crossover design. Let Xi, 1 ≤ i ≤ n, i.i.d. observations,
be the response of the ith subject after receiving the treatment. Similarly let
Yi, 1 ≤ i ≤ n, i.i.d., be the response of the ith subject after receiving the
reference treatment.

More specifically, for a 2×2 crossover design with subject effects (and with-
out period effect), we may define

Di =Xi −Yi; 1 ≤ i ≤ n;
which are i.i.d. Under the customary assumption that Di is normally dis-
tributed, letting

D = 6Di/n

and

S2 = 6�Di −D�2/n
implies (1.2) and (1.3) with v = n − 1. In the simple case where Xi and Yi

have the common standard deviation σ0, then σ in (1.2) and (1.3) equals

σ = �n/2�1/2σ0:

The α-level two one-sided tests procedure proposed in Schuirmann (1987)
corresponds to the rejection region C2, which consists of D and S such
that

1 ≥ �D� + tα
S√
v
;(1.4)

where tα is the upper α quantile of a t distribution with v degrees of freedom.
[A related but more general type of test has been proposed in Berger (1982).]
The two one-sided tests procedure is, however, biased. In fact even for θ = 0,
it can be seen that the power function satisfies

lim
σ→∞

P�C2� = 0:
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Several attempts have been made to improve upon the two one-sided tests
procedure. See, for example, Anderson and Hauck (1983) and Rocke (1984,
1985). These alternative tests, however, are only approximately α-level. Ex-
istence of a better test with exact level α was established in Hwang and Liu
(1992). Munk (1993) constructed a test which is shown numerically to be α-
level �α = 0:1� for degrees of freedom larger than 10 and which is uniformly
more powerful than the two one-sided tests procedure. For a recent related
confidence interval approach, see Hsu, Hwang, Liu and Ruberg (1994).

In this paper we construct an unbiased α-level test. In the construction, it
is seen that the rejection region of the unbiased test always contains properly
the rejection region (1.4). Therefore the unbiased test is uniformly more pow-
erful than the α-level two one-sided tests procedure. See Theorem 4.1. The
improvement in power may be quite noticeable.

2. Description of the test. A precise construction of the unbiased test is
given in Section 4. As described in Section 5, it is feasible to numerically im-
plement this construction and picture the critical region, that is, the rejection
region, CU, of the unbiased test. This is the region on which one can declare
bioequivalence.

Figure 1 shows a typical picture of CU and some other regions, as described
below. The coordinates of this plot are �D;S�, as defined previously. The tri-
angle ABC and its inside is the rejection region C2 of the two one-sided tests

Fig. 1. Rejection regions with α = 0:05; v = 14 and 1 = 1. C2 = the triangle ABC and its inside;
CU = the union of C2 and the region on top of C2 bounded by the two solid curves; CM = CU after
removing the two regions outside the vertical lines L1 and L2. CT = CU after removing the region
above L3.
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procedure. The region bounded by the solid curves forms CU. Note that the
boundariesC2 andCU coincide for small S, andCU strictly containsC2. There-
fore CU is uniformly more powerful than C2 for any θ. This is also true for
any level α.

Anderson and Hauck (1983) and Hauck and Anderson (1984) have proposed
a test whose boundaries are qualitatively rather similar to those we display
in Figure 1. Their test is motivated by a partly ad hoc argument. Numerical
results for the few examples which are reported in their papers indicate that
the level of their nominally α = 0:05 test may actually be in the range 0:057
to 0:061, which is of course close, but not equal, to the nominal value. See
Frick (1987) for some numerical studies about their levels. Their test is not
unbiased (unlike ours), but the qualitative similarity does reinforce the value
of their proposal.

When one of the authors, Hwang, presented a preliminary version of this
paper in an invited session about bioequivalence in the August 1993 ASA
Annual Meeting in San Francisco, two criticisms were raised about the un-
biased test. It was argued that the rejection region of CU is unbounded,
and also that for any D it is possible to establish bioequivalence when S
is large enough. Similar criticisms have been made about the test proposed by
Anderson and Hauck (1983) which, as we have noted, has boundaries with the
same qualitative features as ours. See Schuirmann (1987), pages 673–676 for
a careful presentation of these arguments. See also Schuirmann (1996), point
1 and Berger and Hsu’s counterargument (1996), page 317 in the Rejoinder,
by comparing CL1 to the usual t-interval.

We tried to find a fundamental argument for the assertion that a reason-
able rejection region should not be unbounded by using a likelihood approach,
a Bayesian approach, and so on. However, we did not succeed. Therefore we
are not convinced it should not be unbounded. It can even be shown [Munk
(1992)] that every test with a bounded critical region has a vanishing power
at any given θ when the variance is large. Nevertheless, for those who find
an unbounded region unappealing, we recommend using the truncated pro-
cedure CT illustrated in Figure 1. The rejection region of CT is CU after
removing points above L3, which is drawn in Figure 1. Formally, L3 passes
through the two points on the boundaries of CU with smallest �D�. This region
has the added monotonicity property (which some may find appealing) that if
�D;S1� is in the rejection region and S2 < S1 then �D;S2� will also be in that
region.

An alternate modification for which we do see a practical argument is also
shown in Figure 1, as CM, which is CU except that points with �D� > 1 are
removed. That is, the points outside L1 and L2 are removed. The practical
argument for this modification is that often a bioequivalence decision is fol-
lowed by a point estimate of θ (and/or an associated confidence interval). The
usual point estimate (and/or center of a confidence interval) is θ̂ = D. If S is
quite large, the procedure given by CU can thus leave the statistician in the
embarrassing position of rejecting the null hypothesis that �θ� ≥ 1 while at
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the same time estimating a value θ̂ for which �θ̂� > 1. For this reason, the
modification CM may be appealing, since the rejection region is cut off at L1
and L2. (Formally, CM is formed by truncating CU at D = ±1.)

3. Numerical results. By using the approach in Section 5, we construct
the rejection region CU (see also Figure 7). Since the transformation �D;S� →
�D/1;S/1� can be used to reduce the problem of testing H0x �θ� ≥ 1 down to
the case where 1 = 1 as in Section 3, we shall focus on 1 = 1. (Therefore if
CU is the critical region for testing �θ�P1, then for a general 1, the test that
rejects H0 if and only if �D/1;S/1� ∈ CU is the α-level unbiased test.)

As shown in Figure 1 as well as in Theorem 4.1, the rejection region of the
unbiased test contains that of the two one-sided tests procedure. Therefore
the unbiased test is uniformly more powerful than the two one-sided test.

The power functions are plotted in Figures 2–5. Note that for a given v and
1 = 1, the only unspecified parameters are σ and θ. For v = 19, α = 0:05,
the powers are plotted against θ while σ varies from picture to picture. The
dashed line corresponds to the two one-sided tests whereas the solid line cor-
responds to the unbiased test. As expected, the power of the unbiased test is
always higher. The dash and dot lines (more visible in the figures for σ ≥ 0:7)
corresponds to the power of the truncated test CT. These powers are calculated
by numerically integrating the normal cumulative distribution functions with
respect to S, using the 20-point quadrature integration routine in the com-

Fig. 2. Power functions σ = 0:4. The power functions of CU; C2 and CT are plotted against θ
using a solid line, a dashed line, and a dash-and-dot line, respectively. In this figure and Figure 3;
the dash and dot line is invisible since it coincides with the solid line.
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Fig. 3. Power function as described in the title of Figure 2; except σ = 0:5.

Fig. 4. Power function as described in the title of Figure 2; except σ = 0:8.
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Fig. 5. Power function as described in the title of Figure 2; except σ = 1:0.

puter software Gauss which runs on an IBM personal computer. The power of
CM lies between that of CU and CT.

The powers of the two tests CU and C2 are quite similar in some cases,
especially when σ is small. This is the reason why no figures are reported
for σ < 0:4: the powers of CU and C2 are almost identical. However, in many
other cases, we see a noticeable improvement in power of the unbiased test
over the two one-sided tests procedure. (The two one-sided tests procedure can
have very poor power when σ becomes large.) In particular, for σ = 0:55, the
power at θ = 0 of the unbiased test is almost twice as big as that of the two
one-sided tests procedure. This range of σ may happen in bioequivalence data.
For example in Westlake’s data (1974, 1976), after the logarithmic transfor-
mation the estimated variance is 1

6�0:012� = 0:002. In our context, however,
every quantity is scaled with respect to 1. Taking this into consideration, the
estimate of σ after scaling with respect to 1 = log 1:25 is

√
:002/ log 1:25 = 0:46:

However for the FDA’s earlier recommendation, 1 = log 1:2. The corresponding
estimate is

√
:002/ log 1:2 = 0:56:

(In this discussion, we have used the logarithmic transformation log with the
base 10, since Westlake did so. Obviously these estimates of σ would remain
the same if we and Westlake had used ln all the way through.)

We also plotted figures corresponding to v = 39. The resultant pictures are
similar to Figures 2–5 and are not reported.
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The power of CT is also plotted in Figures 2–5, using a dot-and-dash line.
In all cases, CT obviously has a power less than that of CU. In many cases
(σ ≤ 0:6), however, the power functions of these two tests are indistinguish-
able. (Therefore the dot-and-dash lines disappear into the solid lines.) It so
happens that these are the cases where the noticeable improvement of CU
over the two one-sided tests procedure occurs. Therefore CT also has a no-
ticeable improvement upon the two one-sided tests procedure in these cases.
Although CT is biased, it is bounded and it improves upon the two one-sided
tests procedures in all cases, since the former contains the rejection region of
the latter. The power of CM hence is not plotted, since it is strictly between
that of CU and CT. Therefore CM also has noticeable improvement over C2.
These numerical results, together with the fact that CU is unbiased, provide
motivation for use of any one of the improved tests CU, CM or CT rather
than C2.

Finally, even though all the alternative tests improve upon C2, the improve-
ment is negligible when σ is less than 0.4 or when the maximum power is high
(higher than 80 percent). In well-designed studies, σ often falls in this range.
However, in situations when the variability of the observations has been un-
derestimated, these alternative tests are valuable. See Hauck and Anderson
(1996).

4. Construction of CU: theory. We consider the canonical model based
on D and S which are independent and satisfy (1.2) and (1.3). The joint prob-
ability density function of �D;S� is proportional to

exp
(
−�D− θ�

2

2σ2

)
Sp exp

(−S2

2σ2

)
;(4.1)

where p = v− 1.
An unbiased test denoted by a critical function ϕ

U
will be constructed by an

approach similar to that of Hodges and Lehmann (1954). They considered test-
ing the null hypothesis H1 versus the alternative H0. Somewhat surprisingly,
their solution is quite different from ours.

Unbiasedness of ϕ
U

implies that it is similar, that is,

Eθ; σϕU
�D;S� = α(4.2)

for θ = ±1 and every σ > 0. [See, e.g., Chapter 4 of Lehmann (1986).] From
(4.1), when θ = 1, the statistic

R2 = �D− 1�2 +S2(4.3)

is sufficient and complete for σ > 0. This and (4.2) imply that

Eθ; σ�ϕU
�D;S� �R = r� = α for θ = 1(4.4)

and for every value of σ and r.
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Statements similar to those in the last paragraph can be concluded when
1 is replaced by −1. However, the critical function ϕ

U
to be constructed is

symmetric in D, that is,

ϕ
U
�D;S� = ϕ

U
�−D;S�:

Therefore condition (4.4) remains unchanged when 1 is replaced by−1. Hence,
it is sufficient to focus on θ = 1, which is assumed throughout this section
unless mentioned otherwise.

It is convenient to express �D;S� in terms of the polar coordinate �R;β�,
where the origin of the polar coordinate is �1;0�. Here R is defined in (4.3)
and β is the angle between the D axis and the line segment joining �D;S� and
�1;0�. (See Figure 6.) It can be calculated easily that the probability density
function of �R;β� is proportional to

(
r

σ

)p+1

exp
(−r2

2σ2

)
�sinβ�p; 0 < β < π and r > 0:

This obviously implies independence of R and β. Therefore in calculating
the conditional expectation (4.4), only the marginal distribution of β is in-
volved. The probability density function of β is

kp�sinβ�p;(4.5)

Fig. 6. With respect to �1;0�; �R;β� is the polar coordinate of �D;S�.
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where

�kp�−1 =
∫ π

0
�sinβ�p dβ

=





�p− 1��p− 3� · · ·1
p�p− 2� · · ·2 π; if p is even;

�p− 1��p− 3� · · ·2
p�p− 2� · · ·3 2; if p is odd:

We shall summarize the above discussion in the following lemma. For any
critical function ϕ�D;S�, ϕ∗�R;β� denotes the same function value as ϕ�D;S�
where �R;β� is the polar coordinate of �D;S� defined above and in Figure 6.

Lemma 4.1. Suppose the critical function ϕ�D;S� is symmetric with respect
to D. Then ϕ is similar if and only if

kp

∫ π
0
ϕ∗�r;β� sinp βdβ = α(4.6)

for every value of r.

We shall now construct the unbiased test. In fact, we shall describe the
boundary �D�r�; S�r�� of the critical region CU. We shall focus on the bound-
ary points in the first quadrant. By symmetry, the boundary point in the
second quadrant is �−D�r�; S�r�� where r is the distance from �−D�r�; S�r��
to �−1;0�. This relationship is mathematically described by (4.3) as well. The
critical region CU to be constructed below using Lemma 4.1 is the region be-
tween the curves ��−D�r�; S�r��x r > 0� and ��D�r�; S�r�x r > 0�.

In the above terms, the two one-sided tests boundary is ��±D′�r�; S′�r��x 0 ≤
r ≤ 1/ cos�π − ξ�� where ξ satisfies

kp

∫ π
ξ
�sinβ�p dβ = α;

D′�r� = 1+ r cos ξ;

S′�r� = r sin ξ:

(4.7)

(See the triangle in Figure 7.)
The boundary of CU is constructed inductively on regions �ri; ri+1�, i =

0;1; : : : ; with r0 = 0 and limi→∞ ri = ∞. It will later be shown that the
construction is valid for

α∗ < α < 1/2;(4.8)

where

α∗ = kp
∫ π

3π/4
�sinβ�p dβ:

Table 1 shows the values of α∗ for 0 ≤ p ≤ 19. Since α∗ is decreasing in p,
α∗ < 0:0001 for v = p + 1 ≥ 21. For the FDA recommended choice α = 0:05,
the condition is met if and only if v ≥ 5. The restriction is therefore quite
minor. (See also Section 7.)
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Fig. 7. Construction of r1; r2 and η�r�. The dashed lines represent the boundary of the two one-
sided tests corresponding to v = 19 and α = 0:05. Below the points �±D�r1�; S�r1��; this coincides
with the boundary of CU; which is represented by the solid line.

As noted, r0 = 0. Then let

r1 = 21 sin�π − ξ�y

that is, r1 is the distance between �1;0� and the opposite side of the triangle.
Condition (4.8) guarantees that 3π/4 > ξ > π/2, so that

√
21 < r1 < 21.

On this region, namely 0 < r ≤ r1, the boundary curve is the same as that
for the two one-sided tests region. To explain why they agree, note first that
the one-sided t test with a critical region to the left of line L (in Figure 7)
has type one error α. By sufficiency and completeness of R under θ = 1, the
conditional rejection probability of the one-sided t test, given R, is α. Hence
integrating the density (4.5), while β varies from ξ to the horizontal axis
pointing to the negative infinity, is α. Therefore when r < r1, we cannot add

Table 1
Values of α∗ in (4.8)

p+ 1 = v: 1 2 3 4 5 6 7
α∗: 0.25 0.1464 0.0908 0.0581 0.0378 0.0249 0.0166

p+ 1 = v: 8 9 10 11 12 13 14
α∗: 0.0111 0.0075 0.0051 0.0034 0.0023 0.0016 0.0011

p+ 1 = v: 15 16 17 18 19 20 ≥ 21
α∗: 0.0008 0.0005 0.0004 0.0002 0.0002 0.0001 < 0:0001
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more region than the set defined by L and the horizontal axis and still hope
that (4.6) is satisfied. Consequently, CU and C2 have the same boundary.

However, when r > r1, the situation is different. The arc from L to the
horizontal axis is not entirely included in the rejection region. See Figure 7,
which also shows r2 as defined in the next paragraph.

Suppose now that the curve has been defined for r ≤ ri. See Figure 7. Let

ri+1 = ��1+D�ri��2 +S2�ri��1/2;(4.9)

which is greater than

ri = ��1−D�ri��2 +S2�ri��1/2

as long as D�ri� is never zero, which, among other things, shall be proved in
Section 6.

Note that for ri < r < ri+1, the arc centered at �1;0�with radius r intersects
the left boundary of CU. For a fixed r, let P�r� = �−p1�r�; p2�r�� be the
intersection point with the largest second coordinate.

Note that P�r� is defined, being symmetric to P∗�r� = �p1�r�; p2�r�� (in the
first quadrant), which is already defined, since the distance between P∗�r� and
�1;0� is smaller than ri. See Figure 8.

Let

η = η�r� =
{

3π/2− ξ + cos−1�r1/r�; if r < 21;
π; otherwise:

(4.10)

Fig. 8. Inductive construction of the boundary of CU.
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[For r < 21, η is the angle between the D axis and the vector joining �1;0�
and Q�r� where Q�r� is the lower intersection point of the left portion of the
boundary and the arc with length r. See Figure 7.]

Now define D�r� by
(∫ π

η
+
∫ cos−1��−p1�r�−1�/r�

cos−1��D�r�−1�/r�

)
kp sinp βdβ = α:(4.11)

This definition guarantees that (4.6) is satisfied. Further, S�r� can be found
by solving �D�r� − 1�2 +S2�r� = r2.

We summarize the above construction in the following theorem. The Theo-
rem 4.1 is based on an assumption, called the interval assumption: the subset
that consists of points in CU with a given S, S > 0, forms an interval. Namely,
the intersection of CU and a horizontal line is a line segment or an empty set.
This assumption has been observed to be satisfied in all our numerical studies.
We believe that the violation of the interval assumption must be quite rare,
if at all possible. The assumption is satisfied by other unbiased tests which
are not constructed in a way described above. An example can be found in
Figure 4 of Munk (1992), which is closest to violation but still satisfies the
interval assumption.

Theorem 4.1. Assume that α∗ < α < 1/2. The test with the rejection region
CU, whose boundary points �±D�r�; S�r�� are constructed above, is uniformly
more powerful than the α-level two one-sided tests procedure. The test is simi-
lar. Moreover if CU satisfies the interval assumption, CU is an α-level unbiased
test.

Proof. It is shown in Section 6 that when α∗ < α < 1/2 then ri+1 > ri,
i = 0;1; : : :, and limi→∞ ri = ∞. Hence CU is well defined.

The first statement of the theorem follows from the fact that CU contains
the triangle, which is the rejection region of the two one-sided tests procedure.
To see this, we need focus only on the first quadrant by symmetry. Here all
we need to argue is that for every r the angle ξ′ between the D axis and the
line segment joining �D�r�; S�r�� and �1;0� is smaller than ξ. [In terms of the
earlier notation, ξ′ = cos−1��D�r� − 1��/r�.] This is true, since

α = kp
∫
ϕ∗�r;β��sinβ�p dβ ≤

∫ π
ξ′
kp�sinβ�p dβ

and by (4.7),
∫ π
ξ
kp�sinβ�p dβ = α:

Now we argue for the second statement. By construction, CU is similar, that
is, which implies that the power functionPθ; σ��D;S� ∈ CU� is α for θ=±1 and
for every σ . The power function depends on θ only through �θ�. By construction,
CU is symmetric about zero with respect to D, and given an S, CU is an
interval by the interval assumption. It follows that, for each σ , Pθ��D;S� ∈
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CU � S� is decreasing in �θ�, implying the same for the unconditional power.
This implies that CU has α-level and is unbiased. 2

Finally, we discuss an asymptotic formula in the first quadrant. When r is
large, the boundary approaches the line determined by

S�r� = D�r�/ tanλ;(4.12)

where λ is the angle such that
∫ π/2+λ
π/2−λ

kp sinp βdβ = α:(4.13)

The rationale for this is that when r is large, then 1/r is small and the region
approaches that for 1 = 0, leading to the above line.

5. Numerical computation. The following steps indicate how to con-
struct a numerical approximation to CU. The approximate boundary points
will still be denoted in this section as �D�r�; S�r��.

Step 1. Find ξ that satisfies (4.7),
∫ π
ξ
kp�sin θ�p dθ = α

and verify ξ < 3π/4. If α = 0:05, this inequality holds if and only if p ≥ 4. See
Table 1.

Step 2. For 0 < r ≤ 21 sin�π − ξ� = r1, define

D�r� = 1+ r cos ξ and S�r� = r sin ξ:

For Steps 1 and 2, see Figure 7.

Step 3. Let ρ1 = r1. Suppose D�r� and S�r� have already been defined
for 0 ≤ r ≤ ρk. We now describe how to define the next point P�ρk+1� =
�D�ρk+1�; S�ρk+1��. Choose ε > 0 so that ε ≤ D�ρk�. (The smaller ε is, the
more precise the approximation will be, but the total computation will be
longer.) Generally a value of ε can be fixed throughout the computation, but
one must check at each stage that ε ≤ D�ρk�.) Then let

ρ2
k+1 = ρ2

k + 4ε1:

Let P denote the intersection point of the left boundary of CU and the arc A
centered at �1;0� with radius ρk+1. See Figure 9. Note that P is well defined
since the point P∗, symmetric to P with respect to the S axis, is well defined.
To see this, let ρ∗k+1 denote the distance between P∗ and �1;0�, that is,

�D�ρ∗k+1� − 1�2 +S2�ρ∗k+1� = �ρ∗k+1�2
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Fig. 9. Inductive construction of the boundary of CU.

where P∗ = �D�ρ∗k+1�; S�ρ∗k+1��. We now show that ρ∗k+1 < ρk, which implies
that P∗ is defined and hence that P is also. Note that P = �−D�ρ∗k+1�; S�ρ∗k+1��
and the distance between P and �1;0� is ρk+1. Hence

�−D�ρ∗k+1� − 1�2 + �S�ρ∗k+1��2 = ρ2
k+1:

Putting the last two displayed equations together, we have

�ρ∗k+1�2 = �D�ρ∗k+1� − 1�2 +S2�ρ∗k+1�
= �D�ρ∗k+1� − 1�2 + ρ∗k+1 − �−D�ρ∗k+1� − 1�2
= ρ2

k+1 − 41D�ρ∗k+1� < ρ2
k;

assuming D�ρ∗k+1� > ε as well. If D�ρ∗k+1� is not larger than ε, we have to
start with a smaller ε.

Now we define the point �D�ρk+1�; S�ρk+1�� to be on the arc A such that
(4.11) is satisfied; that is,

(∫ π
η
+
∫ cos−1��−D�ρ∗k+1�−1�/ρk+1�

cos−1��D�ρk+1�−1�/ρk+1

)
kp�sinβ�p dβ = α(5.1)

and

�D�ρk+1� − 1�2 +S2�ρk+1� = ρ2
k+1;(5.2)

where η = η�ρk+1� is defined in (4.10).
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Equation (5.1) can be used to solve for D�ρk+1�, since D�ρ∗k+1� is known.
Due to the monotonicity of the left-hand side of (5.1) in D�ρk+1�, this can be
done without much effort. Using D�ρk+1� and (5.2), one can then solve for
S�ρk+1� easily.

Connect the points by line segments. Hence for ρk < r ≤ ρk+1 define

D�r� = D�ρk� +
r− ρk
ρk+1 − ρk

�D�ρk+1� −D�ρk��

and

S�r� = S�ρk� +
r− ρk
ρk+1 − ρk

�S�ρk+1� −S�ρk��:

This completes the definition of �D�r�; S�r�� for ρk < r ≤ ρk+1.

Step 4. Terminate the calculation at some (large) ρk+1 when the points
are close to the asymptote described by (4.12) and (4.13). For a larger r, the
boundary in the first quadrant is then the asymptote.

6. Existence of CU. The construction in Section 4 relies on the facts that
ri+1 > ri, i = 0;1; : : :, and limi→∞ ri = ∞. The following geometric lemmas
are crucial to the proof of these facts.

Let O = �a;0� with a > 0 be a point on the horizontal axis. See Figure 10.
For a fixed point A = �x;y� in the first quadrant, let B = �0; h1�, h1 > 0 be
the point on the vertical axis such that

OB = OA;

where, for example, OB denotes the distance between O and B. It is assumed
that

OA > a(6.1)

so that point B exists. Let C = �−x;y� denote the symmetric point of A with
respect to the vertical axis and let D = �0; h2�, h2 > 0, denote the point on
the vertical axis such that OD = OC. Also shown in Figure 10 are E = �0; y�,
α = 6 BOC, β = 6 DOB and γ = 6 AOD.

Figure 10 illustrates only the most interesting of the possible geometric
configurations for this construction, where x ≤ a and α > 0. All configurations
have γ > 0, as verified in Lemma 6.1.

Lemma 6.1. The condition

x2 + y2 > a2(6.2)
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Fig. 10. Illustration of the construction in Lemmas 6.1–6.3.

implies, in the above construction, γ > 0. (That is, the segment DO is located
counterclockwise from AO.)

Proof. If x ≥ a, the lemma is trivial. Assume x < a below. Extend the
line OA to meet the vertical axis at F. Algebraic manipulation shows that
the assumpiton (6.2) is equivalent to �O′C�2 + �CO�2 > �O′O�2, where O′

is the symmetric point of O with respect to the vertical line. This implies
6 O′CO < π/2. It follows that the point F′ on the y-axis, such that 6 OCF′ =
π/2, lies below F. Since OCD is an equilateral triangle, F′ is above D. Hence
F is above D and γ > 0. 2

The other important geometric fact is contained in Lemma 6.2.

Lemma 6.2. In the above construction 6 DOC < 6 AOB.

Proof. Examination of the construction displayed in Figure 10 and some
algebraic calculation show that ED = EB if and only if 6 EOO′ = π/4 and
x < a.
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If ED ≤ EB then 6 EOO′ ≤ π/4 and B falls below the segment CO so that
DOC ⊂ AOB by Lemma 6.1. It follows trivially that 6 DOC < 6 AOB.

If EB < ED then CB < CD = AD. Consider the triangles COB and DOA.
They then have CO = DO, OB = OA and CB < DA. Hence α < γ. It follows
that 6 DOC = α+ β < γ + β = 6 AOB. 2

These two geometric lemmas combine to yield the following analytic result.
Here, let η1 =̇ 6 O′′OA, η2 =̇ 6 O′′OB, η3 =̇ 6 O′′OD, η4 = 6 O′′OC.

Lemma 6.3. Assume (6.1) and (6.2). Then

∫ η2

η1

sinp βdβ >
∫ η4

η3

sinp βdβ:(6.3)

Proof. η2 − η1 > η4 − η3 by Lemma 6.2, and η1 < η3 by Lemma 6.1. If
α ≤ 0, then η1 < η3 < η4 ≤ η2 so the conclusion of this lemma follows trivially.
If α > 0, make use of the fact that sinβ is unimodal and symmetric about π/2
and η4 − α = η2 > π/2 and η3 > π/2 to write

∫ η4

η3

�sinβ�pdβ <
∫ η4−α

η3−α
�sinβ�pdβ =

∫ η2

η3−α
�sinβ�pdβ <

∫ η2

η1

�sinβ�pdβ;

which establishes the lemma. 2

We can now establish the validity of the construction of CU, as follows.

Theorem 6.1. When α∗ < α < 1/2, the quantities ri defined in the construc-
tion of CU satisfy ri < ri+1, i = 0;1; : : :, and limi→∞ ri = ∞. Hence CU exists.
The corresponding test is unbiased if the interval assumption is satisfied.

Proof. We will suppose the theorem is false and obtain a contradiction.
Hence, suppose

r∗ = lim
i→∞

ri <∞:(6.4)

Since D is continuous, in the case of (6.3) D�r∗� = 0. In the case of (6.4) there
must be a sequence �ri� increasing to r∗ so that limi→∞D�ri� and limS�ri�
exist. So, for notational convenience in this case, let D�r∗� = limi→∞D�ri�,
S�r∗� = limi→∞S�ri�.

In either case, there is an r∗∗ < r∗ such that

�−D�r∗∗� − 1�2 +S�r∗∗�2 = �r∗�2:(6.5)

(Expressed in terms of the construction in Section 4, p�r∗� = �−D�r∗∗�;
S�r∗∗��.) See Figure 10 with O = �1;0� = �a;0�, A = �D�r∗∗�; S�r∗∗�� = �x;y�,
C = �−D�r∗∗�; S�r∗∗��, DO = r∗ and BO = r∗∗. Here we assume that there
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exists B on the vertical axis so that (6.5) holds. To argue that this is the case,
it suffices to establish (6.1), which together with (6.2) shall be established at
the end of the proof. Consequently, Lemma 6.3 is applicable.

By continuity from (4.11),

α =
(∫ π

η�r∗�
+
∫ η4

η3

)
sinp βdβ;(6.6)

where η�r∗� is as defined in (2.9), η3 = cos−1�−1/r∗� and η4 = cos−1��−1 −
D�r∗∗��/r∗�.

Since r∗∗ > r∗, the first integral on the right-hand side of (6.6) is bounded
above by

∫ π
η�r∗∗�

kp sinp βdβ:(6.7)

By Lemma 6.3, the second integral is strictly less than

∫ η2

η1

kp sinp βdβ;(6.8)

where η1 = cos−1��D�r∗∗� − 1�/r∗∗� and η2 = cos−1�−1/r∗∗�. Therefore (6.6)
is strictly less than (6.7) plus (6.8), which equals α. This shows α < α, a
contradiction. Hence r∗ = ∞.

Finally we shall prove (6.1) and (6.2), using α > α∗. We compare the rejection
region O′VO of the α-level two one-sided tests procedure to the corresponding
region O′V′O of α∗. See Figure 11.

Since 6 V′OO′ = π/4, the vertex V′ has the cordinate �0; a�. It is then
obvious that S�r1� > a and JO > a, where J = �D�r1�;D�r1�� is on VO.
Therefore pointA should be in regionT, which is a subset of the first quadrant
outside the bigger triangle and the circle passing J centered at O. The reason
is that point A is on the upper boundary beyond the point J and the boundary
can only be in T. [The intersecting point on the lower boundary corresponds
not to A but to η∗�r∗�, which results in the first integral on the right-hand
side of (6.6).] Now all the points in T satisfy (6.1) and (6.2) and so does A. 2

7. An approximately unbiased test for a < a∗. Up to this point, it has
been assumed that α > α∗. Although most practical problems satisfy the con-
dition, it may be of interest to discuss briefly what results are available when
the condition fails.

For some cases, it is possible to construct tests which are exactly unbiased.
See Figure 12 for α = 0:25 and ν = 1. (Here α∗ = α.) In general, for α ≤ α∗
we do not have existence results. However, Munk (1992) has an algorithm to
construct numerically unbiased tests which dominate the two one-sided tests
procedure. Note that there is a simple proof that a dominating test exists, as
in Hwang and Liu (1992).
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Fig. 11. This and Figure 10 are used to establish that the intersection of the boundary with the
vertical axis leads to a contradiction.

8. Comparing our numerical results with those of Diletti, Hauschke
and Steinijans. A referee pointed out that there seems to be inconsistency
between our numerical results and that of Diletti, Hauschke and Steinijans
(1991). We therefore explain briefly here by an example which serves to con-
nect our results with theirs and also serves to illustrate our notation.

As in Diletti, Hauschke and Steinijans (1991), let XT and XR represent the
sample averages corresponding to the logarithmically transformed character-
istics of the test treatment and the reference treatment. The typical unbiased
estimate of θ, the difference of the characteristics corresponding to the test
treatment and the reference treatment, is then XT −XR, which is assumed
to be normally distributed with varance 2σ2

0/n where n is the total number
of subjects and σ2

0 is the within subject variance of the logarithmically trans-
formed characteristic. Note that σ0 is roughly equal to the coefficient of vari-
ation (CV) of the untransformed characteristic as specified in all the figures
of Diletti, Hauschke and Steinijans (1991). Define

D = XT −XR

ln 1:25
:
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Fig. 12. Rejection region of an unbiased test when ν = 1 and α = α∗ = 0:25. The arcs with radii
r∗1; r

∗
2; r

∗
3 and r∗4 all lie within the rejection region.

Then D ∼N�θ; σ2�, where

σ2 = 2σ2
0

n�ln 1:25�2 ;(8.1)

which gives the canonical form (1.2) and (1.3). The corresponding hypothesis
tested is then (1.1) with 1 = 1.

As an example, let n = 21 and under the 2× 2 crossover design model with
subject and period effects, the degrees of freedom are v = 19. Also consider

σ0 = 0:2892;

which interests us since it leads, by (8.1), to

σ =
√

2�0:2892�2
21�ln�1:25��2 = 0:4:

With this σ and v, the maximum power according to Figure 4, is about 0:57.
Using Figure 2d of Dilletti, Hauschke and Steinijans (1991), for n = 21 and
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CV = 0:25, the maximum power is about 0:69. The discrepancy is due to
the fact that our CV is 0:2892 whereas theirs is 0:25. By considering their
Figure 2a for the case with CV = 20% and the approximate maximum power
0:89, we may linearly extrapolate to give an approximate maximum power for
CV = 0:2892 to be 0:53, which is close to our answer 0:57.
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