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LOG-DENSITY ESTIMATION IN LINEAR
INVERSE PROBLEMS1

BY JA-YONG KOO AND HAN-YEONG CHUNG

Hallym University

We estimate a probability density function p which is related by a
linear operator K to a density function q in sequences of regular exponen-
tial families based on a random sample from q. In this paper deconvolu-
tion and positron emission tomography are considered. The logarithm of
the density function is approximated by basis functions consisting of

Žsingular functions of K. While direct maximum likelihood or minimum
.Kullback�Leibler density estimation in exponential families selects the

parameters to match the moments of the basis functions to the sample
moments, in the inverse problem the moment of each singular function is
related to a corresponding moment of the direct problem by a factor given
by a singular value � of K. Thus an appropriate analogue of the maxi-�

mum likelihood estimate is obtained by matching moments with respect to
p to 1�� times the empirical moments associated with the sample from�

q. Bounds on the Kullback�Leibler distance between the true density and
the estimators are obtained and rates of convergence are established for
log-density functions having a measure of smoothness. The density esti-
mator converges to the unknown density in the Kullback�Leibler sense
and in the L -sense at a rate determined not only by the order of2
smoothness of the log-density and the dimension of data but also by the
decay rate of the singular values of the operator. A minimax lower bound
for deconvolution is provided under certain conditions. Numerical exam-
ples using simulated data are provided to illustrate the finite-sample
performance of the proposed method for deconvolution and positron emis-
sion tomography.

1. Introduction. Suppose we observe a random sample Y , . . . , Y from1 n
Ž . da density function q y , y � DD � RR , which is related by a linear operator K

Ž . dto a density function p x , x � BB � RR , that we wish to estimate. The linear
operator equation q � Kp is usually represented by an integral equation

1 q y � k y , x p x dx ,Ž . Ž . Ž . Ž .H
where k is known. In this paper, we will consider two interesting problems:

Ž .deconvolution where q is the convolution of p with a known density k and
Ž . Ž .positron emission tomography PET where q is the Radon transform of p .

This kind of indirect problem is referred to as a statistical inverse problem.
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For inverse problems related to the Fredholm integral equation of the first
kind, this is usually the case. The problem of solving such equations is often
difficult since in cases which are of most interest scientifically, K is not
invertible; that is, K�1 does not exist as a bounded linear operator so that a
small perturbation of q may result in a large distortion of the solution p.
These inverse problems are called ill-posed and this makes our inverse
problem somewhat more difficult.

Consider the direct problem where the main interest is to estimate q. The
approximation of log-densities in direct problems has been considered by

Ž . Žmany people. Related works include Neyman 1937 , Crain 1974, 1976a, b,
. Ž . Ž . Ž .1977 , Leonard 1978 , Silverman 1982 , Mead and Papanicolaou 1984 ,

Ž . Ž . Ž .Stone and Koo 1986 , O’Sullivan 1988 , Stone 1989, 1990, 1994 , Kooper-
Ž . Ž � � .berg and Stone 1991, 1992 , Barron and Sheu 1991; BS hereafter , Kooper-

Ž . Ž . Ž .berg 1995 , Koo 1996 and Koo and Kim 1996 . Estimates of density
functions based on exponential families have an advantage as they are
automatically positive and integrate to 1. For other traditional methods of
nonparametric density estimation, such as kernel estimators and orthogonal
series expansions of the density rather than the log-density, refer to Devroye

Ž . Ž .and Gyorfi 1985 and Silverman 1986 .¨
There is considerable interest in statistical inverse problems; the following

literature on statistical inverse problems may not be a complete list. Deconvo-
Ž .lution has been considered by Mendelsohn and Rice 1982 , Carroll and Hall

Ž . Ž . Ž . Ž .1988 , Stefanski and Carroll 1990 , Fan 1991, 1993 and Efromovich 1997 .
Ž .PET positron emission tomography has been considered by Vardi, Shepp

Ž . Ž .and Kaufman 1985 , Jones and Silverman 1989 , Johnstone and Silverman
Ž . Ž . Ž . Ž .1990, 1991 , Bickel and Ritov 1995 and O’Sullivan 1995 . Donoho 1993
considered wavelet methods for recovery of objects, such as signals, densities

Ž .and spectra, from noisy and indirect data; Donoho 1994 addressed the
minimax risk in estimating a linear functional of an unknown object from

Ž .indirect data; Donoho 1995 developed a wavelet�vaguelette decomposition
Ž .WVD for linear inverse problems. Silverman, Jones, Nychka and Wilson
Ž . Ž . Ž .1990 , Vardi and Lee 1993 , Eggermont and LaRiccia 1995 and Koo and

Ž .Park 1996 applied the EM algorithm to linear inverse problems. O’Sullivan
Ž . Ž . Ž . Ž .1986 , Nychka and Cox 1989 , Koo 1993 and Kolaczyk 1996 studied
linear inverse problems in regression frameworks.

The approach taken here is to seek a solution with p in an exponential
Ž .family determined by functions from the singular-value decomposition SVD

Ž .of the operator K. In this way positivity and integrability to 1 of the
estimate are ensured and it is possible to determine the convergence rates for

� �sufficiently smooth densities p following the general method of BS . The
Ždifference is that while direct maximum likelihood or minimum Kullback�

.Leibler density estimation in exponential families selects the parameters to
match the moments of the basis functions to the sample moments, in the
inverse problem the moment of each singular function is related to a corre-
sponding moment of the direct problem by a factor given by a singular value
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� of the operator K. Thus an appropriate analogue of the maximum likeli-�

hood estimate is obtained by matching moments with respect to p to 1���

times the empirical moments associated with the sample from q.
It is shown that the proposed density estimator p converges to p in theˆn

Kullback�Leibler sense at a rate determined not only by the order of smooth-
ness r of log p and the dimension d of x but also by the decay rate s of the
singular values. A minimax lower bound is provided for deconvolution to
show our estimator is asymptotically optimal, where the optimal rate of

�2 r�Ž2 r�2 s�1. Ž .�2 r� sconvergence has the form n or log n accordingly as the
characteristic function of the contaminating noise decays algebraically or
exponentially. In the case of PET, the rate has the form n�2 r�Ž2 r�3. or
n�r �Žr�2. depending on the smoothness condition for log p.

Simulation results for deconvolution and PET are provided to show the
finite-sample performance of p having a fixed number of basis functions.ˆn
The EM algorithm is known to be slow in implementation, and the kernel-type

Ž . Ž .estimators KE’s for deconvolution in Stefanski and Carroll 1990 and Fan
Ž . Ž .1991 or the orthogonal series estimators OSE’s for PET in Jones and

Ž . Ž .Silverman 1989 and Johnstone and Silverman 1990, 1991 may not have
the positivity for some n, especially where p is close to zero such as at tails.

Ž .For positivity problems, see Jones and Silverman 1989 and Stefanski and
Ž .Carroll 1990 and our simulation result in Section 6. However, for asymp-

totic analysis, we consider the class of densities which are bounded away
from zero and infinity, in which case the probability that OSE’s or KE’s take
nonpositive values will tend to zero as n � �. One can consider modified
versions of OSE’s and KE’s to guarantee the positivity and the property of

Ž .integration to 1; Efromovich 1997 employed the nonnegative projection in
L for this purpose.2

In continuation of the numerical work of this paper, computer simulation
is being used to determine the finite-sample performance of inference based
on log-density estimation with SVD. Important advantages of computer
simulation are that attractive and mathematically unwieldy modifications
can be studied and that the effect of the ill-posedness by comparing p withˆn
the estimate based on data from p which is not observable in practice can be
seen. In our investigation, we have focused on a selection rule of choosing
basis functions in a data-dependent manner.

The basic idea of this paper is similar to Johnstone and Silverman
�Ž . � � � Ž .1990 ; JS hereafter and Donoho 1995 , although they did not consider the
positivity constraint: their proposal is to form SVD�WVD coefficients of
the empirical data and to operate on these coefficients. It is believed that
WVD is a promising topic for future investigation due to its remarkable local
adaptivity.

The paper is organized as follows. In Section 2 we describe SVD for
deconvolution and PET. Section 3 proposes the log-density estimation based
on SVD. Asymptotic results on rates of convergence are stated in Section 4
and proved in Section 7. A minimax lower bound for deconvolution is pro-
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vided in Section 5 and the proof of it is also given in Section 7. Section 6
contains numerical examples for deconvolution and PET using simulated
data.

2. SVD for deconvolution and PET. We begin with a brief review of
SVD and its significance. Let GG and HH be Hilbert spaces and let K : GG � HH be

² :a bounded linear operator. Let , stand equally for the inner products of GG

and HH. Then under suitable conditions there exist orthonormal sets of func-
� 4 � 4 Ž . � 4tions � in GG and � in HH, and possibly complex numbers � , the� � �

singular values of K, such that the following hold:

² :1. given p in GG, Kp � Ý � p, � � ;� � � �

2. the � ’s span the orthogonal complement of the kernel of K ;�

3. the � ’s span the range of K ;�

4. and K� � � � for all � .� � �

If no � is zero, we have the reproducing formula�

² :Kp, ��
p � � .Ý ����

� 4For example, if K*K is a compact operator, we can choose � as its�

eigenfunctions; �2, the corresponding eigenvalues; and � � K� �� � �

² :1�2K� , K� , the normalized image.� �

The point here is that in the bases � and � , K is diagonal and if a� �

singular value � is small, then it will be difficult to recover reliably the�

component of an unknown function p along the corresponding � based on�

observations from Kp since noise encountered in estimation of the component
of p along � will be amplified by a factor of ��1. There are several forms� �

dealing with this instability such as the windowed SVD method which
includes the tapered orthogonal series method, quadratic regularization and

Ž .iterative damped backprojection; refer to Donoho 1995 for more details on
these methods and various examples of SVD.

2.1. Circular deconvolution. Suppose that the observations Y , j �j
1, . . . , n, are the sum of two independent and identically distributed compo-
nents X and Z . We desire to estimate the unknown density p of the Xj j j
using the observed data Y whose unknown density is q. The density functionj
k of the additive contaminating noise Z is assumed known; in addition, Xj j
and Z are assumed to be independent. For simplicity, we assume that the Xj j
and Z take values in the unit circle; see Section 5 for the noncircular case.j
This classical model of circular data or so-called wrapped distribution has

Ž .also been considered by Johnstone and Silverman 1991 and Efromovich
Ž .1997 , among others. We assume that BB and DD are the unit circle, and the
dominating measures � and � of p and q, respectively, are the usual
Lebesgue measure on the unit circle; GG and HH are the spaces of functions
which are square-integrable with respect to the Lebesgue measure. The
density functions p and q of X and Y , respectively, are related by thej j
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convolution equation

1
2 q y � k y � x p x dx ,Ž . Ž . Ž . Ž .H

0

where all arithmetic on the arguments of k and p is performed modulo 1. Let
us observe that

1
� �3 q y 	 sup p x k y � x dx � sup p x .Ž . Ž . Ž . Ž . Ž .H

0x�BB x�BB

Ž . 2	 i� xLet Ý � � be the formal Fourier expansion of k with � x � e . ByZZ � � �

standard calculations the convolution mapping has SVD given by singular
Ž . Ž . 2	 i� xfunctions � x � � x � e , with singular values � , � � ZZ.� � �

2.2. PET. We describe SVD for an idealized version of PET described in
� �JS . Give the name detector space to the space DD of all possible unordered
pairs of points on a detector ring, and call brain space a disc BB in the plane

�Ž . 2 2 4enclosed by the detector ring. Here BB is x , x : x � x 	 1 in Cartesian1 2 1 2
�Ž . 4coordiantes or u, v : 0 	 u 	 1, 0 	 v � 2	 in polar coordinates and DD

�Ž . 4is y , y : 0 	 y 	 1, 0 	 y � 2	 . Define a dominating measure � on1 2 1 2
Ž . �1 Ž .brain space to be d� x , x � 	 dx dx or, equivalently, d� u, v �1 2 1 2

�1 Ž .	 u du dv, and on detector space, a dominating measure � by d� y , y �1 2
�2 Ž 2 .1�2 Ž .2	 1 � y dy dy ; GG is the space L BB, � of functions on brain space1 1 2 2

that are square-integrable with respect to the dominating measure �. Cor-
Ž .respondingly, HH is the space L DD, � of detector-space functions square-2

integrable relative to � .
Ž .Now suppose an emission takes place at X , X and that the correspond-1 2

ing photon pair has trajectory at angle 
; taking 0 	 
 	 	 for definiteness,
the joint probability density with respect to dx dx d� on BB and 0 	 � 	 	1 2

Ž . �2 Ž .is given by p x , x , � � 	 p x , x . Now change variables byX , X , 
 1 2 1 21 2

setting

� �Y � X cos 
 � X sin 
 ,1 1 2


 , if X cos 
 � X sin 
 
 0,1 2Y �2 ½ 
 � 	 , otherwise,
4Ž .

T � �X sin 
 � X cos 
 ;1 2

Ž .the variables Y , Y are the coordinates of the detected photon pair. Inte-1 2
grating out the unobserved variable T, we obtain the joint density with
respect to dy dy ,1 2

2'1�y1�2p y , y � 	 p y cos y � t sin y , y sin y � t cos y dt .Ž . Ž .HY , Y 1 2 1 2 2 1 2 21 2 2'� 1�y1
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The observable density q with respect to � in detector space is given by Kp
with K the Radon operator; specifically,

Kp y , yŽ . Ž .1 2

2�1�2 '1�y11 2� 1 � y p y cos yŽŽ . H1 1 22
2'� 1�y1

5Ž .

�t sin y , y sin y � t cos y dt ..2 1 2 2

Ž . Ž .Introducing the Dirac delta function � , 5 can be written as 1 , where
�1�21 26 k y , x � 1 � y � x cos y � x sin y � y .Ž . Ž . Ž .Ž .1 1 2 2 2 12

It can be seen that
2�1�2 '1�y11 2� �7 Kp y , y 	 sup p x 1 � y dt � sup p x .Ž . Ž . Ž . Ž .Ž . H1 2 12

2'� 1�yx�BB x�BB1

To describe the SVD of the Radon operator, we need double indices, specifi-
� Ž . 4cally � � NN � � � � , � : � � 0, 1, 2, . . . ; � � � , � � 2, . . . , �� . In1 2 2 1 2 2 2

Ž . Ž .brain space, an orthonormal basis for L BB, � is given by � u, v �2 �

Ž .1�2 �� 1 �Ž . Ž . Ž . �� 1 �� � 1 Z u exp i� v , � � NN, u, v � BB, where Z denotes the Zernike2 � 1 �2 2
� �polynomial of degree � and order � . The corresponding orthonormal2 1

Ž . Ž . Ž . Ž .functions in L DD, � are � y , y � U y exp i� y for � � NN and2 � 1 2 � 1 1 22

Ž . Ž . Ž .y , y � DD, where U cos y � sin � � 1 y �sin y are the Chebyshev1 2 � 1 2 1 12

polynomials of the second kind. Then, we have K� � � with singular values� �

Ž .�1�2 Ž .� specified by � � � � 1 , � � NN. Refer to Deans 1983 for the� � 2
properties of the Zernike and the Chebyshev polynomials.

In the PET problem, we have X , . . . , X , which are n independent unob-1 n
servable observations of emissions in brain space from the density p, and
Y , . . . , Y , which are corresponding observable observations in detector space1 n
drawn from the density q.

3. Log-density estimation based on SVD. This section describes the
log-density estimation based on SVD of the operator K. We relate our method
to the other two popular principles: maximum entropy method in the problem

� Ž .�of moments Mead and Papanicolaou 1984 and the EM algorithm for
deconvolution.

3.1. Maximum entropy method for the moment problem. In the classical
moment problem, one seeks a positive density p from knowledge of its power

j Ž .moments a � Hx p x dx, j � 0, 1, 2, . . . . In practice, only a finite number ofj
moments, say J � 1, are usually available. Clearly then there exists an
infinite variety of functions whose first J � 1 moments coincide and a unique
reconstruction of p is impossible.

The maximum entropy approach offers a definite procedure for the con-
struction of a sequence of approximations. Introducing appropriate Lagrange

Ž .multipliers 
 , 
 , . . . , 
 , one ends up with the solution of the form p x �0 1 J J
Ž J j .exp Ý 
 x � 
 . Assuming a � 1, the Lagrange multipliers should sat-j�1 j 0 0
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isfy a system of equations:

J
jexp 
 � exp 
 x dx andŽ . ÝH0 jž /j�1

H x j exp ÝJ 
 x j dxŽ .j�1 j
a � , j � 1, . . . , J .j J jH exp Ý 
 x dxŽ .j�1 j

8Ž .

Ž .For numerical purposes, one introduces a function � 
 ,

J J
j9 � 
 � 
 a � log exp 
 x dx ,Ž . Ž . Ý ÝHj j jž /j�1 j�1

where the a ’s are the actual numerical values of the known moments.j
Ž . Ž .Stationary points of the function � 
 in 9 are solutions to the equation

Ž . Ž .� � 
 ��
 � 0, which is precisely equation 8 .j
For statisticians, a ’s are given in the form of empirical moments, that is,j

a � n�1Ýn X j , where X , . . . , X form a random sample from p. Then theˆj m�1 m 1 n
maximum-entropy solution is the density estimator p matching each empir-ˆJ

j Ž .ical moment a to Hx p x dx, where p belongs to the exponential familyˆ ˆ ˆj J J

exp ÝJ 
 x jŽ .j�1 j
p : p x � .Ž .
 
 J j½ 5H exp Ý 
 x dxŽ .j�1 j

We have a question before we give our method of estimation: how to give a
ˆ� 4density estimator when we are given a set of statistics b whose expectedj

� 4values are the same as a ?ˆj

3.2. Missing data formulation for deconvolution. Deconvolution problem
may be formulated in terms of missing data, which enables the application
of the EM algorithm. Suppose the density of X has the form p �


� Ž .4 Ž . � Ž .4 � 4exp Ý 
 � � c 
 , where c 
 � log H exp Ý
 � x dx and � : � � JJ is� � JJ � � � � �

a set of functions. For identifiability, a constant function is not included in
� 4 Ž .� : � � JJ . We also assume that p satisfies the linear operator equation 1� 


Ž .with k �� x the conditional density of Y given X � x. Then the joint
Ž . Ž . Ž .distribution of X, Y is specified by k and p such that k y � x p x is the
 


Ž .density of X, Y . In this context one may speak of X as the missing part
Ž .of X, Y .

� Ž .�The EM algorithm Dempster, Laird and Rubin 1977 is an iterative
procedure for selecting an estimator of an unknown parameter 
 when a part
of the sample is missing. It is especially appropriate to applications involving

Ž . Ž .exponential families. For a random sample X , Y , . . . , X , Y from the1 1 n n
Ž .distribution of X, Y , the maximum likelihood estimator maximizes the

Ž . Ž . �1 n � Ž . Ž .4unobserved likelihood function l 
 � n Ý log k Y � X p X . Ifu j�1 j j 
 j
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Ž .Y , . . . , Y are merely available, the observed log-likelihood is given by1 n

n
�110 l 
 � n log k Y � x p x dx .Ž . Ž . Ž .Ž .Ý Ho j 


j�1

The two steps of the EM algorithm can be expressed as follows:

1. E step�calculate

n H� x k Y � x p x dxŽ . Ž .Ž .� j 
Žm. �1� � n ;Ý� ½ 5H k Y � x p x dxŽ .Ž .j 
j�1

Žm�1. Ž . Ž . Žm.2. M step�obtain 
 as the solution of H� x p x dx � � .� 
 �

A stationary point 
 * of the EM algorithm satisfies

n1 H� x k Y � x p x dxŽ . Ž .Ž .� j 
 *
11 � x p x dx � .Ž . Ž . Ž . ÝH � 
 * ½ 5n H k Y � x p x dxŽ .Ž .j 
 *j�1

Ž . Ž .If 
 * is the true parameter, then 11 can be written as E � X �
 * �
�1 n � Ž . 4 � � Ž . 4� Ž .n Ý E � X � Y . Since E E � X � Y � E � X , the EM algo-j�1 
 * � j j 
 * 
 * � 
 * �

Ž .rithm may be interpreted as a method matching each E � X , � � JJ, to an
 �

unbiased estimator of it.

3.3. Definition of estimators. When K is either the convolution operator
Ž . Ž .or the Radon operator, � x � 1 for x � BB, � y � 1 for y � DD and � � 1.0 0 0

Assume that the densities p and q have singular function series representa-
² : Ž . Ž . Ž .tion p � Ýa � and q � Ýb � , where a � p, � � H p x � x � dx� � � � � � BB �

² : Ž . Ž . Ž .and b � q, � � H q y � y � dy . The relation q � Kp gives� � DD �

12 b � � a .Ž . � � �

Ž .Relation 12 is essential in constructing a density estimator p based onˆn
SVD guaranteeing that p is a bona fide density in the sense that p isˆ ˆn n
nonnegative and integrates to 1.

d � 4An index set JJ is a subset of ZZ � 0 and J denotes the number ofn n
elements in JJ . For a subset II of ZZ d, let Ý denote the summation over II.n II

Ž . Ž .Let � be the collection of J -dimensional vectors 
 � 
 , where 
 is an n � JJ � JJn n

J -dimensional vector of elements 
 , � � JJ . The exponential family based onn � n
� 4singular functions � : � � JJ is defined by� n

13 p x � exp 
 � x � c 
 for x � BB and 
 � � ,Ž . Ž . Ž . Ž .Ý
 � � n n½ 5
JJn

Ž . � Ž .4 Ž .where c 
 � logH exp Ý 
 � x � dx .n BB � �

Before we propose our estimators, let us consider the case when we have
a random sample X , . . . , X from the distribution with density p. The log-1 n

Ž . Ž .likelihood function based on the exponential family 13 is defined by l 
 �u
�1 nŽ . Ž .Ý 
 � � c 
 , 
 � � , where � � n Ý � X . Given X ’s, we defineJJ � � n n � j�1 � j jn ˜Ž .by p � p the maximum likelihood estimator MLE of p, where 
 maxi-˜ ˜n 
 nn
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Ž . ² :mizes l 
 . The MLE p should satisfy the likelihood equation � , p � �˜u n � 
 �

Ž . Ž . Ž .for � � JJ ; that is, p is an estimator matching each H � x p x � dx to˜ ˜n n BB � n
Ž . Ž . Ž .an unbiased estimator � of H � x p x � dx .� BB �

Now we define density estimators for our inverse problems. Since X ’s arej
�1 n Ž .not observable, we replace � by � �� , where � � n Ý � Y . We intro-� � � � j�1 � j

duce the indirect likelihood

��
14 l 
 � 
 � c 
 , 
 � � .Ž . Ž . Ž .Ý � n n��JJn

Ž . Ž .It should be emphasized the l 
 in 14 is not necessarily interpretable as a
likelihood; it is an object function to be optimized for the definition of our
density estimators. We define by p the maximum indirect likelihood estima-
̂n ˆŽ .tor MILE of p based on incomplete data Y , . . . , Y , where 
 maximizes1 n n
Ž .l 
 over 
 � � . Let us note that the MILE p should satisfy the equationˆn n

² :15 � , p � � �� for � � JJ .Ž . � 
 � � n

Ž .REMARK 1. From 15 , the MILE can be motivated as an estimator match-
Ž . Ž . Ž .ing each of H � x p x � dx , � � JJ , to an unbiased estimator � �� ofBB � 
 n � �

Ž . Ž . Ž .H � x p x � dx based on the incomplete data alone. For the direct prob-BB �

Ž . � � Ž .lem, Stone 1989, 1990, 1994 , BS and Koo and Kim 1996 have shown
asymptotic properties of exponential family density estimators based on

Ž . Ž .several basis functions. Since E � � E � �� from 12 , we may hope thatp � q � �

we can investigate the asymptotic behavior of p by a modification of theseˆn
methods.

Ž .REMARK 2. For deconvolution, it can be shown that the function l 
o
Ž .given by 10 increases at each iteration of the EM algorithm, even when the

density of X does not belong to the exponential family based on the singular
� Ž .�functions � , � � JJ Koo and Park 1996 . Under fairly general conditions� n

Ž . � Ž .�the EM algorithm will converge to a local maximum of l 
 Wu 1983 .o
Ž . Ž .Since the concavity of l 
 in 
 does not in general imply concavity of l 
u o

in 
 , there is no guarantee that such a local maximum point is unique or that
Ž .it is the global maximum point. However, since the Hessian matrix of c 
 isn

ˆpositive definite, 
 is unique if it exists.n

4. Asymptotic results. In this section we state asymptotic results on
sequences of exponential families based on SVD. From now on we let
M, M , M , . . . denote positive constants which are independent of n.1 2

In our subsequent analysis, we place a constraint on the unknown density
p over BB by assuming log p lies in a particular class FF. For reasons of
mathematical tractability, this class is taken to be a particular ellipsoid FF in

Ž . � � Ž d 2 .1�2 dthe Hilbert space GG � L BB, � . Let x � Ý x for x � RR .2 j�1 j
Ž .Smoothness class for deconvolution. We let FF r, M be the nonparamet-

ric class of functions f in GG such that f � Ý f � satisfies the smoothnessZZ � �
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condition
2 r 2� � � �16 1 � � f 	 MŽ . Ž .Ý �

ZZ

for a positive constant M.
Smoothness classes for PET. We transform the index set NN into the

�Ž � � . � � 4lattice orthant NN � � � , � : � 
 0, � 
 0 by the change of variables1 2 1 2
� Ž . � Ž .� � � � � �2, � � � � � �2. A function f � GG can be represented as1 1 2 2 1 2

f � Ý f � , whereNN � � �

1�2 �� �� �1 2� u , v � � � � � 1 Z u exp i � � � v for � � NN �.Ž . Ž . Ž . Ž .Ž .� 1 2 � �� 1 21 2

We consider the ellipsoids

2 r 2� � � �17 FF r , M � f : 1 � � f 	 MŽ . Ž . Ž .Ý �½ 5
NN�

and

r r 2� �18 FF r , M � f : 1 � � 1 � � f 	 MŽ . Ž . Ž . Ž .ÝJS 1 2 �½ 5
NN �

for a threshold M.

Ž . Ž .REMARK 3. The positive integer r in 16 � 18 can be thought of as a
Ž .measure of smoothness of functions in such ellipsoids. Let L I be the2

� � � �Hilbert space of square-integrable functions on I � 0, 1 , and let � denote2
Ž . mthe usual L -norm therein. For integer m and f � L I , let D f denote the2 2

r � Ž . r 4derivative of order m, and let WW � f � L I : D f � L be the correspond-2 2 2
Ž .ing Sobolev space on I. For a function f � L I , define by f the classical2 �

Fourier coefficient which is given by the usual inner product of f and � ,�

Ž . 2	 i� xwhere � x � e for x � I. The nonparametric class of functions given by�

� Ž � �.2 r � � 2 4f : Ý 1 � � f 	 M can be identified by a periodic Sobolev class in theZZ �

Ž . � r � r � m Ž . m Ž .L -sense, that is, WW r, M � f � WW : D f 	 M, D f 0 � D f 1 , m �22 2 2
4 � Ž .� Ž .0, . . . , r Nussbaum 1985 . On the other hand, f belongs to the set FF r, MJS

if f has r weak derivatives with respect to the modified dominating measure
Ž . Ž .Ž � � 2 .r Ž . � �d� x � r � 1 1 � x d� x ; refer to Proposition 2.2 of JS for ther�1

Ž . Ž .proof of this fact. The characterization of FF r, M given by 17 appears to be
Ž .quite different from that of FF r, M .JS

Ill-posedness. It is assumed that the singular values satisfy
�s d� � � �19 � 
 d 1 � � for � � ZZ ,Ž . Ž .� 1

where d is a positive constant and s a nonnegative constant. We refer to s1
as the order of K.

Ž . dREMARK 4. Condition 19 excludes the case where � � 0 for some � � ZZ ,�

in which case the density function p is not identifiable and, hence, not
Ž .estimable. The constant s in 19 can be thought of as a measure of ill-posed-
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ness of the inverse problem; the larger s is, the more difficult the given
� �inverse problem. If the Fourier coefficients of the density k satisfy � 
�

Ž � �.�s1 � � in our deconvolution problem, then the order of convolution opera-
� Ž . �tor is s. Polya’s criterion Feller 1971 , page 509 shows that this is the´

Fourier expansion of a probability density k. In the idealized PET problem,
the order of the Radon operator is given by s � 1�2 since it can be shown

Ž .�1�2 Žthat there exists a positive constant d such that � � 1 � � 
 d 1 �1 � 2 1
� �.�1�2 Ž .�1�2 Ž � �.�1�2� for � � NN and � � 1 � � � � 
 d 1 � � for � � NN �.� 1 2 1
The relatively slow decay of the singular values suggests that the costs of
indirect observation in the PET problem are not inordinately large.

Index set. Let N denote a positive integer depending on sample size n.n
The index set for deconvolution is chosen by

� �JJ � � � ZZ : 0 � � 	 N .� 4n n

For PET, the index set is chosen as

� �� � NN �: 0 � � 	 N , when log p � FF r , M ,� 4 Ž .n
JJ �n ½ � � NN �: 1 � � � 1 � � 1 	 N , when log p � FF r , M .� 4Ž . Ž . Ž .1 2 n JS

Ž .The relative entropy Kullback�Leibler divergence between two densities
p and p defined on BB is denoted by1 2

p xŽ .1
�D p p � p x log � dx .Ž . Ž .Ž . H1 2 1 ž /p xŽ .2

In addition to the L loss function, we mainly use the entropy-based loss2
function since the use of exponential family density estimation is natural

Ž � � . � � � �with this loss function see BS and references therein . Let � and �� 2
0 � 4denote L - and L -norms, respectively, with respect to �. Let JJ � 0 � JJ� 2 n n

and define SS to be the linear space spanned by singular functions � forn �
0 � 4 � � � �0� � JJ ; that is, SS � Ý 
 � . Define A such that s 	 A s for all� 2n n JJ � � n n n nn

� � � �s � SS ; let � � inf f � s and � � inf f � s be L and L2 �n n n s � SS n n s � SS n 2 �n n n n

degrees of approximation of f � log p by a truncated singular-function series
s � SS .n n

Information projection. Consider the equation

² : ² :20 � , p � � , p , 
 � � ,Ž . n n 
 n

² :where � is the J -dimensional vector of elements � , � � JJ , and � , hn n � n n
Ž² :.denotes the vector � , h for any function h. By the Pythagorean-like� JJn

Ž . � � � Ž . Ž � .identity 4.2 of BS , the solution 
 to 20 uniquely minimizes D p pn 


over 
 � � . Let p� � p � if 
 � exists. We refer to p� as the informationn n 
 n nn

projection of p.
Ž .For the asymptotic results when log p � FF r, M , we need the following

condition:

Ž .A1 r 
 1 for deconvolution and r 
 2 for PET.
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� ² : ² :�The following theorem shows that 
 exists with � , p � � , p andn n n 
 n
Ž � � .that there is an upper bound on the approximation error D p p . For thisn

2 Ž .task we set � � 4M exp 4� � 1 A � , where M is the positive constantn 1 n n n 1
to be given in Lemma 1 satisfying M�1 	 p 	 M .1 1

Ž .THEOREM 1. Suppose that A1 holds and � 	 1. Then, for log p �n
Ž . � Ž � � .FF r, M , the information projection p , achieving the minimum D p p ,n n

exists and satisfies the following:

Ž . � � �i log p�p 	 2� � � ;�n n n
Ž . Ž � � . Ž . Ž . 2ii D p p 	 M �2 exp � � .n 1 n n

In the following theorem, we show that the MILE p exists except on a setˆn
whose probability is less than a preassigned value and that the estimation

Ž � � . 2 serror D p p converges to zero in probability at the rate N J �n. For thisˆn n n n
�1 3�2 sŽ .theorem, we set � � 4d M exp 2� � � � 1 N A J �n .'n 1 1 n n n n n

Ž .THEOREM 2. Suppose that log p � FF r, M , � 	 1 and � 	 1. Then,n n
Ž . �2under A1 , for every M 	 � , there is a set of probability less than 1�M2 n 2

such that outside this set the MILE exists and satisfies the following:

Ž . � � � 1�2i log p �p 	 M � ;ˆ �n n 2 n
Ž . Ž � � . 2 sŽ . �2 Žii D p p 	 M M N J �n , where M 
 2 d M exp 2� � � �ˆn n 2 3 n n 3 1 1 n n

. 1�2� and � � � M 	 1.n 2

By combining theorems 1 and 2, we obtain an asymptotic result for the
MILE. Let a 
 b mean that inf a �b � 0 and sup a �b � �.n n n n n n

Ž . Ž .THEOREM 3. Suppose that log p � FF r, M and that A1 holds. Then,
choosing N 
 n1�Ž2 r�2 s�d ., we have the following:n

Ž . Ž � . Ž �2 r�Ž2 r�2 s�d ..i D p p � O n ;ˆn P
Ž . � � Ž .ii log p�p � o 1 ;ˆ �n p
Ž . � � 2 Ž �2 r�Ž2 r�2 s�d ..iii p � p � O n .ˆ 2n P

Ž .For the asymptotic result for PET when log p � FF r, M , we assume theJS
following condition:

Ž .A2 r 
 3.

Ž . Ž .THEOREM 4. Suppose that log p � FF r, M . Under A2 , we have that,JS
for N 
 n1�Žr�2., the following hold:n

Ž . Ž � . Ž �r �Žr�2..i D p p � O n ;ˆn P
Ž . � � 2 Ž �r �Žr�2..ii p � p � O n .ˆ 2n P

REMARK 5. For PET one may want to note the difference of the rates of
convergence in Theorems 3 and 4. The rate n�2 r�Ž2 r�3. is same as the rate
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Ž .given by Donoho 1995 , although a different nonparametric class of functions
�r �Žr�2. � �is considered; the rate n is same as the rate in JS although we

Ž . Ž .assume that log p � FF r, M rather than p � FF r, M .JS JS

REMARK 6. In the next section we show the minimaxity of MILE for
deconvolution, where the rates of convergence depend on the smoothness of
the contaminating noise. We anticipate that the rates in Theorem 3 are also
minimax lower bounds for other inverse problems, including PET.

Ž .REMARK 7. Stone 1990 considered large-sample inference for logspline
Ž .models when log p belongs to the Holder class. Koo and Kim 1996 ad-¨

dressed the minimaxity of log-density estimation based on wavelets over the
Besov space which includes the Sobolev space and the Holder class as a¨

Ž .special case. Barron and Yang 1996 obtained minimaxity for the direct
problem when p belongs to nonparametric classes including the multivariate
Holder class. It would be worthwhile to extend our results via the WVD of¨

Ž .Donoho 1995 to linear inverse problems over other classes of functions such
as Besov spaces.

5. More results on deconvolution. This section addresses the mini-
maxity of the MILE for circular deconvolution. To find a minimax lower

Ž . Ž .bound, we follow the popular approach: a specify a subproblem and b use
the difficulty of the subproblem as a lower bound. Especially, we will use the

Ž .method of Koo 1993 where basis functions are used for both lower and upper
Ž .bounds. This idea was inspired by Stone 1980, 1982 , Ibragimov and

Ž . Ž . Ž . � �Has’minskii 1981 , Birge 1983 , Donoho and Liu 1991a, b and JS .´

5.1. Minimaxity for circular deconvolution. The difficulty of deconvolu-
tion depends on the smoothness of the distribution of the error variable Z and
on the smoothness of p. We classify the smoothness of error distributions into

Ž .two classes following Fan 1991 . The characteristic function of Z is denoted
Ž . Ž .by � t � E exp itZ . We will call the distribution of a random variable ZZ

Ž .ordinary smooth of order s if its characteristic function � t satisfiesZ

� ��s � � � ��s � �21 d t 	 � t 	 d t as t � �,Ž . Ž .1 Z 2

for a positive constant s. We will call the distribution of a random variable Z
Ž .super smooth of order s if its characteristic function � t satisfiesZ

� � s0 � � s � � � � s1 � � s � �22 d t exp � t �d 	 � t 	 d t exp � t �d as t � �,Ž . Ž .Ž . Ž .1 0 Z 2 0

where s and d are positive constants. Here the positive constants d , d and0 0 1
d and real s and s will have no effect on explored convergence.2 0 1

Consider an unknown distribution P which depends on p with log p �p
Ž .FF r, M . Let p , n 
 1, denote estimators of p, p being based on Y , . . . , Yˆ ˆn n 1 n

� 4from the distribution P or, equivalently, P . Let b be a sequence ofq p n
positive constants. It is called a lower rate of convergence for p in a relative
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entropy sense if

�lim lim inf inf sup P D p p 
 cb � 1,ˆŽ .Ž .p n n
n pc�0 ˆn Ž .log p�FF r , M

here inf denotes the infimum over all possible estimators p . The sequenceˆp nˆn

is said to be an achievable rate of convergence for p in a relative entropy
� 4sense if there is a sequence p of estimators such thatˆn

�23 lim lim sup sup P D p p 
 cb � 0.Ž . ˆŽ .Ž .p n n
c�� n Ž .log p�FF r , M

It is called an optimal rate of convergence for p if it is a lower and an
� 4achievable rate of convergence. If b is the optimal rate of convergence andn

� 4 Ž .p satisfies 23 , the estimators p , n 
 1, is said to be asymptoticallyˆ ˆn n
optimal.

To develop upper bounds, we assume that the following holds:

Ž . Ž .A3 � t � 0 for any t.Z

For the circular deconvolution model, we have the following asymptotic
� �2 r�Ž2 r�2 s�1.4optimality of our MILE’s. According to Theorem 3, n is an

achievable rate of convergence for the ordinary smooth case.

Ž . Ž .THEOREM 5. Suppose that A1 and A3 hold.

Ž . Ž . � �2 r�Ž2 r�2 s�1.4a If Z is ordinary smooth in the sense of 21 , then n is a
lower rate of convergence and the MILE achieves this rate of convergence by
choosing N 
 n1�Ž2 r�2 s�1..n

Ž . Ž . �Ž .�2 r� s4b If Z is super smooth in the sense of 22 , then log n is a lower
rate of convergence and the MILE achieves this rate of convergence by choos-

Ž .1� sing N 
 log n .n

REMARK 8. It follows from the argument used in the proof of lower rates
of convergence that the rates in Theorem 5 are also lower rates of conver-
gence when the Kullback�Leibler divergence is replaced by the L -norm. As2
in Theorems 1�3, one can show the MILE for the super smooth case achieves
the same rate of convergence in L -norm.2

5.2. Noncircular deconvolution. In circular deconvolution, Z takes values
only in the unit circle, whereas in noncircular case X still takes values in the
unit interval and Z may take values in RR. Then Y may take values in RR and
the density q of Y is given by

1
24 q y � k y � x p x dx for y � RR,Ž . Ž . Ž . Ž .H

0

where k is the density of Z. The ill-posedness for the noncircular deconvolu-
tion problem is also determined by the smoothness of the distribution of the
error variable Z. By the smoothness of the error distribution, again we mean

� Ž . � � � Ž .the decay rate of � t as t � �. Refer to Fan 1991 for specific examplesZ
of these distributions.
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Ž . 2	 i� xSince � x � e is not square-integrable on RR, it cannot be a singular�

function for the noncircular convolution operator. However, independence of
Ž .X and Z and the property of � provide us unbiased estimators of E� X ’s� �

which are sufficient to give an MILE p of p. It follows from the relationˆn
Ž . Ž . Ž . Ž .E� Y � � 2	� E� X that an unbiased estimator of E� X is given by� Z � �

ˆŽ .� �� 2	� . Similarly, the MILE p of p is p , where 
 is the maximizer ofˆ ˆ� Z n 
 nn
Ž . Ž . Ž .the indirect likelihood 14 , which is given by Ý 
 � �� 2	� � c 
 .0 � �� � 	 N � � Z nn

For the noncircular case, we have same rates of convergence as in the
circular case, which is stated in the following theorem.

Ž . Ž .THEOREM 6. Suppose that A1 and A3 hold.

Ž . � Ž . � � ��s � �a If � t 
 d t as t � � for a positive constant d and a nonnega-Z 1 1
Ž � . Ž �2 r�Ž2 r�2 s�1.. 1�Ž2 r�2 s�1.tive constant s, we have D p p � O n for N 
 n .ˆn P n

Ž . � Ž . � � ��s 0 Ž � � s . � �b If � t 
 d t exp � t �d as t � � for some positive constantsZ 1 0
Ž � . ŽŽ .�2 r� s.d , d , s and real s , then we have that D p p � O log n by choos-ˆ0 1 0 n P

Ž .1� sing N 
 log n .n

REMARK 9. Theorem 6 can be proved by the argument used to prove
Ž . Ž .Theorems 3 and 5; it follows from 24 that 3 is still true for the noncircular

� Ž . � 2case, and Lemma 2 in Section 7 follows from the inequality E � Y 	q �

Ž .M H � dy � M .1 DD 1

6. Simulation. The finite-sample performance of MILE’s having a fixed
number of basis functions is illustrated using simulated data for deconvolu-
tion and PET. The problem of choosing basis functions for MILE’s in a
data-dependent way would be an important problem for future investigation.

6.1. Deconvolution. The exponential family

2 2

p x � exp 
 cos 2	� x � 
 sin 2	� x � c 
 ,Ž . Ž . Ž . Ž .Ý Ý
 � ��2½ 525Ž .
��1 ��1

0 	 x 	 1,

Ž .is taken for deconvolution, where c 
 is the normalizing constant. Since our
ultimate interest is in the densities rather than the parameters, we do not

' '� Ž . Ž .4use the conventional basis functions 2 cos 2	� x , 2 sin 2	� x for conve-
nience in implementation. The Newton�Raphson method as in Koo and Park
Ž .1996 is employed to maximize the indirect likelihood; the Gaussian quadra-

Ž .ture gauleg.f in Press, Teukolsky, Vetterling and Flannery 1992 is used
for the computations of various quantities during the Newton�Raphson

Ž . Ž .iterations such as c 
 or the Hessian matrix of c 
 . To provide an approxi-
mation to the unknown density function on the real line, we scale the data to

� � � �the interval 0.1, 0.9 and find the preliminary MILE on the interval 0, 1 .
The final answer is then scaled back to the original interval.
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Ž . Ž .FIG. 1. The Stefanski�Carroll bimodal density with n � 2500: a an MILE; b the mean of 25
Ž . Ž .repetitions; c an overlap plot of 25 repetitions solid line, MILE; dotted line, truth .

To compare the performance of MILE’s with other estimators, we have
Ž .generated X ’s from a bimodal density of the form p x � 0.5 �j

Ž Ž .1�2 . Ž Ž .1�2 . Ž 2 .N x; � 2�3 , 1�3 � 0.5N x; 2�3 , 1�3 . Here N �; a, b is the density
function of a normal distribution with mean a and variance b2. Normal
measurement error with variance 1�3 has been considered so that q is
unimodal. The sample size n � 2500 and 25 repetitions have been performed.

Ž . Ž .Figure 1 a shows an estimate, Figure 1 b displays the mean of the 25
Ž .estimates and Figure 1 c gives a good idea of the variability inherent to the

Ž .estimators. The wiggly line in Figure 1 a is the kernel density estimate of q
which is included only as a descriptor of Y , . . . , Y ; it is rescaled in order not1 n
to interfere other plots. We can note that the performance of MILE looks

Ž .much better than that of Stefanski and Carroll 1990 and similar to that of
Ž .Koo and Park 1996 .

6.2. PET. Since we work with real densities, we may identify the com-
plex bases with equivalent real orthonormal bases in a standard fashion as

� � Ž .in JS . The exponential family in brain space is chosen by p u, v �

˜� Ž . Ž .4 Ž . �exp Ý 
 � u, v � c 
 for u, v � BB, where JJ � � : � � 1, . . . , B; � �JJ � � 2 1
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˜4 Ž . Ž .� , � � 2, . . . , �� , c 
 � logH exp Ý 
 � d� and2 2 2 BB � � �

�'2 Re � , if � � 0,� 1�� , if � � 0,�̃ � Ž0, � . 12� �'2 Im � , if � � 0.� 1

In brain space, an algorithm of computing the Zernike polynomials is
necessary. The Zernike polynomials are related to the more general Jacobi

� Ž .� Ž .polynomials Deans 1983 such that the recurrence relation 4.5.14 of
Ž .Jacobi polynomials in Press, Teukolsky, Vetterling and Flannery 1992 is

used for the computation of the Zernike polynomials. In detector space, we
need to compute the Chebyshev polynomial of the second, for which the

Ž .recurrence relation in Appendix C of Deans 1983 is adopted. To maximize
the indirect likelihood, the Newton�Raphson method is implemented as in

Ž .Koo 1996 , where an iterated Gaussian quadrature rule based on gauleg.f
is used for the computation of various quantities which are necessary during
the Newton�Raphson iterations.

Figure 2 illustrates a simulation example for the idealized PET. The
Ž .density function p of X , X is the truncation at BB of1 2

2 21 1 1 1N x ; 0, �0.3 , � N x ; 0.3, 0.3 ,Ž . Ž .Ž . Ž .ž / ž /2 23 8 3 8

21 1� N x ; �0.3, 0.3 , ,Ž . Ž .ž /23 8

Ž 2 . Ž 2 . Ž 2 . Ž . Ž .where N x; a, b � N x ; a , b N x ; a , b for a � a , a . Figure 2 a2 1 1 2 2 1 2
Ž .shows the true density, Figure 2 b displays an MILE based on X , . . . , X1 n

Ž .which are observable in simulation but unobservable in practice and Figure
Ž .2 c illustrates an MILE using data Y , . . . , Y from q � Kp, where Y ’s are1 n j

generated according to the formula described in Section 2.2. For this example,
Ž .the sample size n � 6400 and B � 4. As a comparison, Figure 2 d shows an

˜ �1 ˜Ž . Ž .OSE which has the form 1 � Ý a � �	 , where a � n Ý � Y �� withˆ ˆJJ � � � j � j �

�̃ the real version of � , and B � 7. Since B � 4 means 14 parameters and� �

B � 7 implies 35 parameters, the MILE gives a much more parsimonious
reconstruction of p than the OSE. The OSE with B � 4 for the same data is

Ž .unimodal and we need about 65 parameters B � 10 to identify the trimodal
structure reasonably well.

7. Proof of asymptotic results. In this section, we prove asymptotic
Ž .results in Sections 4 and 5 supposing that log p � FF r, M or log p �

Ž . Ž . Ž . � �FF r, M and that A1 � A3 hold. Since we use several lemmas in BS , weJS
� �write Lemma BSi to denote Lemma i in BS . The method of proof is an

� � � 4 � 4extension of BS to the multivariate case with multiindex. Since � and �� �

are fixed for a given operator K, we should prove our results under the
� 4 � 4assumption that � and � are orthonormal with respect to the dominating� �

measures � and � , respectively. Observe that Lemmas BS1�BS5 are still
true for multivariate density estimation using multiindex such as in our case.
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Ž . Ž . Ž .FIG. 2. The trimodal density for PET : a the plot of p; b an MLE based on X ’s; c an MILEj
Ž .with 14 parameters based on Y ’s; d an OSE with 35 parameters based on Y ’s.j j

All integrals are understood to be with respect to the dominating measure
� �� unless stated otherwise; � is the Euclidean norm of a vector � � � . Forn

² : Ž . 0f � log p, let f � f, � and let s f � Ý f � denote the truncated� � n JJ � �n

singular-function series which is assumed to satisfy the given L - and2
Ž .L -bounds on the error f � s f . Let C denote a positive constant which is� n

independent of n and is not necessarily equal at each appearance of it.

7.1. A technical lemma. We develop upper and lower bounds for p.
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FIG. 2. Continued.

Ž . �1LEMMA 1. Under A1 , M 	 p 	 M .1 1

PROOF. Consider the case of deconvolution. By the Cauchy�Schwarz in-
equality, we obtain that

2 r �2 r �2 r2 2 2� � � � � � � � � � � �f x 	 f 1 � � � x 1 � � 	 M 1 � � .Ž . Ž . Ž . Ž . Ž .Ý Ý Ý� �
ZZ ZZ ZZ

Ž � �.�2 rSince r 
 1, the series Ý 1 � � is convergent. This completes the proofZZ

Ž .2 Ž � �.�2 rfor deconvolution by choosing M � 1 such that log M 
 MÝ 1 � � .1 1 ZZ
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Now consider the case with PET. Since Zernike polynomials satisfy
� �1Ž . � �1Ž . Ž � �.Z u 	 Z 1 � 1 for 0 	 u 	 1 see JS ,� �2 2

� �26 � 	 1 � � � � for � � NN �.Ž . '� 1 2

Applying the Cauchy�Schwarz inequality, we have that
�2 r�12� � � �f x 	 M 1 � � .Ž . Ž .Ý

NN �

Let us observe that

�2 r�1 �2 r�1� � � �1 � � 	 C 1 � x dxŽ . Ž .Ý H
2RRNN �

� �2 r�1� �� C dt 1 � x dxŽ .H H
� �0 x �t

� �2 r�1� C 1 � t dt dxŽ .H H
� �0 x �t

� �2 r�1� C 1 � t t dt ,Ž .H
0

Ž .which is convergence under A1 . This completes the proof of Lemma 1 by
Ž .2 � Ž .�2 r�1choosing M � 1 such that log M 
 MCH 1 � t t dt. �1 1 0

7.2. Proof of Theorem 1. The first task is to show that 
 � exists withn
² �: ² : �� , p � � , p and that log p�p is bounded by a constant when nn n n n

� ² : ² :is large. For this task, set � � � , p and � � � , p , where � �n n n n � nn
Ž . �f � � . The entries in the vector � � � are seen to be coefficients� JJ n n nn

Ž .in the L � orthogonal projection of p � p onto SS . By Bessel’s in-2 � nn

equality, Lemma 1 and Lemma BS2, we have
2p � pŽ .�2 2 n�� � � �� � � 	 p � p 	 M2 Hn n � 1n p

2 � � � � 2	 M exp 2 f � s f � 2 f � c � f � s f� 4Ž . Ž . Ž .Ž .� 21 n 0 n n n

	 M 2 exp 4� �2 .Ž .1 n n

� Ž . �For the last inequality we have used the fact that c � � f is not greatern n 0
� Ž .� Ž . Ž Ž . .than f � s f , since c � � f is seen to equal log Hexp s f � f p.�n n n 0 n

� � � Ž .�From this same fact it is seen that log p�p 	 2 f � s f � 2� . By� �� n nn
� �this and Lemma 1, log p 	 log M � 2� . Now apply Lemma BS5 with�� 1 nn� Ž� � . Ž .
 � � , � � � , � � � , q � 1 and b � exp log p 	 M exp 2� . If�0 n 0 n n � 1 nn

Ž . Ž .M exp 2� � 	 1� 4ebA , that is, if � 	 1, then from Lemma BS5 we may1 n n n n
conclude that the solution 
 � to the equation H� p � � exist and thatn n 
 n
� � � � � �log p �p 	 � . So by the triangle inequality, we obtain log p�p 	� �n � n nn

Ž .2� � � , which verifies Theorem 1 i , andn n

� � �27 log p 	 2 log M � � � � .Ž . �n 1 n n



LOG-DENSITY ESTIMATION 355

By Lemma 1 and Lemma BS1, we have

1 2�� � � � � �D p p 	 D p p 	 exp f � s f M f � s fŽ . Ž .Ž . Ž .Ž . � 2n � n 1 nn 2
M1 2	 exp � � .Ž .n n2

This completes the proof of Theorem 1. �

7.3. Proof of Theorem 2. To prove Theorem 2, we need the following
lemma.

2� Ž .4LEMMA 2. E Ý � � E � Y 	 M J �n.q JJ � q � 1 nn

Ž . Ž .PROOF. By Lemma 1, 3 and 7 we have that q 	 M . Hence1

12 2
E � � E � Y � E � Y � E � YŽ . Ž . Ž .� 4½ 5Ý Ýq � q � q � q �n

JJ jjn n

1
2	 E � YŽ .Ý q �n

JJn

1 Jn2	 M � y � dy � M .Ž . Ž .Ý H1 � 1n nDDJJn

This completes the proof of Lemma 2. �

Ž � � .For the proof of Theorem 2, we have to show that D p p is smallˆn n
with high probability. Let �� � H� p�, which is the same as H� p �n n n n

ˆŽ Ž . . Ž .E � Y �� . Also let � � � �� . Whenever a solution 
 � � to theˆq � � JJ n � � JJ n nn n

equation H� p � � exists, we recognize p � p as an MILE. With theseˆ ˆ ˆn 
 n n 
 n2 2� 2� � � Ž .4 � �choices � � � � Ý � � E � Y � � . By Chebyshev’s inequality,ˆn n JJ � q � �n

� � � 2 �2 2 s� � � 	 d M M N J �n except on a set whose probability satisfiesˆn n 1 1 2 n n

2
2 s� � E � YŽ . M M N J½ 5� q � 1 2 n n�2P � dÝ 12 n� ��JJ �n

M M J2 1 2 n	 P � � E � Y �Ž .½ 5Ý � q � n
JJn

n 12
	 E � � E � Y 	 .Ž .½ 5Ýq � q �M M J M1 2 n 2JJn

� 4Here the first inequality is due to the assumption on � and the third is due�

to Lemma 2. Now apply Lemma BS5 with 
 � 
 �, � � ��, � � � , q � 1ˆ0 n 0 n n
Ž� � � . Ž .and b � exp log p , where b is not greater than M exp 2� � � by�n 1 n n
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Ž . �1Ž 2 s .1�2 Ž . 227 . If d M M N J �n 	 1� 4ebA , that is, if � 	 1�M , then1 1 2 n n n n 2
Ž .except on the set above whose probability is less than 1�M the conditions2

ˆ � �Ž . � �of Lemma BS5 are satisfied, whence 
 exists and i log p �p 	 4be Aˆ �n n n n

� � � 1�2 Ž . Ž � � . Ž .� � � 2 �2� � � 	 M � and ii D p p 	 2b exp � � � � 	 2 dˆ ˆ ˆn n 2 n n n n n 1
Ž . 2 s � � �M M exp 2� � � � � N J �n. Here � satisfies 4ebA � � � 	 � 	 1.ˆ1 2 n n n n n n n

The L -norm of log p��p has just been shown to be less than or equal toˆ� n n
1�2 Ž � � . 2 sM � and the estimation error satisfies D p p 	 M M N J �n, ex-ˆ2 n n n 2 3 n n

cept on a set whose probability is less than 1�M . Thus the proof of Theorem2
2 is complete. �

7.4. Proof of Theorem 3. To prove Theorem 3, we need bounds on A , �n n
and � .n

�rŽ . Ž .LEMMA 3. i For deconvolution, A � 2 N � 1 , � � O N and'n n n n
Ž �Ž r�1�2..� � O N .n n

Ž . 3�2 Ž �r . Ž �Ž r�3�2..ii For PET, A � CN , � � O N and � � O N .n n n n n n

� � Ž .PROOF. Refer to BS for the proof of i . Consider the case of PET. To
determine A , choose any element s � Ý 0 
 � in SS . By then n JJ � � nn

Ž .Cauchy�Schwarz inequality and 26 , we have that, uniformly in x � BB,
1�2 1�2

2 2� � � � � �s x 	 � x 
Ž . Ž .Ý Ýn � �ž / ž /
0 0JJ JJn n

1�2

� �	 1 � � � � sŽ .Ý 21 2 nž /
0JJn

3�2 � �	 CN s .2n n

c � � � 4 Ž .2 r � � 2 Ž � �.2 r � � 2c cLet JJ � � � NN�: � � N . Since 1 � N Ý f 	 Ý 1 � � f �n n n JJ � JJ �n n

M, we have the bound on � . It follows from the Cauchy�Schwarz inequalityn
� Ž . Ž .Ž . � 2that the error f x � s f x is bounded byn

2 r �2 r�1 �2 r�12� � � � � � � �1 � � f 1 � � 	 M 1 � �Ž . Ž . Ž .Ý Ý Ý�
c c cJJ JJ JJn n n

� �2 r�1� �
 dt 1 � x dxŽ .H H
� �N x �tn


 N�2 r�3 .n

This completes the proof of Lemma 3. �

1�Ž2 r�2 s�d . Ž .PROOF OF THEOREM 3. Choose N 
 n . By Lemma 3 and A1 ,n
sŽ . Ž . Ž . Ž . Ž .� � o 1 , � � O A � � o 1 and � � O N A J �n � o 1 . Therefore'n n n n n n n n

p� exists and p exists in probability for sufficiently large n. It follows fromˆn n
Lemma 3 that �2 
 n�2 r�Ž2 r�2 s�d . and N 2 sJ �n 
 n�2 r Ž2 r�2 s�d .. Conse-n n n
quently, from Theorems 1 and 2, we obtain the desired result of Theorem 3 as
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follows. Since the Kullback�Leibler loss decomposes into a sum of approxima-
Ž � . Ž � � .tion error and estimation error by Lemma BS3: D p p � D p p �ˆn n

Ž � � . Ž .D p p , we can verify Theorem 3 i . By the triangle inequality, we haveˆn n
� � Ž . Ž .that log p�p � O 2� � � � � � o 1 , which is the desired result ofˆ �n P n n n p

Ž . � � 2Theorem 3 ii . It follows from Lemmas BS1 and BS2 that p � p �ˆ 2
Ž Ž � .. Ž .O D p p , which implies Theorem 3 iii . Now the proof of Theorem 3 isˆP n

complete. �

Ž .7.5. Proof of Theorem 4. By the Cauchy�Schwarz inequality and 26 , we
have that

r r �r �r2 2� � � �f x 	 f 1 � � 1 � � 1 � � � � 1 � � 1 � �Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý� 1 2 1 2 1 2
NN � NN �

�r�1�2 �r�1�2	 M 1 � � 1 � � ,Ž . Ž .Ý 1 2
NN �

Ž .which is convergent under A2 . Hence, we have the following lemma as in
Lemmas 1 and 2.

�1 � Ž .LEMMA 4. There exists M such that M 	 p 	 M and E � Y �1 1 1 q �

Ž .42E � Y 	 M �n.q � 1

Ž . Ž . Ž �r �2 . Ž .LEMMA 5. We have i A � CN , ii � � O N and iii � �n n n n n
Ž �Ž r�2.�2 .O N .n

PROOF. For A , choose any element s � Ý 0 
 � in SS . It follows fromn n JJ � � nn
Ž . � �Lemma 4.3 of JS that

28 1 � � � � 	 M N 2 .Ž . Ž .Ý 1 2 4 n
0JJn

Ž . Ž .By the Cauchy�Schwarz inequality, 26 and 28 , we have that, uniformly in
x � BB,

1�2 1�2
2 2� � � � � �s x 	 � x 
Ž . Ž .Ý Ýn � �ž / ž /

0 0JJ JJn n

1�2

� �	 1 � � � � sŽ .Ý 21 2 nž /
0JJn

1�2 � �	 M N s ,24 n n

Ž . c � Ž .Ž . 4which shows i . Let JJ � � � NN �: � � 1 � � 1 � N . Sincen 1 2 n

r r2 2r � � � �N f 	 � � 1 � � 1 fŽ . Ž .Ý Ý Ýn � 1 2 �
c m�N Ž .Ž .JJ � �1 � �1 �mn 1 2n

r r 2� �	 � � 1 � � 1 f 	 M ,Ž . Ž .Ý 1 2 �
cJJn
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Ž . Ž . � Ž . Ž .Ž . � 2we have ii . It follows from 26 that the error f x � s f x is boundedn
by

�r�1 �r�1 �r�1 �r�2M 1 � � 1 � � � m � O N ,Ž . Ž . Ž .Ý Ý1 2 n
c m�NJJ nn

Ž .which proves iii . This completes the proof of Lemma 5. �

PROOF OF THEOREM 4. Define �� and � as in the proof of Theorem 2. Byˆn n
Ž . Ž .Lemma 4, 7 and 28 , we have

2
2� � E � YŽ . M M M N½ 5� q � 1 2 4 n

P �Ý 2 n� ��JJ �n

n 2
	 E � � E � Y 1 � � � �Ž . Ž .½ 5Ýq � q � 1 22M M M N1 2 4 n JJn

1
	 .

M2

Now choose N 
 n1�Žr�2. such that �2 
 n�r �Žr�2. and N 2�n 
 n�r �Žr�2..n n n
2Ž . Ž . Ž . Ž . Ž .'By Lemma 5, � � o 1 , � � O A � � o 1 and � � O A N �n � o 1 .n n n n n n n

Ž � .It follows from the argument used to prove Theorem 3 that D p p �ˆn
Ž �r �Žr�2.. � � 2 Ž �r �Žr�2..O n and that p � p � O n . This completes the proofˆ 2P n P

of Theorem 4. �

7.6. Proof of Theorem 5.
Ordinary smooth case. Since we have shown that the MILE for deconvo-

� �2 r�Ž2 r�2 s�1.4lution achieves the rate n in Theorem 3, it remains to show
that it is a lower rate of convergence. For a positive integer N , let V �n n
� 4v: v � 1, . . . , N . Define g for v � V byn nv n

g � N�r�1�2 � � � .Ž .nv n N �v �N �vn n

� 4 Ž .Given a 0, 1 -valued sequence � � � , setn nv Vn

p � 1 � M � gÝ� 5 nv nvn
Vn

for a constant M which will be determined below. Now choose N such that5 n
N 
 n1�Ž2 r�2 s�1.. Let FF denote the collection of all functions p as �n n � nn

varies over the 2 Nn possible sequences. The following lemma shows that
Ž .FF � FF r, M for sufficiently large n.n

LEMMA 6. There is a positive constant M such that, for large n, FF is a5 n
Ž .subset of FF r, M .

PROOF. Let g � Ý � g . Let us note that, for j � 0, . . . , r � 1,� V nv nvn n

� j � � j � �r�j�1�229 D g 	 D g 	 CNŽ . Ý� �� nvn
Vn
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and
rr '� �30 D p 	 M 2 4	 .Ž . Ž .2� 5n

Ž . Ž .It follows from A1 and 29 that, for large n,

31 C�1 	 p 	 C.Ž . � n

Ž . Ž . Ž . Ž .By formula 5.35 in Barndorff-Nielsen and Cox 1989 and 29 � 31 , we can
choose M such that5

� r �D log p 	 M .2� n

This completes the proof of Lemma 6. �
Ž .By 29 and Lemma BS2,

2 �2 r�1�D p p 
 C p � p 
 CN for p � p � FF .Ž .Ž . H1 2 1 2 n 1 2 n

Ž . �It follows from Lemma 3.1 of Koo 1993 that there exists a subset FF of FFn n
such that, for large n,

� �2 r �D p p � CN for p � p � FF andŽ .1 2 n 1 2 n32Ž .
log � FF

� � 1 � 0.27N ,� 4Ž .n n

Ž � . �where � FF denotes the cardinality of FF . Observe that, when n is large,n n

C�1 	 Kp 	 C for p � FF
� andn33Ž .

� � �r�s �Kp � Kp 	 CN for p , p � FF .21 2 n 1 2 n

By Jensen’s inequality

22p p � pŽ .1 1 2
�34 D p p 	 log 	 for any densities p , p .Ž . Ž . H H1 2 1 2p p2 2

Ž . Ž .It follows from 33 and 34 that

2Kp � KpŽ .1 2 ��2 r�2 s�D Kp Kp 	 	 CN for all p and p � FF .Ž . H1 2 n 1 2 nKp2

� Ž .� Ž .Now using Fano’s lemma Birge 1983 as in Koo 1993 , we have the desired´
result for the ordinary smooth case.

Super smooth case. Construct FF
� as in the ordinary smooth case. In then

same manner, we can show that
s ��2 r�2 s1�35 D Kp Kp 	 CN exp �2 2	 N �d for all p , p � FF .Ž . Ž .� 4Ž .1 2 n n 0 1 2 n

Ž .1� sŽ .1� sChoose N such that 2	 N � d �2 log n � C log log n � a for C �n n 0 n
Ž . Ž .2 s � 2r � 1 �s and 0 	 a � 1. Now, applying Fano’s lemma with 32 and1 n
Ž . Ž . Ž .�2 r� s35 as in Koo 1993 , we obtain log n is a lower rate of convergence.
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To prove that the MILE for deconvolution achieves this lower rate of
� � � 2 � �1 1�s0 � Ž . s 4�convergence, let us note that � � � � O n N exp 2 4	 N �d .ˆn n P n n 0

Here � and �� denote the same quantities as in the proof of Theorems 1ˆn n
Ž .�1Ž .1� sŽ .1� sand 2. Now choose N such that N � 4	 d �4 log n � a forn n 0 n

�2 s0 � Ž . s 4 Ž �1�3.0 	 a � 1, then N exp 2 4	 N �d J �n � o n . Let us note thatn n n 0 n
�s s0Ž . Ž . �Ž . 4 Ž . Ž .� � o 1 , � � o 1 , � � CN exp 4	 N �d A J �n � o 1 under A1 .'n n n n n 0 n n

Ž � .By the same argument used to prove Theorem 3, we have D p p �ˆn
ŽŽ .�2 r� s.O log n . This completes the proof of Theorem 5. �P
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