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DEFICIENCY DISTANCE BETWEEN MULTINOMIAL AND
MULTIVARIATE NORMAL EXPERIMENTS

BY ANDREW V. CARTER

University of California, Santa Barbara

The deficiency distance between a multinomial and a multivariate normal
experiment is bounded under a condition that the parameters are bounded
away from zero. This result can be used as a key step in establishing
asymptotic normal approximations to nonparametric density estimation
experiments. The bound relies on the recursive construction of explicit
Markov kernels that can be used to reproduce one experiment from the
other. The distance is then bounded using classic local-limit bounds between
binomial and normal distributions. Some extensions to other appropriate
normal experiments are also presented.

1. Introduction. In Blackwell–Le Cam decision theory, a statistical experi-
ment is a set of probability distributions P = {Pθ : θ ∈�} on a measurable space
(X,A). Le Cam defined the deficiency, δ(P ,Q), to quantify the degree to which
P can be approximated by a simpler experiment Q = {Qθ : θ ∈ �} on a differ-
ent space (Y,B). If δ(P ,Q) ≤ ε then every decision procedure in Q has a cor-
responding procedure in P that comes within ε of achieving the same risk for
loss functions bounded by 1. The deficiency δ(Q,P ) is defined analogously, and
the distance between the two experiments �(P ,Q) is the larger of the two de-
ficiencies. If there are two sequences of experiments {Pn} and {Qn} such that
�(Pn,Qn)→ 0, then the sequences are asymptotically equivalent.

The most direct (and useful) way of bounding δ(P ,Q) is to propose a Markov
kernel Kx(B) from X to B . A measure P on (X,A) and a kernel generate a
measure on (Y,B) by

(KP )B =
∫
Kx(B)P (dx).

Le Cam (1964) showed that if there exists a Markov kernel K , independent
of θ , such that (KPθ ) is within ε of Qθ in total-variation distance for all θ ,
then δ(P ,Q) ≤ ε. Constructing a kernel that provides a connection between two
experiments is also illuminating because a decision procedure σ(y) in Q then
implies a random decision procedure σKx in P .

Only recently have examples of deficiencies between nonparametric experi-
ments been published. Brown and Low (1996) proposed a kernel which estab-
lished a continuous Gaussian approximation to nonparametric regression models
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with normal errors. Grama and Nussbaum (1998) solved the same problem with
nonnormal errors. Milstein and Nussbaum (1998) showed the equivalence of a con-
tinuous diffusion process and a nonparametric autoregression model, and Golubev
and Nussbaum (1998) demonstrated that stationary Gaussian processes with un-
known spectral densities are asymptotically equivalent to a discrete nonparametric
regression experiment.

Nussbaum (1996) solved the harder problem of the asymptotic equivalence
between a density estimation experiment and a Gaussian white noise experiment.
Specifically, the density estimation experiment involved n i.i.d. observations
from an unknown density f on [0,1]. The asymptotically equivalent experiment
contains the distributions of continuous Gaussian processes on [0,1] with drifts
that depend on f . Klemelä and Nussbaum (1998) proposed a specific kernel that
would bound the distance between these experiments with a stronger restriction on
the class of densities. I will propose a technically simpler approach to establishing
normal approximations to density estimation experiments.

First, I will assume the class of densities is such that the problem can be reduced
to bounding the distance between a multinomial experiment P and a multivariate
normal experiment Q. Conditions for this approximation can be found following
a variation on the argument of Brown and Low (1996). In Section 8, a particular
example of this sort of bound is given that is sufficient to imply equivalence of the
nonparametric experiments from Theorem 1. Earlier arguments in Müller (1979)
and Luckhaus and Sauermann (1989) give somewhat different conditions under
which nonparametric experiments can be approximated by multinomials.

In experiment P , the Pθ distributions are multinomial M(n, [θ1, θ2, . . . , θm])
where the cell probabilities depend on the density f . Nussbaum (1996) requires
the densities to be smooth and bounded away from 0 which translates to the
assumptions that θi ≈ θi+1 for neighboring cells and the ratio θi/θj is bounded.
Theorem 1 only uses the boundedness property. [Carter (2001) extends this result
by using the smoothness property.] Theorem 1 does not use the set of densities f as
the parameter set; instead, every probability vector (θ1, θ2, . . . , θm) with bounded
ratios is included. If the parameter set generated by the set of densities is smaller
than �R , the distance cannot be any bigger.

THEOREM 1. Let P = {Pθ : θ ∈ �R}, where Pθ = M(n, θ) and �R ⊂ Rm

consists of all vectors of probabilities such that

max θi
min θi

≤R.(1.1)

Let Q = {Qθ : θ ∈�R} where Qθ is the multivariate normal distribution with the
same means and covariances as Pθ . Then

�(P ,Q)≤ CRm logm√
n

(1.2)

for a constant CR that depends only on R.
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This theorem can be used as the key step in reproducing Nussbaum’s
equivalence when his smoothness parameter α is greater than 1. The results in
Carter (2001) can be used to extend the result to the case where 1/2< α < 1. This
theorem has the advantage that it relies only on the densities being bounded away
from zero, and thus can be applied to a variety of density estimation experiments
regardless of the underlying probability space. The drawback is that it puts a rather
stringent condition on the rate the dimensions can increase, m= o(√n logn).

The Qθ distributions are not quite what is needed to directly approximate
the white noise experiments, but Q is the most convenient normal experiment.
Section 7 bounds the distance between Q and another multivariate normal
experiment, from which a straightforward rescaling will reproduce the increments
of a Gaussian process in Section 8.

In the following, generally only the bound on δ(P ,Q) is described. Section 5
will show how this bound on δ(P ,Q) can be used to bound δ(Q,P ) as well.

1.1. Working with Markov kernels. I will use a linear-functional notation for
integration where

Pθf (x)=
∫
f (x)Pθ (dx).

A Markov kernel will be written Kyx where for each x it produces a measure
on the (Y,B) space. The distribution generated by Pθ and Kyx will be written
PθK

y
x because the expectation of the set B ∈ B under this distribution is the Pθ

expectation of the A-measurable function KyxB , that is,

PθK
y
x B = Pθ [Kyx (B)].

Sometimes a superscript will be included on measures, Pxθ = Pθ , akin to the
notation used for kernels.

A Markov kernel can be considered a map between spaces of measures.
Specifically, Kyx is a map from measures on (X,A) to measures on (Y,B) where
K
y
x (µ

x)=µxKyx . I will construct a kernelMyx that maps measures Pxθ to measures
PxθM

y
x that approximate Q

y
θ .

The symbol Kyx will also be used to refer to the extensions of the kernel to
measures on the product space (X ⊗ Y, σ (A ⊗ B)) with support on the set
{X = x} such that KyxB =Kyx {y : (x, y) ∈ B}. This new kernel maps distributions
on (X,A) to distributions on (X⊗Y, σ (A⊗B)) such that for A ∈ A and B ∈ B ,

PxθK
y
x (AB)= Pxθ (A[KyxB]).

2. The structure of the experiments. In bounding δ(P ,Q), the two main
tasks are to construct a Markov kernel and then to bound the total-variation
distance between the resulting distributions. It is much easier to bound the
distance between experiments on a product space like Rm if the coordinates are
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independent. When there is independence, the kernel can be constructed from
independent kernels on each coordinate, and then the total-variation distance can
be bounded by the inequality ‖∏Pi − ∏

Qi‖ ≤ [∑i Pi log(dPi/dQi)]1/2 (see
Section B.1 in the Appendix).

Unfortunately, the coordinates of a multinomial experiment are not independent
because the coordinates are constrained to sum to n. However the multinomial can
be rearranged to produce conditionally independent components.

Let (X1,X2, . . . ,Xm) be multinomial random variables with probabilities
(θ1, . . . , θm) for m even. Let Tj = X2j−1 + X2j . Conditional on this vector of
sums T, each pair (X2j−1,X2j ) is independent of all the other pairs (X2k−1,X2k)

for j �= k.
T is also multinomially distributed except the dimension is now m/2, and the

probabilities in this new multinomial are the sums of the original probabilities:
T ∼ M(n, [ψ1, . . . ,ψm/2]) where ψj = θ2j−1 + θ2j .

Each pair (X2j−1,X2j ) is binomially distributed conditional on T,

X2j−1 | T ∼ Bin(Tj ,pj ) and X2j = Tj −X2j−1,

where the conditional probability pj = θ2j−1/(θ2j−1 + θ2j ).
There is an analogous structure in the normal experiments. Let Y1, Y2, . . . , Ym

be multivariate normal random variables with the same means and covariances as
theXi ’s. Let Sj = Y2j−1 +Y2j . Conditional on these sums, the pair (Y2j−1, Y2j ) is
independent of all the other pairs. The sums are multivariate normally distributed
with dimension m/2,

Sj ∼ N (nψj ,nψj [1 −ψj ])
for ψj = θ2j−1 + θ2j as before. The covariance structure of the Sj ’s is the same as
for the Tj ’s.

As before, the pairs (Y2j−1, Y2j ) are conditionally independent given S where
Y2j−1 | S ∼ N (Sjpj , nψjpjqj ) and Y2j = Sj −Y2j−1. Notice that the conditional
variance of Y2j−1 | S is not the same as for the multinomial, Var(X2j−1 | T) =
Tjpjqj , but otherwise the two experiments have the same structure.

Let µtθ and λsθ be the distributions of the statistics T under Pθ and S under
Qθ respectively. The conditional distributions Pθ {·|T} and Qθ {·|S} are regular
and therefore have versions P xt and Qys which are Markov kernels such that
Pθ = µtθP xt and Qθ = λsθQys .

If there are kernelsKst and Lys,t,x such that µtθK
s
t approximates λsθ and P xt L

y
s,t,x

approximates Qys for each pair (s, t), then a kernel Myx can be constructed that
maps distributions Pθ to distributions that approximate Qθ .

LEMMA 1. If the kernel Kst is such that

‖λsθ −µtθKst ‖ ≤ ε,
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and the kernel Lys,t,x is such that for each pair (s, t),

‖Qys − P xt Lys,t,x‖ ≤ ρ(s, t),
then there exists a kernelMyx such that

‖Qθ − PθM
y
x ‖ ≤ ε+µtθKst [ρ(s, t)].

The kernel Myx is the composition of the kernels Kst and Lys,t,x . The bound
follows from some manipulation of the measures and applications of the triangle
inequality for the total-variation distance. The proof is in Section A of the
Appendix.

Thus, the task of bounding the distance between multinomials and multivariate
normals is reduced to bounding the distance between independent binomials and
normals (‖Qys −P xt Lys,t,x‖, see Section 3) and the distance between a multinomial
and multivariate normal with a smaller dimension (‖λsθ − µtθKst ‖). The distance
between these new multinomials µtθ and multivariate normals λsθ can be bounded
using the same strategy of conditioning on pairwise sums to create another set of
independent binomials and normals and another, even smaller set of multinomials
and multivariate normals. The condition (1.1) from Theorem 1 still applies to the
smaller multinomial experiment,

maxψj
minψj

≤ 2 maxθi
2 minθi

≤R.

Thus, Section 4 uses induction on the dimension m to bound the distance between
the experiments P and Q.

3. The distance between independent binomials and normals. The bound
between the multinomial and normal experiments depends on bounding the
distance between the conditional distributions P xt and Qys . Because the P xt has
support on the integers, the total-variation distance ‖P xt −Qys ‖ = 1. To counter
this, a random perturbation is added to each of the coordinates of the P xt
distribution. The kernel Lys,t,x , for a particular value of the vectors s, t , and x, is
the distribution of Y2j−1 = x2j−1 +Uj and Y2j = sj −Y2j−1 for j = 1,2, . . . ,m/2
where the Uj are independent uniforms on [−1/2,1/2]. Therefore the distribution
generated by P xt and Lys,t,x is absolutely continuous with respect to Qys .

The distributions P xt L
y
s,t,x and Qys both have independent pairs of coordinates

that sum to S. Thus the total-variation between P xt L
y
s,t,x and Qys is less than

the distance between the marginal distributions of the odd coordinates because
the transformation Y2j = Sj − Y2j−1 reproduces the even coordinates, and
a transformation applied to both distributions cannot increase the total-variation
distance between those distributions. In general, for two measures µ1 and µ2 on
(X,A) and a Markov kernel Kyx from X to (Y,B),

‖µ1K
y
x −µ2K

y
x ‖ ≤ ‖µ1 −µ2‖,(3.1)
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because the kernel Kyx maps B-measurable test functions into A-measurable test
functions.

As an intermediate step in bounding the distance between the odd coordinates
of P xt L

y
s,t,x and Qys , let Qp be a multivariate normal distribution with m/2

independent N (tjpj , tjpjqj ) coordinates. The total-variation distance between
Qp and the joint distribution of m/2 independent N (sjpj , nψjpjqj ) is less than[m/2∑

j=1

pj

qj

(tj − sj )2
2nψj

+ 3

2

(
1 − tj

nψj

)2]1/2

(3.2)

using (C.1) in the Appendix.
Likewise, let Pp be the distribution of m/2 independent binomial(tj ,pj )

coordinates and let Pp.U, be the result of convolving Pp with independent uniform
[−1/2,1/2] distributions. The total-variation distance between Qp and Pp . U
can be bounded using local-limit techniques of Prohorov (1961) or Feller (1968),
pages 168–170.

LEMMA 2.

‖Qp − Pp .U‖ ≤
[m/2∑
j=1

C

tjpjqj

]1/2

.

The proof appears in the Appendix, Section B.
Therefore, by (3.1) and the triangle inequality,

‖P xt Lys,t,x −Qys ‖ ≤
[m/2∑
j=1

C

tjpjqj

]1/2

+
[m/2∑
j=1

pj

qj

(tj − sj )2
2nψj

+ 3

2

(
1 − tj

nψj

)2]1/2
(3.3)

from Lemma 2 and (3.2).

4. Induction on the dimension of the observations. The bound on δ(P ,Q)
is derived using an inductive argument that proves the result for m-dimensional
experiments from a bound on the distance betweenm/2-dimensional experiments.
This assumes that m is even, but some minor alterations can take care of the extra
observation. Besides, when the argument is being made for density-estimation
experiments, we are free to choose the dimension of the experiments as m = 2k

for some integer k.
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LEMMA 3 (Inductive step). For m> 1, if

sup
�R

‖µtθKst − λsθ‖ ≤ CR (m/2) log(m/2)√
n

(4.1)

and the kernel Kst is such that Kst {|Sj − Tj | ≤ (log2m)/2} = 1 for all j and t ,
then there exists a kernelMyx such that

sup
�R

‖PθM
y
x − Qθ‖ ≤ CRm logm√

n
(4.2)

and the kernelMyx is such thatMyx {|Xi − Yi | ≤ (log2 2m)/2} = 1 for all i and x.

PROOF. By Lemma 1, for each θ the distance is bounded by

‖PθM
y
x − Qθ‖ ≤ ‖µtθKst − λsθ‖ +µtθKst ‖P xt Lys,t,x −Qys ‖,(4.3)

where the first term is bounded by assumption (4.1).
The first step in bounding the expectation µtθK

s
t ‖P xt Lys,t,x −Qys ‖ is to bound

the expectation on the set Ac = ⋃
j {Tj ≤ nψj/2}. The total-variation distance

is bounded by 1 and µtθA
c ≤ m exp[−Cnψj ], which is much smaller than the

other terms when ψj > R/(2m) and m<
√
n. Therefore, implicitly the rest of the

calculations will assume that all the Tj ’s are larger than nψj/2.
Section 3 bounded the second term by

µtθK
s
t ‖P xt Lys,t,x −Qys ‖ ≤ µtθKst

[m/2∑
j=1

C

tjpjqj

]1/2

+µtθKst
[m/2∑
j=1

3

2

(
1 − tj

nψj

)2

+ pj
qj

(sj − tj )2
2nψj

]1/2

.

By Jensen’s inequality, the measure can be moved inside the square roots:

µtθK
s
t ‖P xt Lys,t,x −Qys ‖ ≤

[m/2∑
j=1

µtθ
C

tjpjqj

]1/2

+
[m/2∑
j=1

3

2
µtθ

(
1 − tj

nψj

)2

+µtθKts
pj

qj

(sj − tj )2
2nψj

]1/2

.

The terms that do not depend on the S are binomial(n,ψj ) expectations,

µtθ

(
1 − Tj

nψj

)2{
Tj >

nψj

2

}
≤ 1 −ψj
nψj

and µtθT
−1
j

{
Tj >

nψj

2

}
≤ 2

nψj
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[Johnson and Kotz (1969), pages 73–75]. By assumption, the kernel Kst is such
that (Sj − Tj )2 ≤ (logm)2/4, so

Kst
pj

qj

(Sj − Tj )2
nψj

≤ pj
qj

log2m

4nψj
.

The restrictions on the parameter space �R from Theorem 1 bound the most
extreme cases in each sum:

pj

qj
≤R and

1

pjqj
= (θ2j + θ2j−1)

2

θ2j θ2j−1
≤ 4R2 and

1

ψj
≤ R

maxψj
≤ Rm

2
.

Thus, the sums are bounded by∑
j

2C

pjqjnψj
≤ 8R2C

n

∑
j

1

ψj
≤ 8R3C

m2

4n
,

3

2

∑
j

1 −ψj
nψj

≤ 1

n

∑
j

1

ψj
≤ 3R

2

m2

4n

and ∑
j

pj

qj

log2m

4nψj
≤ R log2m

4n

∑
j

1

ψj
≤ R

2

4

m2 log2m

4n
.

The total contribution from the conditional experiments is therefore bounded by

µtθK
s
t ‖P xt Lxs, t, xy −Qys ‖ ≤ m logm

2
√
n

[√
8R3C +

√
3R/2 +R2/4

]
.

Choose CR >
√

8R3C +
√

3R/2 +R2/4.
Then plugging back into (4.3) produces the bound

‖PθM
y
x − Qθ‖ ≤ CRm log(m/2)

2
√
n

+ CRm logm

2
√
n

<
CRm logm√

n

for all θ ∈�R thus establishing (4.2).
To show that the kernel Myx = KtsLys,t,x fulfills the condition that Myx {|Xi −

Yi | ≤ (log2 2m)/2} = 1 for all xi , there are two cases to consider. If i is odd, then

|X2j−1 − Y2j−1| ∼ uniform[−1/2,1/2]
and clearlyMyx {|X2j−1 − Y2j−1| ≤ 1/2} = 1. If i is even, then

|X2j − Y2j | ≤ |X2j−1 − Y2j−1| + |Tj − Sj |
and, by assumption, |Tj − Sj | ≤ (log2m)/2 almost surely. Therefore,

|X2j − Y2j | ≤ 1

2
+ log2m

2
= log2 2m

2
almost surely for all i and every x. �
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5. A bound on δ(Q,P ). The deficiency in the other direction δ(Q,P ) can
be bounded using the bound on the total-variation distance between PθM

y
x and Qθ .

The key is to choose a kernel M̄xy that inverts the effects of the kernelMyx . If M̄xy
is such that PθM

y
x M̄

x
y = Pθ for all θ then

‖Pθ − Qθ M̄
x
y ‖ = ‖PθM

y
x M̄

x
y − QθM̄

x
y ‖

≤ ‖PθM
y
x − Qθ‖

by inequality (3.1). The kernel M̄xy will be constructed recursively just like the
construction ofMyx except the adding of the uniform perturbations will be inverted
by rounding off to the nearest integer.

To start, consider the case where the dimension m = 2. The original kernel
produced Y1 = X1 + U where U ∼ uniform[−1/2,1/2]. The kernel M̄xy rounds
Y1 off to the nearest integer to produce X1 and X2 is still n−X1.

To construct M̄xy for an m-dimensional distribution, first assume there exists
a kernel K̄ts such that for all m/2-dimensional multinomials µtθ ,

µtθK
s
t K̄

t
s =µtθ .

Then, the kernel L̄xs,t,y rounds off the Y2j−1 to produce X2j−1 and X2j = Tj −
X2j−1. As before, the whole kernel is M̄xy = K̄ts L̄xs,t,y .

To see that M̄xy invertsMyx , let T ∗
j be a random variable distributed µtθK

s
t K̄

t
s and

let X∗
i be distributed PθM

y
x M̄

x
y . The odd coordinates are X∗

2j−1 = round[Y2j−1]
where Y2j−1 = X2j−1 + Uj for Uj ∼ uniform[−1/2,1/2], so that X∗

2j−1 =
round[X2j−1 +Uj ] =X2j−1. Furthermore,X∗

2j = T ∗
j −X∗

2j−1 which has the same
distribution as X2j = Tj −X2j−1 because T ∗

j has the same distribution as Tj and
X∗

2j−1 =X2j−1. Therefore, by induction,

PθM
y
x M̄

x
y = Pθ ,(5.1)

and ‖Pθ − Qθ M̄
x
y ‖ ≤CRn−1/2m logm.

6. Proof of Theorem 1. The proof is by induction on the dimension of the
experiments. The kernelKst is just the kernelMyx of the experiment for dimension
m/2. All that is necessary beyond Lemma 3 is to establish a starting point for the
induction, m= 1.

When m= 1, all the distributions in both experiments put probability 1 on the
point n. These are noninformative experiments because the distributions do not
depend on θ , and the distance between them is 0 [cf. Torgersen (1991), pages 225
and 226, Example 6.2.1]. The kernel Kts is the identity, thus |S1 − T1| = 0 almost
surely Kts . Therefore, if m = 2 then the assumptions in Lemma 3 hold, and
Theorem 1 is established by induction. �
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7. Some other normal experiments. The normal experiment Q is convenient
because it has the same moments as the multinomial and thus approximates P
well. However, if the multivariate normal distributions are to represent the in-
crements of a continuous Gaussian process then the normal coordinates must
be independent and have a variance that does not depend on θ . To this end, the
experiment Q is approximated by the experiment Q̃ with distributions Q̃θ which
are products of m independent N (nθi, nθi) distributions, and, furthermore, Q̃ is
approximated by Q∗ with Q∗

θ distributions having independent N (
√
nθi,1/4)

coordinates. I will show that �(Q, Q̃) ≤ CRn−1/2m logm and �(Q̃,Q∗) ≤
CRn

−1/2m logm which implies, along with Theorem 1, that �(P ,Q∗) ≤
3CRn−1/2m logm.

7.1. Approximation by an experiment with independent coordinates. The
technique for approximating the Qθ by distributions with independent coordinates
is similar to the Poissonization technique that is used in density estimation, in
that it randomizes the total to produce independence among the subtotals. It is
easier to establish this approximation between normal experiments, as opposed
to multinomials and Poissons, because working with real numbers rather than
integers allows more flexibility in the choice of transformations.

The distributions Q̃θ with independent N (nθi, nθi) distributions are related
to the Qθ distributions in that Qθ = Q̃θ {·|∑Yi = n}. Thus both Qθ and Q̃θ
have the same conditional distributions given the vector of pairwise sums S,
even though under the Q̃θ distributions the sums Sj are distributed independently
Sj ∼ N (nψj ,nψj ).

Given these similarities between the conditional structures of Q and Q̃, an
induction argument similar to the proof of Theorem 1 is used to construct the
kernel and to bound δ(Q, Q̃). Let S̃ be the sums of the pairs in the Q̃θ distributions.
Let λ̃s̃θ be the distribution of S̃ and let the Markov kernel Q̃ỹ

s̃
be a version of the

conditional distribution of Q̃θ given S̃.
First, consider the case where m= 1. These experiments are trivial but they are

the starting point for the induction argument. The parameter is restricted to θ1 = 1,
so all the distributions in Q put probability 1 on n and all the distributions in Q̃
are N (n,n). These experiments are noninformative and the distance between them
is 0 [Torgersen (1991), pages 225 and 226]. The Markov kernel K̃ñn that maps from
Qθ to Q̃θ for m= 1 produces an independent ñ∼ N (n,n).

The induction step starts with the assumption that there is a kernel K̃s̃s such that

sup
�R

∥∥λ̃s̃θ − λsθ K̃ s̃s
∥∥≤ CR

√
m/2

n

and that

K̃s̃s

{
s̃j

sj
= ñ
n

}
= 1 for all s and j = 1, . . . ,m/2,

where ñ is the sum of all the s̃j . The kernel K̃ñn meets these conditions for m= 1.
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The induction proceeds by the use of Lemma 1,∥∥Q̃θ − Qθ M̃
ỹ
y

∥∥≤ ∥∥λ̃s̃θ − λsθK̃ s̃s
∥∥+ λsθ K̃ s̃s

∥∥Q̃ỹ
s̃

−Qys L̃ỹs̃,s,y
∥∥.

The Q̃ỹ
s̃

distribution has independent pairs of coordinates (Ỹ2j−1, Ỹ2j ) where

Ỹ2j−1 ∼ N (s̃jpj , nψjpjqj ). Thus the kernels Q̃ỹ
s̃

and Qys are the same, but the
bound depends on the distance between the distributions for s̃ �= s. The kernel
L̃
ỹ

s̃,s,y
is a nonrandom kernel that corresponds to rescaling each coordinate by the

factor s̃/s, that is, L̃ỹ
s̃,s,y

{Ỹi = Yi(S̃�i/2�/S�i/2�)} = 1. The kernel preserves the

property that Ỹ2j + Ỹ2j−1 = S̃j so by the same argument as in Section 3 it is
only necessary to bound the total variation distance between the odd coordinates.
Q
y
s and L̃ỹ

s̃,s,y
generate distributions such that the odd coordinates are distributed

N (s̃jpj , (s̃j /sj )
2nψjpjqj ). Therefore, the distance between the conditional

distributions is bounded using the inequalities in the Appendix, Section C, by

∥∥Q̃ỹ
s̃

−Qys L̃ỹs̃,s,y
∥∥≤

[m/2∑
j=1

(
1 − s̃

2
j

s2j

)2]1/2

.

By the assumption on the kernel K̃s̃s and Jensen’s inequality,

λsθ K̃
s̃
s

[m/2∑
j=1

(
1 − s̃

2
j

s2j

)2]1/2

≤
[m/2∑
j=1

K̃ñn

(
1 − ñ

2

n2

)2]1/2

≤
√
Cm

n

for a constant C > 4. Combined with the induction assumption on the size of
‖λ̃s̃θ − λsθKs̃s ‖, this establishes the bound

∥∥Q̃θ − Qθ M̃
ỹ
y

∥∥≤ CR
√
m/2

n
+
√
Cm

n
≤ CR

√
m

n
,

as long as CR >C(1 − 1/
√

2)−2. Furthermore, the kernel M̃ỹy is such that

Ỹi

Yi
= S̃�i/2�
S�i/2�

= ñ
n

almost surely.

Thus the kernel M̃ỹy can be used as the kernel Ks̃s in establishing the result for the
larger, 2m-dimensional experiments.

7.2. A variance stabilizing transformation. The Q̃ experiment with m inde-
pendent observations N (nθj , nθj ) is a problem because the variance depends on
the parameter. The solution is to apply a variance stabilizing transformation as
the kernel to produce a multivariate normal location experiment Q∗. The coordi-
nates of both Q̃ and Q∗ are independent so the kernel can be constructed from
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independent transformations of each coordinate and an inductive argument is not
necessary.

The transformed normals are no longer normally distributed, but for large n
they admit normal approximations. Klemelä and Nussbaum [(1998), pages 18–
20] describe a similar method of getting a bound on the deficiency between the
transformed Y and its normal approximation.

Each coordinate Ỹi is transformed by taking the square root of the positive part
of Ỹi . Negative values of Ỹi are unlikely so they do not contribute much to the

distance. The density of
√
(Ỹi)+ is

f (y)= 2√
2π

exp
[
−(y

2 − nθi)2
2nθi

]
y√
nθi

for y > 0,

and there is a point mass at {Ỹi = 0} with small probability. The marginal density
of Q∗

θ ∼ N (
√
nθi,1/4) is

g(y)= 2√
2π

exp
[−2(y −√

nθi)
2].

Let the set A be a symmetric set around
√
nθi with high probability under Q∗

θ ,

A= {
y :
∣∣y −√

nθi
∣∣≤√

nθi/2
}
.

To use the inequality (B.1), it is necessary to bound

Q∗
θA log

dQ∗
θ

dQ̃θ
= −Q∗

θA

[
log(y/

√
nθi)+ 2(y −√

nθi)
2 − (y

2 − nθi)2
2nθi

]
.

Let ξ = 2(y − √
nθi). The first term can be bounded using the Taylor expansion

around ξ = 0,

log
(
y√
nθi

)
= log

(
1 + ξ

2
√
nθi

)
≥ ξ

2
√
nθi

− ξ2

8nθi
+ ξ3

24(nθi)3/2
− ξ4

32(nθi)2

for |ξ | ≤ √
nθi . Thus

−Q∗
θA log(y/

√
nθi)≤ 1

8nθi
+ 3

32(nθi)2
.

Substituting ξ into the other terms yields

(y2 − nθi)2
2nθi

− 2(y −√
nθi)

2 = ξ3

4
√
nθi

+ ξ4

32nθi
,

which has Q∗
θ expectation

Q∗
θA

(
ξ3

4
√
nθi

+ ξ4

32nθi

)
≤ 3

32nθi
.
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So the total-variation distance between Q∗
θ and the image of the square root

under Q̃θ is bounded using (B.1) by[
2Q∗
θA
c +∑

i

7

32nθi
+ 3

32(nθi)2

]1/2

.

Using standard tail bounds Q∗
θA
c ≤ exp[−n/m], and, as in the proof of Lemma 3,∑

(nθi)
−1 ≤Rm2/n. Therefore, the total-variation distance is less thanCRmn−1/2.

8. Applying Theorem 1 to nonparametric experiments. The intent of
bounding the distance between multinomials and multivariate normals is to make
assertions about density estimation experiments. The multinomial experiment can
be seen as the result of grouping independent observations from a continuous
density into subsets. Likewise, the normals are approximately the increments of
a continuous Gaussian process.

The bound between P and Q∗ does not depend on the specific sample space
of the original density estimation experiment. The properties of the sample space
only enter into the problem when approximating the density estimation experiment
by the multinomial experiment P and the related problem of approximating the
continuous Gaussian experiment by its increments.

Typically, a smoothness condition on the densities is sufficient to show
asymptotic equivalence, as long as m grows sufficiently fast with n. Brown and
Zhang (1998) showed that a smoothness condition on the densities is necessary for
the asymptotic equivalence of the density estimation experiment and the normal
experiment.

A class of smooth, differentiable densities f ∈ F (γ, ε,M) on the interval [0,1]
such that ε < f <M and

|f ′(x)− f ′(y)| ≤M|x − y|γ for all (x, y)

provides an example to which Theorem 1 can be shown to apply for γ, ε > 0. This
is a subset of a Hölder ball with exponent α > 1 as in Klemelä and Nussbaum
(1998). These densities generate probabilities

θi =
∫ i/m
(i−1)/m

f,

which are between ε/m andM/m so that

max θi
min θi

≤ M
ε

= R.

Thus the probabilities generated by F (γ, ε,M) are a subset of �R .
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8.1. Density estimation. Let P̄ be the density estimation experiment which
observes n independent observations from the distribution Pf with density f . This
P̄ can be approximated by the multinomial Pm. The multinomial observations are
just the counts within the intervals [(i − 1)/m, i/m] so that δ(P̄ ,Pm) = 0. The
difficulty is in generating the original n observations from the m counts on each
subinterval.

Let X∗ be a single observation from the discrete distribution that puts
probability θi at the midpoint x∗

i of the subintervals, x∗
i = (2i − 1)/(2m). Add

to X∗ an independent V ∗ with density

dPV ∗

dλ
(x)=m−m2|x| for − 1

m
≤ x ≤ 1

m
.

Then the density of the random variableX∗ +V ∗ is the convolution of the discrete
distribution with these triangles or simply a linear interpolation between the values
at the midpoints, f ∗(i)=mθi ,
f̂ (x)= f ∗(i)[x−x∗

i+1]−f ∗(i+1)[x−x∗
i ] for x∗

i ≤ x ≤ x∗
i+1, 1 ≤ i ≤m−1.

To avoid putting any probability outside the interval [0,1], if X∗ = 1
2m or X∗ =

m− 1
2m andX∗+V ∗ /∈ [0,1] then reflect the value back into the interval: |X∗+V ∗|

for i = 1, or 1−|(X∗ +V ∗)−1| for i =m. Thus, near the edges, f̂ (x) is a constant
equal to f ∗(1) for x < 1/m or f ∗(m) for x > (m− 1)/m.

The multinomial experiment Pm is a sufficient statistic for n copies of the
discrete distribution of X∗. Thus adding n independent V ∗’s as above describes
a randomization which produces n independent copies of f̂ . This approximates P̄
with an error less than

H(P nf ,P
n

f̂
)≤ √

nH(f, f̂ )≤
√
n√
ε
‖f − f̂ ‖2.(8.1)

A function approximation bound is necessary.

LEMMA 4. For f ∈ F (γ,M,ε), and f̂ defined above, the squared L2
distance is bounded by

sup
f∈F

‖f − f̂ ‖2
2 ≤Mm−2γ−2.

for 0< γ ≤ 1/2.

Therefore, the distance is bounded by

�(P̄ ,Pm)≤ Cm−γ−1√n,(8.2)

where C is a constant that depends on ε andM .
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PROOF. The smoothness condition on F can be used to bound the error in
a Taylor expansion,

|f (t + δ)− f (t)− δf ′(t)| = |f (t)+ δf ′(t∗)− f (t)− δf ′(t)|
≤Mδγ+1

(8.3)

because there exists a t∗ such that |t∗ − t| ≤ δ by the mean value theorem.
This implies a bound on |f (x∗

i )− f̂ (x∗
i )|,

|f (x∗
i )− f̂ (x∗

i )| = |f (x∗
i )− f ∗(i)|

=
∣∣∣∣f (x∗

i )−m
∫ i/m
(i−1)/m

[f (x∗
i )+ (x − x∗

i )f
′(x∗
i )+ ξ(x)]dx

∣∣∣∣
=
∣∣∣∣m∫ i/m

(i−1)/m
ξ(x) dx

∣∣∣∣
≤Mm−γ−1.

(8.4)

The function ξ(x) is the error in the Taylor expansion bounded in (8.3).
Between successive x∗

i ’s the density f̂ is linear. The original density is within
2Mm−γ−1 of a straight line between f (x∗

i ) and f (x∗
i+1),

f (x)= f (x∗
i )+ (x − x∗

i )f
′(x∗
i )+ ξ

= f (x∗
i )+ (x − x∗

i )f
′(t)+ (x − x∗

i )(f
′(x∗
i )− f ′(t))+ ξ,

where t is the point between x∗
i and x such that f ′(t) is the slope of the line

between f (x∗
i ) and f (x∗

i+1). By (8.3), |ξ | and |(x− x∗
i )(f

′(x∗
i )− f ′(t))| are both

less thanMm−γ−1.
The total error between the densities at any point x is thus

|f (x)− f̂ (x)| ≤ 3Mm−γ−1 for
1

m
≤ x ≤ m− 1

m
.

There is a bit of a complication at the edges of the intervals. The density f̂
is defined to be a constant f ∗(1) or f ∗(m) at either edge. A rougher bound on
|f − f̂ | of M/m applies at the edges because the derivative is bounded by M .
Therefore, the total error is∫

(f − f̂ )2 =
∫ 1/m

0
+
∫ (m−1)/m

1/m
+
∫ 1

(m−1)/m)
(f − f̂ )2

≤Mm−3 +Mm−3 + 4Mm−2γ−2 ≤Mm−2γ−2

as long as γ ≤ 1/2. �
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8.2. The normal experiment. The multivariate normal can be approximated by
a continuous Gaussian process,

Y (t)=
∫ t

0
f 1/2 dt + 1

2
√
n
W(t),

where W(t) is the standard Brownian motion process. The distributions of these
continuous processes form an experiment Q̄.

Note. The functions g = f 1/2 are members of the smoothness class
F (γ,

√
ε, M√

ε
).

The increments of the Y (t) process over the intervals are

Ŷi ≡ Y (i/m)− Y ([i − 1]/m)∼ N

(∫ i/m
(i−1)/m

f 1/2,
1

4nm

)
and the distributions of these increments form an experiment Q̂ such that
δ(Q̄, Q̂)= 0.

Rescaling these increments,
√
mnŶi , generates approximately the same distrib-

utions as

Yi ∼ N
(√
nθi,

1
4

)
.

The difference between the means is

n1/2

m1/2

∣∣∣∣√f ∗(i)−m
∫ i/m
(i−1)/m

f 1/2
∣∣∣∣≤ n1/2

m1/2

∣∣∣√f (x∗
i )−

√
f ∗(i)

∣∣∣
+ n1/2

m1/2

∣∣∣∣m∫ i/m
(i−1)/m

(√
f ∗(i)−

√
f (x)

)
dx

∣∣∣∣.
Each of these two terms is less than n1/2m−1/2(Mε1/2m−γ−1) by a simple
variation of the reasoning in (8.4).

The Hellinger distance between the multivariate normals is less than the sum of
the squared distances between the means

H 2({Yi}ni=1, {Ȳi}ni=1
)≤ 2

m∑
i=1

n

m

(√
f ∗(i)−m

∫ i/m
(i−1)/m

f 1/2
)2

≤ nM
2

ε
m−2γ−2.

Therefore,

�(Q̂m,Q
∗
m)≤ Cn1/2m−γ−1.(8.5)

To bound δ(Q̂m, Q̄), the transformation is a bit more involved. The Ŷi provide
approximations at the midpoints of the intervals. Then, in analogy to the density
estimation situation let Vi(x) be the function

Vi(x)=m−m2|x − x∗
i |
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for (i − 3)/(2m)≤ x ≤ (i + 1)/(2m) and 0 elsewhere. Define V0(t) and Vn(t) as
1/m on the half intervals at either edge. Then let

Y ∗(t)=
∫ t

0

(
m∑
i=1

ŶiVi(x)

)
dx + 1

2
√
n

m∑
i=1

1√
m
Bi(t),

where the Bi are independent zero mean Gaussian processes with variances

Var(Bi)=
∫ t

0
Vi −

[∫ t
0
Vi

]2

.

These processes can be constructed from a standard Brownian bridge B(t) via

Bi(t)= B
(∫ t

0
Vi

)
.

The drift of the Y ∗ process is

m∑
i=1

Vi(x)E(Ŷi)=
m∑
i=1

Vi(x)

∫ i/m
(i−1)/m

f 1/2 ≡ ĝ(x),

where ĝ is a linear interpolation between the midpoints like f̂ except for the
function g = f 1/2.

The variance in the process comes from two sources, the variance of the
observed Ŷi ,

Var

(∫ t
0

(
m∑
i=1

ŶiVi(x)

)
dx

)
=

m∑
i=1

1

4mn

[∫ t
0
Vi(t)

]2

and the contribution from the sum of the Bi ,

Var

(
1

2
√
n

m∑
i=1

1√
m
Bi(t)

)
= 1

4mn

m∑
i=1

[∫ t
0
Vi(t)−

(∫ t
0
Vi(t)

)2]
.

The result is that

Var(Y ∗(t))= 1

4n

∫ t
0

m∑
i=1

1

m
Vi(t)= t

4n
.

Therefore,

Y ∗(t)=
∫ t

0
ĝ(x) dx + 1

2
√
n
W(t).(8.6)

The total variation distance between Y ∗(t) constructed this way and the
Gaussian process Y (t) is on the order of

2
√
n‖ĝ − g‖2
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and thus, applying Lemma 4 for g ∈ F (γ,
√
ε,M/

√
ε),

�(Q̄, Q̂)≤C√
nm−γ−1,(8.7)

where C depends onM and ε.
Therefore, combining (8.5) and (8.7), the distance

�(Q̄,Q∗
m)≤ 2Cn1/2m−γ−1.(8.8)

8.3. Choosing m. Combining the results in (8.2) and (8.8) along with
Theorem 1, the deficiency distance is

�(P̄ , Q̄)≤ Cn1/2m−γ−1 +CRm logm

n1/2
.

This bound goes to zero whenm is chosen to be n1/2−ζ for ζ < γ/2. Furthermore,

�(P̄ , Q̄)≤ Cn−γ /(γ+2) logn

when the dimension is chosen to be m= n1/(2+γ ).

APPENDIX

A. Proof of Lemma 1. The two kernels, Kts and Lys,t,x can be combined to
form a single kernelMyx by

MyxB =Ks,t,xx [Lys,t,xB],
where the kernel Ks,t,xx is defined for A ∈ σ(S)× σ(T )× A by

Ks,t,xx A=KsT (x)
{
s :
(
s, T (x), x

) ∈A}.
Thus the kernel Kst is extended to measures on the product space S ⊗ T ⊗ X that
have support on the set {T = t, X ∈ T −1(t)}.

The first step toward bounding ‖PθM
y
x −Qθ‖ is to express the PθM distribution

as

PθM
y
x =µtθP xt Kst Lys,t,x =µtθKst P xt Lys,t,x,

where the change of order is justified because for any particular value of t the joint
distribution P xt K

s
t makes S and X independent.

Therefore, for any B-measurable function g(y) such that |g(y)| ≤ 1,

|Qθg(y)− PθMg(y)| =
∣∣λsθQys g(y)−µtθKst P xt Lys,t,xg(y)∣∣

≤ ∣∣λsθQys g(y)−µtθKst Qys g(y)∣∣
+ ∣∣µtθKst Qys g(y)−µtθKst P xt Lys,t,xg(y)∣∣

by the triangle inequality.
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In the first term,Qys g(y) is a σ(S)-measurable function such that |Qys g(y)| ≤ 1.
Thus ∣∣λsθ [Qys g(y)] −µtθKst [Qys g(y)]

∣∣≤ ‖λsθ −µtθKst ‖ ≤ ε.
In the second term,∣∣µtθKst [Qys g(y)] −µtθKst [P xt Lys,t,xg(y)]

∣∣≤ µtθKst ∣∣Qys g(y)− P xt Lys,t,xg(y)∣∣
≤ µtθKst ‖Qys − P xt Lys,t,x‖
≤ µtθKst ρ(s, t).

Thus, |Qθg(y)− PθMg(y)| ≤ ε + µtθKst ρ(s, t) for any |g| ≤ 1, and therefore
the total-variation distance is also bounded

‖Qθ − PθM
y
x ‖ ≤ ε+µtθKtsρ(s, t). �

B. The distance between a binomial and normal.

B.1. A bound on the total-variation distance between product distributions.
The total-variation distance between distributions P and Q that are dominated
by µ is defined to be

‖P −Q‖ = 1

2
µ

∣∣∣∣dPdµ − dQ
dµ

∣∣∣∣.
This distance is bounded by the Hellinger distance,

‖P −Q‖ ≤H(P,Q)=
[

2 − 2P

√
dQ

dP

]1/2

≤ √
2.

If there is a set A where the distributions are close on A and Ac is small then
a useful bound on the Hellinger distance is

H 2(P,Q)≤ 2 − 2PA

√
dQ

dP
.

For the likelihood ratios it will be convenient to use the Kullback–Leibler
divergence [Kullback (1967)] P logdP/dQ. The divergence bounds the Hellinger
distance,

H 2(P,Q) ≤ 2 − 2PA

√
dQ

dP

= 2 − 2PA+ 2PA

(
1 −

√
dQ

dP

)

≤ 2PAc + PA log
dP

dQ
.



DEFICIENCY DISTANCE BOUND 727

This bound is especially useful if P and Q are product measures because then

PA log
dP

dQ
=∑

i

PiA log
dPi

dQi
.

Therefore,

‖P −Q‖ ≤
[

2PAc +∑
i

PiA log
dPi

dQi

]1/2

.(B.1)

B.2. The local-limit theory bound between binomial and normal densities.
For Lemma 2, the total-variation distance between a product of normals and
a product of smoothed binomials is needed. To apply the inequality (B.1), let

A=
m⋂
i=1

{
xi : |xi − nipi | ≤ (nipiqi)2/3}.

Standard tail bounds on the binomial show that PpA
c ≤ m exp[−C(n/m)1/3]

which is smaller than the rest of the terms in the bound.
Let b(k) be the binomial density,

(n
k

)
pnqn−k for k = 0, . . . , n, and let b(x) be

the density that is equal to b(k) for |x − k| ≤ 1/2. If the Uj are independent
uniform[−1/2,1/2] distributions, then b(xj ) is the density of a single coordinate
of Pp .U.

Let

ϕ(x)= 1√
2πnpq

exp
[
−(x − np)2

2npq

]
,

the density of a N (np,npq).
By (B.1), it is enough to bound

(Pp .U)A log
[
b(xj )

φ(xj )

]
for each coordinate.

Prohorov (1961) approximates the log of the likelihood ratio at each integer by

log
[
b(k)

ϕ(k)

]
=Cp− q

6σ
[z3 − 3z] +O([z4 + z2 + 1]σ−2)

for k an integer in A and

σ = √
npq and z= k − np

σ
.
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For noninteger values of x, the density b(x) is equal to b(k) where k is the
closest integer to x. For the normal density,

log
ϕ(k)

ϕ(x)
= 1

2σ 2

[
(x − np)2 − (k − np)2]

= 1

2σ 2

[
(x − k)2 + 2(x − k)(k − np)].

So the integral is

(Pp .U)A log
b(xj )

ϕ(xj )
= (Pp .U)A

[
log
b(K)

ϕ(K)
+ log

ϕ(K)

ϕ(xj )

]
,

where K is the integer closest to xj ,

(Pp .U)A
[
log
b(K)

ϕ(K)
+ log

ϕ(K)

ϕ(x)

]

≤ PpA

[
p− q

6σ
(z3 − 3z)+O

(
z4 + z2 + 1

σ 2

)]
+ 1

2σ 2 (Pp .U)
[
(x −K)2 + 2(x −K)(K − np)].

The moments of the binomial are [Johnson and Kotz (1969), pages 50–82]

PpzA≤ np
σ

PAc, Ppz
2A≤ 1,

Ppz
3A≤ p− q

σ
+ n3PAc, Ppz

4A≤ 3 + 1 − 6pq

σ 2 ,

where PpA
c is small. Thus,

PpA

[
p− q

6σ
(z3 − 3z)+O

(
z4 + z2 + 1

σ 2

)]
= (p− q)2

6σ 2
+O(σ−2).

The other expectation is computed using the fact that x − K is uniformly
distributed over [−1/2,1/2] and is independent of x. Thus,

(Pp .U)
[
(x −K)2 + 2(x −K)(K − np)]

= (Pp .U)
[
(x −K)2 − 2(x −K)2 + 2(x −K)(x − np)]= − 1

12

and this expectation can be ignored.
All the contributions to the distance are less than Cσ−2. Therefore, the bound

between the product experiments is

‖Pp .U − Qp‖ ≤
[∑
j

C

tjpjqj

]1/2

.
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C. Total-variation distance between normals. It is convenient to deal with
normal experiments because the distance between them is bounded rather easily.
LetQ1 ∼ N (µ1, σ

2
1 ) and Q2 ∼ N (µ2, σ

2
2 ). Then the Hellinger affinity is

Q1

√
dQ2

dQ1
=
√√√√ 2σ 2

1 σ
2
2

σ 2
1 + σ 2

2

exp
[
− (µ1 −µ2)

2

4(σ 2
1 + σ 2

2 )

]
,

so that the Hellinger distance between normals is bounded by

H 2(Q1,Q2)≤ 2
(

1 − σ
2
1

σ 2
2

)2

+ (µ1 −µ2)
2

2σ 2
2

.

This inequality bounds the total-variation distance between m/2 independent
N (sjpj , nψjpjqj ) and N (tjpj , tjpjqj ) distributions by[∑

j

pj

qj

(tj − sj )2
2nψj

+ 2
(

1 − tj

nψj

)2]1/2

(C.1)

because the Hellinger distance is greater than total-variation distance, and the
squared Hellinger distance between product measures is less than the sum of the
squared Hellinger distances.
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