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ASYMPTOTICALLY EFFICIENT ESTIMATION IN THE
WICKSELL PROBLEM

By G. K. Golubev and B. Y. Levit

Russian Academy of Sciences and University of Utrecht

We consider the classical Wicksell problem of estimating an unknown
distribution function G of the radii of balls, based on their observed cross-
sections. It is assumed that the underlying distribution function G belongs
to a Hölder class of smoothness γ > 1/2�We prove that, for a suitable choice
of the smoothing parameters, kernel-type estimators are asymptotically
efficient for a large class of symmetric bowl-shaped loss functions.

1. Introduction. In the Wicksell problem [Wicksell (1925)] one observes
cross-sections, formed by a given plane � in R3, of random balls Bi =
Bi�vi	Ri�, i = 1	 � � � 	 n	 with centers vi given by the sites of a stationary Pois-
son point process, and with iid radii Ri such that Yi = R2

i has an unknown
distribution function G�y�, y ∈ R+. We are interested here in estimating G�y�
at a given point y > 0. For numerous applications of the Wicksell problem in
biology, stereology, stochastic geometry and so on, see, for example, Stoyan,
Kendall and Mecke (1995). Further references and related problems can be
found in Hall and Smith (1988) and the survey paper by Hoogendoorn (1992).

Assume that a coordinate system in R3 is chosen such that � = �v� v3 = 0�
and denote the observed cross-sections Bi∩� by Si = S�ui	 ri�, ui = �vi1	 vi2�.
Denote byF�x� the distribution function of the observed squared radiiXi = r2

i

and let λ be the (unknown) intensity of the underlying point process in R3.
Then

P�X1 > x
S1 is observed at v11 ∈ �w1	w1 + dw1�	 v12 ∈ �w2	w2 + dw2��

= P
{
v11 ∈ �w1	w1 + dw1�	 v12 ∈ �w2	w2 + dw2�	 
v13
 <

√
Y1 − x

}
P
{
v11 ∈ �w1	w1 + dw1�	 v12 ∈ �w2	w2 + dw2�	 
v13
 <

√
Y1

}

= 2λdw1 dw2
∫∞
x

√
y− xdG�y�

2λdw1 dw2
∫∞

0
√
ydG�y� =

∫∞
x

√
y− xdG�y�∫∞

0
√
ydG�y� �

Hence

1 −F�x� = 1
m�G�

∫ ∞

x

√
y− xdG�y�	(1)

where

m�G� =
∫ ∞

0

√
ydG�y�
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is the expected radius of the balls Bi, which we assume to be finite. Similarly,
one can show that X1	 � � � 	Xn are independent random variables with distri-
bution function F�x� given by (1). For a more rigorous treatment based on
marked point processes see, for example, Reiss (1993), page 47.

One can easily estimate the distribution F�x� of the observed squared radii
Xi and then try to “unfold” the unknown distributionG�y� using (1). Problems
of this kind are often referred to as inverse problems. The Wicksell problem
is obviously also related to the so-called convolution and mixture models.

Fortunately, the underlying equation (1) can in our case be solved explicitly.
More precisely, if G�·� is Hölder continuous with an exponent γ > 0, then

1 −G�y� = 2m�G�
π

∫ ∞

y

dF�x�√
x− y

= ��y�
��0� 	(2)

where

��y� =
∫ ∞

y

dF�x�√
x− y

�(3)

Although the basic equation (2) has been frequently used in studying the
Wicksell problem, the available proofs of it appear to be of a somewhat ad hoc
nature. For the reader’s convenience we derive (2) here. To find the density
of G�x�, let φ�·� be any smooth function having a compact support in �0	∞�.
Then according to (1) and changing the order of integration,

Eφ�X� =
∫ ∞

0
φ′�x��1 −F�x��dx = 1

m�G�
∫ ∞

0

∫ y

0
φ′�x�√y− xdxdG�y�

= 1
m�G�

∫ ∞

0

∫ y

0

φ�x�
2
√
y− x

dxdG�y� = 1
2m�G�

∫ ∞

0
φ�x�

∫ ∞

x

dG�y�√
y− x

dx�

Hence the density of F is given by

f�x� = 1
2m�G�

∫ ∞

x

dG�y�√
y− x

�(4)

To express G�·� in terms of F�·�, note that according to the above equation,

2m�G�
π

∫ ∞

y

dF�x�√
x− y

= 1
π

∫ ∞

y

1√
x− y

∫ ∞

x

dG�z�√
z− x

dx

= 1
π

∫ ∞

y

∫ z

y

dx√�z− x��x− y� dG�z� = 1 −G�y�

thus proving (2).
Equations (2) and (3) immediately suggest a naive estimator Ĝn�y� ob-

tained by using the empirical distribution function F̂n�x� of the observed data
X1	 � � � 	Xn instead of F. Although such an estimator may have infinite sec-
ond moments and, being unbounded in y, is very poor in applications, it is
asymptotically normal � �0	 σ2

0 �G�/φ2
n�, where φ2

n = n/ log n,

σ2
0 �G� = 4π−2m2�G�(f�y� + f�0��1 −G�y��2)
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and f is the density of F. Thus the naive estimator is consistent, with a rate
of convergence φ−1

n . Watson (1971) derives this result as a mere curiosity.
In a recent paper, Groeneboom and Jongbloed (1995) have shown that ifG�·�

is Hölder continuous with an exponent γ ≥ 1, the above rate of convergence
φ−1
n cannot be improved by any estimator. They also proposed an isotonic

estimator attaining the constant σ2
0 �G�.

In this paper we derive asymptotically efficient estimators of G�y�, under
the assumption that G�·� belongs to a given Hölder class �γ, with γ > 1/2. The
efficiency of the proposed estimators holds simultaneously for a large class of
symmetric bowl-shaped loss functions, and their mean square error decreases
asymptotically as σ2�G�φ−2

n , where σ2�G� = σ2
0 �G�/�2γ�. Such estimators are

obtained by replacing the unknown density f�x� of F�x� in (2), (3) by a prop-
erly scaled kernel-type density estimator fn�x� = fn�x�X1	 � � � 	Xn�.

The idea of using kernel-type estimators in the Wicksell problem has been
proposed by Taylor (1983). Later this method was discussed by Hall and Smith
(1988) in the framework of estimating the unknown density g�·� of G�·�, by
van Es and Hoogendoorn (1990) and by others. The existence of efficient non-
parametric estimators in this long-standing problem proved, however, to be
elusive for more than 70 years.

To better understand the role played by the Wicksell problem in nonpara-
metric estimation, it is useful to consider a more general family of statistical
functionals

�λ�y�F� =
∫ ∞

y
�x− y�−λ dF�x�	 0 < λ < 1	(5)

with the special case λ = 1/2 appearing in (2). Such functionals coincide,
up to certain constants, with the Weyl fractional derivatives DλF�y� of the
distribution function F and lead therefore to a natural generalization of the
well-known problem of estimating an unknown density and its higher-order
derivatives.

For λ < 1/2, �λ�y�F� is a standard example of a regular statistical func-
tional [see, e.g., Koshevnik and Levit (1976)], since the function �· − y�−λ is,
normally, square integrable. For λ > 1/2, on the other hand, �λ�y�F� is a
typical example of irregular functionals, exhibiting the same properties as the
more familiar density estimation problem. Thus the Wicksell problem (corre-
sponding exactly with the case λ = 1/2) lies on the boundary between regular
and irregular nonparametric problems. Moreover it combines, in a peculiar
manner, properties of both these types of problems. Namely, asymptotically
efficient (locally asymptotically minimax) estimators, although they do exist
in the Wicksell problem, are closer in nature to nonparametric density esti-
mators.

2. Main results. Consider a nonparametric estimator of the density f�·�
based on the observed random variables X1	 � � � 	Xn	

fn�x� =
1
nh

n∑
i=1

K

(
x−Xi

h

)
	(6)
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where the bandwidth h = hn > 0, hn → 0 (as n → ∞) and the kernel K�·�
will be specified shortly.

Based on fn�x�, a natural estimator of the functional ��y� appearing in
(2) is

�n�y� =
∫ ∞

y

fn�x�√
x− y

dx =
∫ ∞

0

fn�y+ s�√
s

ds = 1
n

n∑
i=1

uh�y−Xi�	(7)

where

uh�t� =
1
h

∫ ∞

0
K

(
t+ s

h

)
1√
s
ds�(8)

Although the distribution of Xi and the target functional ��y� are com-
pletely specified by the distribution function F itself, we will endow corre-
sponding expectations, variances and so on with the index G, which is the
parameter of primary interest for us [see (1), (2)].

Let

Gn�y� =




0	 if �n�y�/�n�0� > 1	

1 −�n�y�/�n�0�	 if �n�y�/�n�0� ∈ �0	1�	
1	 if �n�y�/�n�0� < 0	

(9)

be the corresponding estimator of G�y� in (2).
Our goal is to show that the thus-defined estimator Gn�y� is asymptotically

efficient (or more precisely, locally asymptotically minimax) if the parameter
hn and the kernelK�·� are properly chosen, in accordance with the smoothness
properties of the underlying distribution function G�·�. To include these prop-
erties in our model, consider, for arbitrary γ = α+ β, α = 0	1	 � � �, 0 < β ≤ 1,
the Hölder class �γ of functions g�y�, y ≥ 0 having finite norm

�g�γ = sup
y≥0


g�y�
 + sup
x	y≥0


g�α��x� − g�α��y�


x− y
β �

Assuming γ > 1/2, let �γ denote the class of all distribution functions
G ∈ �γ satisfying the following assumptions:

G�y� = 0	 y ≤ 0	(10) ∫ ∞

0

√
ydG�y� <∞�(11)

Furthermore let �γ be the topology on �γ induced by the norm

�G1 −G2��γ
= �G1 −G2�γ +

∣∣∣
∫ ∞

0

√
yd�G1 −G2��y�

∣∣∣�
In this topological space ��γ	�γ� of the underlying distributions, one can con-
sider arbitrary neighborhoods V of a given G ∈ �γ as well as limits with
respect to a converging net V↘ G.
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To incorporate our prior information into the construction of efficient es-
timators, assume that K�·� is an arbitrary one-sided kernel satisfying the
following conditions:

sup
x


K�x�
 <∞	(12)

suppK�·� ⊂ �−1	0�	(13) ∫
K�x�dx = 1	(14)

∫
xi K�x�dx = 0	 i = 1	 � � � 	 α�(15)

Let � denote the class of loss functions w�z� ≥ 0, z ∈ R1 such that

w�z� = w�−z�	 w�z� ≥ w�y�	 
z
 ≥ 
y
	
and for some p	q > 0 w�z� ≤ p exp�q
z
�.

Theorem 1. Let Gn�y� be defined by (6), (7) and (9), where K�·� is an
arbitrary kernel satisfying (12)–(15) and

h = hn = n−1/�2γ��(16)

If γ > 1/2 then for any w ∈ � and G0 ∈ �γ	

lim
V→G0

lim sup
n→∞

sup
G∈V

EGw
(
φn

(
Gn�y� −G�y�)) = Ew�ξ�	

where φn = √
n/ log n and ξ ∼ � �0	 σ2�G0��, with

σ2�G� = 2m2�G�
π2γ

(
f�y� + f�0��1 −G�y��2)�

Next we show that the estimator Gn�y� is locally asymptotically minimax
by establishing the following lower bound on the minimax risk.

Theorem 2. Let γ > 1/2. Then for any w ∈ � and G0 ∈ �γ	

lim
V→G0

lim inf
n→∞ inf

Gn

sup
G∈V

EGw
(
φn

(
Gn�y� −G�y�)) ≥ Ew�ξ�	

where the infimum is taken over all estimators Gn�y�.

The derivation of the lower bound in estimating G�y� requires a slight
modification of the well-known technique used in the theory of estimating
the so-called regular functionals [see Koshevnik and Levit (1976), Ibragimov
and Khasminskii (1981) or a more recent monograph by Bickel, Klaassen,
Ritov and Wellner (1993)]. Indeed, as Lemma 1 below shows, the functionals
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�1�F� = ��y� and �2�F� = ��0� are approximately linear (hence differen-
tiable), with (regularized) gradients uh�y− ·�, uh�0− ·� where uh�·� and h are
defined correspondingly by (8) and (16). Obviously, the gradient of the func-
tional ��F� = �1�F�/�2�F� in (2) belongs, for any given F, to the linear span
of these two gradients. Let �γ denote the set of all density functions f corre-
sponding to a distribution F in (1), with some G ∈ �γ. To obtain the required
lower bound it would be sufficient to find, in a vicinity of any given f0 ∈ �γ,
a two-dimensional family of densities fc�x� ∈ �γ, c = �c1	 c2�, whose score
functions form a basis for the above span.

The following parametric family,

fc�x� = f0�x�
(
1 + c1

(
uh�y− x� − Ef0

uh�y−X1�
)

+ c2�uh�−x� − Ef0
uh�−X1��

)
	

(17)

would have the desired properties provided that it belonged to the correspond-
ing class of densities �γ.

Unfortunately, there is in general no reason to assume that fc�x� indeed
belongs to this class. However, an approximation of the family (17) introduced
below does belong to �γ. Such approximation is based on following formula:

∫ ∞

u

1

t
√
t− u

dt = π1�u ≥ 0�u−1/2	(18)

where for u < 0 the integral in (18) is understood in the sense of principal
value.

3. Upper bound. We begin the proof of Theorem 1 with the following
preliminary results.

Lemma 1. Under the assumptions of Theorem 1, for any y	 z ≥ 0, y �= z
and h→ 0, we have

EG uh�y−Xi� = ��y� +O�hγ�	
VarG uh�y−Xi� = �f�y� + o�1�� log�1/h�	

CovG
(
uh�y−Xi�	 uh�z−Xi�

) = O�1�	
(19)

locally uniformly with respect to G ∈ �γ.

Proof. Let f denote the density function of the distribution F in (1). Ob-
viously, (2) can be rewritten in terms of f�x� as

1 −G�y� = 2m�G�
π

∫ ∞

0

f�y+ z�√
z

dz�
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Using this relation and (14) and (15), one easily obtains

EG uh�y−Xi� =
1
h

∫
f�x�

∫ ∞

0
K

(
y− x+ s

h

)
1√
s
dsdx

=
∫
K�v�

∫ ∞

0
f�y− hv+ s� 1√

s
dsdv

= π

2m�G�
∫
K�v��1 −G�y− hv��dv

= π

2m�G��1 −G�y�� + π

2m�G�
∫
K�v��G�y� −G�y− hv��dv

= ��y� +O�hγ��
Next, it is easy to verify that the density f�·� is equicontinuous on any

bounded interval in R+, locally uniformly in G ∈ �γ, if γ > 1/2. The remaining
statements of the lemma then follow from the following relations:

uh�t� = 0	 t > 0�
sup
t


uh�t�
 ≤ Ch−1/2�(20)

uh�t� = �−t�−1/2�1 + o�1��
as h→ 0	 uniformly in t ≤ −h�− log h�1/2.

The first of these relations is trivial. The second follows from (8) and the
inequalities

uh�t� =
1√
h

∫ ∞

0
K

(
t

h
+ s

)
1√
s
ds

≤ 1√
h

(
sup
t


K�t�

∫ 1

0

ds√
s
+

∫ ∞

1
K

(
t

h
+ s

)
ds

)

≤ 1√
h

(
2 sup

t

K�t�
 +

∫

K�t�
dt

)
�

Finally, for the last relation we note that

uh�t� =
∫ 0

−1
K�s� 1√

hs− t
ds =

∫ 0

−1
K�s��1 + o�1��√−t ds = �1 + o�1���−t�−1/2

uniformly in t ≤ −h�− log h�1/2 as h→ 0.

Lemma 2. Under the assumptions of Theorem 1, for any y, z ≥ 0, y �= z,
locally uniformly with respect to G ∈ �γ as n→ ∞:

(a) The random vector φn��n�y� − ��y�	�n�z� − ��z�� is asymptotically
normal with zero mean and covariance matrix �2γ�−1 diag�f�y�	 f�z��.

(b) For any λ > 0,

lim sup
n→∞

EG exp
(
λφn
�n�y� −��y�
) <∞�(21)
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Proof. According to (19) and (20), the random variables uh�y −Xi� in
(7) trivially satisfy the Lindeberg condition. Therefore, according to (16) and
(19), the random variables φn��n�y�−��y��, φn��n�z�−��z�� are asymptot-
ically normally distributed � �0	 f�y�/2γ�, � �0	 f�z�/2γ� and asymptotically
uncorrelated, locally uniformly with respect to G ∈ �γ [cf. Ibragimov and
Khasminskii (1981), page 365].

For the second part of Lemma 2, use Bernstein’s inequality [see, e.g., Pollard
(1984), page 193]; if Z1	 � � � 	Zn are independent identically distributed ran-
dom variables with EZi = 0, EZ2

i = σ2 and 
Zi
 ≤M	 then for any x > 0	

P
{

1
σ
√
n

∣∣∣∣
n∑
i=1

Zi

∣∣∣∣ ≥ x

}
≤ 2 exp

[
−x

2

2

(
1 + Mx

3σ
√
n

)−1]
�(22)

It follows from (16), Lemma 1, (20) and (22) that for any y	 λ ≥ 0, locally
uniformly in G ∈ �γ,

PG

{
φn
�n�y� −��y�
 > x

} = O
(
e−λx

)
(23)

for x	n→ ∞, thus proving (21). ✷

Lemma 3. For any y	 λ ≥ 0, locally uniformly with respect to G ∈ �γ as
n→ ∞,

lim sup
n→∞

EG exp
(
λφn
Gn�y� −G�y�
) <∞�

Proof. Let A = An = �X1	 � � � 	Xn� 
�n�0� − ��0�
 ≤ ��0�/2�� Then, ac-
cording to (2), (16), Lemma 1 and (20)–(22), for some C > 0 we have

EG exp
(
λφn
Gn�y� −G�y�
)

= EG exp
(
λφn
Gn�y� −G�y�
)�1A + 1Ac�

≤ EG exp
(
Cλφn�
�n�y� −��y�
 + 
�n�0� −��0�
�)1A

+ exp
(
λ
√
n
)
EG 1Ac

≤ EG exp
(
2Cλφn
�n�y� −��y�
)+ EG exp

(
2Cλφn�
�n�0� −��0�
�)

+ exp
(
λ
√
n−Cn

√
h
) = O�1�� ✷

Proof of Theorem 1. Due to (2) and Lemma 2,

Gn�y� −G�y� = −�n�y� −��y�
��0� + ��y�

�2�0�
(
�n�0� −��0�)+ oP�φ−1

n �

= 2m�G�
π

(
−(
�n�y� −��y�)+ (

1 −G�y�)(�n�0� −��0�))

+ oP
(
φ−1
n

)
�
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Therefore, according to Lemma 2, the random variable φn�Gn�y� − G�y�� is
asymptotically normal � �0	 σ2�G��, locally uniformly in G ∈ �γ.

This together with Lemma 3 implies Theorem 1 in case of a continuous loss
function w ∈ � . To complete the proof, note that any function w ∈ � can be
approximated by a sequence of continuous functions wδ ∈ � 	 δ→ 0, such that
w�
x
� ≤ wδ�
x
� ≤ w�
x
 + δ� [e.g., by

wδ�x� =
1
δ

∫
K

( 
x
 − y

δ

)
w�y�dy	

where K�·� ≥ 0 is a continuous function satisfying (13) and (14))]. ✷

4. The lower bound. According to the discussion at the end of Section 2,
in order to obtain the required lower bound one has to exhibit the existence of
an (asymptotically least favorable) parametric subfamily Gc, in a vicinity of
a given distribution G0 ∈ �γ, such that the corresponding family of densities
fc due to (4) approximates (17). Such a least favorable parametric subfamily
passing through a given G0 ∈ �γ is proposed below. However, for the construc-
tion to work, the initial distribution G0 should itself be sufficiently rough, that
is, satisfy the following conditions:

lim inf
x↘0

G�x�/xγ∧1 > 0	(24)

lim inf
x→y


G�x� −G�y�
/
x− y
γ∧1 > 0�(25)

Evidently, not every distribution G0 ∈ �γ satisfies these assumptions. How-
ever, in any vicinity V of a given G0 such distribution functions do exist. It is
assumed throughout this section that y > 0 is fixed.

Let ε > 0. For γ ≥ 1 choose any distribution function Gε
0 ∈ �γ satisfying

(24)–(25) such that ∥∥G0 −Gε
0

∥∥
�γ

≤ ε�(26)

For 1/2 < γ < 1 and ε < y	 let

Gε
0�u� =

(
1 + 3γ−1�1 − γ�ε)−1

(
G0�u� +

∫ u

0
�gε�v� + gε�v− y��dv

)
	(27)

where

gε�x� = max
(
x/ε
γ−1 − 1	0

)
�(28)

Here again Gε
0 belongs to �γ and satisfies (24) and (25).

Further, let K�·� be a kernel satisfying (13) and (14) and such that �K�−1��γ
< ∞, where K�−1��x� = ∫ x

−∞K�s�ds� For any sufficiently small h > 0 and
δ = 1/

√
log�1/h�, let

χ�t� = t−11�h ≤ 
t
 ≤ δ�	(29)

χ̄�t� = 1
h

∫
K

(
t− s

h

)
χ�s�ds�(30)
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Below we consider the following parametric subfamily of distribution func-
tions:

Gc�u� =
1
Dc

(
Gε

0�u� +
∫ u

0

(
c1χ̄�v� + c2χ̄�v− y�)dv)	(31)

where

Dc = 1 +
∫ ∞

0

(
c1χ̄�v� + c2χ̄�v− y�)dv�

Lemma 4. Let G0 ∈ �γ. Then for any vicinity V ⊂ �γ of G0 there exists
ε > 0 such that for all 0 < h < ε and 
ci
 < εhγ:

(a) Gc ∈ V;
(b) As h→ 0	

Gc�y� = Gε
0�y� − c1

(
1 −Gε

0�y�
)

log h+ c2 log h+ o
(�c� log h

)
and

m�Gc� =
m�Gε

0�
1 + c1 log h

(
1 +O��c��)�(32)

Proof. It can be easily seen that the distribution function Gε
0 belongs to

V for all sufficiently small ε. According to (29) and (30), supt 
χ̄�t�
 = O�1/h�
and, for all u	 v ≥ 0	

∣∣χ̄�α−1��u� − χ̄�α−1��v�∣∣ ≤ h−α
∫ ∞

0

∣∣∣∣K�α−1�
(
u

h
− t

)
−K�α−1�

(
v

h
− t

)∣∣∣∣dt
≤ Ch−γ
u− v
β�

(33)

Statement (a) follows now for 1/2 < γ < 1 from (27), (31), (33) and the fact
that gε�t� > cχ̄�t� for all 
c
 ≤ εhγ. For γ > 1 one can similarly use (33) and
the assumptions (24) and (25).

Part (b) of Lemma 4 follows from Taylor’s formula and the following easily
verifiable relations [cf. (29), (30)]:∫ y

0
χ̄�t− y� dt = �1 + o�1�� log h	

∫ ∞

0
χ̄�t� dt = −�1 + o�1�� log h	

∫ ∞

0
χ̄�t− y�dt = O�1�� ✷

Our next task is to describe the behavior of the family of distributions Fc�x�
associated with the family Gc�x� in (31) according to (1). In particular we shall
substantiate the claim that the corresponding densities fc�x� provide a good
approximation to (17). Consider the functions

ζ�x� =
∫ ∞

x

χ�y�dy√
y− x

	 ζ̄�x� =
∫ ∞

x

χ̄�y� dy√
y− x

(34)

appearing in fc�x�; compare (36). The properties of ζ̄�x� are described in the
following lemma.
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Lemma 5.

ζ̄�x� =




0	 if x > δ	

πx−1/2 +O�δ−1/2�	 if h ≤ x ≤ δ	

O�h−1/2�	 if − h ≤ x ≤ h	

O�h�−x�−3/2� +O�δ−1/2�	 if − δ ≤ x ≤ −h	
O�δ−1/2�	 if x ≤ −δ�

To prove Lemma 5 one should first show that it holds with ζ̄ replaced by ζ.
[Note that ζ�x� in (34) can be obtained in a closed form; cf. (18)]. The result
for ζ̄ then follows by elementary calculus.

Proof of Theorem 2. Recall that a family of measures P�n�
c , c ∈ 9n ⊂ Rs,

is called locally asymptotically normal at the point c = 0 with a normalizing
factor ψn → ∞, if:

(i) for any v ∈ Rs, v/ψn ∈ 9n for all sufficiently large n;
(ii) there exists a sequence of functions ;n=;n�X�n��	X�n� = �X1	 � � � 	Xn�

and a positive definite matrix I, such that for any v ∈ Rs,

log
dP�n�c

v/ψn

dP�n�
0

�X�n�� = v� ;n −
v�Iv

2
+ oP �1�	

where ;n ∼P�n�
0

� �0	 I� [cf. Ibragimov and Khasminskii (1981), Section II.2].

A useful application of local asymptotic normality is provided by the fol-
lowing result [see, e.g., Ibragimov and Khasminskii (1981), Section II)]. Let a
family P�n�

c satisfy condition (ii) and:

(i′) For any compact K ⊂ Rs, K/ψn ⊂ 9n for all sufficiently large n.

Then for any nonnegative symmetric quasi-convex loss function W�u�, u ∈ Rs,

lim inf
n→∞ inf

Tn

sup
c∈9n

EcW
(
ψn�Tn − c�) ≥ EW�ξ�	(35)

where Tn = Tn�X�n�� is an arbitrary estimator of c and ξ ∼ � �0	 I−1�.
Let 9n = �c� 
c1
	 
c2
 ≤ εhγ�� Choose h = hn according to (16) in the

definition of the family Gc�·� [see (29)–(31)] and let ψn = √
n log n. Clearly,

condition (i′) above is satisfied with this choice of h; see Lemma 4. Using a
Taylor expansion in (32) gives

fc�x� =
1

2m�Gc�
∫ ∞

x

dGc�y�√
y− x

= (
1 +O��c��)fε0�x� + c1�1 + o�1�� ζ̄�x�

2m�Gε
0�

+ c2�1 + o�1�� ζ̄�x− y�
2m�Gε

0�
	

(36)
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uniformly in x, where

fε0�x� =
1

m�Gε
0�

∫ ∞

x

dGε
0�y�√

y− x
�

Further, the well-known argument used in proving local asymptotic normality
for independent observations (sustained by Lemma 5) and a bound on the re-
mainder terms using, for example, the Bernstein inequality (22) show that the
family P�n�

c corresponding to densities fc�x� in (36) is locally asymptotically
normal, with the matrix I given by

π2

8γm2�Gε
0�

diag
(

1
fε0�0�

	
1

fε0�y�
)
�

Therefore, according to Lemma 4(b), for any uniformly continuous loss func-
tion w ∈ � 	 we have

r�V� = lim inf
n→∞ inf

Gn

sup
G∈V

EG w
(
φn

(
Gn�y� −G�y�))

≥ lim inf
n→∞ inf

Gn

sup
Gc

EGc
w
(
φn�Gn�y� −Gc�y��

)

≥ lim inf
n→∞ inf

Tn

sup
c

Ecw
(�2γ�−1ψn

(
Tn − c1�1 −Gε

0�y�� + c2
))
�

An application of (35) to the loss function

W�x1	 x2� = w
(�2γ�−1�x1�1 −Gε

0�y�� − x2�
)

results in the lower bound r�V� ≥ Ew�ξ�, where ξ ∼ � �0	 σ2�Gε
0��. Note that

according to (26) and (27), limε→0 σ
2�Gε

0� = σ2�G0�, thus proving Theorem 2
in the case of a uniformly continuous loss function w. Finally, the proof of
Theorem 2 is completed by approximating an arbitrary loss function w ∈ �
by a sequence of uniformly continuous functions wδ ∈ � with wδ ↗ w. ✷
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