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A central limit theorem for generalized trimmed k-means is obtained
in a very general framework that covers the multivariate setting, general
penalty functions and general k ≥ 1�

Several applications, including the location estimator case (k = 1) for
elliptical distributions and the construction of multivariate (not necessarily
connected) tolerance zones, are also given.

1. Introduction. Cuesta-Albertos, Gordaliza and Matrán [C-G-M, (1997)]
introduced a robust clustering criteria, the trimmed k-means, consisting of
the k-mean of the observations remaining after removing a fixed proportion of
outlying observations: given a �p-valued random vectorX� a suitable penalty
function � and a trimming size α, we search for a Borel set B0 in �p and a
k-set (a set with k points) M0 = �m0

1�m
0
2� � � � �m

0
k� ⊂ �p that are a solution to

the constrained minimization problem,

min
B� PX�B�≥1−α

min
M⊂�p

1
PX�B�

∫
B
�
(
inf i=1�����k

∥∥X−mi
∥∥)dP�

Trimmed k-means constitute the natural extension of the idea of the “im-
partial trimming,” introduced in Gordaliza (1991a), to the clustering frame-
work. Impartial trimming procedures include, as particular cases, Rousseeuw’s
(1983, 1984) least trimmed of squares estimator, LTS, and the least trimmed
absolute deviations estimator, LTAD [Hössjer (1994), Tableman (1994)]. Other
related estimators are D-estimators [Mili and Coakley (1996)] and the least
trimmed log-likelihood estimators [Vandev and Neykov (1993)].

C-G-M (1997) established the existence and a characterization, without mo-
ment conditions, of trimmed k-means and proved their consistency for ab-
solutely continuous multivariate distributions having a unique trimmed k -
mean, but the important problem of determining their asymptotic distribution
remains. Obtaining a central limit theorem (CLT) for trimmed k-means is the
main objective of this paper.

To our knowledge, the only available results about this topic are for real
valued random variables, k = 1, and mild penalty functions such as ��x� = x2

and ��x� = x� Yohai and Maronna (1976) obtained a CLT for estimators such
as the LTS estimator in the univariate case and for symmetric distributions,
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by using ad hoc techniques based on linearity of rank statistics. Indepen-
dently, Butler (1982) obtained a CLT, again for the LTS for univariate data,
with empirical process techniques; these were utilizied for the LTAD estima-
tor in Tableman (1994). In both cases, the existence of explicit expressions
for the mean or the median is the key to the proofs, and this does not eas-
ily generalize to the multivariate setting nor to general penalty functions.
Garcı́a-Escudero, Gordaliza and Matrán (1997) obtained a generalization in
the univariate setting for general k and ��x� = x2 or ��x� = x. In the present
paper we obtain a CLT under very general conditions: the multivariate frame-
work, a general penalty function, �, and every k ≥ 1� Interesting penalty
functions are ��x� = xr� 1 ≤ r <∞, which provide a robustified extension of
classical r-means to the mixture setting. Moreover, when dealing with mix-
tures of spherical distributions, a natural choice of � would be based on the
log-likelihood of the spherical distribution, analogously to the construction of
location M-estimators.

In order to make a self-sufficient paper, Section 2 is devoted to background
on the trimmed k-mean problem, stating the original definitions and prelimi-
nary results in C-G-M (1997).

The key step in the development of the paper is to transform the population
trimmed k-means problem, which is a constrained double minimization prob-
lem, into a problem involving solution of implicit equations and then to apply
Huber’s (1967) classical result on multivariateM-estimators. The transforma-
tion of the problem is a consequence of the special probabilistic and geometri-
cal structure of the restrictions. Also, geometrical properties are successfully
used in the verification of Huber’s conditions.

In Section 3.1, the original minimization problem is converted into a zero-
property problem in the population setting. The finite sample counterpart is
analyzed in Section 3.2. The CLT for trimmed k-means is given in Section 4,
followed by a discussion of the imposed conditions and possible extensions.

The last section emphasizes the importance and applicability of the results.
Firstly, we obtain an exact asymptotic limit law for multivariate elliptical
unimodal distributions with k = 1� We also include a study on a mixture
of bivariate normals. We apply the results to obtain multivariate tolerance
zones (not necessarily connected) suitable when the parent distribution is a
mixture. Although computational aspects of the procedure are not extensively
considered, a brief sketch is given of a “simulated annealing” algorithm used
to compute trimmed k-means.

C-G-M (1998) introduced trimmed k-nets as an extreme case of trimmed
k-means arising from use of the L∞-criterion, instead of the penalty func-
tions, �. The obtained estimators are an extension of Rousseeuw’s (1984) and
Rousseeuw and Leroy’s (1987) least median of squares estimator (LMS). How-
ever, their asymptotic behavior is different than that of trimmed k-means. For
instance, consistency needs trimming sizes varying with the size of the sam-
ple [C-G-M (1998)] and the CLT fails because these estimators have a slower
rate of convergence, n1/3, to a nonnormal limit law. A detailed study of these
estimators will be reported in a separate paper.
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2. Notation and preliminaries. Throughout this paper, ���σ�P� de-
notes the probability space and X is an �p-valued random vector having
probability law PX in the σ-algebra �p of Borel sets in �p. A penalty function
�� �+ → �+ is considered and is assumed to be differentiable, nondecreasing
and such that ��0� = 0 and ��x� < ��∞� for all x� For obvious technical
reasons, it will be assumed w.l.o.g. that ��� · �� = �0�� · �2� and �′

0�·� = ψ0�·�.
For a set B ⊂ �p� B denotes its closure, Bc its complementary set and

Bd�B� its topological boundary. For m ∈ �p and r ≥ 0, B�m�r� denotes the
open ball with radius r centered at m. Given M = �m1� � � � �mk� ⊂ �p and
r ≥ 0, denote the (generalized) ball centered at M and with radius r by

B�M�r� �=
k⋃
i=1

B�mi� r��

Given a column vector mi ∈ �p, its coordinates will be denoted as mij,
j = 1� � � � � p�

Now we review the definitions, notations and needed results from C-G-M
(1997). We refer to that paper for a more detailed description and proofs of
the results.

For α ∈ �0�1�� τα denotes the nonempty set of trimming functions for X of
level α, that is,

τα =
{
τ� �p → �0�1�� measurable and

∫
τ�X�dP = 1 − α

}
�

and τα− denotes the set of trimming functions for levels less than or equal
to α�

Definition 1. A k-setM0 = �m0
1�m

0
2� � � � �m

0
k� and a trimming function τ0

are called a trimmed k-mean and an optimal trimming function if they satisfy

V
τ0
� �M0� = inf

τ∈τα−
inf

M⊂�p�#M=k
Vτ��M��(1)

where Vτ��M� is the variation about M = �m1�m2� � � � �mk� given τ�

Vτ��M� �= 1∫
τ�X�dP

∫
τ�X��

(
inf

i=1�����k
�X−mi�

)
dP�

Given any fixed k-set M and a β ∈ �0�1�, define rβ�M� = inf�r ≥ 0�
PX�B�M�r�� ≤ 1 − β ≤ PX�B�M�r��� and τM�β as the set of trimming func-
tions

τM�β = {
τ ∈ τβ� IB�M�rβ�M�� ≤ τ ≤ IB�M�rβ�M��� a.e. PX

}
�

Following Remark 2.3 in C-G-M (1997), the double minimization problem in
(1) can be restated as the selection of a k-set, M0, satisfying

V��α�M0� = inf
M⊂�p�#M=k

V��α�M��
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where

V��α�M� = 1
1 − α

∫
τ�X��

(
inf

i=1�����k
�X−mi�

)
dP�

with τ any function in τM�α�
If � is strictly increasing and τ0 and M0 are the solutions of (1), then there

exits r0 �≡ rα�M0�� such that

IB�M0� r0� ≤ τ0 ≤ IB�M0� r0�� PX-a.e.(2)

(r0 will be called the optimal radius). For the remainder, we assume that � is
strictly increasing.
B�M0� r0� is the optimal set except, possibly, for part of the boundary. More-

over, the optimal set can be partitioned into k clusters as follows: the cluster
Ai consists of all the points in the optimal set which are closer to m0

i than the
remaining k− 1 points in the k-set M0. Points at the same distance from two
elements of M0 are arbitrarily assigned.

The previous definition and remarks will also be used for the empirical prob-
ability measure Pωn �A� �= n−1 ∑

i=1�����k IA�Xi�ω�� (where �Xn�n is a sequence
of independent, identically distributed random vectors with distribution PX).

Definition 2. The trimmed k-mean of Pωn , Mn �= Mω
n = �mn1 � � � � �mnk��

will be called the sample trimmed k-mean, and the associated radius rn �= rωn
will be called the sample optimal radius.

Finally, we define the set-valued functions

A1 = A1�m1�m2� � � � �mk� r�
�= {

x� �x−m1� ≤ �x−mj�� j = 1� � � � � k
} ∩B�m1� r�

(3)

and

Ai = Ai�m1�m2� � � � �mk� r�
�= {

x� �x−mi� ≤ �x−mj�� j = 1� � � � � k
}

∩B�mi� r� ∩Ac1 ∩ · · · ∩Aci−1

(4)

for i = 2� � � � � k. (Note that we needed a precise convention for allocating points
common to the boundaries of two or more of the Ai’s. We have supposed that
the rule to break ties is to assign them to the set of lower index, but other
rules are also possible).

The following proposition, obtained in C-G-M (1997), gives the main char-
acterization of the trimmed k-means.

Proposition 2.1. Let M0 = �m0
1�m

0
2� � � � �m

0
k� be a trimmed k-mean of the

distribution PX� r0 the optimal radius (r0 = rα�M0�) and A0
i �= Ai�m0

1�
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m0
2� � � � �m

0
k� r0�, i = 1� � � � � k, be defined as in (3) and (4). Then m0

i must be

the �-mean of X given the cluster A0
i [i.e., m0

i minimizes infm∈�p
∫
A0
i
���X −

m��dP].

3. The trimmed k-means problem for absolutely continuous distri-
butions and its sample version. This section is devoted to demonstrating
that the trimmed k-means problem for absolutely continuous distributions can
be embedded into the general theory of estimators defined through a zero prop-
erty (Z-estimators) and hence that Huber’s result can be applied. As observed
in the introduction, minimum (M-) problems can naturally be converted into
zero (Z-) problems but it is rather surprising that a constrained minimization
problem can be handled as a zero problem with even the Lagrange multipliers
disappearing. This happens because of special restrictions that our trimming
procedure imposes, as will be clarified in Remark 3.1.

We will assume that PX is absolutely continuous with respect to Lebesgue
measure in ��p��p�� with bounded density f� We will also suppose that f is
not identically null in the boundary of the optimal zone.

3.1. The population trimmed k-mean. From (2), it is not necessary to use
trimming functions in order to get the trimmed k-mean and the optimal zone
(i.e., IB�M0�rα�M0�� = τ0�PX-a.e.). Thus, we can consider the optimal zone as

B�M0� rα�M0��� and this zone must satisfy∫
IB�M0� rα�M0�� dPX�x� = 1 − α�(5)

Considering M0 = �m0
1�m

0
2� � � � �m

0
k�, the trimmed k-mean of the distribu-

tion PX, and r0, the optimal radius, we can split the optimal zone B�M0� r0�
into k zones A0

i �= Ai�m0
1�m

0
2� � � � � m

0
k� r0�, i = 1� � � � � k. By Proposition 2.1,

we also have that m0
i must satisfy

∫
IA0

i
�x��xj −m0

ij�ψ0
(∥∥x−m0

i

∥∥2)
dPX�x� = 0�(6)

i = 1� � � � � k; j = 1� � � � � p and x = �x1� x2� � � � � xp�′ ∈ �p� Hence, combining the
expressions (5) and (6) we have characterized the population trimmed k-mean
by a zero property. Although we have transformed a constrained problem into
an unconstrained problem, the following remark indicates why this is natural.

Remark 3.1. For the sake of simplicity, assume first that k = 1� A stan-
dard Lagrange multiplier technique transforms the constrained minimization
problem into the minimization of

H�m�r� λ� =
∫
B�m�r�

�0
(�x−m�2)f�x�dx+ λ

(∫
B�m�r�

f�x�dx− �1 − α�
)
�

Denote, by $1� $2 and $3, the partial derivatives of H�m�r� λ� with respect
to m, r and λ, respectively.
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If σm�r�x� is the surface measure on Bd�B�m�r�� and n�x�m� r� is the
outward pointing unit vector normal to B�m�r�, then by applying tools of
classical differential geometry [see, for instance, Baddeley (1977) and Section 5
in Kim and Pollard (1990)], we have that

$1 = −
∫
B�m�r�

2�x−m�ψ0
(�x−m�2)f�x�dx

+
∫
Bd�B�m�r��

n�x�m� r�′�0
(�x−m�2)f�x�dσm�r�x�

+ λ
∫
Bd�B�m�r��

n�x�m� r�′f�x�dσm�r�x�

and

$2 =
∫
Bd�B�m�r��

�0
(�x−m�2)f�x�dσm�r�x� + λ

∫
Bd�B�m�r��

f�x�dσm�r�x��

Taking into account that �0��x −m�2� = �0�r2� for all x ∈ Bd�B�m�r�� and
the fact that ∫

Bd�B�m0� r0��
f�x�dσm0� r0

�x� > 0

(remember the regularity condition imposed on the density in the boundary of
the optimal zone), we have that $2 = 0 implies that �0�r2

0�+λ0 = 0� where λ0
is the optimal Lagrange multiplier. Placing this condition into the expression
$1 = 0, we trivially see that m0 and r0 must satisfy∫

B�m0� r0�
�x−m0�ψ0

(�x−m0�2)f�x�dx = 0�

which gives (6) for j = 1� � � � � p with k = 1� Equation (5) follows automatically
from $3 = 0�

In the case k ≥ 2, we proceed analogously. The only apparent difference
rests on the possible presence of the overlapping phenomena. If there exists
a set &0

ij �= Bd�A0
i � ∩ Bd�A0

j� �= � for some i �= j, then shifting mi not only
changes the integration regionA0

i but also changesA0
j� It can be easily proved

that this fact is not a difficulty. Notice now the taking derivatives will yield
two surface integrals in the zone &0

ij� which will cancel because if x ∈ &0
ij

then �0��x −mi�2� = �0�
∥∥x−mj

∥∥2� and the outward pointing unit normal
vectors in &0

ij� in each integral, have opposite directions. So we only have
surface integrals in those regions included in the boundary of the whole set
B�M0� r0� and the proof is similar to the k = 1 case.

So, in appealing to (5) and (6), if � = �m′
1�m

′
2� � � � �m

′
k� r�′ ∈ �p×k+1 with

mi ∈ �p and r ∈ �+ and Ai��� is defined as in (3) and (4), we may consider
the following function ':

'�x��� = (
'11�x���� � � � �'1p�x����'21�x���� � � � �'kp�x����'R�x���)′�
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where

'ij�x��� = IAi����x��xj −mij�ψ0
(�x−mi�2

)
and

'R�x��� = I⋃k
i=1Ai����x� − �1 − α�(7)

to characterize the trimmed k-means as the solution of the zero-problem
E'�X��� = 0�

3.2. The sample trimmed k-mean. Given X1� X2� � � � �Xn, a sample of in-
dependent, identically distributed random vectors with distribution PX, let

Tn = Tn�X1�X2� � � � �Xn� �=
(�mn1�′� � � � � �mnk�′� rn)′

be the sample estimators in Definition 2. In order to apply Huber’s result, we
need the consistency of the sequence of estimators �Tn�n and also to prove
that

∑n
l=1'�Xl�Tn� = oP�n1/2�.

The following lemma can be obtained through a straightforward modifica-
tion of the proof of Theorem 3.6 in C-G-M (1997). Notice that the additional
hypothesis of uniqueness of the optimal radius is included in order to obtain
consistency of sample optimal radii.

Lemma 3.1. Let �Mn�n, Mn = �mn1 � � � � �mnk�, be the sequence of sample
trimmed k-means and �rn�n be the sequence of sample optimal radii. Assume
that PX is absolutely continuous and that there exists a unique (up to a re-
labeling) trimmed k-mean of the distribution PX, M0 = �m0

1� � � � �m
0
k�� and a

unique optimal radius r0. Then

mni →m0
i � P-a.e., i = 1� � � � � k

and

rn → r0� P-a.e.

(Properly, it should be stated as the existence of a relabeling of the setMn such
that the previous convergences are true. However, without loss of generality, in
this paper we will assume that this relabeling is not necessary.)

Lemma 3.2. Under the above conditions,

1√
n

n∑
l=1

'�Xl�Tn� = oP�1��

Proof. The result follows from the definition of Tn, because the sample
optimal trimming function, based on a sample of size n, τn� satisfies

∫
B�Mn�rn�

τn�x�dPn�x� = 1 − α



1068 L. A. GARCÍA-ESCUDERO, A. GORDALIZA AND C. MATRÁN

and ∫
Ai�Tn�

τn�x��xj −mnij�ψ0
(�x−mni �2�dPn�x� = 0�

i = 1� � � � � k and j = 1� � � � � p�

Then we have

1√
n

n∑
l=1

'R�Xl�Tn� =
1√
n

[
nPn

( k⋃
i=1

Ai�Tn�
)
− n

∫
B�Mn�rn�

τn�x�dPn�x�
]

= 1√
n

[ ∑
�l� Xl∈Bd�B�Mn�rn���

(
1 − τn�Xl�

)] = oP�1�
(8)

because, for PX absolutely continuous, there is a fixed number G which de-
pends only on k and p such that the probability of the event that more than G
points in the sequenceX1�X2� � � � �Xn lie on such a boundary is zero. To better
understand this claim, think of the circumference � ��1��2��3� determined
in �2 by the random points X1� X2 and X3� Since the Lebesgue measure in
�2 of a circumference is zero, if f is the density of PX (recall our assumption
of absolute continuity) we have

P
(
Xm ∈ � �X1�X2�X3�

)

=
∫
�2
f�x1�

∫
�2
f�x2�

∫
�2
f�x3�

∫
� �x1� x2� x3�

f�xm�dxm dx3 dx2 dx1 = 0�

Therefore the probability of the event “four random points of the sequence
X1� X2� � � � �Xn� � � � lie in the same circumference,” that is,

P

( ⋃
i� j� k�m

(
Xm ∈ � �Xi�Xj�Xk�

))
for distinct i� j� k and m,

is zero.
Analogously for i = 1� � � � � k; j = 1� � � � � p andXl = �Xl1� � � � �Xlk�′�we have

1√
n

n∑
l=1

'ij�Xl�Tn�

= 1√
n

[ n∑
l=1

IAi�Tn��Xl�
(
Xlj −mnij

)
ψ0

(∥∥X−mni
∥∥2)

− n
∫
Ai�Tn�

τn�x�
(
xj −mnij

)
ψ0

(∥∥x−mni
∥∥2)
dPn�x�

]

= 1√
n

[ ∑
�l� Xl∈Bd�B�Mn�rn���

(
1 − τn�Xl�

)(
Xlj −mnij

)
ψ0

(∥∥Xl −mni
∥∥2)]

= oP�1��
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by the previous comment about the number of points lying in the boundary
of the optimal zone and the fact that �Xlj − mnij�ψ0��Xl − mni �2� = OP�1�
(because mni →m0

i , P-a.e.).

4. The main result. Before tackling the asymptotic normality proof, we
begin with two lemmas corresponding to rather well-known results. The proof
of the first lemma is a simple exercise in differential calculus while that of
the second is not as straightforward, although the result is very intuitive [see
Van der Vaart and Wellner (1996), page 163].

Lemma 4.1. LetA be an open subset in �m and f�A→ �m be differentiable
at z ∈ A� If the differential at z is an automorphism of the vector space �m,
then there exists two positive real numbers a > 0 and d0 > 0 such that∥∥f�z+ h� − f�z�∥∥ ≥ a�h� for all h ∈ �m with �h� ≤ d0�

Let d�x�C� = infy∈C d�x�y�. For a given set C� let Cε = �x� d�x�C� < ε�
and εC = �x� d�x�Cc� > ε� denote the set of points within distance ε of C and
the set of points that are at least a distance ε inside C� respectively.

Lemma 4.2. Let � be the class of all compact and convex subsets of a fixed
bounded subset of �m. There exists a constant H depending only on � � such
that if λ is the Lebesgue measure in �m,

λ�Cε − εC� ≤Hε for every ε > 0�

As we commented before, the proof of the asymptotic normality of trimmed
k-means will be based on a result onM-estimators given in Section 4 of Huber
(1967). This result will not be repeated here, but the notation in our normal-
ity proof will be chosen to match that of Huber’s result. Given the probability
space ��p��p�PX� and $ = �p×k × �+ ⊂ �p×k+1, we consider the function
'� �p ×$→ �p×k+1 defined in (7). Let λ��� = �λ11���� � � � � λ1p���� λ21���� � � � �
λkp���� λR����′ be the expectation of '�X��� with respect to the true under-
lying distribution.

If M0 and r0 are the population trimmed k-mean and the optimal radius
of the distribution PX, then we have seen that

�0 = (�m0
1�′� �m0

2�′� � � � � �m0
k�′� r0

)′ ∈ �p×k+1(9)

satisfies λ��0� = 0� With the notation introduced previously, the following
theorem gives a CLT for the trimmed k-mean estimator:

Theorem 4.1. Let X be a random vector with bounded density, f, and
such that λ��� admits a unique zero (up to a relabeling) at � = �0 [�0 as in
(9)]. Suppose that λ is differentiable at �0 with nonsingular derivative matrix
5 and that the density f is not identically null in the boundary of the optimal
zone. Assume that xψ0��x�2� is a Lipschitz function in B�0�R� with R > r0�
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Under the above conditions,
√
n�Tn − �0� is asymptotically normal with

mean 0 and covariance matrix 5−1C�5′�−1, where C stands for the covariance
matrix of the random vector '�X��0�.

Proof. Conditions N-1 and N-2 from Huber’s result are clearly satisfied.
As a consequence of Lemma 4.1, there exist positive constants a and d0 such
that N-3(i) is also verified. Moreover, because of the trimming, assumption
N-4 is always true. So, in order to apply Huber’s result, we only need to prove
conditions N-3(ii) and (iii).

First, we need r0 + 4d0 < R and d0 < 1. If this is not true, without loss of
generality, we may consider a smaller d0 satisfying these inequalities. Let us
define

u�x��� d� = sup
��−��≤d

∥∥'�x� �� −'�x���∥∥�
If � = �θ′1� θ′2� � � � � θ′k� rθ�′ and � = �τ′1� τ′2� � � � � τ′k� rτ�′ with θi� τi ∈ �p and rθ�
rτ ∈ �+� then notice that �� − �� ≤ d implies �θi − τi� ≤ d, i = 1� � � � � k
and �rθ − rτ� ≤ d (note also that we have not made any notational distinction
between norms in spaces with different dimensionality).

For fixed � and d satisfying �� − �0� + d ≤ d0 we will denote Ai �= Ai����
as in (3) and (4), and we will split �p into three zones �1 = ⋃k

i=1�2dAi��
�2 = �⋃ki=1Ai�2d −⋃k

i=1�2dAi� and �3 = ��⋃ki=1Ai�2d�c.
We will study the function u�x��� d� in these three zones. So, suppose

�� − �� ≤ d� Then we have:

(i) Let x ∈ �1� Let us suppose that x ∈ 2dAi, then we have

�x− τi� ≤ �x− θi� + �τi − θi� ≤ rθ − 2d+ d ≤ rτ
and also

�x− τi� = inf
j=1�����k

�x− τj�

(because �x− τi� ≤ �x− θi�+d and �x− τl� > �x− θi�+ 2d−d, when l �= i).
So, x ∈ Ai��� and this forces ' to satisfy

'lj�x��� −'lj�x� �� = 0 for all j = 1� � � � � p and l �= i
and

'ij�x��� −'ij�x� �� = �xj − θij�ψ0
(�x− θi�2)− �xj − τij�ψ0

(�x− τi�2)�
Therefore,∥∥'�x��� −'�x� ��∥∥ = ∥∥�x− θi�ψ0

(�x− θi�2)− �x− τi�ψ0
(�x− τi�2)∥∥

≤ L�θi − τi� ≤ Ld for a constant L�

because of the Lipschitz character of the function xψ0��x�2��
(ii) Now, let x ∈ �3� We will suppose directly that x belongs to the in-

terior of �3 (this excludes also a Lebesgue measure zero set, which will be
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unimportant later). Then

�x− τi� ≥ ∣∣�x− θi� − �θi − τi�
∣∣ > rθ + 2d− d = rθ + d ≥ rτ�

for every i = 1� � � � � k� and then '�x��� −'�x� �� = 0 all over this zone.
(iii) Obviously, the most troublesome zone is �2� But in this zone we will

use Lemma 4.2. Trivially,
( k⋃
i=1

Ai

)2d

−
k⋃
i=1

�2dAi� ⊆
k⋃
i=1

(
Ai

2d − 2dAi
)
�

If �� − �0� + d ≤ d0, then we have �� − �0� ≤ d0 and it follows that

Ai ⊆ B�θi� rθ� ⊆ B�θi� r0 + d0� ⊆ B
(
m0
i � r0 + 2d0

) ⊂ B�m0
i �R� ⊆ B�M0�R��

Then we haveAi, i = 1� � � � � k a family of compact and convex sets (the Voronoi
regions and the balls are trivially convex sets in �p) which are contained in
the set B�M0�R�� Then for d ≤ d0 ≤ 1, Lemma 4.2 holds for a constant H
which does not depend on ��

Also, if x ∈ Ai
2d − 2dAi, we have that

�x− θi� ≤ rθ + 2d ≤ r0 + d0 + 2d0 ≤ R
and

�x− τi� ≤ �x− θi� + �τi − θi� ≤ r0 + 4d0 ≤ R�

Since xψ0��x�2� is a Lipschitz function on the compact set B�0�R�, it is
bounded there; also it is continuous and hence �'�x��� − '�x� ��� is also

bounded by some constant D uniformly in
⋃k
i=1�Ai

2d − 2dAi�.
If M is a bound for the density f� joining all the previous bounds we will

have that

Eu�X��� d� ≤ LdP�X ∈ �1� +DMkH2d ≤ bd�
where b = L+DMkH2. Then, condition N-3(ii) is fulfilled.

To prove N-3(iii), we can proceed analogously. For instance, in the zone �1
we can see that u�x��� d�2 ≤ �Ld�2 ≤ �L2d0�d, and in the zone �2 we can get
the bound u�x��� d� ≤ D2� ✷

Remark 4.1. The assumptions needed to apply the previous CLT are not
very restrictive and are commonly assumed in the clustering setting. The non-
singularity of the matrix 5 is a common assumption for estimators defined by
a minimum property (for instance, in the asymptotic theory for maximum
likelihood estimators, the information matrix is usually just assumed nonsin-
gular) and in k-means clustering. As far as we know, in the k-means setting,
the unique paper where a possible singularity is dealt with is in Serinko and
Babu (1992).

The requirement of uniqueness (up to a relabeling) of the solution of the
minimum problem is usually hard to verify. In the asymptotics of (untrimmed)
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k-means, this condition is usually assumed [see Pollard (1981, 1982), Harti-
gan (1978), Stute and Zhu (1995)] and only a few papers, such as Fleischer
(1964) and Li and Flury (1995), consider this difficulty. We believe that, when
dealing with “reasonable” mixtures for clustering, it is quite rare to find dis-
tributions where either condition fails and, even then, the lack of uniqueness
could be only due to an improper choice of k or α. In the k = 1 case and for
spherical distributions, nonsingularity of 5 and uniqueness in the solution of
the minimization problem will be explicitly proved in Section 5. For k > 1, it
is natural to hope that this property will be inherited by sufficiently distant
mixtures of such distributions.

The boundedness of the density is really only needed in the boundary of the
optimal sets. Of course, this is a logical regularity condition near the optimum.

Remark 4.2. The condition about the Lipschitz property of xψ0��x�2� can
be notably weakened by an easy adaptation of the previous proof. For in-
stance, in the univariate case only the Lipschitz property in each interval
of the partition �−R�a1�� �a1� a2�� � � � � �as�R� of B�0�R� in � is needed (in
a1� a2� � � � � as, the function xψ0��x�2� may have discontinuities). This covers in
� the case of the trimmed k-median (i.e., ��x� = x needs ψ0�x� = x−1/2, so
xψ0��x�2� = sign�x�� and this function is Lipschitz in �−R�0� and �0�R� for
every R > 0�.

In �p with p ≥ 2, we need the Lipschitz condition of xψ0��x�2� now over
differences of balls B�0� a1��B�0� a1�c ∩B�0� a2�� � � � �B�0� as�c ∩B�0�R� with
0 < a1 < · · · < as ≤ R�

Note also that it is not difficult to give simple conditions based on the
derivative of the function ψ0 (if it exists up to a finite number of points) to
guarantee these previous properties.

Remark 4.3. The use of criteria based on minimization of the rth power
deviation with 1 ≤ r < 2, appealing because of its robustness properties, has
a long history. We can introduce a trimmed version of this procedure to this
framework. Now, the function xψ0��x�2� will be x�x�r−2.

We can reproduce the proof of Theorem 4.1, but taking into account that
there exist positive constants c1 and c2 such that u�x� θ� d� ≤ c1 d�x − θ�r−2

and u2�x� θ� d� ≤ c2 d�x − θ�r−2 [these facts are mentioned in Example 1 in
Huber (1967)]. We have to use that, for bounded densities in �p� if 1 ≤ r < 2
and r+p > 2� then there exists a constant F such thatE��x−θ�r−2� ≤ F <∞
for all θ ∈ �p. The proof also needs a study of the zones �2 and �3, but this
goes parallel to the proof of Theorem 4.1 (this result does not include the case
r = 1 and p = 1, but this case is covered in Remark 4.2).

5. Examples and applications.

Trimmed �-means. The (impartial) trimmed �-mean constitutes the sim-
plest setup for applicability of this work. These estimators, with general pe-
nalty functions in the multivariate setting, were introduced in Gordaliza
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(1991a) and their high breakdown point property was studied in Gordaliza
(1991b). We will study the applicability of Theorem 4.1 when k = 1 for ellipti-
cal distributions. Thus, suppose that the random vectorX admits an elliptical
unimodal density f�x� = �;�−1/2h��x−θ0�;−1�x−θ0�� where ; is a p.d. matrix,
h�x� > 0 and h′�x� < 0 for all x > 0. We will assume for simplicity that θ0 = 0�

Uniqueness. The proof of uniqueness will be based on a multivariate prob-
ability inequality in Davies (1987), Lemma 4.

Lemma 5.1. Let θ ∈ �p and ; be a p.s.d. matrix and ξ and g� �+ → �+ be
nonincreasing functions such that

∫
g�x′x�dx <∞. Then

∫
ξ
(�x− θ�′;−1�x− θ�)g�x′x�dx ≤

∫
ξ
(
x′;−1x

)
g�x′x�dx�

Defining

V��α�m� = 1
1 − α

∫
B�m�rα�m��

�0
(�x−m�2)f�x�dx�

we need to prove that V��α�m� > V��α�0� for all m ∈ �p. If r0 is the radius
of the optimal ball [r0 is equal to rα�0�], consider ξ�·� = h�·� and g�·� =
��0�r2

0� − �0�·��I�0� r2
0��·� �g�x′x� = ��0�r2

0� − �0��x�2��IB�0� r0��x��. Applying
Lemma 5.1 to the functions ξ and g previously defined, yields

�0�r2
0�

∫
B�0� r0�

f�x�dx− �1 − α�V��α�0�

≥ �0�r2
0�

∫
B�0� r0�

f�x+m�dx−
∫
B�0� r0�

�0
(�x�2�f�x+m�dx

= �0�r2
0�

∫
B�m�r0�

f�x�dx−
∫
B�m�r0�

�0
(�x−m�2)f�x�dx�

Now, add and subtract �1 − α�V��α�m� in the second term of the previous
inequality and rearrange terms to obtain

�1 − α�[V��α�m� −V��α�0�
] ≥ �0�r2

0�
[∫
B�m�r0�

f�x�dx−
∫
B�0� r0�

f�x�dx
]

−
[∫
B�m�r0�

�0
(�x−m�2)f�x�dx

−
∫
B�m�rα�m��

�0
(�x−m�2)f�x�dx

]
�

Taking into account that
∫
B�0� r0�

f�x�dx =
∫
B�m�rα�m��

f�x�dx�
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we can see that V��α�m� −V��α�0� > 0 is true if rα�m� > r0 and

∫
B�m�r0�c∩B�m�rα�m��

�0
(�x−m�2)f�x�dx

> �0�r2
0�

∫
B�m�r0�c∩B�m�rα�m��

f�x�dx�

but this is always true, because �0��x−m�2� > �0�r2
0�� for all x ∈ B�m�r0�

c∩
B�m�rα�m��, f�x� > 0 and rα�m� > r0 (this last fact is a simple exercise).

Nonsingularity of 5. Let � = �m′� r� = �m1� � � � �mp� r�′ ∈ �p, λ�·� =
�λ1� � � � � λp� λR�′�·�. Straightforward calculations give

∂

∂m
λj���

∣∣∣∣
m=0� r=r0

= 2√
�;�

∫
B�0�r�

xjψ0��x�2�

×h′(�x+m�′;−1�x+m�);−1�x+m�dx
∣∣∣∣
m=0� r=r0

for j = 1� � � � � p� so we can write

∂

∂m
λ�1�2�����p����

∣∣∣∣
m=0� r=r0

= 2√
�;�
;−1

∫
B�0� r�

ψ0
(�x�2)h′(x′;−1x

)
xx′ dx�

Provided that ψ0�y� > 0 and h′�y� < 0 for all y > 0� there exists a (neg-
ative) c0 constant such that f0�y� = c0ψ0��y�2�h′�y′;−1y� is a symmetric
(f0�y� = f0�−y�) nondegenerate density in the ball B�0� r0� ⊂ �p. Then
�∂/∂m�λ�1�2�����p�����m=0� r=r0

is equal to the matrix �;�−1/22c−1
0 ;

−1 times the
covariance matrix of a random vector with nondegenerate density f0� so it
is a nonsingular matrix. Due to symmetry considerations, it is trivial to see
that �∂/∂m�λR����m=0� r=r0

= 0′ and �∂/∂r�λ�1�2�����p�����m=0� r=r0
= 0. The den-

sity f is strictly positive in the boundary of the optimal ball B�0� r0�, so con-
sidering its surface integral we have that �∂/∂r�λR����m=0� r=r0

�= 0. Thus,
5 = �∂/∂m�λ�1�2�����p� r�����m=0� r=r0

is a nonsingular matrix.

Trimmed 2-mean. Consider the mixture of bivariate normals

1/2N2�µ1� Id� + 1/2N2�µ2� Id��

where µ1 = �−1�5�0�′, µ2 = �1�5�0�′ and Id is the identity matrix in �2�
Given the trimming level α = 0�2� we obtain the population trimmed 2-
mean (�0�x� = x) equal to M0 = �m0

1�m
0
2�, where m0

1 = �m0
11�m

0
12�′ =

�−1�42�0�′ and m0
2 = �m0

21�m
0
22�′ = �1�42�0�′. The optimal radius is equal

to r0 = 1�69, so the optimal zone is the union of two overlapped balls giving
the clusters A0

1 = B�m0
1� r0� ∩ ��x�y�� x ≤ 0� and A0

2 = B�m0
2� r0� ∩ ��x�y�:

x > 0��
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Now, let Mn = �mn1 �mn2� with mn1 = �mn11�m
n
12�′ and mn2 = �mn21�m

n
22�′

be the empirical trimmed 2-mean and rn the optimal empirical radius. We
consider mn1 and mn2 as estimates of m0

1 and m0
2, respectively (i.e., mn1 → m0

1
and mn2 →m0

2� P-a.e. [C-G-M (1997)]). Then, Theorem 4.1 asserts that

√
n
(�mn11�m

n
12�m

n
21m

n
22� rn�′ − �m0

11�m
0
12�m

0
21�m

0
22� r0�′

)

is asymptotically normal with zero mean and an asymptotic covariance matrix
which has been numerically approximated as




6�95 0 3�83 0 0�05

0 4�85 0 −0�32 0

3�83 0 6�95 0 −0�05

0 −0�32 0 4�85 0

0�05 0 −0�05 0 1�10



�

A study of the variance–covariance structure in the univariate case (p = 1),
using the influence function for its computation, is given in Garcı́a-Escudero
and Gordaliza (1999). Also in that paper it is observed that, although the ef-
fect of the trimming is usually an increase in the asymptotic variances, for
heavy-tailed distributions the situation may be reversed. Notice that heavy-
tailed distributions are somehow associated with the presence of outliers, so
this is another reason the method is especially suitable when outliers are sus-
pected (remember also that no assumption concerning existence of population
moments of the underlying distribution is needed in Theorem 4.1).

Tolerance regions. Many statistical procedures involve summarizing a
probability distribution by a region of the sample space covering a previously
specified probability. When we demand also a guarantee of attaining this cov-
ering probability, we may speak of tolerance regions. It seems plausible that
a reasonable region should occupy the smallest possible volume and should
consist of high density zones. The region satisfying both previous conditions
obviously need not be a connected region (especially in the mixture setting).

Butler (1982) introduces, in the univariate case, a robust distribution-free
tolerance interval based on minimization of the trimmed variance (i.e., based
on the LTS estimator). Tableman (1994) considers a tolerance interval ob-
tained from the LTAD estimator in the univariate case. Butler, Davies and
Jhun (1993) consider an ellipsoidal tolerance zone based on the minimum
covariance determinant estimator (MCD) apropriate for multivariate ellipti-
cal distributions. All the previous procedures give only connected tolerance
regions.

The optimal zone provided by the trimmed k-mean method is not necessar-
ily connected and can be used as a tolerance region. This possibility was noted
in Garcı́a-Escudero, Gordaliza and Matrán (1997) in the univariate setting. In
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the multivariate setting and for general penalty functions, considerB�Mn� rn�,
the sample optimal zone, and recall [from (8)] that

√
n�Pn�B�Mn� rn�� −

�1 − α�� = oP�1�. Arguing as in Butler, Davies and Jhun (1993), using stan-
dard empirical process theory, taking into account the fact that a finite union
of closed balls in �p is a Donsker class and using the convergence of B�Mn� rn�
to B�M0� r0�, we obtain that

√
n
(
P�B�Mn� rn�� − �1 − α�) −→D N

(
0� α�1 − α�)�(10)

Figure 1 shows, for a well-known data set (eruptions and lagged eruptions
from Old Faithful Geyser), that when we suspect that data arises from a
mixture of distributions then the tolerance region based on a trimmed k-mean
could provide a good performance. Making use of (10) with n = 271, we need a
trimming size α = 0�08 to reach a 0.95-guarantee of attaining a 0.9-coverage.
The figure exhibits the tolerance zone associated with the 0.08-trimmed 3-
mean (��x� = x2).

Figure 1 also shows the classical (untrimmed) k-mean. We observe that the
six anomalous data points in the lower left corner (short followed by short
eruptions) are artificially assigned to clusters (C) and (A). This fact modi-
fies slightly the centers of those clusters. If the anomalous data points were
placed farther away, the untrimmed 3-mean could break down. For a detailed
discussion about the robustness gain provided by the trimming procedure, see
Garcı́a-Escudero and Gordaliza (1999).

This methodology, when considering a suitable number of clusters, k� could
be related to methods of support estimation [as in Cuevas and Fraiman (1997)]
or with searching for highest density regions [Scott (1992) and Hyndman
(1996)].

Sketch of the algorithm. We used a simulated annealing-based algorithm
to obtain the trimmed k-mean and the corresponding optimal zone. A brief
description of the algorithm is as follows: first, randomly partition the data
into k+1 groups (k clusters and one additional group containing the trimmed
observations). Then, in each step of the algorithm, one observation is allowed
to be changed from one of the groups to another. Notice that, proceeding in
this form, we are not guaranted to have the required trimming proportion α�
To solve this drawback, a parameter γ which penalizes increasing the size of
the trimmed observations group is also included in the “energy” function (i.e.,
bigger γ’s will lead to lower trimmed solutions). The reason for introducing
this parameter γ is to avoid local minimums which appear, even with the
simulated annealing algorithm, if the trimming level is kept fixed. Finally, we
must modify the parameter γ in an interactive way until the right trimming
size is reached.
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1078 L. A. GARCÍA-ESCUDERO, A. GORDALIZA AND C. MATRÁN
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