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HIERARCHICAL MIXTURES-OF-EXPERTS FOR EXPONENTIAL
FAMILY REGRESSION MODELS: APPROXIMATION AND

MAXIMUM LIKELIHOOD ESTIMATION

By Wenxin Jiang and Martin A. Tanner1

Northwestern University

We consider hierarchical mixtures-of-experts (HME) models where ex-
ponential family regression models with generalized linear mean functions
of the form ψ�α + xT�� are mixed. Here ψ�·� is the inverse link function.
Suppose the true response y follows an exponential family regression model
with mean function belonging to a class of smooth functions of the form
ψ�h�x�� where h�·� ∈W∞

2�K0
(a Sobolev class over �0�1	s). It is shown that

the HME probability density functions can approximate the true density,
at a rate of O�m−2/s� in Hellinger distance and at a rate of O�m−4/s� in
Kullback–Leibler divergence, where m is the number of experts, and s is
the dimension of the predictor x. We also provide conditions under which
the mean-square error of the estimated mean response obtained from the
maximum likelihood method converges to zero, as the sample size and the
number of experts both increase.

1. Introduction. Both the mixtures-of-experts (ME) model, introduced
by Jacobs, Jordan, Nowlan and Hinton (1991), and the hierarchical mixtures-
of-experts (HME) model, introduced by Jordan and Jacobs (1994), have re-
ceived considerable attention due to flexibility in modeling, appealing inter-
pretation and the availability of convenient computational algorithms. In con-
trast to the single-layer ME model, the HME model has a tree-structure and
can summarize the data at multiple scales of resolution due to its use of nested
predictor regions. By the way they are constructed, ME and HME models are
natural tools for likelihood-based inference using the expectation maximiza-
tion (EM) algorithm [Jordan and Jacobs (1994) and Jordan and Xu (1995)], as
well as for Bayesian analysis based on data augmentation [Peng, Jacobs and
Tanner (1996)]. An introduction and application of mixing experts for gener-
alized linear models (GLMs) are presented in Jordan and Jacobs (1994) and
Peng, Jacobs and Tanner (1996).

Both ME and HME have been empirically shown to be powerful and gen-
eral frameworks for examining relationships among variables in a variety of
settings [Cacciatore and Nowlan (1994), Meilă and Jordan (1995), Ghahra-
mani and Hinton (1996), Tipping and Bishop (1997) and Jaakkola and Jordan
(1998)]. Despite the fact that ME and HME have been incorporated into neu-
ral network textbooks [e.g., Bishop (1995) and Haykin (1994) which features
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an HME design on the cover], there has been very little formal statistical
justification [see Zeevi, Meir and Maiorov (1998)] of the methodology. In this
paper we consider the denseness and consistency of these models in the gen-
eralized linear model context. Before proceeding we present some notation
regarding mixtures and hierarchical mixtures of generalized linear models
and one-parameter exponential family regression models.

Generalized linear models are widely used in statistical practice [McCul-
lagh and Nelder (1989)]. One-parameter exponential family regression models
[see Bickel and Doksum (1977), page 67] with generalized linear mean func-
tions (GLM1) are special examples of the generalized linear models, where the
probability distribution can be parameterized by the mean function. In the re-
gression context, a GLM1 model proposes that the conditional expectation
µ�x� of a real response variable y (the output) is related to a vector of predic-
tors (or inputs) x ∈ �s via a generalized linear function µ�x� = ψ�α + �Tx�,
with α ∈ � and � ∈ �s being the regression parameters and ψ−1�·� be-
ing a link function. The inverse link function ψ�·� is often used to map the
entire real axis to a restricted region which contains the mean response.
For example, when y follows a Poisson distribution conditional on x, a log
link is often used so that the mean is nonnegative. In general, the GLM1
probability density function (pdf) of y conditional on x is parameterized by
the conditional mean µ�x�, having the form p�y�x� = exp
a∗�µ�y + b∗�µ� +
c∗�y��, where µ = µ�x� = ψ�α + �Tx�, and a∗�·�, b∗�·� and c∗�·� are some
fixed functions. Such models include Poisson, binomial and exponential re-
gression models, as well as the normal and gamma regression models with
dispersion parameters regarded as known. In Remark 3 (at the end of Sec-
tion 3), we will discuss the situation when the dispersion parameter is also
estimated.

A mixtures-of-experts model assumes that the total conditional density of
the response is a local mixture of the conditional densities of several GLM1 ex-
perts. It is important to note that such a model differs from standard mixture
models [e.g., Titterington, Smith and Makov (1985)] in that the mixing weights
depend on the input. A generic expert labeled by an index J, proposes that
the response y, conditional on the input x, follows a probability distribution
with density pJ�y�x� = π�hJ�x�� y� = exp
a∗�µJ�y + b∗�µJ� + c∗�y��, where
µJ = ψ�hJ�x�� and hJ�x� = αJ+�T

Jx. The total probability density of y, after
combining several experts, has the form p�y�x� = ∑

J gJ�x�pJ�y�x�, where
the local weight gJ�x� depends on the input x, and is often referred to as a gat-
ing function. The total mean response then becomes µ�x� = ∑

J gJ�x�µJ�x�.
An example of the HME model with two layers is given in Jordan and Ja-
cobs (1994), as illustrated in Figure 1. Note that the HME is a probabilistic
decision tree, where the gating networks determine the branching probabil-
ities as a function of the covariate x, and the experts are identified with
the leaves of the decision tree. A simple mixtures-of-experts model takes
the expert label J to be an integer. An HME model takes J as an integer
vector, with dimension equal to the number of layers in the HME decision
tree.
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In Figure 1, adapted from Jordan and Jacobs (1994), the expert label J
is a two-component vector with each component taking either value 1 or 2;
gi and gj�i (i� j ∈ 
1�2�) are logistic-type local weights [see Section 2.3 and
(2.6)] which are identified with the probabilities of decisions at the branches
of the tree. Note that the product gigj�i gives a probability gJ�x� = gigj�i
for the path J = �i� j�. At the leaves of the tree, each expert J = �i� j�
proposes a conditional density, pJ = pij, say, with a corresponding conditional
mean µij. Summing over all path J’s gives the total conditional density of
the conditional mixture model: p = ∑

J gJpJ. The corresponding summation
of the conditional mean functions, µ = ∑

J gJµJ, is presented in a recursive
way in the original article of Jordan and Jacobs (1994), by µ = ∑2

i=1 giµi and
µi =

∑2
j=1 gj�iµij, and is illustrated in Figure 1.

It is demonstrated by Zeevi, Meir and Maiorov (1998) that one-layer mix-
tures of linear model experts can be used to approximate a class of smooth
functions as the number of experts increases, and the least-squares method
can be used to estimate the mean response consistently when the sample
size increases. An interesting proposition is to extend this result to HME
for GLM1s with nonlinear link functions and to consider the consistency of

Fig. 1. A two-layer hierarchical mixtures-of-experts model.
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maximum likelihood estimation. Jiang and Tanner (1999) show that the HME
for generalized linear mean functions can be used to approximate arbitrary
smooth functions in a transformed Sobolev class. The present paper, in con-
trast, focuses on the denseness of HME density functions and on the con-
sistency of the maximum likelihood learning. The maximum likelihood (ML)
approach has two advantages over the conventional least-squares approach.
(1) The maximum likelihood approach gives the smallest asymptotic variance
for the estimator of the mean response, in the case of correct model specifica-
tion. (2) The convenient EM algorithm can be used naturally for maximizing
the likelihood, just as in the case of ordinary mixture models. However, there
are two difficulties for studying the consistency properties of a likelihood-based
approach. (1) The maximum likelihood method deals with density functions
rather than with mean functions. A result on the denseness of mean functions,
such as the ones stated in Zeevi, Meir and Maiorov (1998) and Jiang and Tan-
ner (1999), is not enough. We need to establish a similar result for the density
functions. We show that HME for GLM1 density functions can be used to ap-
proximate density functions of the form π�h�x�� y�, where h�·� is an arbitrary
smooth function in a Sobolev class. (2) The maximum likelihood method mini-
mizes the Kullback–Leibler (KL) divergence, while the consistency properties
for the estimates of mean responses are usually investigated by showing that
the mean square error (MSE) of the estimated mean responses converge to
zero in some fashion. We need to establish a relationship between the KL di-
vergence of the density functions and the MSE, or the L2 distance of the mean
functions.

We also note that the parameterization of the HME, as shown in the next
section, is not identifiable. Care is needed for statements about the parameter
estimates, which are not unique.

2. Notation and definitions. In the following, we briefly review the one-
parameter exponential family regression model with generalized linear mean
function (GLM1).

2.1. GLM1. We first describe the one-parameter exponential family in a
way that best fits the purpose of this paper. Let �A��A� λ� be a general mea-
sure space. A probability density function π�h� ·� in the one-parameter expo-
nential family is labeled by one real parameter h, and has the form

π�h�y� = exp
{
a�h�y+ b�h� + c�y�} for y ∈ A,(2.1)

such that
∫
A π�h�y�dλ�y� = 1 for each h ∈ �. The functions a�·�, b�·� and c�·�

all have known forms; a�·� and b�·� are analytic and have nonzero derivatives
on � and c�·� is measurable-�A.

We list some well-known properties of the one-parameter exponential mod-
els, which will be useful later.

1. The moment generating function exists in some neighborhood of the origin,
and thus moments of all orders exist. See Lehmann (1991), Theorem 1.4.2,
page 31.
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2. For each positive integer k, µ�k��h� =
∫
A y

kπ�h�y�dλ is differentiable in
h up to any order, due to the analyticity of a, b and Theorem 1.4.1 of
Lehmann (1991), page 29. In particular, we denote µ�1��h� = ψ�h� = µ and
µ�2��h� = υ�h� as the first two moments.

3. The first moment can be expressed as µ = ψ�h� ≡ ∫
A yπ�h�y�dλ =

−b′�h�/a′�h� for all real h and is analytic. ψ� � �→ ψ��� forms a �∞-
diffeomorphism.

Note that the parameterization of a�h�, b�h� and c�h� is not unique. For
our purpose we require these functions to be defined on the entire real line.

Some examples follow.
Poisson. � �µ� where µ = eh, y ∈ A = 
0�1�2� � � ��. Then

π�h�y� = e−µ

y!
µy = exp

{
hy− eh − log�y!�}�

Here we can take a�h� = h, b�h� = −eh, c�y� = − log�y!�.
Normal (σ2 known, > 0). N�µ�σ2� where µ = h, y ∈ A = �. Then

π�h�y� = 1√
2πσ2

exp
(
− 1

2σ2
�y− µ�2

)

= exp
{(

h

σ2

)
y− h2

2σ2
− y2

2σ2
− 1

2
log�2πσ2�

}
�

Here we can take a�h� = h/σ2, b�h� = −h2/�2σ2�, c�y� = −y2/�2σ2�−�1/2� log
�2πσ2�.

The GLM1 assumes that h = α + �Tx, which introduces the dependence
of y on an s-dimensional predictor x through the density function π�h�y�.
In this context, the inverse of ψ�·� is called a link function [McCullagh and
Nelder (1989)]. For a specific probability model of y (say, Poisson), there could
be different choices of the link function. Our paper does not restrict the choice
of the link function, as long as it is “smooth” on � and invertible. Note that the
functions a, b and c in (2.1) correspond, respectively, to the functions a∗ ◦ ψ,
b∗ ◦ ψ and c∗ in notation of Section 1, where ◦ stands for composition.

Now we introduce a target family of regression models which is more flexible
than the family of GLM1 by allowing h�·� to be an arbitrary smooth function
(of x) in a Sobolev class.

2.2. The family of target functions. Let # = �0�1	s =⊗s
q=1�0�1	, the space

of the predictor x, where ⊗ stands for the direct product. Let A ⊂ � be the
space of the response y. Let �A��A� λ� be a general measure space, �#��#� κ�
be a probability space such that κ has a positive continuous density with
respect to the Lebesgue measure on# and �#⊗A��#⊗�A� κ⊗λ� be the product
measure space. Consider a random predictor–response pair �X�s×1��Y�1×1��.
Suppose X has a probability measure κ, and �X�Y� has a probability density
function (pdf) ϕ with respect to κ⊗λ, where ϕ is a target function of the form

ϕ�x� y� = π�h�x�� y��(2.2)
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Here π�·� ·�� �⊗A �→ � has the one-parameter exponential form (2.1). In con-
trast to a GLM1 model, we allow a more flexible h�x� in (2.2). Here h� # �→
� is assumed to have continuous second derivatives,

∑
k�0≤�k�≤2 �Dkh�∞ ≤

K0, where k = �k1� � � � � ks� is an s-dimensional vector of nonnegative in-
tegers between 0 and 2, �k� = ∑s

j=1 kj, �h�∞ ≡ supx∈# �h�x�� and Dkh ≡
�∂�k�h/∂xk1

1 · · · ∂xkss �. In other words, h ∈ W∞
2�K0

, where W∞
2�K0

is a ball with
radius K0 in a Sobolev space with sup-norm and second-order continuous dif-
ferentiability. The conditional mean function µ�·�, corresponding to ϕ�·� ·�, is
obviously

µ�x� =
∫
A
yϕ�x� y�dλ�y� = ψ�h�x��(2.3)

for all x in #. Sobolev classes of mean functions similar to W∞
2�K0

are also
considered in Mhaskar (1996) and Zeevi, Meir and Maiorov (1998). Our family
of mean functions is a transformed class ψ�W∞

2�K0
�, where ψ−1 is the link

function.
We have restricted the predictor x to # = �0�1	s to simplify the exposition.

The theorems of this paper actually hold for # being any compact subset of �s.
The compactness of # is needed in the techniques of our proof. We also note
that in the situation when # is the direct product of s closed intervals, suitable
recentering and rescaling of each of the s components of x can transform #
into �0�1	s.

Denote the set of all pdfs ϕ�·� ·� = π�h�·�� ·� defined this way as �. This is
the set of target functions that we will consider to approximate.

Now we define the hierarchical mixtures-of-experts (HME) for GLM1s. They
are the functions which we use for approximating a function in �.

2.3. The family of HME of GLM1s. An approximator f in the HME family
is assumed to have the following form:

f = f,�x� y� θ� =
∑
J∈,

gJ�x�v�π�hJ�x�� y��(2.4)

where hJ�x� = αJ + �T
Jx, and π�·� ·� is as defined in Section 2.1. The param-

eters of this model include αJ ∈ � and �J ∈ �s, as well as v which is some
parameter for the gating function gJ’s. We use the symbol θ to represent the
grand vector of parameters containing all the components of the parameters
v, αJ and �J for all J ∈ ,. In (2.4), , is the set of labels of all the experts
in a network, referred to as a structure. Two quantities are associated with a
structure: the dimension l = dim�,�, which is the number of layers and the
cardinality m = card�,�, which is the number of experts. A HME of l-layers
has a structure of the form , =⊗l

k=1 Ak where Ak = 
1� � � � �wk�, wk ∈ � and
k = 1� � � � � l. (We use � to denote the set of all positive integers.) Graphically,
wk = card�Ak� represents the number of expert branches or the number of
“splits” at layer k, k = 1� � � � � l. Note that in this paper we restrict attention to
“rectangular-shaped” structures (corresponding to balanced trees). A generic
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expert label J in , can then be expressed as J = �j1� � � � � jl� where jk ∈ Ak

for each k.
To characterize a structure ,, we often claim that it belongs to a certain

set of structures. We now introduce three such sets of structures, � , �m and
� , which will be used later when formulating the results. The set of all pos-
sible HME structures under consideration is � = 
,� , = ⊗l

k=1
1� � � � �wk�;
wk ∈ � ; k = 1� � � � � l; l ∈ � �. The set of all HME structures containing no
more than m experts is denoted as �m = 
,� , ∈ � � card�,� ≤ m�. We also
introduce a symbol � to denote a generic subset of � . This is introduced in
order to formulate a major condition for some results of this paper to hold.
This condition, to be formulated in the next section, will be specific to a generic
subset � of HME structures. A trivial example of � is � . Another example
of � is �L = 
,� , ∈ � �dim�,� ≤ L�, which includes all structures with L
or less layers. In particular, �1 represents the set of single-layer structures.
A third example of � is �B = 
,� , =

⊗l
k=1
1�2�; l ∈ � �, which represent

the set of trees with binary splits.
Associated with a structure , is a family of vectors of gating functions.

Each member is called a gating vector and is labeled by a parameter vector
v ∈ V,, V, being some parameter space specific to the structure ,. Denote
a generic gating vector as Gv� , ≡ �gJ�·�v��J∈,. We assume the gJ�x�v�’s to
be nonnegative, with sum equal to unity, and continuous in x and v. Note
that

∫
A f,�x� y� θ�dλ�y� = 1 is ensured. Let � = 
Gv� ,� v ∈ V,�, ∈ � � be

the family of gating vectors defined on the set of structures � , which will be
referred to as a gating class defined on � .

In the following we define the logistic gating class � = � on the set of all
structures � . This class has been commonly used in literature [see Jordan and
Jacobs (1994)]. Here, for each structure , in � and each label J in ,, a gating
function gJ = gJ�·�v� is defined recursively. Suppose J is an l-dimensional
integer �j1� j2� � � � � jl�. Then,

gJ ≡ gj1j2���jl
= gj1

gj2�j1
� � � gjl�j1j2���jl−1

�(2.5)

Here, for each q, the factor gjq�j1���jq−1
takes a multinomial logit form,

gjq�j1���jq−1
=

exp�ξjq�j1���jq−1
�∑wq

k=1 exp�ξk�j1���jq−1
�
�(2.6)

where ξk�j1���jq−1
= φk�j1���jq−1

+ γTk�j1���jq−1
x, �φk�j1���jq−1

� γTk�j1���jq−1
� ∈ �s+1, k =

1� � � � �wq. Usually it is assumed that

φwq�j1���jq−1
= γwq�j1���jq−1

= ξwq�j1���jq−1
= 0�

since otherwise a “translation” of the parameters,

φk�j1���jq−1
→ φk�j1���jq−1

+φ0�

γk�j1���jq−1
→ γk�j1���jq−1

+ γ0 all k = 1� � � � �wq�
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would leave the probability density function f,�x� y� θ� unchanged. Note
that the grand vector of “gating parameters” v includes all components of
�φjq�j1���jq−1

� γTjq�j1���jq−1
�, where �j1� � � � � jq−1� ∈

⊗q−1
r=1
1� � � � �wr� and jq ∈ 
1�

� � � �wq − 1� for all q = 1� � � � � l. It is easy to see that

dim�v� = �s+ 1�{�w1 − 1� +w1�w2 − 1� + � � �+w1 � � � wl−1�wl − 1�}
= �s+ 1��m− 1��

and the parameter space V, for v is ��s+1��m−1�, where m = w1 · · ·wl =
card�,�. Note that the gating functions constructed in this way are analytic
for �vT�xT� ∈ ��s+1��m−1� ⊗�s. The space of regression parameters (or “expert
parameters”) �αJ��T

J�’s, corresponding to structure ,, is ��s+1�m. The space of
grand parameter θ’s, corresponding to structure ,, is 7̃, = ��s+1��2m−1�. Here
the �2m − 1��s + 1�-dimensional grand parameter θ includes all components
of the gating parameters from v and the expert parameters from �αJ��T

J�J∈,.
Now we are ready to define the family of approximator functions. Let 8, be

the set of all function f,’s of the form (2.4), specific to a structure ,, which can
be denoted as8, = 
f,�·� ·� θ�� θ ∈ 7̃,�. This set8, is the set of HME functions
from which an optimal function is chosen by the maximum likelihood method
to approximate the truth. It is assumed that a structure , is chosen a priori.
In practice, people often analyze data using different choices of structures
and select the best fitting model [see Fritsch, Finke and Waibel (1997) for
an adaptive approach]. We consider in this paper choosing among the set of
structures �m ∩� . Denote

�m�� = {
f� f ∈ 8,�, ∈ �m ∩�

}
�(2.7)

This set, �m�� , is the family of HME functions for which we examine the
approximation rate in �, as m→∞. Note that this family of HME functions
is specific to m, the maximum number of experts, as well as to some subset �
of HME structures, which will be specified later. We do not explicitly require
that �m�� be a subset of � in this paper.

Each HME density function f,�x� y� θ� generates a mean function µ,�x� θ�
by

µ,�x� θ� =
∫
A
yf,�x� y� θ�dλ�y� =

∑
J∈,

gJ�x�v�ψ�αJ + xT�J��(2.8)

where ψ�·� = ∫
A yπ�·� y�dλ�y�.

The parameterization of the HME functions is not identifiable, in the sense
that two different parameters θ in 7̃, can represent the same density function
f in �m�� . For example, the density functions are invariant under permuta-
tion of the expert label J’s. Also, if two experts J and J′ propose the same
output, that is, if αJ = αJ′ and �J = �J′ , then the mixing proportions for
these two experts can be arbitrary, as long as the sum of the two weights are
unchanged. This can lead to the nonidentifiability of some components of pa-
rameter v. Our description of the estimation procedure and the statement of
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the results will take these identifiability issues into account. The identifiabil-
ity issues also suggest that it makes more sense to formulate the consistency
problem in terms of the estimated mean response, rather than to look at the
consistency of the parameter estimates.

2.4. The method of estimation. We will use the maximum likelihood meth-
od to train the architecture. Suppose we estimate the mean response µ�x�
based on a data set of n predictor-response pairs �Xi�Yi�, Xi ∈ #, Yi ∈ A, i =
1� � � � � n. Let the measure spaces �#��#� κ� and �A��A� λ� be as introduced in
Section 2.2. Assume that �Xi�Yi�, i = 1� � � � � n are independent and identically
distributed (i.i.d.) random vectors. The probability measure for Xi is κ. The
probability measure of Yi conditional on Xi = x has a density ϕ�x� ·� [defined
in (2.2)] with respect to the measure λ, for all x ∈ #.

The log-likelihood function based on the HME model is

Łn�,�θ�ω� = n−1
n∑
i=1

log
{
f,�Xi�Yi� θ�

/
ϕ0�Xi�Yi�

}
�(2.9)

where f,�·� ·� θ� ∈ 8, is defined in Section 2.3, θ ∈ 7̃,, ω is the stochastic
sequence of events �Xi�Yi�, i = 1� � � � and ϕ0�Xi�Yi� can be any positive mea-
surable function of the observed data that does not depend on the parameter
θ. In this paper we choose ϕ0�Xi�Yi� = exp�c�Yi�� where c�·� is from (2.1).
It turns out that such a choice makes the log-likelihood function uniformly
convergent to its expectation, for almost all ω, in any compact subset of pa-
rameters, as n→∞. Define the maximum likelihood estimator (MLE) θ̂n�,�ω�
to be a maximizer (can be one out of many) of Łn�,�θ�ω� over a compact set
B̃, ⊂ 7̃,, that is,

θ̂n�,�ω� = arg max
θ∈B̃,

{
Łn�,�θ�ω�

}
�(2.10)

The maximum likelihood method, in the large sample size limit, essentially
searches for θ which minimizes the KL divergence KL�f,�ϕ� between f, =
f,�·� ·� θ� ∈ 8, and ϕ = ϕ�·� ·� ∈ �, where

KL�f�g� ≡
∫ ∫

#⊗A
g�x� y� log

{
g�x� y�
f�x� y�

}
dκ�x�dλ�y��(2.11)

It turns out that the KL divergence KL�f,�ϕ� is always well defined (see
Corollary 1 in Section 2.5). Due to the nonidentifiability of the parameteriza-
tion, there is a set of θ’s in B̃, that minimize the KL divergence. Denote this
set as 7,, which could be expressed as

7, =
{
θ ∈ B̃,� θ = arg min

θ∗∈B̃,

KL�f,�·� ·� θ∗�� ϕ�
}
�(2.12)

Based on any MLE θ̂n�, = θ̂n�,�ω�, an estimated mean response can be
constructed as µ,�x� θ̂n�,�. We do not explicitly require that for two different



996 W. JIANG AND M. A. TANNER

global MLEs the estimated mean responses be the same. The MSE of an
estimated mean response is defined by

�MSE�n�, = E
∫ {
µ,�x� θ̂n�,� − µ�x�}2

dκ�x��(2.13)

where E is the expectation taken on the MLE θ̂n�,, and µ, and µ are defined
in (2.8) and (2.3), respectively.

2.5. Technical definitions. Some technical definitions are introduced be-
low. We will use these definitions to formulate a major condition for our results
to hold.

Definition 1 (Fine partition). For ν = 1� 2� � � �, let Q�ν� = 
Q�ν�
J �J∈,�ν� ,

,�ν� ∈ � , be a partition of # ⊂ �s. (This means that for fixed ν, the Q
�ν�
J ’s

are mutually disjoint subsets of �s whose union is #.) Let pν = card�,�ν��,
(pν ∈ � ).

If pν →∞, and if for all �� � ∈ Q�ν�
J , ρ��� �� ≡ max1≤q≤s ���−��q� ≤ c0/p

1/s
ν

for some constant c0 independent of ν, J, �, �, then 
Q�ν�� ν = 1�2� � � �� is
called a sequence of fine partitions with structure sequence 
,�ν��, cardinality
sequence 
pν� and bounding constant c0.

Definition 2 (Subgeometric). A sequence 
aν� is subgeometric with rate
bounded by M2, if aν ∈ � , aν →∞ as ν→∞ and 1 < �aν+1/aν� < M2 for all
ν = 1�2� � � �, for some finite constant M2.

In the following we introduce some measures of the discrepancy between a
pdf f in 8, [of the form (2.4)] and a pdf ϕ in � [of the form (2.2)]. One of them
is the KL distance KL�f�ϕ� [see (2.11)]. Another is the Hellinger distance

dH�f�ϕ� =
{∫ ∫ (√

f−√ϕ)2
dλdκ

}1/2

�(2.14)

This is a true distance and is invariant under rescaling of the measures λ
and κ [see Devroye and Gyoerfi (1985)]. A third description is the L2 distance
between the means,

d2�µf�µϕ� =
∥∥µ,�·� θ� − µ�·�∥∥2� κ =

{∫
�µf − µϕ�2 dκ

}1/2

�(2.15)

where µf =
∫
yfdλ and µϕ =

∫
yϕdλ, for f in 8, and ϕ in �. This measure

is used since it is closely related to the MSE defined in Section 2.4.
For technical convenience, we introduce a fourth measure of discrepancy

between f in 8, and ϕ in � called the upper divergence. For f = ∑
J∈, gJ ·

π�hJ�y� and ϕ = π�h�y�, the upper divergence is defined as

	�f�ϕ� =
∫ ∑

J∈,
gJ�x�v�

{
hJ�x� − h�x�}2

dκ�(2.16)
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where hJ�x� = αJ+�T
Jx. Note that the idea of HME approximation is to par-

tition the input space “softly” according to the gJ’s and use a linear function
hJ�x� to approximate h�x� in each partition, so as to approximate the (condi-
tional) pdf π�h�x�� ·� for all x. The upper divergence measures the quality of
this softly partitioned linear approximation. The name “upper divergence” is
due to the following lemma, which implies that 	 is stronger than the other
divergence measures, that is, KL, dH and d2�µf�µϕ� (the proof is in Section 4).

Lemma 1 (Strength of divergence measures). Consider any structure ,,
any HME density f =∑

J∈, gJπ�hJ� ·� in8, and any target density ϕ = π�h� ·�
in �. We have:

(a) d2
2�µf�µϕ� ≤ 4MId

2
H�f�ϕ�;

(b) d2
H�f�ϕ� ≤KL�f�ϕ�. [This lemma appeared in, e.g., Haussler and Op-

per (1995) and Zeevi and Meir (1997).]
(c) KL�f�ϕ� ≤MII	�f�ϕ�.
Here, MI = sup�h�≤K


∫
y2π�h�y�dλ�, and

MII = 1
2

{
sup
�h�≤K

∣∣∣∣
∫
yπ�h�y�dλ

∣∣∣∣ sup
�h�≤K

�a′′�h�� + sup
�h�≤K

�b′′�h��
}
�

where a�·� and b�·� are defined as in (2.1), and K is an upperbound for �hJ�x��
and �h�x�� for all x in # and all J in ,.

Remark 1. MI and MII are finite constants, due to the continuity of a′′,
b′′ and

∫
ykπ�h�y�dλ (k = 1�2), as functions of h.

Corollary 1. All the divergence measures d2�µf�µϕ�, dH, KL and 	 are
finite.

The proof is obvious from Lemma 1. Note that 	 is finite, since it involves
an integration of a continuous function over the compact space # of input x.

In Section 4, we will use Lemma 1(c) on upper divergence to prove the
denseness property of the HME densities in KL divergence.

3. Results and conditions. In the following, we state some regularity
conditions, as well as some results which hold under these conditions.

Condition 1. �A� � p�� For a subset � ⊂ � , there is a fine partition se-
quence 

Q�ν�

J �J∈,�ν�0
� ,�ν�0 ∈ � � ν = 1�2� � � �� with a bounding constant c0 and

a cardinality sequence 
pν� ν = 1�2� � � ��, such that 
p1/s
ν � is subgeometric

with rate bounded by a constant M2, and for all ν, for all ε > 0, there exists
vε ∈ V,

�ν�
0

and a gating vector

Gvε� ,
�ν�
0
= {

gJ�x� vε�
}
J∈,�ν�0

∈ � �

,
�ν�
0 ∈ � � such that sup

J∈,�ν�0

�gJ�·� vε� − χ
Q
�ν�
J
�·��p�σ ≤ ε�(3.1)
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Here, �f�·��p�σ ≡ 
∫# �f�x��p dσ�x��1/p, where p ∈ � ; σ is any probability
measure on # which has a positive continuous density with respect to the
Lebesgue measure; χB�·� is the characteristic function for a subset B of #,
that is, χB�x� = 1 if x ∈ B, 0 otherwise.

This condition is a restriction on the gating class � defined on a set of
structures � . Loosely speaking, it indicates that the vectors of local gating
functions in the parametric family should arbitrarily approximate the vector
of characteristic functions for a partition of the predictor space #, as the cells
of the partition become finer.

Theorem 1 (Approximation rate in Hellinger distance). Under Condition
A� �1,

sup
ϕ∈C

inf
f∈�m��

dH�f�ϕ� ≤
c

m2/s
�

for some positive constant c independent ofm. Here dH is the Hellinger distance
defined in (2.14).

Remark 2. This theorem implies the same approximation rate in the L1
distance d1�f�ϕ� =

∫ ∫ �f − ϕ�dλdκ, by the well-known result d1�f�ϕ� ≤
2dH�f�ϕ� [see Devroye and Gyoerfi (1985)]. The same rate in general Lp

distances (p ≥ 2) is derived in Jiang and Tanner (1998) (under Condition
A� � p), where an extra boundedness condition is required.

Theorem 2 (Approximation rate in KL divergence). Under Condition A� �1,

sup
ϕ∈C

inf
f∈�m��

KL�f�ϕ� ≤ c/m4/s�

for some positive constant c independent of m. Here KL is the KL divergence
defined in (2.11).

All these results depend on a major condition A� �1. The following remark
claims that it is satisfied by certain gating functions defined on certain struc-
tures.

Remarks. (a) Condition A� � p is satisfied (for any p ∈ � ) by the logistic
gating class � = � defined on the set of structures � = �B for trees with bi-
nary splits (Section 2.3). This is because, roughly speaking, a logistic function
from a binary split has the form �1 + exp�−β�z− z0���−1, which can approx-
imate a step function H�z − z0� as β increases, for any location of jump z0.
The gating functions in a binary tree involve products of the logistic functions
(and their complements), which can approximate products of step functions
which form the characteristic functions of a fine partition. In this way, Con-
dition A� � p can be proved. This implies that the approximation rates in the
theorems stated above apply to HME of GLM1s with binary trees.
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(b) Jiang and Tanner (1999), Lemma, Section 3, show that Condition A� � p

is satisfied (for any p ∈ � ) by the logistic gating class � defined on �s, which
is the set of structures with no more than s layers, where s = dim�x�. More-
over, due to Jiang and Tanner (1999), Remark (i), Section 5, Condition A� � p

is also satisfied by the logistic gating class defined on the set of single-layer
structures �1 (corresponding to the MEs), which implies that the approxima-
tion rates in the above theorems apply to ME of GLM1s.

(c) Another class of gating functions can be defined only on the binary trees
(in �B). There, the logistic gating functions in (2.6) are replaced by continuous
cumulative distribution functions (cdfs). One example is to use the normal
cdf. Then the gating factor gjq�j1···jq−1

of (2.6) becomes C�ξj1···jq−1
� if jq = 1,

or 1 − C�ξj1···jq−1
� if jq = 2; where ξj1···jq−1

= φj1���jq−1
+ γTj1���jq−1

x. A similar
argument as in part (a) of this remark shows that Condition A� � p is satisfied
for this new gating class for any p ∈ � .

The next condition is useful for proving the consistency of the maximum
likelihood (ML) learning method.

Condition 2 (Scope of maximum likelihood searching). The scope of the
maximum likelihood (ML) searching, B̃,, is a compact subset of �−C�C	dim�θ�

for some large positive constant C, and the scope is so large that it contains
a point θKL which minimizes the KL divergence between f,�·� ·� θ� ∈ 8, and
ϕ�·� ·� ∈ C among all choices of θ in 7̃,, where

KL
(
f,�·� ·� θKL�� ϕ�·� ·�

) = inf
θ∈7̃,

KL
(
f,�·� ·� θ�� ϕ�·� ·�

) = inf
f∈8,

KL�f�ϕ��

This condition is similar to a usual condition under correct model specifica-
tion, requiring that the scope of ML search should contain the true parameter
so as to make the MLE consistent. The difference here is that there is no
“true parameter,” since the likelihood functions are constructed based on the
HME densities, which can only be used to approximate the true pdf in �.
Condition 2 ensures that the ML searching area is big enough to contain an
“optimal point” (instead of the true parameter), which minimizes the KL di-
vergence between the true density and the HME density. This feature will be
useful when proving the consistency result of the ML approach under model
misspecification, when the likelihood function is constructed from the HME
approximations, instead of a pdf from the true family �. Note that Condition 2
is hard to check in practice, although it looks plausible if a sufficiently large
scope of ML search is used.

The next theorem states that the maximum likelihood method based on
the HME of GLM1 models is consistent in estimating the mean functions in
ψ�W∞

2�K0
�.

Theorem 3 (Consistency of the maximum likelihood method). Let
�MSE�n�, be as defined in (2.13). Under regularity conditions A� �1 and 2,

lim
m→∞ lim sup

n→∞
inf

,∈� ∩�m

�MSE�n�, = 0�
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Here n is the sample size, m = sup,∈� ∩�m

card�,�� and �m = 
,� , ∈

� � card�,� ≤ m� is the set of all HME structures containing no more than
m experts. Actually,

lim sup
n→∞

inf
,∈� ∩�m

�MSE�n�, ≤
c

m4/s
�

where s = dim�x� and c is a positive constant independent of n, m and the
structure ,.

The constant c’s in the above theorems can be different.

Remark 3 (Unknown shape parameter). Up to now, we have been assum-
ing that any shape parameter u of a GLM1 expert is known, or fixed at a value
which is equal to the shape parameter in the true pdf ϕ. An example of the
shape parameter is u = 1/σ2 for a normal expert. Now suppose the shape pa-
rameter u is unknown and needs also to be estimated. We can either assume
the same shape parameter for all experts, or allow it to differ. In either case,
the grand parameter θ will be expanded to include additional component(s)
from the u(’s). We assume that the parameter space U of each component u is
a compact subset of the positive real line. Lemma 1(c) requires a small modi-
fication, that is, a bound of the KL distance now requires an additional term
proportional to the discrepancy between the true shape parameter in ϕ and
the “proposed” shape parameter(s) in f. However, using similar techniques,
it is straightforward to show that all theorems on denseness and consistency
are still valid.

4. Proofs and secondary lemmas. In this section we will often use the
following shorthand notation: gJ = gJ�x�v�, hJ = hJ�x�, πJ = π�hJ�x�� y�,
f = ∑

J gJπJ [for the HME density (2.4)],
∑

J =
∑

J∈,, supJ = supJ∈,, h =
h�x�, ϕ = π�h�x�� y� [for the true density (2.2)], µ = µϕ =

∫
yϕdλ, µf =∫

yfdλ and µJ =
∫
yπJ dλ.

4.1. Proofs of Theorems 1 and 2�

Proof of Lemma 1. Here (b) is due to Lemma 3.2 of Zeevi and Meir (1997),
which is a corollary to Lemma 5 of Haussler and Opper (1995).

The following observations prove (a):

d2
2�µf�µϕ� =

∫ {∫
yfdλ−

∫
yϕdλ

}2

dκ

=
∫ {∫

y
(√

f−√ϕ
)(√

f+√ϕ
)
dλ

}2

dκ

≤
∫ {∫

�y�∣∣√f−√ϕ∣∣(√f+√ϕ)dλ
}2

dκ
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�i�≤ 2
∫ {∫

�y�∣∣√f−√ϕ∣∣(√f+ ϕ
)
dλ

}2

dκ

�ii�≤ 2
∫ [{∫

y2�f+ ϕ�dλ
}{∫ (√

f−√ϕ
)2
dλ

}]
dκ

�iii�≤ 4MI

∫ ∫ (√
f−√ϕ

)2
dλdκ�

Inequality (i) above uses
√
f+√ϕ ≤ √2

√
f+ ϕ; (ii) uses the Cauchy–Schwarz

inequality. To obtain (iii), note that

∫
y2�f+ ϕ�dλ =∑

J

gJ

∫
y2πJ dλ+

∫
y2ϕdλ

≤ sup
J∈,

sup
x∈#

(∫
y2πJ dλ

)(∑
J

gJ

)
+ sup

x∈#

∫
y2ϕdλ

= sup
J∈,

sup
x∈#

(∫
y2πJ dλ

)
+ sup

x∈#

∫
y2ϕdλ

= sup
J∈,

sup
x∈#

(∫
y2π�hJ�y�dλ

)
+ sup

x∈#

∫
y2π�h�y�dλ

≤ 2 sup
�h�≤K

{∫
y2π�h�y�dλ

}
= 2MI�

The last inequality is true since K is an upperbound for �hJ�x�� and �h�x�� for
all x in # and all J in ,.

The following observations prove (c):

KL�f�ϕ� =
∫ ∫

ϕ log�ϕ/f�dλdκ

= −
∫ ∫

ϕ log
[∑
J

gJ exp
(
a�hJ� − a�h��y+ 
b�hJ� − b�h��)

]
dλdκ

�i�≤ −
∫ ∫

ϕ
∑
J

gJ
[{
a�hJ� − a�h�}y+ {

b�hJ� − b�h�}]dλdκ

= −
∫ ∑

J

gJ
[{
a�hJ� − a�h�}µ+ {

b�hJ� − b�h�}]dκ
�ii�= − 1

2

∫ ∑
J

gJ
{
µa′′�hJ∗� + b′′�hJ∗�

}�hJ − h�2 dκ

≤ 1
2

∫ ∑
J

gJ
∣∣µa′′�hJ∗� + b′′�hJ∗�

∣∣�hJ − h�2 dκ
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�iii�= MII

∫ ∑
J

gJ�hJ − h�2 dκ�

Inequality (i) above is due to the convexity of − log�·�; (ii) is from a Taylor
expansion for hJ around h,

−{µa�hJ� + b�hJ�
} = −{µa�h� + b�h�}− 1

2

{
µa′′�hJ∗� + b′′�hJ∗�

}�hJ − h�2�

where hJ∗ is between hJ and h. [The “linear term” disappears due to prop-
erty (3) in Section 2.1.] To prove inequality (iii), note that �hJ∗� ≤ max
�hJ��
�h�� ≤ K since K is an upperbound for �hJ�x�� and �h�x�� for all x in # and
all J in ,. Note also that µ = ∫

yπ�h�y�dλ where �h� ≤K. Then
∣∣µa′′�hJ∗� + b′′�hJ∗�

∣∣ ≤ �µ�∣∣a′′�hJ∗�∣∣+ ∣∣b′′�hJ∗�∣∣
≤ sup
�h�≤K

∣∣∣∣
∫
yπ�h�y�dλ

∣∣∣∣ sup
�h�≤K

�a′′�h�� + sup
�h�≤K

�b′′�h���

which proves (iii). ✷

Proof of Theorem 2. Denote �f�·��p�κ = 
∫ �f�x��p dκ�1/p (p > 0) and

�f�·��∞ = supx∈# �f�x��. Consider a fine partition sequence 

Q�ν�
J �J∈,�ν�0

� ,�ν�0 ∈
� � ν = 1�2� � � �� in Condition A� �1, with a cardinality sequence 
pν�. We first
show that for each ν ∈ 
1�2� � � � � �, for any h ∈W∞

2�K0
,

�§� ≡
∥∥∥∥ ∑
J∈,�ν�0

χ
Q
�ν�
J
�·�ĥJ�·� − h�·�

∥∥∥∥
2� κ
≤ c1

p
2/s
ν

�(4.1)

for some finite constant c1 > 0, where, for each x ∈ # and each J ∈ ,�ν�0 ,

ĥJ�x� ≡ α̂J + xT�̂J ≡
{
h��J� − �TJ∇h��J�

}+ xT∇h��J��(4.2)

�J being some point in the interior of Q�ν�
J . Here ∇h is the s × 1 gradient

column vector of a scalar function h. For any h ∈ W∞
2�K0

and any ĥJ defined

in (4.2), it is obvious that �h�∞ ≤K0 and �ĥJ�∞ ≤K0.
To prove (4.1) note that

�§� =
∥∥∥∥ ∑
J∈,�ν�0

χ
Q
�ν�
J
�·�{ĥJ�·� − h�·�}

∥∥∥∥
2� κ

≤ �1�2� κ sup
J∈,�ν�0

∥∥ĥJ�·� − h�·�∥∥∞ = sup
J∈,�ν�0

∥∥ĥJ�·� − h�·�∥∥∞�
(4.3)

because
∑

J∈,�ν�0
χ
Q
�ν�
J
�x� = 1 and κ is a probability measure.
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By a second-order Taylor expansion of h�x� around �J and the definition of
ĥJ�x� in (4.2), we have, for all x ∈ Q�ν�

J � J ∈ ,�ν�0 ,

∣∣ĥJ�x� − h�x�∣∣ ≤ 1
2

( ∑
�k�=2

�Dkh�∞
){
ρ�x� �J�

}2 ≤ 1
2
K0

c2
0

p
2/s
ν

�(4.4)

where ρ�x� �J� = max1≤q≤s ��x−�J�q�, c0 is the bounding constant from Defini-

tion 1 and Condition A� �1. The latter inequality holds since (1) x� �J ∈ Q�ν�
J ,

leading to ρ�x� �J� ≤ c0/p
1/s
ν by Condition A� �1 and the definition of a “fine

partition”; (2) h ∈W∞
2�K0

. Then, (4.4) and (4.3) lead to (4.1) (take c1 = 1
2K0c

2
0).

Now, by Condition A� �1, for all ε > 0, there exists vε ∈ V,�ν�0
such that (3.1)

holds for the norm ��·��1� σ . This implies that

sup
J∈,�ν�0

�gJ�·�vε� − χ
Q
�ν�
J
�·��1� κ ≤

∥∥∥∥dκdσ
∥∥∥∥
∞
ε�(4.5)

where �dκ/dσ�∞ = supx∈# ��dκ/dσ0�/�dσ/dσ0�� <∞, since both σ and κ have
positive continuous densities with respect to the Lebesgue measure σ0. Now
consider

�∗� ≡
∥∥∥∥ ∑
J∈,�ν�0

gJ�·� vε�
{
ĥJ�·� − h�·�}2

∥∥∥∥
1� κ

≤
∥∥∥∥ ∑
J∈,�ν�0

{
gJ�·�vε� − χ

Q
�ν�
J
�·�}{ĥJ�·� − h�·�}2

∥∥∥∥
1� κ︸ ︷︷ ︸

�†�

+
∥∥∥∥ ∑
J∈,�ν�0

χ
Q
�ν�
J
�·�{ĥJ�·� − h�·�}2

∥∥∥∥
1� κ︸ ︷︷ ︸

�‡�

�

due to the triangular inequality.
Note that

�‡� =
∫ ∑

J∈,�ν�0

χ
Q
�ν�
J
�·�
ĥJ�·� − h�·��2 dκ

�i�=
∫ { ∑

J∈,�ν�0

χ
Q
�ν�
J
�·�ĥJ�·� − h�·�

}2

dκ
�ii�≤ c2

1

p
4/s
ν

�

Here (ii) follows from (4.1), and (i) uses the properties
∑

J∈,�ν�0
χ
Q
�ν�
J
= 1 and

χ
Q
�ν�
J
χ
Q
�ν�
I
= χ

Q
�ν�
J
δIJ, where δIJ = 1 if I = J, and 0 otherwise.
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Note also that

�†� �iii�≤ ∑
J∈,�ν�0

∥∥{gJ�·� vε� − χ
Q
�ν�
J
�·��
ĥJ�·� − h�·�}2∥∥

1� κ

≤
{

sup
J∈,�ν�0

∥∥ĥJ�·� − h�·�∥∥∞
}2 ∑

J∈,�ν�0

∥∥gJ�·� vε� − χ
Q
�ν�
J
�·�∥∥1� κ

�iv�≤
(

c1

p
2/s
ν

)2

pν

∥∥∥∥dκdσ
∥∥∥∥
∞
ε�

Here (iii) is due to the triangular inequality, and (iv) is due to (4.3)–(4.5).
Combining the results for (†) and (‡), we get

�∗� ≤
(

c1

p
2/s
ν

)2

pν

∥∥∥∥dκdσ
∥∥∥∥
∞
ε+

(
c1

p
2/s
ν

)2

�(4.6)

Denote ϕ = π�h�·�� y� and f̂ = ∑
J∈,�ν�0

gJ�·�vε�π�ĥJ�·�� y�. Then obviously,

f̂ ∈ �pν��
and ϕ ∈ �, and �∗� = 	�f̂� ϕ�. Using Lemma 1(c), we have

KL�f̂� ϕ� ≤MII

(
c1

p
2/s
ν

)2

pν

∥∥∥∥dκdσ
∥∥∥∥
∞
ε+MII

(
c1

p
2/s
ν

)2

�(4.7)

The upperbound K in MII can be taken as K0, since both �h� and �ĥJ� are
bounded above by K0. This makes MII to be a constant that does not depend
on ϕ.

By (4.7) and the arbitrariness of ε, we have

inf
f∈�pν��

KL�f�ϕ� ≤ MIIc
2
1

p
4/s
ν

�(4.8)

Since 
p1/s
ν � is subgeometric, for all m ∈ � , there exists pν, such that

pν ≤m < pν+1, and

1/p4/s
ν ≥ 1/m4/s > 1/p4/s

ν+1�(4.9)

By the definition in (2.7), �m�� is monotone nondecreasing in m, and hence

�pν��
⊂ �m�� ⊂ �pν+1��

�

Hence, for all m ∈ � ,

inf
f∈�m��

KL�f�ϕ� ≤ inf
f∈�pν��

KL�f�ϕ� ≤ MIIc
2
1

p
4/s
ν

[by (4.8)]

≤ M4
2MIIc

2
1

p
4/s
ν+1

≤ M4
2MIIc

2
1

m4/s
= c/m4/s�
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by noting that 
p1/s
ν � is subgeometric with rate bounded by M2, and us-

ing (4.9).
By construction, c does not depend on ϕ in �. Hence,

sup
ϕ∈�

inf
f∈�m��

KL�f�ϕ� ≤ c/m4/s for all m ∈ � .

[Tracing the constant c leads to c = � 1
2K0c

2
0M

2
2

√
MII�2, which does not have

explicit dependence on s = dim�x�.] ✷

The proof of Theorem 1 is obvious from Lemma 1(b) and Theorem 2.

4.2. Proof of Theorem 3� We first bound the MSE defined in (2.13) by the
sum of a “stochastic” part 2Sn, and a “deterministic” part 2Dn,. Then we will
prove that each part goes to zero as the sample size and the number of experts
increase:

MSEn�, ≡ E
∫ {
µ,�x� θ̂n�,� − µ�x�}2

dκ

≤ 2 E
∫ {
µ,�x� θn�,� − µ�x�}2

dκ

+ 2 E
∫ {
µ,�x� θ̂n�,� − µ,�x� θn�,�

}2
dκ

≡ 2Dn�, + 2Sn�,

(4.10)

since �a+ b�2 ≤ 2a2 + 2b2 for all a� b ∈ �. Here θn�,� is a point in 7, defined
in (2.12).

Note that by the definition of θn�,,

θn�, = arg max
θ∈B̃,

∫ ∫
#⊗A

ϕ�x� y� log
{
f,�x� y� θ�
ϕ0�x� y�

}
dλ�y�dκ�x�

≡ arg max
θ∈B̃,

Ł∞� ,�θ��

where we choose ϕ0�x� y� = ec�y� [c�·� is from (2.1)]. There could be more than
one such maximizer and the set of such maximizers is just 7,.

We will treat θn�,, which is used in (4.10), as a random variable depending
on sample size n, since our choice of θn�, out of the set 7, may depend on the
MLE θ̂n�,�ω� that we adopt. Note that θn�, is a minimizer of the KL diver-
gence, when the parameter varies in the scope B̃,. However, when Condition 2
holds, θn�, also minimizes the KL divergence over the entire parameter space
7̃,, that is,

KL
{
f,�·� ·� θn�,�� ϕ�·� ·�

} = KL
{
f,�·� ·� θKL�� ϕ�·� ·�

} = inf
f∈8,

KL�f�ϕ��(4.11)

In the following, we formulate the convergence of MLE in a setting with
nonidentifiable parameterization. We first state and prove a proposition on
the uniform convergence of the log-likelihood function.
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Proposition 1 (Uniform convergence of log-likelihood). Let Łn�, be the
log-likelihood function defined in (2.9) [with ϕ0�Xi�Yi� = exp�c�Yi��, c�·� is
from (2.1)]. We have

sup
θ∈B̃,

∣∣Łn�,�θ�ω� − Ł∞� ,�θ�
∣∣→ 0

for almost all stochastic sequences ω, and

Ł∞� ,�θ� =
∫
#⊗A

ϕ�x� y� log
{
f,�x� y� θ�/ϕ0�x� y�

}
dκdλ

is a continuous function of θ on B̃,.

Proof. Choose ϕ0�x� y� = ec�y� [see (2.1)]. Denote f∗ = f,�x� y� θ�/
ϕ0�x� y�. Then f∗ =

∑
J gJeJ, where eJ = exp�ya�hJ� + b�hJ��. By construc-

tion, f∗ is a measurable function of �x� y� for each θ, and a continuous function
of θ for each �x� y�.

Note that

sup
J

� log eJ� ≥ sup
J

�log eJ� = log
(
sup
J

eJ

)

≥ log
(∑
J

gJeJ

)
≥∑

J

gJ�log eJ�

≥ − sup
J

∣∣log eJ
∣∣�

where we have used the monotonicity and concavity of log�·� and the fact that
gJ’s are nonnegative and have a unity sum.

Hence, for all θ ∈ B̃,, x ∈ # and y ∈ A,

∣∣log
{
f,�x� y� θ�/ϕ0�x� y�

}∣∣ = � log f∗� =
∣∣∣∣log

(∑
J

gJeJ

)∣∣∣∣
≤ sup

J

� log eJ� = sup
J

∣∣ya�hJ� + b�hJ�
∣∣

≤Ma�y� +Mb ≡M�y��
with Ma = supJ supx∈# supθ∈B̃,

�a�hJ�� and Mb = supJ supx∈# supθ∈B̃,
�b�hJ��

being finite, since a�hJ� and b�hJ� are continuous functions of �xT� θT� on the
compact set # ⊗ B̃,. Next we show that E
M�Y�� = ∫ ∫

M�y�ϕdλdκ < ∞.
Note that

∫
A y

2π�h�y�dλ is a continuous function in h, due to property (2)
of Section 2.1. By the continuity of h�·�, ∫

A y
2π�h�x�� y�dλ is a continuous

function of x in the compact set #, leading to the finiteness of
∫
#


∫
A y

2 ·
π�h�x�� y�dλ�1/2 dκ. Therefore,

∫ ∫ �y�ϕdλdκ, being bounded above by∫
#


∫
A y

2π�h�x�� y�dλ�1/2 dκ, is also finite, and so is E
M�Y��.
Therefore, log
f,�x� y� θ�/ϕ0�x� y�� is bounded above by an integrable func-

tion. By the uniform law of large numbers [Jennrich (1969), Theorem 2, or
White (1994), Theorem A.2.1], we obtain the strong uniform convergence of
Łn�,�θ�ω�, as well as the continuity of Ł∞� ,�θ�. ✷
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This proposition leads to the following lemma for the convergence of MLE.

Lemma 2. Let θ̂n�,�ω�, n = 1�2� � � � � be a sequence of global maximizers

of Łn�,�θ� ω� in B̃,, as defined in (2.10). Let 7, be the set of minimizers of
the KL divergence between the true density and the HME density, as defined
in (2.12). We have

inf
θ∈7,

ρE
(
θ̂n�,�ω�� θ

)→ 0 as n→∞

for almost all ω, where ρE�·� ·� is the Euclidean metric.

Proof. Denote

d�φ� 7,� ≡ inf
θ∈7,

ρE�φ� θ� for φ ∈ B̃,�

For any ε > 0, denote

Bc
ε�7,� ≡

{
φ ∈ B̃,� d�φ� 7,� ≥ ε

}
�

We show

�∗� For almost all ω, there exists N�ω� ε� ∈ � such that n > N�ω� ε�
implies θ̂n�,�ω� "∈ Bc

ε�7,�. Then d�θ̂n�,�ω�� 7,� ≤ ε.

To show �∗�, note that by Proposition 1, Łn�,�·� ω� is uniformly convergent to
Ł∞� ,�·� for almost all ω. Hence, for any δ > 0, there exists N�ω� such that
n > N�ω� implies that, for almost all ω,

Łn�,�θ0� ω� > Ł∞� ,�θ0� − δ/2�

Łn�,�φ� ω� < Ł∞� ,�φ� + δ/2�

for all θ0 ∈ 7, and all φ ∈ Bc
ε�7,�. Hence,

Łn�,�θ0� ω� − Łn�,�φ� ω� > Ł∞� ,�θ0� − Ł∞� ,�φ� − δ�(4.12)

We can choose δ > 0 so small that

δ < inf
φ∈Bc

ε�7,�
[
Ł∞� ,�θ0� − Ł∞� ,�φ�

] ≡ Iε�(4.13)

Note that Iε > 0. This is because Bc
ε�7,� is compact and Ł∞� , is continuous

(by Proposition 1), and the infimum in (4.13) is achieved for some φ ∈ Bc
ε�7,�,

where Ł∞� ,�θ0� − Ł∞� ,�φ� > 0. Hence, for all φ ∈ Bc
ε�7,�, when n > N�ω�,

where N�ω� is as chosen above,

Łn�,�θ0� ω� − Łn�,�φ� ω� > 0 by (4.12) and (4.13)�

So θ̂n�,�ω� = arg maxφ∈B̃,
Łn�,�φ� ω� "∈ Bc

ε�7,�, leading to the proof of �∗� and
the lemma. ✷

The next lemma shows that the “stochastic part” of the MLE goes to zero
when the sample size increases.
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Lemma 3. There is a sequence of θn�, ∈ 7,, n = 1�2� � � � � possibly random,
making Sn�, → 0 as n→ 0, for any structure ,.

Proof. Note that Lemma 2 implies that there exists a sequence θn�,�ω� ∈
7,� n = 1� � � � � such that ρE�θ̂n�,�ω�� θn�,�ω�� → 0 for almost all ω. By the
definition in (2.8), µ,�·� ·� is continuous on #⊗ B̃,, due to the continuity of the
gJ�·� ·�’s and ψ�·�. Hence, we have

{
µ,�x� θ̂n�,�ω�� − µ,�x� θn�,�ω��

}2 → 0

for all x and almost all ω.
Next we show that 
µ,�x� θ̂n�,�ω��−µ,�x� θn�,�ω���2 is bounded above by

an integrable function. This is because
{
µ,�x� θ̂n�,�ω�� − µ,�x� θn�,�ω��

}2

≤ 2
{
µ,�x� θ̂n�,�ω��

}2 + 2
{
µ,�x� θn�,�ω��

}2

≤ 4M2
,�

where M, ≡ supx∈# supθ∈B̃,
�µ,�x� θ�� <∞.

Therefore, by the Lebesgue’s dominated convergence theorem,

E
∫ [
µ,�x� θ̂n�,� − µ,�x� θn�,�

]2
dκ�x� → 0� ✷

Now we provide an upper-bound for the “deterministic part” 2Dn�,.

Lemma 4. Let Dn�, = E
∫
#
µ,�x� θn�,� − µ�x��2 dκ�x� be as defined in

(4.10). If Conditions A� �1 and 2 hold, then we have

inf
,∈�m∩�

Dn�, ≤ c∗/m4/s�

for some finite positive constant c∗ independent of the number of experts m.

Proof. Consider a sequence of maximizers θn�, = θn�,�ω� in 7,. Note
that for each ω, n and ,, we have

∫ {
µ,�x� θn�,�ω�� − µ�x�}2

dκ
�i�≤ 4MIKL

{
f,�·� ·� θn�,�ω��� ϕ�·� ·�

}
�ii�= 4MI inf

f∈8,

KL�f�ϕ��

Then Dn�, = E
∫ 
µ,�x� θn�,�ω�� − µ�x��2 dκ ≤ 4MI inff∈8,

KL�f�ϕ�, and

inf
,∈�m∩�

Dn�, ≤ 4MI inf
,∈�m∩�

inf
f∈8,

KL�f�ϕ�

= 4MI inf
f∈�m��

KL�f�ϕ� �iii�≤ 4MIc/m
4/s�
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Here (i) is due to Lemma 1(a), where the constant MI can be made indepen-
dent of ϕ and f,�·� ·� θn�,�ω�� by using an upperbound K = max
�s+1�C�K0�,
where C is the constant in Condition 2 and K0 is the radius of the Sobolev
ball in Section 2.2. [Note that for all parameters in B̃,, �hJ�x�� is less than
�s+ 1�C, and for all ϕ in �, �h�x�� is less than K0.] (ii) is due to Condition 2,
and equation (4.11); (iii) is due to Theorem 2 and Condition A� �1. ✷

Now we are ready to prove the consistency theorem.

Proof of Theorem 3. Note that �MSE�n�, ≤ 2Dn�, + 2Sn�, from (4.10).
For each , in �m ∩� , find a (possibly random) sequence θn�, as in Lemma 3
such that Sn�, → 0. Then sup,∈�m∩� Sn�, → 0 as n→∞, since the cardinal-
ity of �m ∩� is finite. Then we have

inf
,∈�m∩�

�MSE�n�, ≤ inf
,∈�m∩�

(
2Sn�, + 2Dn�,

)
≤ 2 sup

,∈�m∩�
Sn�, + 2 inf

,∈�m∩�
Dn�,

≤ om�n0� + 2c∗/m4/s�

due to Lemma 4. [We denote the term sup,∈�m∩� Sn�, as om�n0�, since it is
o�1� as n→∞, and is possibly dependent on m.]

Therefore

0 ≤ lim sup
n→∞

inf
,∈�m∩�

�MSE�n�, ≤ 2c∗/m4/s

and

lim
m→∞ lim sup

n→∞
inf

,∈�m∩�
�MSE�n�, = 0� ✷

5. Conclusions. We investigated the power of the HME for GLM1 ex-
perts in terms of approximating a flexible class of density functions with con-
ditional mean functions belonging to a transformed Sobolev class. We demon-
strated that the approximation rate of HME density functions is O�m−2/s� in
Hellinger distance and O�m−4/s� in KL divergence. Here s is the dimension
of the predictor, and m is the maximal number of experts in the network. We
also showed that the maximum likelihood (ML) approach, which is associated
with some optimal statistical properties and a convenient maximization algo-
rithm, is consistent in estimating the mean response from data as the sample
size and the number of experts both increase. Moreover, the approximation
rates and the consistency result can be achieved within the family of HME
structures with binary trees, or within the family of HME structures with one
layer of experts (the MEs). We do not claim that the O�m−2/s� rate is opti-
mal. In fact, for the special case of mixing linear model experts in a single
layer, Zeevi, Meir and Maiorov (1998) have shown that a better rate for ap-
proximation of mean functions can be achieved if higher than second-order
continuous differentiability of the target functions is assumed. Our work is
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different from Zeevi, Meir and Maiorov (1998) in the following aspects: (1) We
deal with mixtures of generalized linear models instead of the mixtures of or-
dinary linear models. (2) We consider the setup of the HME networks instead
of the single-layer mixtures of experts. (3) We consider the maximum likeli-
hood method instead of the least-squares approach for model fitting. (4) In
relation to the use of the maximum likelihood method, we obtained the ap-
proximation rate in terms of probability density functions instead of in terms
of the mean response. (5) We have formulated the conditions and proofs of our
results in a way that is protective of the inherent nonidentifiability problems
of the parameterization.

Acknowledgments. The authors thank John Kolassa and the referees for
helpful comments and Assaf J. Zeevi for suggesting a reference for Lemma 1(b).
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