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VARIABLE LENGTH MARKOV CHAINS

BY PETER BUHLMANN1 AND ABRAHAM J. WYNER2¨
ETH Zurich and University of Pennsylvania¨

We study estimation in the class of stationary variable length Markov
Ž .chains VLMC on a finite space. The processes in this class are still

Markovian of high order, but with memory of variable length yielding a
much bigger and structurally richer class of models than ordinary high-
order Markov chains. From an algorithmic view, the VLMC model class
has attracted interest in information theory and machine learning, but
statistical properties have not yet been explored. Provided that good
estimation is available, the additional structural richness of the model
class enhances predictive power by finding a better trade-off between
model bias and variance and allowing better structural description which
can be of specific interest. The latter is exemplified with some DNA data.

A version of the tree-structured context algorithm, proposed by Rissa-
nen in an information theoretical set-up is shown to have new good
asymptotic properties for estimation in the class of VLMCs. This remains
true even when the underlying model increases in dimensionality. Fur-
thermore, consistent estimation of minimal state spaces and mixing prop-
erties of fitted models are given.

We also propose a new bootstrap scheme based on fitted VLMCs. We
show its validity for quite general stationary categorical time series and
for a broad range of statistical procedures.

1. Introduction. One of the most general models for a stationary pro-
Ž .cess X assuming no particular underlying mechanistic system is a fullt t � �

Markov chain of high, but finite, order. The only implicit assumption aside
from stationarity is the finite memory of the process. We consider here
exclusively the case where X takes values in a finite categorical space XX . Wet
always refer to a stationary full Markov chain of order k whenever the
transition mechanism carries no specific structure; that is, the state space is
the entire XX k. Probabilistically a nice model, such full Markov chains are not
very appropriate from the estimation point of view. Let us illustrate two main
problems. To be more specific, we momentarily take for illustrative purposes

� � � 4cardinality XX � 4, for example, XX � A, C, G, T being the letters of a DNA
Ž .string but all the discussed problems below apply to any finite space XX .
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PROBLEM 1. The class of all finite-order XX-valued full Markov chains is not
structurally rich, implying that there are not many members in the class.
This structural poverty particularly implies that any kind of parsimonious
representation of the state space is not possible. The table below additionally
demonstrates such structural poverty in terms of the dimension of full

Ž .Markov chain models the number of free parameters as a function of their
Ž � � . � � k � �orders k, that is, Dim.� XX � 1 XX with cardinality XX � 4.

k 0 1 2 3 4 5 10
6Dim 3 12 48 192 768 3072 � 3.1 � 10

There are no models ‘‘in between,’’ for example, it is impossible to fit a model
with, say, 72 parameters. Such a very ‘‘discontinuous’’ increase in dimension-

Žality of the model does not allow a good trade-off between bias being low with
. Ž .many parameters and variance being low with a few parameters of a

predictor.

PROBLEM 2. As seen from the table, the curse of dimensionality is particu-
larly damaging when fitting high-order models, since the dimensionality
increases exponentially with the order k. This then leads to highly variable
estimates.

A practical example which illustrates the table and Problems 1 and 2 is the
�modeling of DNA sequences with full Markov chains cf. Prum, Rodolphe and

Ž . Ž .�de Turckheim 1995 and Braun and Muller 1998 . The class of models and¨
the estimator which we study in this paper will lead to an alternative, and for
many purposes a better, statistical description of DNA sequences. We give in
Section 3.3 a real-data example from this field of applications. Other exam-
ples of applications where our modeling is potentially attractive are precipita-

�Ž Ž .� � Ž .�tion analysis Guttorp 1995 , flood analysis Brillinger 1995 or analysis of
�discrete directional data and repeated patterns of behavioral events Raftery

Ž .�and Tavare 1994 .´
Problems 1 and 2 can be addressed with a very simple idea: the memory of

a stationary Markov chain is allowed to be of variable length, a function of
the values from the past. More precisely, the time-homogeneous transition

� �probabilities � X � x � X � x , X � x , . . . are functions depend-t t t�1 t�1 t�2 t�2
�ing only on a variable number ll of lagged values � X � x � X �t t t�1

� Ž .x , . . . , X � x , where ll � ll x , x , . . . is itself a function of thet�1 t�ll t� ll t�1 t�2
Ž .past. If ll x , x , . . . � k for all x , x , . . . , we obtain the full Markovt�1 t�2 t�1 t�2

Ž . � Ž .chain model of order k. For variable ll � with sup ll x , x , . . . ;t�1 t�2
4x , x , . . . � k, we have an embedding full Markov chain of order k, butt�1 t�2

with an additional well-interpretable structure of a variable length memory:
it implies that some transition probabilities of the embedding Markov chain
are lumped together. We call such a process variable length Markov chain
Ž .VLMC . It is closely related to models in information theory like ‘‘tree

� Ž .models,’’ ‘‘FSMX models’’ or ‘‘finite-memory sources’’ cf. Rissanen 1986 ,
Ž . Ž .Weinberger, Lempel and Ziv 1992 , Weinberger, Rissanen and Feder 1995 ,



¨P. BUHLMANN AND A. J. WYNER482

Ž .�Feder, Merhav and Gutman 1992 . If one is able to choose in a data-driven
way an appropriate member in the class of VLMCs, there is nothing to lose
but only to gain in comparison with the class of ordinary full Markov chains
of high order. We give in this paper new results for VLMCs, in particular also
addressing the problem of how to select in a data-driven way an asymptoti-
cally correct member in the extremely large class of all VLMCs.

The merits of our results are in different areas. On a theoretical level we
offer a better understanding of Problems 1 and 2. With this goal in mind, the
study of VLMCs and their estimation is per se an interesting task. The
practical merits of our results, which offer new insights into VLMCs, apply

Žgenerally to problems involving categorical or binary time series see the
.examples mentioned above . We also offer advances in statistical methodol-

ogy; specifically through a new bootstrap scheme, based on VLMCs, for
categorical time series. This will prove to be a very attractive alternative to

� Ž .�the more general blockwise bootstrap Kunsch 1989 . Moreover, fitted¨
VLMCs can be used as an excellent exploratory tool for the dynamics of a
categorical time series. This is accomplished by representing structural de-

Žpendencies graphically and compactly we demonstrate this for some DNA
.data in Section 3.3 . Such explorative information could also be used to build

a more specific parametric model in a second stage. Finally, we offer new
insights into information theory, where our findings sharpen and extend

Ž .existing results on VLMCs and compression rates; see Rissanen 1983 and
Ž .Weinberger, Rissanen and Feder 1995 .

The notion of a variable length memory in a Markov chain is particularly
attractive when there is long memory in certain ‘‘directions.’’ In such cases,
the minimal state space is drastically smaller than the embedding state

Žspace of a full Markov chain having many equivalent states which are
.lumped together in the VLMC ; the VLMC yields a parsimonious parameter-

ization of the state space. The difficulty with this attractive notion is then the
estimation of that minimal state space. This can be seen as a model selection
problem. However, due to the extremely large number of VLMC submodels of
a high-order full Markov chain, global model selection techniques like AIC,
BIC, or MDL cannot be used. However, estimation of the minimal state space
and the probability distribution of a VLMC can be done with a tree struc-

� Ž .�tured scheme, called the context algorithm Rissanen 1983 , which acts
hierarchically on local pairwise decisions. Weinberger, Rissannen and Feder
Ž .1995 proved consistency and optimal compression rates for the context
algorithm under the assumption that the true underlying process is a
finite-dimensional VLMC.

We give an entirely new consistency result where the true underlying
model is allowed to grow in dimensionality as sample size n increases. The

Ž 1�2 Ž . s.growth rate is in probabilistic terms and can be as large as O n �log n
for some s � 1�2; or it can be even larger. This describes much better the
performance of the context algorithm, because with increasing dimensional-
ity, consistency is much less obvious. As an important consequence, our result
implies a nontrivial balance between over- and underestimation of the true
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model. It can be loosely translated to the fact that a bias-variance tradeoff in
a possibly very high-dimensional problem is handled by the context algorithm
in an appropriate way. Also, by allowing for asymptotically infinite-dimen-
sional models, the new results contribute to explore the approximation of a
general, sufficiently ‘‘nice’’ stationary process by an estimated VLMC. Consis-
tency of the context algorithm for estimating stationary processes or minimal
state spaces does not require a prespecified model structure. Thus, estimation
with the context algorithm is robust against model misspecification.

We then make use of the general consistency result described above to
propose a novel resampling scheme, the VLMC bootstrap. We prove asymp-
totic validity of the VLMC bootstrap for a whole class of estimators and
argue, by proving a mixing property for estimated VLMCs that such a scheme
works under very general conditions. The VLMC bootstrap is tailored for
categorical time series; it has a nice probabilistic interpretation and it enjoys

Ž .the advantage of being applicable as a simple plug-in rule, as Efron’s 1979
original proposal for the independent case, which is more user-friendly than

� Ž .�the blockwise bootstrap Kunsch 1989 . Based on the results in theory and¨
from a small simulation study, we conclude that the VLMC bootstrap is a
new universal resampling tool for categorical time series which is often
expected to be better than the blockwise bootstrap.

The paper is organized as follows. In Section 2 we give the definition of
VLMCs, Section 3 describes the process of fitting such models and gives new
asymptotic properties thereof. In Section 4 we discuss the VLMC bootstrap,
its asymptotic validity and present results from a simulation study, including
a comparison with the blockwise bootstrap. All the proofs are given in Sec-
tion 5.

2. Variable length Markov chains. As a starting point, consider a
Ž .stationary full Markov chain X of finite-order k with values in a finitet t � �

j Žcategorical space XX . In the sequel, we denote by x � x , x , . . . , x i � j,i j j�1 i
� 4.i, j � � 	 ��, � a string whose components are written in reverse order,

Ž .wu � w , . . . , w , w , u , . . . , u , u is the concatenation of the strings w� w � 2 1 � u � 2 1
and u. We usually denote by capital letters X random variables and by small
letters x fixed deterministic values. Thus,

0 0 0 0 12.1 � X � x � X � x � � X � x � X � x for all x .Ž . 1 1 �� �� 1 1 �k
1 �k
1 ��

Note that stationarity implies time-homogeneous transition probabilities so
that the time indices ��, . . . , 0, 1 can be replaced by other indices ��, . . . ,
t � 1, t for any t � �. We now introduce the idea of a variable length memory
which can also be seen as lumping together irrelevant states in the history

0 Ž . 0x in 2.1 . Only some values from the infinite history x of the variable�k
1 ��

X are relevant: these can be thought of as a context for X . To achieve a1 1
flexible model class, ranging from some type of sparse to full Markov chains,

Ž .we let the length of a context depend on the first few of the actual values
x 0 . We formalize this by defining below a VLMC. Related models have been��

introduced in information theory as tree models, FSMX models or finite-
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� Ž . Ž .memory sources cf. Rissanen 1986 , Weinberger, Lempel and Ziv 1992 ,
Ž .�Weinberger, Rissanen and Feder 1995 .

Ž .DEFINITION 2.1. Let X be a stationary process with values X � XX ,t t � � t
� � � � Ž .XX � �. Denote by c: XX � XX a variable projection function which maps c:

0 0 Ž 0 . � � 0x � x , where ll is defined by ll � ll x � min k; � X � x � X ��� �ll
1 �� 1 1 ��
0 � � 0 0 � 4x � � X � x � X � x for all x � XX , where ll � 0 corresponds�� 1 1 �k
1 �k
1 1

to independence.

Ž . Ž t�1.Then c � is called a context function and for any t � �, c x is called the��

context for the variable x .t

The name context refers to the portion of the past that influences the next
outcome. The definition of ll implicitly reflects the fact that the context

Ž t�1. � Ž t�1. �length of a variable X is ll � ll x � c x , depending on the historyt �� ��
t�1 t�1 Ž .X � x . By the projection structure of the context function c � , the�� ��

Ž . � Ž . � Ž .context-length ll � � c � determines c � and vice versa.

Ž .DEFINITION 2.2. Let X be a stationary process with values X � XX ,t t � � t
� � Ž .XX � � and corresponding context function c � as given in Definition 2.1. Let
0 � k � � be the smallest integer such that

0 0 0 �c x � ll x � k for all x � XX .Ž . Ž .�� �� ��

Ž . Ž .Then c � is called a context function of order k, and if k � �, X ist t � �

Ž .called a stationary variable length Markov chain VLMC of order k.

Ž .We sometimes identify a VLMC X with its probability distributiont t � �

P on XX �. In the sequel, we often write for a probability measure P on XX �,c
Ž . � m � Ž m . Ž . Ž . Ž . ŽP x � � X � x x � XX , m � 1 and P x � w � P xw �P w x, w �P 1
� m. Ž Ž 0 ..� XX . The transition probabilities for P are denoted by p x � c xm� 1 c 1 ��

Ž Ž 0 ..and coincide with the conditional probabilities P x � c x . Clearly, ac 1 ��

VLMC of order k is a Markov chain of order k, now having a memory of
Ž .variable length ll . If the context function c � of order k is the full projection

x 0 � x 0 for all x 0 , the VLMC is a full Markov chain of order k. Often�� �k
1 ��

Ž . kthe range space of the context function c � is not the full space XX , but also
not the empty space. The class of context functions of length k is structurally
rich enough to obtain a broad class of Markov chains, including special sparse

Ž .types. In particular, some context functions c � yield a substantial reduction
in the number of states compared to a full Markov chain of the same order
as the context function. Both of the latter phrases relate to solutions to Prob-
lems 1 and 2 mentioned in Section 1.

2.1. Tree representation of minimal state space. By requiring stationarity,
a VLMC P is completely specified by its transition probabilities,c

0 0 0 1 �� X � x � X � x � p x � c x , x � XX .Ž .Ž .P 1 1 �� �� 1 �� ��c
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The states determining these transition probabilities are thus given by the
Ž .values of the context function c � . It is most convenient to represent these

states, that is, the minimal state space of the VLMC P , as a tree.c
We consider trees with a root node on top, from which the branches are

� �growing downwards, so that every internal node has at most XX offspring.
Ž . � kThen, each value of a context function c � : XX � XX can be represented as a

Ž . Ž 0 .branch or terminal node of such a tree. The context w � c x is repre-��

sented by a branch, whose subbranch on the top is determined by x , the0
next subbranch by x and so on, and the terminal subbranch by x 0 .�1 �ll Ž x .
1��

As we will exemplify, context trees do not have to be complete, that is, every
� �internal node does not need to have exactly XX offspring.

� 4EXAMPLE 2.1. XX � 0, 1 , k � 3. The function


 10, if x � 0, x arbitrary,0 ��

�31, 0, 0, if x � 1, x � 0, x � 0, x arbitrary,0 �1 �2 ��0 �c x �Ž .�� �31, 0, 1, if x � 1, x � 0, x � 1, x arbitrary0 �1 �2 ��

�2�1, 1, if x � 1, x � 1, x arbitrary,0 �1 ��

can be represented by the tree � on the left-hand side in Figure 1. Ac
‘‘growing to the left’’ subbranch represents the symbol 0 and vice versa for the
symbol 1.

Ž .DEFINITION 2.3. Let c � be a context function of a stationary VLMC. The
Ž � � . TXX -ary context tree � and terminal node context tree � are defined as

� � � � w ; w � c x 0 , x 0 � XX � ,� 4Ž .c �� ��

T T � 4� � � � w ; w � � and wu � � for all u � XX .c c c

The notion of a terminal context tree is convenient when formulating an
Ž .estimation procedure for a context tree minimal state space ; see Section 3.1.

Definition 2.3 says that only terminal nodes in the tree representation � are
considered as elements of the terminal node context tree � T and the states
w � � do not need to be terminal nodes in � . However, we can reconstructc c

Ž . Tthe context function c � from either � or � . The context tree � is nothingc c c
Želse than the minimal state space of the VLMC P we sometimes refer to thec

.elements of � as branches and sometimes as nodes in a tree . An internalc
� �node with b � N � XX offspring implicitly adds one complementary offspring,

lumping the N � b nonpresent offspring together to a single new terminal
node w which represents a single state in � .new c
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� 4EXAMPLE 2.2. XX � 0, 1, 2, 3 , k � 2. The function,


 10, if x � 0, x arbitrary,0 ��

1, if x � 1, x arbitrary,0 ��

0 �2, if x � 2, x arbitrary,c x � 0 ��Ž .��

2� 43, if x � 3, x � 0, 1, 2 , x arbitrary,0 �1 ��

�2�3, 3, if x � 3, x � 3, x arbitrary,0 �1 ��

can be represented by the tree � on the right-hand side in Figure 1. Thec
round-edged rectangle, which we usually do not draw, symbolizes the absent
nodes 0, 1 and 2 in depth 2, which can be thought of as a completion of the
tree with nodes lumped together; in terms of transition probabilities, it

Ž . Ž . � 4means that p x � 3 y x � XX is the same for all y � 0, 1, 2 . The terminal
T � 4node context tree is � � 0, 1, 2, 33 , whereas the context tree is � �c c

� 40, 1, 2, 3, 33 . The state 3 is represented by an internal node in the tree and
hence is only an element of � and not of � T. An alternative representation ofc c
the state 3 is given by the final complementary node, indicated by the
rectangle, lumping the three nonpresent nodes together to a new terminal
node.

2.2. Semiparametric VLMC model and sequences of VLMCs. Rather than
one finite order VLMC, we consider a semiparametric model in the spirit of

Ž .Ritov and Bickel 1990 . The semiparametric VLMC model is

�

2.2 PP � PP ,Ž . � k
k�0

where PP is the set of stationary VLMCs of order k,k

� 4PP � P ; P a stationary VLMC of order k .k c c

FIG. 1. Tree representations of the context functions in Examples 2.1 and 2.2.
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Ž .Thus, every member of PP belongs to a nice parametric VLMC model whose
order can be arbitrarily large. We will study in Section 3 a consistent
estimator for the semiparametric VLMC model PP without using additional

Ž .structural information such as the underlying context function c � . Since we
do not specify any particular model structure in PP, the estimator is robust

Žagainst model misspecification in the set of all VLMCs which is dense in the
set of all stationary processes with respect to finite-dimensional weak conver-

.gence .
The asymptotic analysis of such a robust estimator in PP is given for a

framework where the underlying process changes with sample size, a so-called
Ž .moving truth model; see 2.3 . The reasons are twofold. First, it is much more

interesting to see whether an estimation technique is still consistent in such
a situation; the ‘‘nonmoving’’ case, considered by Weinberger, Rissanen and

Ž .Feder 1995 , is from an asymptotic point of view not so interesting, because
Ž .the problem is finite although high dimensional. Second, the ‘‘moving truth’’

model has limiting elements on the boundary of the semiparametric model PP

which are infinite-dimensional non-VLMC models. In this sense, the ‘‘moving
truth’’ model yields an interesting approximation for some general stationary

Ž .XX-valued processes. The ‘‘moving truth’’ is a sequence P of VLMCs inn n� �

Ž .PP from 2.2 from which the data are finite realizations in a triangular
scheme,

X , . . . , X a finite realization of P ,1, n n , n n
2.3Ž .

P � PP from 2.2 with context function c � , n � �.Ž . Ž .n n

Ž .The transition probabilities corresponding to P are denoted by p �� � . Inn n
the sequel, when writing data just as X , . . . , X , we usually think of a1 n

Ž .generating model as in 2.3 .

3. Context algorithm and its consistency. Given data X , . . . , X1, n n, n
Ž . Ž . Žas in 2.3 , the aim is to find the underlying context function c � then

.minimal state space and an estimate of P . A version of the context algo-n
� Ž .�rithm Rissanen 1983 will be used to solve the problem. Besides obvious

uses of the numerical estimate of the probability distribution including a
resampling scheme as given in Section 4, the estimated context tree is an
excellent exploratory tool for the dynamic structure of the underlying process;
see Section 3.3.

3.1. Context algorithm. We describe now the context algorithm for the
aim mentioned above. The main strategy is as follows. First, a large context
tree is grown, which represents an overfitted VLMC model. Since the value
space XX is finite, there aren’t any sophisticated problems with finding accu-
rate splits of the predictor space and the construction of such a large tree
turns out to be simple and computationally fast. Second, the algorithm
employs a backward tree-pruning procedure by considering a local decision
criterion. Thus, on this very basic level, the context algorithm has an archi-
tecture similar to many other tree-fitting methods.
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In the sequel we always make the convention that quantities involving
� 4 Ž .time indices � 1, . . . , n equal zero or are irrelevant . Let

n �
m

t
 � w ��13.1 N w � 1 , w � XX ,Ž . Ž . Ý �� X �w �t
t�1 m�1

denote the number of occurrences of the string w in the sequence X n.1
Moreover, let

�N w N xwŽ . Ž .
mˆ ˆ3.2 P w � , P x � w � , x , w � XX .Ž . Ž . Ž . �n N wŽ . m�1

The algorithm below constructs the estimated context tree � as the biggestˆ
Ž .context tree with respect to the order ‘‘� ’’ defined in Step 1 below such that

P̂ x � wuŽ .ˆ� � P x � wu log N wu � KŽ . Ž .Ýw u ž /ˆ3.3 P x � wŽ . Ž .x�XX

for all wu � � T u � XX ,Ž .ˆ
Ž . � �with K � K � C log n , C � 2 XX 
 4 a cutoff to be chosen by the user.n

STEP 1. Given XX-valued data X , . . . , X , fit a maximal context tree, that1 n
Ž .is, search for the context function c � with terminal node context treemax

T Ž . Trepresentation � see Definition 2.3 , where � is the biggest tree suchmax max
Ž . Tthat every element terminal node in � has been observed at least twice inmax

the data. This can be formalized as follows: � T is such that w � � T
max max

Ž . T T Ž .implies N w � 2, and such that for every � , where w � � implies N w �
2, it holds that � T � � T .max

� m Ž 0 .Here, � � � means w � � � wu � � for some u � � XX XX � � .1 2 1 2 m�0
Set � T � � T .Ž0. max

Ž . T ŽSTEP 2. Examine every element terminal node of � as follows theŽ0.
. Ž .order of examining is irrelevant; see Remark 3.3 . Let c � be the correspond-

ing context function of � T and letŽ0.

wu � x 0 � c x 0 , u � x , w � x 0 ,Ž .�ll
1 �� �ll
1 �ll
2

Ž . Twhere wu is an element terminal node of � , which we compare with itsŽ0.
0 Žpruned version w � x if ll � 1, the pruned version is the empty branch�ll
2

.�, that is, the root node .
Prune wu � x 0 to w � x 0 if�ll
1 �ll
2

P̂ x � wuŽ .ˆ� � P x � wu log N wu � K ,Ž . Ž .Ýw u ž /P̂ x � wŽ .x�XX

ˆŽ . � � Ž . Ž .with K � K � C log n , C � 2 XX 
 4 and P �� � as defined in 3.2 . Decisionn
T Ž .about pruning for every terminal node in � yields a possibly smaller treeŽ0.

� � � T . Construct the terminal node context tree � T .Ž1. Ž0. Ž1.
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T T Ž .STEP 3. Repeat Step 2 with � , � instead of � i � 1, 2, . . . until noŽ i. Ž i. Ž i�1.
Žmore pruning is possible. Denote this maximal pruned context tree not

.necessarily of terminal node type by � � � and its corresponding contextˆ ĉ
Ž .function by c � .ˆ

STEP 4. If interested in probability distributions, estimate the transition
0 ˆ 0 ˆŽ Ž .. Ž Ž .. Ž .probabilities p x � c x by P x � c x , where P �� � is defined as inˆ1 �� 1 ��

Ž .3.2 .

REMARK 3.1. The pruning decision in Step 2 can be related to the Kull-
back�Leibler distance and to the likelihood ratio test. By definition,

P̂ x � wuŽ .ˆ� � P x � wu log N wuŽ . Ž .Ýw u ž /P̂ x � wŽ .3.4Ž . x�XX

ˆ ˆ�� D P �� wu P �� w N wu ,Ž . Ž . Ž .Ž .
Ž . Ž . Ž � . Ž . Ž Ž . Ž ..where N wu is defined in 3.1 and D P Q � Ý P x log P x �Q xx � XX

is the Kullback�Leibler distance between two probability measures P and Q
on XX .

Ž .Denote the estimated likelihood function conditioned on the first state ,
Ž .based on context function c � by

n
n t�1ˆ ˆ3.5 P X � P X � c X ,Ž . Ž . Ž .Ž .Łc 1 t ��

t�k
1

ˆ t�1Ž . Ž Ž .. Ž .where k is the order of c � and P X � c X is defined in 3.2 .t ��

Ž . Ž .Denote by c � the context function of a nonpruned context tree and by c� �
the context function of the subtree, pruned at one terminal node wu � x 0

�ll
1
0 Ž .to its parent node w � x . By the multiplicative structure in 3.5 , many�ll
2

terms cancel in the likelihood ratio statistic and the only remaining term is at
the node considered for pruning. One gets

ˆ nP XŽ .c 1
3.6 � � log .Ž . w u nˆž /P XŽ .c� 1

� Ž . Ž .If c� � is of lower order k � 1 than c � , some minor edge effects due to
� Ž .conditioning on the first variables arise . Formula 3.6 says that our pruning

criterion is nothing else than a likelihood ratio test, but now with a large
� Ž .� Ž .acceptance region 0, C log n for the pruned sub tree. Our algorithm can be

viewed as doing very many likelihood ratio tests.

Ž .REMARK 3.2. The cutoff value K � C log n in Step 2 for the pruningn
decision is chosen by an asymptotic consideration. Clearly, by the interpreta-
tion as likelihood ratio tests, small cutoff values will result in large context

Žtrees and overfitting occurs. Estimation of the cutoff value the constant C in
. Ž .the present formulation is given in Buhlmann 1999 : it aims for optimality¨

with respect to some loss function, whose specification allows tailoring the
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procedure for particular aims, for example, 0�1 prediction error loss. The
cutoff value can be interpreted as a stepwise 1 � � quantile for a multiple

Ž .testing problem with � � � � 0 n � � . The necessity for � to converge ton n
Ž .zero is, for example, explained in Rissanen 1989 .

REMARK 3.3. For every tree � , the order of testing the terminal nodesŽ i.
Ž .wu in Step 2 or Step 3 is irrelevant.

REMARK 3.4. The pruning criterion � does not need to be based on thew u
ˆ ˆŽ Ž .� Ž .. Ž .Kullback�Leibler distance. The quantity D P �� wu P �� w in 3.4 could be

ˆ ˆ 2� Ž . Ž .� Žreplaced by the squared L -distance P �� wu � P �� w for a definition of11
� � Ž ..� see assumption A2 . In this case, the cutoff in Step 2 of the context1

Ž . � �algorithm needs to satisfy K � C log n , C � 4 XX 
 8. See the proof ofn
Ž � � 2 .Theorem 5.1 which is mainly in terms of � and Theorem 5.3.1

REMARK 3.5. The maximal tree � T in Step 1 is constructed on the basismax
of at least two occurrences of every terminal node in the sequence. The
number two is a low enough value in practice which guarantees a sufficiently
large initial tree and at least two observations to estimate transition proba-

Ž . Tbilities associated with terminal nodes states in � . It is easy to showmax
� Ž . � Ž .under the assumptions in Section 3.2 that � N w � 2 � 1 n � � for

w � � � � . Asymptotic properties of the algorithm remain unchanged whenn cn

replacing the number two by any finite number.

REMARK 3.6. The algorithm makes no a priori length restriction for long
Ž . Ž . Ž � �.contexts i.e., deep nodes in the tree such as log n �log XX employed by

Ž .Weinberger, Rissanen and Feder 1995 , which can be a severe restriction in
practical applications.

Generally, the pruning in the context algorithm can be viewed as hierar-
chical backward selection. Dependence on some values further back in the
history is weaker by considering deep nodes in the tree in a hierarchical way
as less relevant. This hierarchic structure is a clear distinction to the CART

� Ž .�algorithm Breiman, Friedman, Olshen and Stone 1984 , where the tree
architecture is binary and has no built-in time structure.

3.2. Consistency under increasing dimensionality. We give two results,
both dealing with consistency when the dimension of the underlying model is
allowed to increase. The first one shows consistency for finding the minimal
state spaces and the second one describes properties of the estimated proba-
bility distributions.

Ž .We consider a sequence of VLMCs P with P � PP, as described inn n� � n
Ž . Ž .2.3 with context tree � � � , induced by the context function c � . Wen c nn

make the following assumptions.
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Ž . Ž .A1 For some r � �, P satisfiesn n� �

Žr . Žr .sup sup P A , w � P A , w� � 1 � 2�Ž . Ž .n n
k kn nn�� A�XX ; w , w ��XX

for some � � 0,
Žr .Ž . � r , nwhere k is the order of the VLMC P and P A, w � � Xn n n P r�k 
1, nn n0, n �� A � X � w denotes the r-step transition kernel of the embed-�k 
1, nn

Ž t, n .ding Markov chain X .t�k 
1, n t � �n
Ž . Ž . � Ž . Ž .�T TA2 Let b � min P w and 	 � min P �� wu � P �� w 1n w �� n n w u�� , u� XX n nn n� � � � Ž . � �with L -distance f � Ý f x for some f : XX � � . Then11 x � XX

Ž .� 1�2

�1 1�2b � O log n n for some 0 � 
 � � n � � ,Ž . Ž .Ž .n

1�2Ž .� 1
��1	 � O log n nb for some 0 � � � � n � � .Ž . Ž .ž /n nž /
Ž .A3 The minimal transition probabilities satisfy

1
� O n , n � �.Ž .

min p x � wŽ .x � XX , w �� nn

Ž .REMARK 3.7. The assumption about transition kernels in A1 is related to
the ergodicity coefficient for stationary Markov processes; compare Iosifescu

Ž . Ž . Ž .and Theodorescu 1969 , Rajarashi 1990 or Doukhan 1994 . It implies that
Ž . Ž t, n .the state processes Z with Z � c X , and also the VLMCst, n t � � t, n n ��, n

Ž .X , are geometrically �-mixing with mixing coefficients bounded byt, n t � �

jsup � j � 1 � 2� for all j � �.Ž . Ž .n
n��

Ž .REMARK 3.8. Assumption A2 about the minimum stationary probability
� T � �1bounds the size of the terminal node context tree as � � b �n n

Ž 1�2 Ž .1�2

 .O n �log n . Note that the number of transition probability parame-
Ž � �. Ž � T �.ters in the process P is O � � O � . The above bound, in probabilisticn n n

terms, is a weak condition for the number of parameters and there is no
Ž . Ž .explicit restriction on the order c � the depth of the context tree � .n n

REMARK 3.9. For distinguishing a context wu from its parent node w in
Ž .the terminal node context tree, assumption A2 guarantees a minimal L1

distance between the relevant conditional distributions.

In the special case with only one fixed VLMC P � P with context tree � ,c c
it is sufficient to only assume for the transition probabilities,

min p x � w � 0,Ž .
x�XX , w��c
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Ž . Ž . Ž .which implies assumptions A1 , A2 with b � b � 0, 	 � 	 � 0 and A3n n
Ž .with O 1 .

Ž . Ž .THEOREM 3.1. Consider data X , . . . , X as in 2.3 , where c � denotes1, n n, n n
the context function and � the context tree of the process P , satisfyingn n

ˆŽ . Ž . Ž . Ž . Ž .A1 � A3 . Let P �� � be defined as in 3.2 and c � be the estimate in Step 3ˆ
of the context algorithm. Then:

Ž . � Ž . Ž .� � �i lim � c � � c � � 1, or equivalently lim � � � � � 1;ˆ ˆn�� n n�� n
ˆ 0 0Ž . � Ž � Ž .. Ž � Ž .. � Ž . Ž .1 �ii sup P x c x � p x c x � o 1 n � � .ˆx � XX 1 �� n 1 n �� P��

A proof of Theorem 3.1 is given in Section 5. There, more explicit bounds
for the events of choosing too large or too small minimal state spaces are
given. Theorem 3.1 explains why the context algorithm is a very powerful

Ž . Ž .tool. Even if the dimensionality increases, the estimator c � or � neitherˆ ˆ
chooses a too large nor a too small model asymptotically and is thus robust
against model misspecification with respect to sequences in the broad semi-
parametric class PP. The increase in dimensionality of the underlying model
is restricted in probabilistic terms but allows a growth as fast as
Ž 1�2 Ž . s.O n �log n for some s � 1�2; or it can be even faster. The problem is

thus highly nontrivial: there is possible failure with simple estimation rules
which consider models within a fixed increase in dimensionality, independent

Ž r .of the underlying process, but otherwise quite general of the order O n for
some 0 � r � 1�2. This relates to a good bias-variance trade-off, even for
some very high dimensional VLMCs and for general stationary processes
which are on the boundary of PP. Theorem 3.1 describes the solution of a
model selection problem which is impossible to handle with a global selection
criterion, due to the extremely large number of possible models. For example,
the number of all VLMC submodels of a full XX-valued MC of order 4 with
� � 20XX � 4 is � 2 � 10 . The selection criterion is based here on a hierarchical

Ž .local criterion Step 2 in the context algorithm and, interestingly, it works
also in the case where the model dimension increases. In theory but never
practically feasible, a minimum description length estimator might yield

Ž .consistent state estimation as well; compare Weinberger and Feder 1994 in
the related class of finite-state models.

The next result describes the construction and properties of the estimator
P̂ for the underlying probability measure P . Define a metric for probabilityn n
measures P, Q on XX �,

�
�m �1 �1d P , Q � 2 d P �
 , Q�
 ,Ž . Ž .Ý m 1, . . . , m 1, . . . , m

m�13.7Ž .
�1 �1 m md P �
 , Q�
 � sup P x � Q x .Ž . Ž .Ž .m 1, . . . , m 1, . . . , m 1 1

mmx �XX1

Ž �.where 
 : x � x , . . . , x , x � XX is the coordinate function.1, . . . , m 1 m
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Ž .THEOREM 3.2. Consider data X , . . . , X as in 2.3 with P satisfying1, n n, n n
Ž . Ž .A1 � A3 . Then:

ˆŽ . Ž . Ž . Ž .i for P �� � as in 3.2 and c � the estimate in Step 3 of the contextˆ
algorithm,

0 0 �ˆlim � the set P �� c x ; x � XXˆ� 4Ž .Ž .�� ��
n��

ˆgenerates a unique stationary probability measure P � PP � 1.n

ˆ ˆŽ . Ž . Ž . Ž . Ž . Ž .ii For P in i and d �, � as in 3.7 , d P , P � o 1 , n � �.n n n P
ˆŽ . Ž .iii The process P in i satisfiesn

ˆ� P is �-mixing with mixing coefficients satisfyingn

j
� j � 1 � � for all j � � � 1 n � � .Ž . Ž . Ž .P̂n

Ž .In particular, the bound for the mixing coefficients � j is nonrandom andP̂n

the same for all n � �.

Ž .A proof of Theorem 3.2 is given in Section 5. Statement i of Theorem 3.2
tells in a constructive way how to simulate the estimated underlying process,

Ž .the fidi-convergence in ii is a minimal requirement for a reasonable estima-
Ž .tor, whereas iii is important for simulation tasks like bootstrapping compli-

cated statistics.

3.3. DNA example. We now present an interesting and instructive appli-
cation of VLMC estimation. In particular, we demonstrate the usefulness of
an estimated context tree as an excellent graphical tool for detecting struc-
ture in the time series. Our data consists of three distinct sequences of DNA
from the Drosophila genome. We point out that genetic data is a natural
candidate for modeling by a VLMC since it has a finite alphabet XX , there is a
‘‘time’’ index and its memory vanishes with increasing lag time. Furthermore,
while it is known that the data is far from independent, high-order full
Markov models are not easily fitted because of the explosion in the number of

Ž .parameters; compare Braun and Muller 1998 and compare also with Prob-¨
lems 1 and 2 from Section 1. This is compounded by an observed degree of
nonstationarity which prohibits estimation over very long sequences. In this
environment, it is of paramount importance that the model parameters are
used with great economy in order to capture any significant dependent
structure.

Our data began as a single 100-thousand base contiguous stretch of DNA
Ž .from the Drosophila genome Genbank number DS02740 . Each base is one of

four possible DNA residues: Adenine, Cytosine, Guanine and Thymine, with
abbreviations A, C, G and T, respectively. Using a variety of tools, biologists
at Gerry Rubin’s lab at the University of California at Berkeley segmented

Ž .the sequence into genes which code for amino acid sequences and nongenes
Ž .so-called junk DNA which are ignored by the cell chemistry. Physically, the
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genes are spaced apart and separated by junk DNA which we term ‘‘inter-
genes.’’ Moreover, the genes are further segmented into coding regions called
exons and noncoding regions called introns. The cell’s engine for transcribing

Ž .DNA first copies the gene both intron and exon ; it then splices out the
intron sections. Each gene is in turn subdivided into alternating stretches of
exon and intron. We form a single sequence of exons by concatenating all the

Ž .exons in the given order . Similarly, we form sequences of introns and
intergenes.

Our goal is the application of the VLMC estimation algorithm to learn the
dependence structure and to present the estimated minimal state space
graphically as a tree, whose branches are the contexts. Application of the
algorithm to each of the datasets suggests that complicated structures exist
within the exons and the introns. On the other hand, the intergenes showed

Ž .no complex structure a first-order Markov model is a good fit . That exons
exhibit such structure is not surprising due to constraints imposed by its
coding function. The introns do not have a well-understood function, but
evidence of structure suggests that the intron is constrained in some way and
is thus unable to mutate freely.

We also consider the sequences under a reduction of the quaternary
Ž .alphabet down to three possible binary alphabets, identifying 1 G with C;

Ž . Ž . Ž . Ž .2 G with A; 3 G with T. Equivalences 1 and 2 have genetic meaning, the
Ž .third has none reducing the data to random bits . As expected, this final

Ž .equivalence 3 produces sequences with no dependence structure. The most
dramatic finding was produced by the exon sequence reduced to a binary

Žalphabet by identifying the base G with its bonding pair C A is thus
.identified with T . The resulting context tree has branches of lengths 0, 3 and

6 only. Interestingly, we thus can represent it in terms of triplets, as shown
in Figure 2. Because amino acids are known to be coded by triplets of DNA
letters, the structure in Figure 2 has a beautiful biological interpretation.
Our finding suggests that the triplet coding structure is strongly present

FIG. 2. Triplet tree representation of the estimated minimal state space for exon sequence. The
Ž .Ž .triplets are denoted in reverse order, for example, the terminal node with concatenation ggt gtt

describes the context x � g, x � g, x � t, x � g, x � t, x � t for the variable x .0 �1 �2 �3 �4 �5 1
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Ždespite the dramatic processing of the data the actual code is not recoverable
.from this binary reduction . We point out, for emphasis, that the VLMC

estimation algorithm learned the triplet structure on its own, a discovery
made only for the coding sequences reduced to binary alphabet.

ˆ4. The VLMC bootstrap. Theorem 3.2 indicates that the estimate P ofn
P can be used for resampling. Our proposal will be a bootstrap for stationaryn

Ž . �categorical time series. Since the semiparametric model 2.2 is dense with
Ž .�respect to the metric in 3.7 in the set of stationary XX-valued processes, this

bootstrap is very general. It offers an attractive and often more accurate
alternative to the model free blockwise bootstrap, which has been proposed by

Ž .Kunsch 1989 .¨

STEP 1. Given XX-valued data X , . . . , X , fit a VLMC as described in1 n
ˆ �Section 3.1, yielding a stationary probability measure P on XX ; see Theo-n

rem 3.2.

STEP 2. Draw a finite realization

� � ˆ �1X , . . . , X � P �
 .1 n n 1, . . . , n

The variables X�, . . . , X� are called the VLMC bootstrap sample; they are1 n
nothing else than one random sample from the fitted VLMC. In practice, one
would choose some starting values, generate a longer random sample via the

ˆ 0Ž Ž ..estimated transition probabilities P x � c x and then use the last nˆ1 ��

elements as our bootstrap sample. Such a device tries to avoid nonstationar-
ity effects due to starting values in a simulated Markov chain. Of course, one
could also draw bootstrap samples of size m � n; compare Bickel, Gotze and¨

Ž .van Zwet 1997 .
Ž .Given an estimator T � h X , . . . , X , which is a measurable function ofn n 1 n

X , . . . , X , the bootstrapped estimator is defined by the plug-in rule T� �1 n n
Ž � � . Ž .h X , . . . , X . This plug-in rule, which is also the basis to Efron’s 1979n 1 n

bootstrap for the independent case, is very convenient in practice. Once the
bootstrap sample is constructed, bootstrapping can be done with exactly the
same computing tools or programs as for the original estimator T . This is notn

� Ž .�the case with the blockwise bootstrap Kunsch 1989 if the estimator T is¨ n
nonsymmetric in the observations X , . . . , X , for example, the estimators1 n

Ž . Ž .in S1 and S2 from Section 4.2. Quantities induced by the resampling in
Step 2 are denoted by an asterisk *.

4.1. Consistency of the VLMC bootstrap under increasing dimensionality.
We present here an asymptotic result justifying the use of the above-
defined VLMC bootstrap for estimators T which are smooth functions ofn
means. We will also discuss informally why the VLMC bootstrap should work
in the more general framework of empirical processes, without giving the
exact arguments.



¨P. BUHLMANN AND A. J. WYNER496

We assume to have observations X , . . . , X � XX from a sequence of1, n n, n
Ž .VLMCs as given in 2.3 . Consider the class of estimators which are smooth

functions of means,

n�m
1
�1 t
m�1, nT � g n � m 
 1 f X , 1 � m � �,Ž . Ž .Ýn t , n½ 54.1Ž . t�1

m v v wf � f , . . . , f �: XX � � , g � g , . . . , g �: � � � smooth.Ž . Ž .1 v 1 w

� �The function f is bounded, since XX � �. Examples include estimators of
transition probabilities in full Markov chains of order m � 1 or other func-
tions of frequencies of tuples up to size m, such as the Z scores used in

� Ž .�genetics cf. Prum, Rudolphe and de Turckheim 1995 . We usually make the
following assumption.

Ž . Ž .B1 The estimator T is given by 4.1 with g having continuous partialn
� Ž .�derivatives in a neighborhood of � � � f X , . . . , X . Also, theren 1, n m , n

exists an n � �, such that for every n � n ,0 0
vn�1

m� 1, n k
m�1, nCov f X , f X is positive definite.Ž . Ž .Ž .Ý i 0, n j k , n
k��n
1 i , j�1

REMARK 4.1. The assumption about positive definiteness of covari-
ance matrices simplifies when assuming a limiting model P, where

Ž . Ž . Ž .lim d P , P � 0 for the metric d �, � defined in 3.7 . Generally, P is notn�� n
a VLMC anymore. It is then sufficient to assume

�
m� 1 k
m�1 � 4Cov f X , f X � �, i , j � 1, . . . , v ,Ž . Ž .Ž .Ý i 0 j k

k���

v�
m� 1 k
m�1Cov f X , f X is positive definite,Ž . Ž .Ž .Ý i 0 j k

k��� i , j�1

Ž .where X � P.t t � �

The following theorem justifies the VLMC bootstrap for smooth functions
of means.

Ž .THEOREM 4.1. Let X , . . . , X be as in 2.3 with P satisfying1, n n, n n
Ž . Ž . Ž .A1 � A3 . Assume also that B1 holds. Let the VLMC bootstrap be defined

� � ŽŽ .m.�as in Section 4 and denote by � � �* f X* . Thenn 1

� �1�2 1�2sup �* n T � g � � x � � n T � g � � x � o 1 ,Ž . Ž . Ž .Ž . Ž .n n n n P
wx��

n � �.
The proof of Theorem 4.1 is given in Section 5. Our results can be

generalized to consistency of the VLMC bootstrap for general empirical
processes, because the VLMC bootstrap for categorical time series satisfies a
�-mixing property with exponentially decaying mixing coefficients; see Theo-

Ž .rem 3.2 iii . These extensions are useful for studying the bootstrap consis-
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tency of estimators

4.2 T � T � ,Ž . Ž .n n

which are given as a smooth functional of a general empirical measure � .n
Ž . Ž .The class of estimators in 4.2 is considerably larger than the class in 4.1 . It

includes as examples the maximum likelihood estimators in generalized
linear models of autoregressive type with quite general link functions; com-

Ž .pare Fahrmeir and Tutz 1994 .

4.2. Simulations. We study here the VLMC bootstrap for variance esti-
mation in various cases by simulation. We represent VLMC models by
context trees and equip terminal nodes with tuples, describing the transition

Ž . Ž . � XX ��1probabilities. A tuple i , . . . , i corresponds to p j � w � i �Ý i ,0 � XX ��1 j j�0 j
� � � 4 Ž � � � 4.j � 0, . . . , XX � 1 without loss of generality we let XX � 0, . . . , XX � 1 .

Ž .We consider the following models: M1 : full binary Markov chain of order 3;
Ž . Ž .M2 full quaternary Markov chain of order 2; M3 : semisparse binary VLMC

Ž . Ž .of order 5; M4 : semisparse quaternary VLMC of order 3; M5 : sparse binary
Ž .VLMC of order 8; M6 : sparse quaternary VLMC of order 4. The precise

specifications are given by the trees and numbers shown in Figure 3.

Ž . Ž .FIG. 3. Tree representations of the VLMC models M1 � M6 . Transition probabilities are
specified by tuples at terminal nodes.
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Ž . Ž .We also consider M7 : X � 1 where Y is a stationary nonlin-t � Y � 0� t t � �t

ear process

Y � 0.5 
 0.9 exp �2.354Y 2 YŽ .Ž .t t�1 t�1

� 0.8 � 1.8 exp �2.354Y 2 Y 
 ZŽ .Ž .t�1 t�2 t

Ž . Ž . �with Z an i.i.d. sequence, Z � NN 0, 1 and Z independent from Y ;t t � � t t s
4 Ž . Ž .s � t . The process Y is also known as exponential AR 2 . The quantizedt t � �

Ž . Ž .binary process X in M7 is non-Markovian, although the �-valuedt t � �

Ž .Y is Markov of order 2. It is interesting to see whether the VLMCt t � �

bootstrap provides a good finite-sample approximation to this model which is
not a VLMC. This is also an interesting test case to make a fair comparison

� Ž .�between the VLMC and blockwise bootstrap Kunsch 1989 .¨
As sample sizes, we choose n � 1000 and n � 2000. We consider the

following statistics.

ˆŽ . Ž . Ž . Ž . Ž . Ž . Ž .S1 T � P 1 � 0 � N 10 �N 0 for binary models M1 , M3 and M5 .n n n
Ž . Ž . Ž . Ž .S2 T � N 133 , the frequency of the word x , x , x � 1, 3, 3 as definedn n 3 2 1

Ž . Ž . Ž . Ž .in 3.1 , for quaternary models M2 , M4 and M6 .
�1 nŽ .S3 T � X � n Ý X , the relative frequency of symbol 1, for the binaryn n t�1 t

Ž .model M7 .

The variance estimates are

� 2 � n Var* T� for � 2 � n Var T in S1 and S3 ,Ž . Ž . Ž . Ž .n̂ n n n

� 2 � Var* T� for � 2 � Var T in S2 ,Ž . Ž . Ž .n̂ n n n

Žbased on the VLMC bootstrap with 500 resamples note the different stan-
.dardizations .

The results are given in Tables 1 and 2. Moments of the bootstrap
variances � 2 are estimated with 200 simulations over the different models;n̂
the true values of � 2 are estimated with 1000 simulations. The relativen

Ž 2 . � 2 2 � 2 4mean square error is given by relMSE � � � � � � �� . Estimatedˆ ˆn n n n
standard errors for the bias and relMSE are given in parentheses. We tried
different cutoff values K which act as tuning parameter; see also Remark 3.2.
We report them as � 2 �2 quantiles with different levels � , correspond-� XX ��1; �

Ž .ing to the asymptotic distribution of one log-likelihood ratio statistic in 3.6 .
This is sometimes more intuitive than the numerical value of C in the cutoff

Ž .K � C log n from theory. On the other hand, we point out the danger thatn
direct interpretation of the cutoff as a � 2 �2 quantile with � fixed and� XX ��1; �

not depending on the sample size contradicts the very essence of the context
Ž . Ž . Ž . Ž .algorithm in 3.3 . For the binary models M1 , M3 , M5 , we used the

2 Ž . Ž . Ž . 2cutoffs � �2, for the quaternary models M2 , M4 , M6 the cutoffs � �2,1; � 3; �

both denoted in short by �100%.
The results are promising in that the relative mean square error is most

often smaller than 5%. Generally, the performance is better for sparse
models. This indicates that the algorithm adapts to sparseness; it is exactly
in these cases, where other methods are more likely to fail.
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TABLE 1
VLMC bootstrap variance estimates, sample size n � 1000

cutoff
2 2 2 2 2( ) [ ] ( ) ( )in % � ����� � 	 � Var � relMSE �ˆ ˆ ˆn n n n n

Ž . Ž . Ž .M1, S1 95 0.81 �0.04 0.010 0.02 0.033 0.0035
Ž . Ž . Ž .M1, S1 98 0.81 �0.10 0.011 0.02 0.053 0.0040
Ž . Ž . Ž .M1, S1 99.9 0.81 �0.26 0.009 0.02 0.127 0.0038

Ž . Ž . Ž .M3, S1 95 0.67 �0.02 0.009 0.01 0.031 0.0029
Ž . Ž . Ž .M3, S1 98 0.67 �0.05 0.009 0.01 0.036 0.0030
Ž . Ž . Ž .M3, S1 99.9 0.67 �0.17 0.005 0.01 0.078 0.0027

Ž . Ž . Ž .M5, S1 95 0.528 0.007 0.0054 0.006 0.021 0.0027
Ž . Ž . Ž .M5, S1 98 0.528 �0.005 0.0031 0.002 0.007 0.0006
Ž . Ž . Ž .M5, S1 99.9 0.528 0.003 0.0027 0.002 0.005 0.0005

Ž . Ž . Ž .M2, S2 95 14.5 �0.5 0.21 9.1 0.045 0.0051
Ž . Ž . Ž .M2, S2 98 14.5 0.1 0.17 5.8 0.028 0.0027
Ž . Ž . Ž .M2, S2 99.9 14.5 0.0 0.14 3.8 0.018 0.0019

Ž . Ž . Ž .M4, S2 95 14.1 �0.3 0.18 6.4 0.032 0.0044
Ž . Ž . Ž .M4, S2 98 14.1 �0.4 0.17 5.5 0.029 0.0042
Ž . Ž . Ž .M4, S2 99.9 14.1 �0.5 0.12 2.8 0.015 0.0014

Ž . Ž . Ž .M6, S2 95 11.2 0.0 0.15 4.8 0.038 0.0043
Ž . Ž . Ž .M6, S2 98 11.2 �0.1 0.13 3.1 0.025 0.0029
Ž . Ž . Ž .M6, S2 99.9 11.2 �0.3 0.10 2.0 0.017 0.0026

Ž . Ž . Ž .M7, S3 95 0.80 �0.03 0.009 0.02 0.029 0.0029
Ž . Ž . Ž .M7, S3 98 0.80 �0.11 0.009 0.02 0.043 0.0030
Ž . Ž . Ž .M7, S3 99.9 0.80 �0.24 0.005 0.01 0.100 0.0032

� Ž .�For comparison, we also tried the blockwise bootstrap Kunsch 1989 in¨
Ž . Ž .the cases M5, S1 and M7, S3 for sample size n � 1000 with different

blocklengths l; see Table 3. A graphical representation is given in Figure 4.
Ž .The comparison is at least fair in M7, S3 where the model is not a VLMC

� Ž . Ž .and by the structure of Y , the quantized series X doesn’t allowt t � � t t � �

�sparse approximation . In this case, both bootstraps have similar perfor-
Žmances; the best tuned VLMC bootstrap is about 15% better in terms of

.relative mean square error than the best-tuned blockwise bootstrap. In case
Ž .M5, S1 the blockwise bootstrap exhibits a serious bias and a large variabil-

Ž .ity. The VLMC bootstrap is far better for this sparse VLMC M5 . We
conclude that the VLMC bootstrap is at least as good as the blockwise
bootstrap and enjoys the important practical advantage of being defined as a
plug-in rule; see Section 4.

The role of the cutoff as tuning parameter of the VLMC bootstrap is found
as follows: the absolute value of the bias of the bootstrap variance estimator
increases and the variance decreases with increasing cutoff parameter. This
is expected since a larger cutoff parameter leads to a lower dimensional fitted
VLMC model, by design of the context algorithm. Note that in some simula-
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TABLE 2
VLMC bootstrap variance estimates, sample size n � 2000

cutoff
2 2 2 2 2( ) [ ] ( ) ( )in % � ����� � 	 � Var � relMSE �ˆ ˆ ˆn n n n n

Ž . Ž . Ž .M1, S1 95 0.82 �0.01 0.009 0.01 0.022 0.0021
Ž . Ž . Ž .M1, S1 98 0.82 �0.02 0.007 0.01 0.016 0.0018
Ž . Ž . Ž .M1, S1 99.9 0.82 �0.14 0.011 0.02 0.065 0.0048

Ž . Ž . Ž .M3, S1 95 0.67 0.00 0.006 0.01 0.014 0.0013
Ž . Ž . Ž .M3, S1 98 0.67 �0.03 0.006 0.01 0.017 0.0016
Ž . Ž . Ž .M3, S1 99.9 0.67 �0.09 0.007 0.01 0.042 0.0033

Ž . Ž . Ž .M5, S1 95 0.518 0.007 0.0038 0.003 0.011 0.0012
Ž . Ž . Ž .M5, S1 98 0.518 0.002 0.0031 0.002 0.007 0.0008
Ž . Ž . Ž .M5, S1 99.9 0.518 0.009 0.0025 0.001 0.005 0.0004

Ž . Ž . Ž .M2, S2 95 12.9 1.2 0.16 4.9 0.038 0.0038
Ž . Ž . Ž .M2, S2 98 12.9 1.4 0.15 4.4 0.039 0.0042
Ž . Ž . Ž .M2, S2 99.9 12.9 1.9 0.13 3.2 0.040 0.0025

Ž . Ž . Ž .M4, S2 95 14.7 �0.7 0.15 4.3 0.022 0.0022
Ž . Ž . Ž .M4, S2 98 14.7 �0.6 0.11 2.6 0.014 0.0013
Ž . Ž . Ž .M4, S2 99.9 14.7 �1.0 0.09 1.7 0.012 0.0011

Ž . Ž . Ž .M6, S2 95 11.5 �0.1 0.14 4.0 0.030 0.0036
Ž . Ž . Ž .M6, S2 98 11.5 �0.3 0.10 1.9 0.015 0.0015
Ž . Ž . Ž .M6, S2 99.9 11.5 �0.5 0.08 1.4 0.012 0.0016

Ž . Ž . Ž .M7, S3 95 0.81 �0.03 0.008 0.01 0.018 0.0017
Ž . Ž . Ž .M7, S3 98 0.81 �0.06 0.007 0.01 0.022 0.0018
Ž . Ž . Ž .M7, S3 99.9 0.81 �0.23 0.006 0.01 0.089 0.0036

TABLE 3
Blockwise bootstrap variance estimates; sample size n � 1000

2 2 2 2 2[ ] ( ) ( )blocklength � ����� � 	 � Var � relMSE �ˆ ˆ ˆn n n n n

Ž . Ž . Ž .M5, S1 ll � 10 0.528 0.106 0.0057 0.007 0.065 0.0053
Ž . Ž . Ž .M5, S1 ll � 20 0.528 0.058 0.0071 0.010 0.049 0.0066
Ž . Ž . Ž .M5, S1 ll � 30 0.528 0.030 0.0084 0.014 0.054 0.0065

Ž . Ž . Ž .M7, S3 ll � 10 0.80 �0.17 0.005 0.01 0.051 0.0027
Ž . Ž . Ž .M7, S3 ll � 20 0.80 �0.09 0.008 0.01 0.035 0.0027
Ž . Ž . Ž .M7, S3 ll � 30 0.80 �0.07 0.011 0.02 0.045 0.0038

tion examples, this behavior is not significantly visible. For the blocklength in
the blockwise bootstrap in turn, the general asymptotic behavior is observed,
that is, the bias decreases, whereas the variance increases with growing l.

5. Proofs. We first recall some notation. We usually denote by w, u, v �
� m Ž . Ž .� XX sequences written in reverse ‘‘time’’ w � w , . . . , w , w ; them� 0 � w � 2 1

Ž . � mconcatenation is wu � w , . . . , w , w , u , . . . , u � � XX . Transition� w � 2 1 � u � 1 m�0
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Ž .FIG. 4. Boxplots of bootstrap variance estimates with n � 1000, for case M5, S1 on top and for
Ž .case M 7, S3 at the bottom. VLMC bootstrap estimates are denoted with �100%, corresponding

to their � 2 �2-quantiles as cutoff values. Blockwise bootstrap estimates are denoted with their1; �

blocklengths ll . The line denotes the true variance.

probabilities in a context tree � are indexed by w � � and abbreviated by
ˆŽ . Ž . Ž .p � � p �� w , estimated transition probabilities are denoted by P x �w w

Ž . Ž . Ž . Ž . Ž . Ž .N xw �N w x � XX , N � as defined in 3.1 . We also abbreviate by P x �w
Ž . Ž . � m ŽP xw �P w for general w � � XX , x � XX w is not necessarily am� 1

. � Ž .context in � and P a stationary probability measure on XX with P x �
� m � Ž m. Ž .� X � x x � XX . We recall that for any w� � wu u � XX , we haveP 1

ˆ ˆŽ � . Ž . Ž .defined � � D P P N w� . When looking at a sequence P ofw � w u w n n� �

VLMCs, we sometimes drop the index n.



¨P. BUHLMANN AND A. J. WYNER502

PROOF OF THEOREM 3.1. We define first the events of under- and overesti-
mation for sample size n,

�
mU � there exists w � � with wu � � , wu � � for some u � XX ,ˆ ˆ �n n½ 5

m�1

�
mO � there exists w � � with wu � � , wu � � for some u � XX .ˆ �n n n½ 5

m�1

Ž .Note that by 3.3 we can also characterize U and O in terms of the pruningn n
Ž .criterion � � K � C log n . The error event isw u n

E � � � � � U 	 O .� 4ˆn n n n

Ž . Ž .THEOREM 5.1. Assume that A1 and A2 with 0 � 
, � � � hold. Then

� � �logŽn.2 
 D1 �logŽn.� D 2� U � O max n , n , n � �� 4Ž .n

for some constants 0 � D , D � �.1 2

PROOF. We partition the underestimation event U using the eventn

D � N w � � for every w � � T ,Ž .� 4n n n

� � � � � c �where � is a constant to be chosen later. Thus � U � � U � D 
 � D .n n n n n
� � � � � c �We will pursue a bound on � U by bounding both � U � D and � D .n n n n

First, by restricting without loss of generality to underestimation of � T,n

� �� U � D � � � � C log n , N wu � �Ž . Ž .Ýn n w u n
Twu�� , u�XXn

n n C log nŽ .ˆ ˆ�� � D P P � ,Ý Ý Ý ž /w u w kT k�� j�kwu�� , u�XX nn

5.1Ž .

N wu � k , N w � j .Ž . Ž .

� Ž .�It is well known cf. Cover and Thomas 1991 , that the divergence can be
1 2ˆ ˆ ˆ ˆŽ � . � �lower bounded by the L distance, D P P � P � P and that11 w u w w u w2

ˆ ˆ 2 ˆ ˆ 2 ˆ ˆ� � Ž Ž . Ž .. � Ž . Ž .4P � P � 2 P A � P A , where A � x � XX ; P x � P x .1w u w w u w w u w
Therefore,

C log nŽ .ˆ ˆ�� D P P � , N wu � k , N w � jŽ . Ž .ž /w u w k
5.2Ž .

C log nŽ .2ˆ ˆ� � P A � P A � , N wu � k , N w � j .Ž . Ž . Ž . Ž .Ž .w u w k

ˆ ˆŽ . Ž . Ž .Now because of assumption A2 , it must be that either P A or P A isw u w
Ž . Ž . 2Ž .far from P A or P A , respectively. We formalize this by letting � k �w u w n

ˆ ˆŽ . Ž . Ž . Ž . Ž .C log n �k and P x � a, P x � b, p x � r and p x � s, wherew u w w u w
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� � � �x � XX . Our goal is to establish that if a � b is small, then either r � a is
� �large or s � b is large. First assume, without loss of generality, that r � s.

Ž . � � Ž .We have by A2 that r � s � 	 . Now if b � s, then a � b � � k im-n n
� � Ž .plies that a � r � 	 � � k . Furthermore, if b � r, then it must be thatn n

� � Ž .s � b � 	 . Now if s � b � r then either s � b � s 
 r � s �2, in whichn
� � Ž . Ž . � �case r � a � 	 �2 � � k or r � r � s �2 � b � r, in which case s � b �n n

ˆ ˆ� Ž . Ž . � Ž .	 �2. Taken together we have proved that if P x � P x � � k , thenn w u w n
ˆ ˆ� Ž . Ž . � Ž . Ž . � Ž . Ž . � Ž .either P x � p x � 	 �2 � � k or P x � P x � 	 �2 �w u w u n n w w n

Ž . Ž .� k . Thus, when applied to 5.2 , we have proved that forn

2	n
5.3 a k � � � k ,Ž . Ž . Ž .n nž /2

it must be that

C log nŽ .ˆ ˆ�� D P P � , N wu � k , N w � jŽ . Ž .ž /w u w k

1�2ˆ� � P x � p x � a k , N wu � kŽ . Ž . Ž . Ž .Ý w u w u n
x�A

1�2ˆ
 � P x � P x � a k , N w � jŽ . Ž . Ž . Ž .Ý w w n
x�A

5.4Ž .

1�2ˆ� �� XX max � P x � p x � a k , N wu � kŽ . Ž . Ž . Ž .w u w u n
x�XX

1�2ˆ� �
 XX max � P x � P x � a k , N w � j .Ž . Ž . Ž . Ž .w w n
x�XX

1�2 Ž .1�2
 
We will now choose � � b n�2 � const. n log n . Then,n n
2Ž . Ž . Ž .max � k � const. C log n � nb . Thus, it follows by assumption on 	 ,k � � n n nn

1
�2	 log nŽ .n
min a k � min � � k � const. ,Ž . Ž .n nž /2 nbk�� k��n n n

and hence
1
�min ka k � const. log n .Ž . Ž .n

k��n

Ž .We treat the two cases on the right-hand side of 5.4 simultaneously by
ˆŽ . Ž .denoting v � wu or v � w, respectively. Let p � P x and let p � P x . Weˆv v

� � � 2would like to find an upper bound for the probability of the event p � p �ˆ
Ž . Ž . 4a k , N v � k . Since there are a random number of terms in the denomi-n

nator of p we cannot apply any large deviations bound directly. Instead weˆ
n Ž .consider the extension of X to the infinite sequence X . Define1 t t � �

I � the time of the ith occurrence of v in X , i � �.� 4Ž .i t t��

Then let

W � X , the symbol that occurs after the ith occurrence of v.i I 
1i
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Ž .The sequence W is stationary �-mixing with mixing coefficients boundedi i� �

Ž .by the same bound as the original sequence X . The marginal probabil-t t � �

ity distribution of W on XX is equal to P . Let Y � 1 . Now observe that1 v i �W �x �i

2 2Ž .N v kY Yi i� p � a k , N v � k � � p � a k .Ž . Ž . Ž .Ý Ýn n½ 5½ 5N v kŽ .i�1 i�1

Thus, we have established the upper bound,
2k Yi2� �5.5 � p � p � a k , N v � k � � � p � a k .Ž . Ž . Ž . Ž .ˆ Ýn nki�1

At this point we are readily able to apply an exponential inequality.

Ž . � � Ž .LEMMA 5.1. Let Y with E Y � p be defined as above and a k asi i� � 1 n
Ž . Ž . Ž .in 5.3 . Assume the conditions A1 and A2 with 0 � 
, � � �. Then, for

k � � � b n�2,n n

2k Y �i �logŽn. Fsup � � p � a k � O nŽ . Ž .Ý nk0�p�1 i�1

for some constant 0 � F � �.

Ž . Ž .PROOF. By assumption A1 , the process X has mixing coefficientst t � �

Ž . Ž . j� j � 1 � 2� , and the same bound applies also for the mixing coefficients
Ž . �Ž .of the process Y . Now apply Theorem 4 from Doukhan 1994 , Chapteri i� �

� Ž .1
� 1�21.4.2 with q � log n and note that k � � � b n�2 � const.nn n
Ž .1�2

 Ž . Ž .1
�log n . Using that ka k � const.log n for all k � � completes then n

proof. �

Ž Ž .1
� .Denote by M � exp �F log n . A straightforward application ofn
Ž .Lemma 5.1 to 5.5 proves that for k, j � � ,n

2ˆmax � P x � p x � a k , N wu � k � O M ,Ž . Ž . Ž . Ž . Ž .Ž .w u w u n n
x�XX

2ˆmax � P x � P x �a k , N w � j � O M .4Ž . Ž . Ž . Ž . Ž .Ž .w w n n
x�XX

Ž . Ž . Ž .Thus, together with 5.1 , 5.2 and 5.4 ,
n n

� �� �5.6 � U � D � XX O M .Ž . Ž .Ý Ý Ýn n n
T k�� j�kwu�� , u�XX nn

Ž . Ž .By Remark 3.8, 5.6 and assumption A2 ,

� T � 2� �� U � D � O � n MŽ .n n n n
5.7Ž . �1
��1 2 �logŽn. const .� O b n exp �const. log n � O n .Ž . Ž .Ž .ž /n
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� c �To complete the proof of Theorem 5.1, we need to bound � D . Using then
Ž .union bound and assumption A2 we get

c� D � � N w � � � � N w � E N wŽ . Ž . Ž .Ý Ýn n
T Tw�� w��n n

� �� � � n � w 
 1 P wŽ . Ž .n n

� � N w � E N w � �b n�3Ž . Ž .Ý n
Tw��n

� � N w � E N w � b n�3 .Ž . Ž .Ý n
Tw��n

We bound this quantity by the following exponential inequality.

Ž . Ž .LEMMA 5.2. Assume that A1 and A2 with 0 � 
, � � � hold. Then
2 
�logŽn. Gmax � N w � � N w � b n�3 � O nŽ . Ž . Ž .n

Tw��n

for some constant 0 � G � �.

PROOF. Since w � � , we can writen
n

t , nN w � 1 , Z � c X .Ž . Ž .Ý � Z �w � t , n �� , nt , n
t�1

Ž . Ž .By assumption A1 , Z is �-mixing with mixing coefficients boundedt, n t � �

Ž . Ž . jby sup � j � 1 � 2� ; see Remark 3.7. Now apply Theorem 4 inn� � n
�Ž . � Ž .1
2 
Doukhan 1994 , Chapter 1.4.2 with q � log n . Using that nb �n

1�2 Ž .1�2

const. n log n completes the proof. �

By Lemma 5.2,
2 
 2 
c �1 �logŽn. const . �logŽn. const .� D � O b n � O n ,Ž .Ž .n n

Ž . Ž .where the last estimate follows from A2 . Together with 5.7 we complete
the proof of Theorem 5.1. �

�We now consider the overestimation event O � there exists w� � � withn n
� m4w � w�u � � , w � w�u � � for some u � � XX . For a sequence w to beˆ n m�1

T Ž . Ž .an element of � � � , it is necessary that N w � 1 and � � C log n . Nowˆ ˆ w
Ž . ŽWeinberger, Rissanen and Feder 1995 establish for any w � w�u w� � � ,n

� m.u � � XX with w � w�u � � ,m� 1 n

� � �C2 XX
� � � C log n 
 1 � n 
 1 n 
 1 .Ž . Ž . Ž .w

In their algorithm, an overestimation event can only occur at any string w if
� � Ž . Ž � �.w � log n �log XX . Thus they establish that

� ��C
2 XX �C
2 � XX �
1� �� O � n 
 1 � n .Ž .Ýn
� � Ž . Ž � �.w �log n �log XX
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� � mThe last inequality follows since, for any m there are no more than XX

� �distinct sequences w with length w � m.
It is possible to prove a stronger result, eliminating the need for a length

� �restriction on w . We give only a detailed outline of such a proof.

LEMMA 5.3. Let swv be any possible string with s � � , w � �� XX m,n m�0
Ž . � Ž . Ž . 4v � XX and swv � � . Let O swv � � � C log n , N swv � 1 . Denote byn n sw v

Ž . Ž .p n � min p x and by � the maximal context tree in Step 1ˆmin x � XX , w �� w maxn
Ž . Ž .of the context algorithm. Then, under the assumptions A1 � A3 ,

1
�C
2 � XX �� O swv � � sw � � n .Ž . ˆn maxp nŽ .min

A proof is given below.

Ž . Ž .THEOREM 5.2. Under the assumptions A1 � A3 ,
�

� �� O log n � �.Ž .Ý n
n�1

PROOF. We apply Lemma 5.3 for swv,
�C
2 � XX �
1� �� O � � O swv � O n � sw � � ,Ž . Ž . ˆÝ Ýn n max

swv swv

Ž .where the last estimate follows from A3 .
Let L be the number of sequences which occur at least twice in the data

X n. Then1

2� � � � � �� �n� sw � � � XX � 1 � XX � L � XX n .ˆÝ Ýmax � sw occurs at least twice in X �1
swv sw

� �Therefore, since C � 2 XX 
 4, we complete the proof. �

When defining the pruning criterion in Step 2 of the context algorithm in
˜ ˆ� Ž .terms of the L distance, we can sharpen Theorem 5.2. Let � � P � �1 w u w

ˆ 2 ˜ � mŽ .� � Ž .P � and define O � there exists w � w�u w� � � , u � � XX ,1w u n n m�1
˜ Ž . Ž . 4such that � � C log n , N w � 1 and w � � .w n

Ž . Ž .THEOREM 5.3. Under the assumptions A1 � A3 but with cutoff in Step 2
Ž . � �of the context algorithm satisfying K � C log n for C � 4 XX 
 8,n

�

˜� O log n � �.Ž .Ý n
n�1

1 2Ž � . � �PROOF. As used already in the proof of Theorem 5.1, D P Q � P � Q .12
˜Thus, � � 2� . �w w

PROOF OF LEMMA 5.3. Let s � � be a context and su � swv withn
w � �� XX m, v � XX and swv � � . Our aim is to bound the probability ofm� 0 n
overestimation at su. We begin by recalling several inequalities and defini-
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Ž .tions from Weinberger, Rissanen and Feder 1995 . First, we fix a sequence
x n, a realization from P . We can determine a probability law given by1 n

Ž n n. Ž .Q y � x on the set of sequences of length n , defined as follows:su 1 1

n n n ˆn nlog Q y � x � R y � S 
 N x � swb log P x � swŽ . Ž .Ž . Ž .Ž . Ý Ý ž /su 1 1 sw 1 s y x1 1
b�vx�XX

ˆn n
 N x � su log P x � su ,Ž . Ž .Ý ž /y x1 1
x�XX

Ž n .where R y � S , defined formally in Weinberger, Rissanen and Federsw 1 s
Ž .1995 , is the sum of the log probability of all the symbols that occur in
any context other than sw. An important observation is that for any sequence

n Ž . n
ny with N sw � 0, the Q probability of y is the same as the P1 y su 1 n1

probability.
Now, for each x n define � n to be the set of all sequences y n with1 x 11
Ž . Ž . Ž . Ž .n n n nN xsw � N xsw and N xswv � N xswv for all x � XX . Ify x y x1 1 1 1
Ž . Ž . Ž .n� swv � C log n , it follows from A9 in Weinberger, Rissanen andx1

Ž .Feder 1995 that

5.8 P � n � Q � n � x n n�C .Ž . Ž . Ž .n x su x 11 1

At this point we need to introduce a new probability distribution given by Q�
on the set of sequences of length n, closely related to Q . To that end, forsu
every sequence yt let x be the symbol that occurs after the first occurrence1 0
of sw. Let b be the symbol immediately preceding the first occurrence of sw.0

Ž .Thus x occurs in the extended context swb . If b � v, we define0 0 0

n n t n ˆ nlog Q� y � x � log Q y � x 
 log P x � sw � log P x � sw .Ž . Ž .Ž . Ž .Ž . Ž .Ž . ž /1 1 su 1 1 n 0 x 01

If b � v, then we define0

n n t n ˆ nlog Q� y � x � log Q y � x 
 log P x � sw � log P x � swv .Ž . Ž .Ž . Ž .Ž . Ž .Ž . ž /1 1 su 1 1 n 0 x 01

Ž . Ž n. Ž n n.nThus, if N sw � 2 it must be that P y � Q� y � x . It also followsy n 1 1 11

from the definition of Q� that
1

n n n nQ y � x � Q� y � x .Ž . Ž .su 1 1 1 1p nŽ .min

Ž .Therefore, together with 5.8 we have the bound,
1

�C
n nP � � Q� � n .Ž . Ž .n x x1 1 p nŽ .min

Ž .n nThe construction of � and the fact that N sw � 1 implies thatx x1 1

Q� � n � x n � Q� y n ; N n sw � 1 � x n � P y n ; N n � 1 � P sw � � .Ž . Ž .ˆŽ . Ž .Ž .x 1 1 y 1 n 1 x n max1 1 1

Furthermore, since there are at most n2 � XX � distinct classes � n , it follows thatx1

1
n

n� O swv � P y ; � swv � C log nŽ . Ž . Ž .Ž .n n 1 y1 p nŽ .min

� P sw � � n�C
2 � XX � . �Ž .ˆn max
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Ž .Theorems 5.1 and 5.2 imply the assertion in Theorem 3.1 i . The assertion
Ž . Ž .in Theorem 3.1 ii follows from Theorem 3.1 i and along the lines of the proof

of Theorem 5.1; partition with the set D and use Lemmas 5.1 and 5.2. �n

Ž . Ž .PROOF OF THEOREM 3.2. Statements i and iii follow from the general
Ž . Ž .formula 5.10 , statement ii is an immediate consequence of Theorem 3.1.

Ž .We give here the analogon of assumption A1 for the estimated process
ˆ Žr . r , n 0, nŽ . �P . The r-step transition kernel P v, w � � X � v � X �n n P r�k 
i, n �k 
1, nn n n� Ž . Ž t, n .w for some r � � for the embedding Markov chain X of thet�k 
1, n t � �n

Ž .VLMC P can be characterized by the transition probabilities p �� � and then n
Ž .context function c � , that is,n

T v � w ; r , p �� � , c � � P Žr . v , wŽ . Ž . Ž .Ž .n n n

r�1
r� i�1� p x � c x w ,Ž .Ž .Ý Ł n r�i n 1

rr r a i�0Ž .x �XX , x w �v1 1 a�k 
1n

5.9Ž .

ˆ� � Ž .where a � r 
 w . For every n � �, the process Y � P is a VLMC.t, n t � � n
ˆŽr . r , nŽ . �We consider its r-step transition kernel P v, w � � Y � v �ˆ ˆn P r�k 
1, nn n0, n � Ž .Y � w for some r � � for the embedding Markov chainˆ�k 
1, nn

t, n ˆ ˆŽ .Y of the VLMC P of order k . This transition is characterizedˆt�k 
1, n t � � n nn

by

ˆ ˆŽr .T v � w ; r , P �� � , c � � P v , w , r � 1.Ž . Ž . Ž .ˆŽ .n n

ˆŽ .We now obtain an analogon of A1 for P . We consider setsn

A � � ; c �; � � c � .� 4Ž . Ž .ˆn n

k̂ nˆŽ .Thus by Theorem 3.1 i , k � k on A and for w, w� � XX ,n n n

ˆ ˆT v � w ; r , P �� � , c � � T v � w�; r , P �� � , c �Ž . Ž . Ž . Ž .ˆ ˆŽ . Ž .
� T v � w ; r , p �� � , c � � T v � w�; r , p �� � , c �Ž . Ž . Ž . Ž .Ž . Ž .n n n n

ˆ
 T v � w ; r , P �� � , c � � T v � w ; r , p �� � , c �Ž . Ž . Ž . Ž .Ž .Ž .n n n

ˆ
 T v � w�; r , P �� � , c � � T v � w�; r , p �� � , c � on A .Ž . Ž . Ž . Ž .Ž .Ž .n n n n

Ž . Ž Ž . Ž ..We now invoke A1 for T �� �; r, p �� � , c � about the true underlyingn n
process. For the other terms we use the finiteness of r and XX , together with
Ž . Ž .5.9 and Theorem 3.1 ii . We then obtain

Žr . Žr .ˆ ˆsup P v , w � P v , w�Ž . Ž .n n
k̂nv , w , w ��XX

ˆ� sup T v � w ; r , P �� � , c �Ž . Ž .ˆŽ .
k̂nv , w , w ��XX

5.10Ž .

ˆ�T v � w�; r , P �� � , c �Ž . Ž .ˆŽ .
� 1 � 2� 
 o 1 on A .Ž . n
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ˆ Ž .Thus on A , P as constructed in Theorem 3.2 i is uniquely determined,n n
stationary and �-mixing, with mixing coefficients bounded by

j
� j � 1 � � for all j � � on AŽ . Ž .P̂ nn

� Ž . Ž .�cf. Rajarshi 1990 , Lemma 2.1, or Doukhan 1994 .
Ž . � �However, by Theorem 3.1 i , � A � 1 as n � �, which completes then

Ž . Ž .proof of Theorem 3.2 i and iii . �

PROOF OF THEOREM 4.1. We usually suppress the index n when writing
X instead of X . Considert t, n

n�m
1
�1 t
m�1U � n � m 
 1 f X ,Ž . Ž .Ýn t

t�1

� �and denote by � � Cov U the covariance matrix of U .n n

Ž . Ž . Ž .LEMMA 5.4. Assume B1 with X � P satisfying A1 . Then:t, n t � � n

Ž .i There exists n � � such that n� is positive definite for all n � n ;0 n 0
Ž . Ž .ii For Z � NN 0, I ,v

�1�2 � �sup � � U � � � x � � Z � x � o 1 , n � �.Ž . Ž .n n n
vx��

Ž .PROOF. For every n � �, the process X is � -mixing whose mix-t, n t � � n
ing coefficients are bounded by

k5.11 sup � k � 1 � 2� for all k � �;Ž . Ž . Ž .n
n��

see Remark 3.7.
� Ž .�Bounding covariances in terms of mixing coefficients cf. Doukhan 1994

Ž . � 4and using the bound in 5.11 implies for i, j � 1, . . . , v .

5.12Ž .
n�1

m� 1 k
m�1 �1n � m 
 1 � � Cov f X , f X 
 O n .Ž . Ž . Ž .Ž . Ž .Ž .Ýi , jn i 0 j k
k��n
1

Ž . Ž .Hence, assertion i follows from the assumption in B1 .
Ž . Ž . Ž .Assertion i , assumption B1 and 5.12 allow us to write

�1�2 1�25.13 � � n � , sup max � � �.Ž . Ž . i , jn n n
1�i , j�vn��

Now write

n�m
1
�1�2 �1�2 t
m�1˜� U � � � n f X 1 
 o 1 ,Ž . Ž .Ž .Ž .Ýn n n n t

t�1

˜ t
m�1 t
m�1Ž . Ž Ž . .where f X � � f X � � .n t n t n
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Ž .By construction and 5.13 ,

m˜� f X � 0,Ž .n 1

n�m
1
�1�2 t
m�1˜Cov n f X � I n � � ,Ž .Ž .Ý n tž /

t�1
5.14Ž .

2
m˜sup � f X � �.Ž .n 1

n��

�1�2 n�m
1 ˜ t
m�1Ž . Ž .We can then apply Theorem 2.1 in Withers 1981 to n Ý f X .t�1 n t
� Ž . Ž . Ž .�The conditions version A or B ; note also the corrigendum 1983 are

Ž . Ž .easily verified by invoking the mixing bound in 5.11 and 5.14 . Thus,

n�m
1
�1�2 t
m�1˜n f X � NN 0, I ,Ž .Ž .Ý n t p v

t�1

Ž .and assertion ii follows by Polya’s theorem. �´

By the smoothness assumption about g we use a first-order Taylor expan-
sion,

1�2 1�2 ˜5.15 n T � g � � n Dg � U � � ,Ž . Ž . Ž .Ž . Ž .n n n n n

˜Ž . � Ž . � Ž . � �where Dg � � � g u �� u , 1 � i � w, 1 � j � v and � � � �i j i, j n n
� �U � � .n n

Ž . Ž . Ž .By 5.13 and Lemma 5.4 ii , U � � � o 1 , so thatn n P

˜Dg � � Dg � � o 1 , 1 � i � w , 1 � j � v.Ž . Ž .Ž .n n Pi , j

Ž . 1�2 1�2 � Ž .�This, together with 5.15 , the boundedness of n Ý use 5.12 andn
Ž .Lemma 5.4 ii implies

1�2sup � n T � g � � xŽ .Ž .n n
wx��5.16Ž .

1�2 1�2�� n � Dg � Z � x � o 1 , n � �,Ž . Ž .n n

Ž .where Z � NN 0, I .v
Ž . Ž .We are now going to show the bootstrap analog of 5.16 . By Theorem 3.2 i

Ž . Ž � .and iii , the bootstrap process X is with high probability stationaryt t � �
� Ž .and geometrically �-mixing with mixing coefficients denoted by � k �n

Ž . Ž . Ž � .� k from Theorem 3.2 iii . Note that the distribution of X dependsP̂ t t � �n

again on the sample size n.
� Ž .�1 n�m
1 ŽŽ .t
m�1. �Denote by U � n � m 
 1 Ý f X* and let � �n t�1 t n

� � � �Cov* U be the covariance matrix of U with respect to the bootstrapn n
distribution.
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LEMMA 5.5. Assume the conditions of Theorem 4.1. Then:

Ž . Ž � . Ž . Ž .i n � � � � o 1 n � � , i, j � 1, . . . , v.n n i, j P
Ž . � � �ii lim � n� is positive definite � 1.n�� n
Ž . Ž .iii For Z � NN 0, I ,v

�1�2� � � � �sup �* � U � � � x � � Z � x � o 1 , n � �.Ž . Ž . Ž .n n n P
vx��

� 4PROOF. For any i, j � 1, . . . , v ,
n�m � �km� 1 k
m�1�n � � Cov* f X* , f X* 1 �Ž . Ž . Ž .Ž . Ž .Ýi , j 0 kž /n i j ž /n � m 
 1k��n
m

M � �km� 1 k
m�1� Cov* f X* , f X* 1 �Ž . Ž .Ž . Ž .Ý 0 kž /i j ž /n � m 
 1k��M

5.17Ž .


 � ,n , M

where M is a finite constant.
�By well-known bounds of covariances in terms of mixing coefficients cf.

Ž .�Doukhan 1994 ,
�

�� �� � 2 const. � k .Ž .Ýn , M n
k�M
1

Ž .Therefore by Theorem 3.2 iii ,

� �5.18 � lim � � 0 � 1, n � �.Ž . n , M
M��

Ž .By Theorem 3.2 ii ,
d d d d5.19 max �* X* � x � � X � x � o 1 , d � �.Ž . Ž . Ž .1 1 1 1 P

ddx �XX1

This, the boundedness of f and the finiteness of M imply
M

m� 1 k
m�1Cov* f X* , f X*Ž . Ž .Ž . Ž .Ý 0 kž /i j
k��M

M
m� 1 k
m�1� Cov f X , f XŽ . Ž .Ž .Ý i 0 j k

k��M

5.20Ž .

� o 1 n � � .Ž . Ž .P

Ž . � Ž .�By the geometric �-mixing property of X see 5.11 and the bounded-t t � �

ness of f ,
M

M� 1 k
m�1Cov f X , f XŽ . Ž .Ž .Ý i 0 j k
k��M

�
m� 1 k
m�1� Cov f X , f XŽ . Ž .Ž .Ý i 0 j k

k���

5.21Ž .

� o 1 M � � .Ž . Ž .
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Ž . Ž . Ž . Ž . Ž .Thus, by 5.17 � 5.21 , we have shown assertion i . Assertion ii follows by i
Ž . Ž . Ž .and Lemma 5.4 i . Assertion iii can be proved as was Lemma 5.4 ii ; we now

Ž . Ž .invoke the mixing bound in Theorem 3.2 iii and use i . �

Ž . � �By 5.19 and the finiteness of XX we have,
m� m m m m5.22 � � � � f x �* X* � x � � X � x � o 1 ,Ž . Ž . Ž .Ž .Ý ž /1n n 1 1 1 1 P

mmx �XX1

and hence by the continuous differentiability of g,

� � �˜ ˜� � � ��* Dg � �Dg � �� �o 1 for any ��0 and � ��Ž . Ž .Ž .½ 5n n P n ni , j5.23Ž .
� �� �� U � � , 1 � i � w , 1 � j � v.n n

Ž . Ž .A first-order Taylor expansion, 5.23 , Lemma 5.5 iii and the boundedness of
� Ž .n� � O 1 implyn P

� �1�2 1�2 1�2sup �* n T � g � � x � � n � Dg � Z � xŽ . Ž .Ž .n n n n
wx��5.24Ž .
� o 1 , n � �,Ž .P

Ž .where Z � NN 0, I .v
Ž . Ž .By 5.16 and 5.24 we complete the proof of Theorem 4.1. �
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