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BENEATH THE NOISE, CHAOS1

BY STEVEN P. LALLEY

Purdue University

The problem of extracting a signal x from a noise-corrupted timen
series y � x � e is considered. The signal x is assumed to be gener-n n n n
ated by a discrete-time, deterministic, chaotic dynamical system F, in

nŽ .particular, x � F x , where the initial point x is assumed to lie in an 0 0
Ž .compact hyperbolic F-invariant set. It is shown that 1 if the noise

sequence e is Gaussian then it is impossible to consistently recover then
Ž .signal x , but 2 if the noise sequence consists of i.i.d. random vectorsn

uniformly bounded by a constant � � 0, then it is possible to recover the
signal x provided � � 5�, where � is a separation threshold for F. An
filtering algorithm for the latter situation is presented.

1. Introduction. Physical and numerical experiments carried out over
the past 30 or more years suggest that the phenomenon of deterministic
chaos is ubiquitous in physical systems. Experience has shown that inference

Žof the mathematical objects the differential equations, equilibrium mea-
.sures, Lyapunov exponents, etc. governing the dynamics of such systems

from time series data is a delicate problem even when this data is uncor-
� � � �rupted by noise. See 5 and 6 for an extensive review and bibliography.

Inference from noisy data is therefore bound to be doubly difficult. Although
Žvarious ad hoc ‘‘noise reduction’’ algorithms have been proposed some seem-

ingly quite effective when tested on computer-generated data from low-di-
� � � �.mensional chaotic systems, e.g., 15 and 10 , their theoretical properties are

largely unknown.
The purpose of this paper is to address the following basic question: Is it

� 4possible to consistently recover a ‘‘signal’’ x generated by an Axiom An n� �

system from a time series of the form

1 y � x � e ,Ž . n n n

where e is observational noise? A positive answer would essentially reducen
the problem of inference from noisy time series data to that of inference from
nonnoisy data. The following scenario for the signal will be considered here:

2 x � F1 x � F n x ,Ž . Ž . Ž .n n�1 0

where F is a C 2 diffeomorphism and x is a point lying in a hyperbolic0
Žinvariant set or in the basin of attraction of a hyperbolic attractor see

.Section 2 for definitions and examples . Our main result is that the possibility
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of consistent signal extraction depends on the nature and amplitude of the
noise. If the noise e is uniformly bounded and the bound is below a certainn
threshold � then consistent signal extraction is possible, but if the noise is
unbounded, in particular Gaussian, then consistent signal extraction is im-

Ž 2 .possible even when the L -norm of e is far below the threshold � .n
� �In a companion paper 12 we shall consider a different but related

Žscenario for the signal x , which is technically and perhaps also conceptu-n
.ally more difficult but probably of greater practical importance. In this

scenario, the underlying dynamical system is a topologically mixing Axiom A
t tŽ .flow F , but observations on the orbit x � F x are made only at integert 0

times n. It will be shown that the dichotomy between bounded and un-
Žbounded noise persists, and an algorithm for noise removal more compli-

.cated than that given in this paper will be presented.
We must emphasize at the outset that the results of this and the compan-

ion paper, and in particular the type of asymptotics considered, may not be
relevant or appropriate for all signal extraction problems connected with
noisy data from chaotic dynamical systems. In various circumstances, more
or less will be known a priori about the dynamical system than we assume
here. In many circumstances, inference about the dynamics F t and�or the
basic set � will be of greater importance than extraction of the signal xn
itself. Finally, when dealing with flows F t rather than diffeomorphisms, the
experimenter may sometimes be able to control the frequency of observation.

2. Background: attractors, hyperbolicity and Axiom A.

2.1. Invariant sets and attractors. The model for a smooth discrete-time
2 Ž 2dynamical system is a C diffeomorphism F of a phase space M. A C

diffeomorphism is a bijective mapping F such that both F and F�1 are twice
� �.continuously differentiable; see 8 . For simplicity, we take M to be an open

d � 4subset of � . The orbits of the system are the sequences x such thatn
Ž .x � F x � n. A compact subset � of the phase space will be calledn�1 n

�1Ž .F-invariant if F � � �, so that the restriction F � � of F to � is a
homeomorphism of �. Especially important among the invariant sets are
attractors, which arise when the phase space contains a relatively compact

Ž .open set � such that closure F� 	 �. If there exists such a set �, the set
� � � F n� is a nonempty F-invariant compact set, called an attractorn� 0
for the diffeomorphism, and � is contained in its basin of attraction. All

nŽ .orbits x � F x beginning at points x � � converge to �.n 0 0

2.2. Example: Smale’s solenoid mapping. The following example, Smale’s
solenoid mapping, shows that attractors may have a complex structure. The
set � is a solid torus in �3 centered at the origin that may be parametrized

� . � � � 4by a real coordinate � � 0, 2� and a complex coordinate z � z � 1 .
ŽPicture the torus as a solid of revolution obtained by rotating the solid disc
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1� � � 4 . Ž .z � 1 once around the origin. Fix 	 � 0, , and define2

3 F � , z � 2� , 	 z � ei��2 ,Ž . Ž . Ž .	

where 2� is reduced mod 2� if � 
 � . In geometric terms, the mapping F is	

Ž . Ž .obtained as follows: 1 Cut the torus and unroll it to get a solid cylinder. 2
Stretch the cylinder lengthwise by a factor of two, then compress the result-

Ž .ing cylinder in the directions orthogonal to its length by a factor of 	 . 3
Wrap the resulting long, thin cylinder twice around the origin and place it so
that it is entirely inside the original solid torus and reattach the two ends.

ŽSee Figure 1. Note that 	 � 1�2 keeps the two ‘‘branch’’ cylinders from
intersecting, and the centering term ei��2 allows the branch cylinder to ‘‘roll’’

.completely around once as � varies from �� to �� .
For each 	 , the diffeomorphism F has an attractor � 	 � whose intersec-	

�Ž i� . 4tion with any ‘‘slice’’ � � e , z : � � 
 is a Cantor set; see Figure 2. For


each � � � � � there is a smooth curve � through � transverse to � that
 � 


is contained in �. The homeomorphism F � � multiplies distances locally	

� �along each � by 2, and multiplies distances in � � � by 	 . See 4 , Section� 


2.5, for helpful diagrams and further details.

2.3. Hyperbolicity and orbit separation. A compact invariant set � is
called hyperbolic if at every point � � � there is a splitting of � d as a direct
sum Eu � Es of subspaces in such a way that the splitting depends on �
continuously, and for all n 
 1,

� n � n � � u4 DF v 
 c 
 v � v � E ,Ž . u

� n � �n � � s5 DF v 
 c 
 v � v � E ,Ž . s

with suitable constants 0 � c , c � � and 
 � 1. Here DF n denotes thes u
matrix of first partial derivatives of F n. Roughly speaking, the spaces Eu

Ž s. n Ž .E consist of those directions in which F expands shrinks distances
locally for large n. The solenoid attractor is hyperbolic: for � � �, Es is the
two-dimensional space of vectors pointing into the slice � containing � , and


FIG. 1.
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FIG. 2.

Eu is the one-dimensional space of vectors pointing in the direction of the
curve � . For our purposes, hyperbolicity is important only insofar as it�

implies the orbit separation property: orbits of nearby points diverge rapidly.
ŽIn particular, there exist constants 1 � � � 0 which we shall call a separa-

. � �tion threshold and C � 0 such that if 0 � x � x� � � for two points x, x� �
� then

� n n � � � � �6 F x � F x� � � for some n 
 �C log x � x� .Ž . Ž . Ž .
Note: The existence of a separation threshold follows from the Hirsch�Pugh

Ž� � .theorem 7 , Theorem 5.2.8 , which asserts the existence of stable and
unstable manifolds at each point of a hyperbolic invariant set. The exponen-
tial rates of orbit separation are the Lyapunov exponents of the system; see,

� �e.g., 5 for a thorough discussion. The Lyapunov exponents will play no role
Žin our results but may be important in designing more efficient filters; see

.the preliminary discussion in Section 3.1.5 .

2.4. Smale’s Axiom A. A compact hyperbolic invariant set � will be called
Ž . Ž .an Axiom A basic set if i periodic points are dense in �, and ii there exists

� nŽ .4x � � such that for every m 
 0 the forward orbit F x is dense in �.n
 m
Ž � �See 2 for the standard definition. A periodic point x is a point whose orbit

nŽ . .is periodic, i.e., such that for some n � �, F x � x. It is called topologi-
cally mixing if for every pair U, V of open subsets U, V there exists n�
sufficiently large that for every n � n�,

F n U � V � �.Ž .
It is not difficult to verify that the solenoid is a topologically mixing Axiom A
attractor.
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There are some celebrated theoretical results in dynamical systems theory
that suggest the importance of Axiom A systems, and which we take as
Ž .partial justification for focusing our attention on these. First, Axiom A

Ž � � .systems are structurally stable see, e.g., 16 , Corollary 8.24 ; a small pertur-
bation of a diffeomorphism F with an Axiom A basic set � results in another
diffeomorphism F* with an Axiom A basic set �* near �, and the restriction
of F* to �* is topologically conjugate to the restriction of F to �, that is,
there is a homeomorphism �: � � �* such that

F*�� � � � F .

Second, according to the Birkhoff�Smale theorem, if a diffeomorphism F has
a hyperbolic periodic point whose stable and unstable manifolds intersect

Žtransversally, then this point must be contained in an Axiom A basic set a
. Ž � �horseshoe . See 7 , Section 5.3 for definitions and a precise statement; also

� � � � .14 , Chapter 2, and 17 . It is known that such hyperbolic periodic points
Ž � �.occur in a number of physically important dynamical systems see, e.g., 14 .

The ergodic theory of Axiom A basic sets and attractors is well understood;
� �see 2 for a thorough exposition. Of special importance in the study of Axiom

Ž .A attractors is the existence of a unique strongly mixing F-invariant
Žprobability measure ��, the so-called SRB measure for Sinai, Ruelle and

.Bowen , that is supported by � and has the following property: for every
Žcontinuous function �: � � � and for a.e. x � � relative to Lebesgue

.measure on � ,
n1

k7 lim � F x � � d��.Ž . Ž .Ž .Ý Hnn�� k�0

It is the SRB measure that one would expect to ‘‘see’’ in time series data. For
our purposes, the essential fact about the SRB measure is that it is a Gibbs

� �state in the sense of 2 , Chapter 1. More background on Axiom A diffeomor-
phisms, Gibbs states and SRB measures, of a more technical nature, is given
in the Appendix. This additional material is needed for the proofs, but not the
statements, of the results in the following section.

3. Signal extraction.

3.1. Bounded noise. Consider now the problem of reconstructing an orbit
� 4x from a noise-corrupted time series y � x � e . The sequence x isn n n n n

Ž .generated by 2 , and we assume that the initial point x is either an element0
Ž .of a compact hyperbolic invariant set or in the basin of attraction of a

hyperbolic attractor. We first consider the problem of noise removal under the
hypothesis that the noise is uniformly bounded.

� 4 ŽHYPOTHESIS 1. Conditional on the sequence x equivalently, conditionaln
.on x the random vectors e are independent, uniformly bounded by a0 n

constant � � 0, and have expectations

8 E e � x � 0.Ž . Ž .n 0
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3.1.1. Smoothing Algorithm D. This algorithm is designed for time series
Ž .produced by a diffeomorphism hence the D , with noise satisfying Hypothesis

1, and assumes that a suitable bound � � 0 for the noise is known a priori.
� 4The algorithm takes as input a finite sequence y and produces asn 0 
 n
 m

� 4output a sequence x of the same length that will approximate theˆn 0 
 n
 m
� 4unobservable signal x . Let � be an increasing sequence of integersn 0 
 n
 m m

such that
�m

9 lim � � � and lim � 0;Ž . m log mm�� m��

for example, � � log m�log log m. For each integer � � n � m � � , de-m m m
� 4fine A to be the set of indices � � 0, 1, . . . , m such thatn

� �10 max y � y � 3� ,Ž . ��j n�j
� �j 
�m

� �with the convention that y � y � � if either of i or j is not in the rangej i
� �0, m . Observe that n � A , so A is nonempty. For n 
 � or n 
 m � � ,n n m m

� 4define A to be the singleton n . In rough terms, A consists of the indices ofn n
those points in the time series whose orbits ‘‘shadow’’ the orbit of x for �n m

� �time units. In Lemma 1 we will show that � � A implies that x � x isn � n
small. Thus, even though the values x are unobservable, neighboring pointsj
may still be picked out by virtue of having similar orbits. Now define

1
11 x � y .Ž . ˆ Ýn �� �An ��An

THEOREM 1. Assume that x is either an element of a compact hyperbolic0
invariant set � or an element of the basin of attraction of a compact hyper-
bolic attractor � and assume that the noise sequence e satisfies Hypothesis 1.n
Let � be a separation threshold for the invariant set. If 5� � �, then for every
� � 0,

m
�1 � �12 lim P m 1 x � x 
 � 
 � � 0.Ž . � 4ˆÝ n n½ 5m�� n�0

� 4Theorem 1 is valid for every orbit x contained in �, but the conclu-n n
 0
sion is only a weak convergence statement. For ‘‘generic’’ orbits of an Axiom A
basic set, the conclusion can be strengthened to an a.s. convergence state-
ment.

THEOREM 2. Assume that x is chosen at random from a Gibbs state ��0
supported by an Axiom A basic set �, and assume that the noise sequence en
satisfies Hypothesis 1. Let � be a separation threshold for �. If 5� � � then
with probability 1,

� �13 lim max x � x � 0.Ž . ˆn n
m�� � �n�m��m m
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Ž .The most important case probably is when � is an Axiom A attractor and
�� is the SRB measure. In practice, when dealing with an attractor, the
initial point might be chosen at random from an absolutely continuous
distribution on the basin of attraction �, and an initial segment of the orbit
would then be discarded. Theorem 2 remains valid under this hypothesis.

Ž .Since the almost sure convergence statement 13 holds for points x0
chosen at random from any F-invariant Gibbs state and since Gibbs states
are dense in the space of ergodic F-invariant probability measures on �, one
might at first suspect that Theorems 1 and 2 might be strengthened to the

Ž .stronger statement that 13 holds for every x in �. This is false: it can be0
Ž .shown that every Axiom A basic set contains orbits for which 13 fails.

Theorems 1 and 2 will be proved in Sections 5 and 6 below, respectively. In
both cases, only the proofs for orbits x contained in � will be given, as then
proofs for orbits initiated in the basin of attraction are nearly identical. The
proof of Theorem 1 is relatively elementary, but that of Theorem 2 requires
deeper results from the ergodic theory of Axiom A basic sets, which are
collected in the Appendix.

3.1.2. Other noise reduction schemes. The problem of noise reduction has
� � � � � � � �been studied by a number of authors; see 1 , Chapter 7, 3 , 9 and 10 for

reviews and further pointers to the recent literature. The methods proposed
Ž .in these papers can be partitioned into two broad classes: 1 those that

Ž .attempt to estimate F using local linear or polynomial maps, and then
Ž .replace the series y by a nearby orbit of the estimated map and 2 thosen

that use a principal-components decomposition of the autocovariance matrix,
usually removing the smaller principal components. Smoothing Algorithm D
does not fit into either category. It seems to be the first proposed method that

Ždirectly exploits the orbit separation property. It is also the first proposed
method for which rigorous results concerning convergence properties are

.known. It may naturally be expected that the usefulness of Smoothing
Algorithm D will be limited to those dynamical systems with sensitive
dependence on initial conditions, as it depends on orbit separation to ‘‘recog-
nize’’ nearby points. However, these are precisely the systems that many
experimenters expect to see. Comparison of the performance of Smoothing
Algorithm D with the performance of various other methods will be a
worthwhile and interesting project.

3.1.3. Implementation. One might expect to use filters of the type de-
scribed above on time series of length m � 106 or more, and so from a
practical standpoint computational efficiency may be as important as statisti-
cal efficiency. Although implementation of Smoothing Algorithm D in the

Ž 2 .form described above may require O m comparisons, there are simple
Ž .modifications that can be implemented by O m log m -step algorithms. In

� �perhaps the simplest such modification, the indices n � 1, m are sorted into
bins B indexed by integer vectors v, using the following rule: n � B if andv v
only if v is the integer vector whose entries are the integer parts of the
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Žentries of 2 y �3� . Note that if two indices n, n� are in the same bin, then,n
� � . � �by the triangle inequality, y � y � 3� . The indices n � 1, m are thenn n�

resorted into bins B� indexed by arrays w of integer vectors of length 2� ,w m
� � �with n � B if and only if for each j 
 � the index n � j � B , where vw m v jj

is the jth entry of w. The nth entry x of the smoothed sequence is then˜n
gotten by averaging the vectors y over the indices � in the bin B� contain-� w

Žing n. Note that the sets B are, in general, not the same as the sets An n
.used in Smoothing Algorithm D above.

How should one choose the window size � and the parameter � ? For am
6 Ž .time series of length m � 10 , the condition 9 suggests that � should bem

no larger than ln 106 � 14. There are not many integers between 1 and 14, so
it will usually be easy to run the algorithm for each possible choice, starting
at � � 1, and stopping when � gets so large that the bins have fewer than

Ž .five or ten ? indices each. One should attempt to use � � ��5, where � is a
separation threshold, and hope that the noise values e are really smallern
than this. For the separation threshold, one could use half the diameter of the
attractor, because if x , x� are orbits with x , x� independently chosen fromn n 0 0
a mixing, invariant probability measure with support �, then

� � �14 lim max x � x � diam �Ž . Ž .n n
m�� 0
n
m

Ž .with probability 1. If the noise values e really are smaller than diam � �10,n
then for any x chosen from an ergodic, invariant probability measure with0
support �,

5 � �15 lim max y � y 
 diam �Ž . Ž .n �6
m�� 0
n , �
m

with probability 1, by the ergodic theorem. This suggests that one might
� 4choose � to be 5�12 times the diameter of the point set y .n 0 
 n
 m

3.1.4. Consequences for Axiom A attractors. By the ergodic theorem, it is
almost surely the case that the empirical distribution of the points x ,1
x , . . . , x converges weakly to the Gibbs state ��. Therefore, by Theorem 2,2 m
the empirical distribution of the points x , x , . . . , x converges weakly toˆ ˆ ˆ1 2 m
��. Since F is continuous and the support of �� is dense in �, the set of

Ž .ordered pairs x , x , where � � n � m � � , converges in Hausdorffˆ ˆn n�1 m m
metric to the graph of F � �. Thus, one can in effect reconstruct the basic set
� and the mapping F � �. Various other quantities of dynamical importance,
for example, certain measures of fractal dimension of �, may also be consis-
tently estimated using the filtered sequence x . We shall leave a thoroughˆn
discussion of such estimation problems to a subsequent paper.

3.1.5. Second stage smoothing. There is, obviously, a bias-variance trade-
off in the choice of the sequence � used in the smoothing algorithm ofm
Section 3.1.1. Decreasing the rate of growth of � increases the number ofm

Ž .points in A and therefore decreases the variance of the average 11 ;n
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however, the values of x included in the average will then tend to be farther�

from x , therefore increasing the bias. But there is an even larger impedi-n
ment to the accuracy of the algorithm that derives from the fact that the rate
of orbital separation depends on the direction of the difference between initial

� � Ž .4points. In particular, the dynamical distance between orbit segments F x �

� � Ž .4and F x� will tend to be smaller when x� � x points approximately in a�

‘‘Lyapunov direction’’ corresponding to a smaller Lyapunov exponent. Thus,
� 4 Ž .for most n it will be the case that the points x will lie in a very thin� � � An

� �ellipsoid and that many � for which x � x is relatively small will be� n
excluded from A .n

This peculiarity might, in principle, be exploited to obtain more accurate
Ž .estimates of the points x . Fix 
 � 0, 1 , and for each 1 
 n 
 m let B ben n


 � � � �the set consisting of those m integers � � 1, m for which x � x isˆ ˆ� n
smallest. Define

16 x � m�
 y .Ž . ˜ Ýn �
��Bn

We conjecture that, with a suitable choice of 
, use of this second-stage filter
might considerably improve the accuracy of estimation of x .n

3.2. Gaussian noise. Hypothesis 1 is quite a bit more stringent than one
would like. However, if the errors are unbounded, even Gaussian, then it is
impossible to consistently reconstruct the signal x , or even a part of it, fromn
a long stretch of the time series y . In fact, it is impossible to infer even an
single value x of the signal from the entire two-sided time series y � x �0 n n
e .n

� 4 ŽHYPOTHESIS 2. Conditional on the sequence x equivalently, conditionaln
.on x the random vectors e are independent and Gaussian with mean-vector0 n

0 and nonsingular covariance matrix �.

THEOREM 3. Assume that x is chosen at random from a Gibbs state ��0
supported by an Axiom A basic set �. If the errors e satisfy Hypothesis 2n

Ž� 4 .then there is no measurable function �� � �� y such thatn n� �

17 x � �� with probability 1.Ž . 0

The proof, which will be given in Section 4, will show that orbit reconstruc-
Žtion is impossible even if the macroscopic features of the dynamics the

.diffeomorphism F, the attractor � and the SRB measure �� are known a
priori. Furthermore, it should be clear from the proof that the result extends
to a large class of error distributions. We shall refrain, however, from trying
to state and prove an extremely general form of the result.

� 4Although it is not possible to consistently recover the signal x from then
time series y when the noise e is Gaussian, it is nevertheless possible ton n
consistently estimate important features of the dynamics provided the covari-
ance matrix � is known. In particular, Birkhoff’s ergodic theorem implies
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Ž .that for every polynomial g x in d variables,
m1

18 lim g y � g � � � d�� � � � d� ,Ž . Ž . Ž . Ž . Ž .Ý H Hi 0, �
dmm�� � �i�1

where � is the Gaussian density with parameters 0, �. This implies that0, �

the moments of �� can be consistently estimated; since �� has compact
support, it is determined by its moments, and so �� can be consistently

Ž . Ž Ž ..estimated in the weak topology . Similarly, the joint distribution of X, F X ,
where X 	 ��, may also be consistently estimated. Since the support of this
latter distribution is the graph of F � �, this too may be recovered.

Unfortunately, proving the existence of consistent estimators is not the
same as the construction of good or useful estimators. The substantial
problem of inference about the dynamics of F from time series data y � xn n
� e when the noise e is Gaussian will be left to another paper.n n

4. Proof of Theorem 3.

PROOF. The proof that there is no such �� uses the existence of homo-
clinic pairs; see Section A.4 in the Appendix. By Proposition 2 of the Ap-
pendix, on some probability space are defined random vectors x and x� ,0 0

Ž .each with marginal distribution ��, such that a with positive probability,
� Ž . �x � x and b with probability 1, x and x constitute a homoclinic pair;0 0 0 0

that is, for some 	 � 0,
� �n �� �19 lim 1 � 	 x � x � 0,Ž . Ž . n n

� �n ��

nŽ . � nŽ � .where x � F x and x � F x . We may assume that the probabilityn 0 n 0
space also accommodates a sequence e of Gaussian random vectors that aren
jointly independent of x and x� . Define y � x � e and y� � x� � e ; then0 0 n n n n n n

� � 4conditional on the values of x and x , the sequences y � y and0 0 n n� �

� � 4y� � y have Gaussian distributions with the same autocovariance andn n� �

� 4 � � 4 Ž . Ž .mean vector sequences x , x satisfying 19 . Since 19 impliesn n� � n n� �

� � � 2 Ž � �that Ý x � x � �, a theorem of Kakutani see, for instance, 11 ,n� � n n
.Section II.2, Theorem 2.1 and Example 3 implies that the conditional distri-

butions of the sequences y and y�, given x and x� , are mutually absolutely0 0
Ž d .� dcontinuous. Consequently, for any Borel measurable function ��: � � � ,

Ž . Ž .the conditional distributions of the random vectors �� y and �� y� , given
x and x� , are also mutually absolutely continuous. If there were a function0 0

Ž . Ž .�� � �� y such that x � �� y almost surely, then it would also be the case0
� Ž .that x � �� y� almost surely, and so the mutual absolute continuity of the0

conditional distributions would then imply that x� � x almost surely, a0 0
contradiction. �

5. Proof of Theorem 1. In essence, the proof of Theorem 1 consists of
Ž . Žshowing 1 that the sets A are large so that averaging over A will get ridn n

. Ž . � �of the errors ; 2 that the sets A contain only indices � such that x � xn n �
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Ž .is small and 3 that although the sets A and the error random vectors en �

Žare not a priori independent since the sets A are defined using the valuesn
.y , the dependence may be circumvented in the averaging. It is only for task�

Ž .2 that hyperbolicity of the invariant set � is needed.

LEMMA 1. There exists a constant C � 0 such that if � � A thenn

� � � 420 x � x 
 exp �� �C .Ž . n � m

PROOF. This is a consequence of the orbit separation property, which in
turn follows from the hyperbolicity of �. By hypothesis, 5� � �, where � is a

� Ž .�separation threshold for the attractor see inequality 6 , and by Hypothesis
� � � Ž . �1, e � � . Consequently, if � � A i.e., if inequality 10 holds , thenn n

� �max x � x � 5� � � .n� j ��j
� �j 
�m

Ž . Ž .But this cannot hold unless 20 is true, by the orbit separation property 6
� Ž .�the constant C being the same as the constant C in 6 . Thus, � � An

Ž .implies 20 . �

LEMMA 2. For every � � 0,

m1
1��� �21 lim 1 A 
 m � 0.Ž . � 4Ý nmm�� n�0

Ž . Ž .PROOF. This follows from the hypothesis 9 that � � o log m as m � �,m
by a routine counting argument. Since � is compact, it has a finite subset B

Ž . 2 � m�1that is ��2-dense. Since � � o log m , the cardinality N of the set Bm m
Ž .of length- 2� � 1 sequences with entries in B satisfiesm

22 N � o m� as m � �Ž . Ž .m

for every � � 0. If B is ��2-dense in �, then for every x � �, there is at least
Ž . 2 � m�1one element � � � , � , . . . , � of B that ��2-shadows the orbit0 1 2 � m

� nŽ .4segment F x , that is, such that�� 
 n
 �m m

� n � � �23 F x � � � ��2 � n 
 � .Ž . Ž . n�� mm

2 � m�1 Ž .For each � � B , define B � to be the set of all indices � �m
� 4 Ž .0, 1, 2, . . . , m such that 23 holds with x � x . Every index � is contained in�

Ž .at least one of the sets B � . If two indices n, � both lie in the same setm
Ž . Ž . � �B � , then by 23 and the triangle inequality, x � x � � and hencem n�j ��j

� � � � Ž .y � y � 3� for all j 
 � ; thus, � � A . Therefore, to prove 21 itn� j ��j m n
Ž .suffices to show that for large m most of the indices � lie in sets B � withm

1�� Ž . Ž . Ž � .at least m elements. However, by 22 , the number of sets B � is o m .m
Ž .Consequently, the number of indices � that are contained in sets B � ofm

1�� Ž � . 1�� Ž .cardinality less than m cannot be larger than o m m � o m . �
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PROOF OF THEOREM 1. The estimate x is obtained by averaging theˆn
Ž .vectors y over the indices � � A 11 . Since y � x � e , we have� n � � �

1 1
24 x � x � e � x � x .Ž . Ž .ˆ Ý Ýn n � � n� � � �A An n��A ��An n

Lemma 1 implies that the latter average converges to zero uniformly for
� � n � m � � as m � �. Thus, it suffices to show that for most of them m
indices n the average of the errors e for � � A is small, with probability� n
approaching 1 as m � �. If the random vectors e were independent of the�

index sets A then in view of Lemma 2, the result would follow immediatelyn
from the Chebyshev inequality. However, the random vectors e are not�

independent of the index sets A ; thus, some delicacy is required.n
For each index n, define A� to be the set of all indices � such that � � An n

� � � � � Ž .and n � � 
 2� ; note that A is no larger than 4� � 1 � o log m , so onm n m
� � 3�4 �the event that A � m the indices � � A have a negligible effect on then n

� � � �average Ý e � A . For each index n and each integer i � 1, 2� � 1 ,� � A � n mn

define Ai to be the set of all indices � � A� such that � � A and � 
n n n
i mod 2� � 1. Obviously, the sets A� , A1 , A2 , . . . , A�m are pairwise disjoint,m n n n n
and

2� �1m
� i25 A � A � A .Ž . �n n nž /i�1

� � iFor each integer i � 1, 2� � 1 , the set A is independent of the collec-m n
� 4tion of random vectors e indexed by integers � 
 i mod 2� � 1. To see� m

this, consider an integer � 
 i mod 2� � 1. The event � � Ai is completelym n
� �determined by the values of y and y for j 
 � ; furthermore, no othern� j ��j m

i � �event � � � A , where � � � � , is influenced by the values of y for j 
 �n ��j m
Ž .this is the point of partitioning the indices � into blocks of size 2� � 1 .m
Moreover, the event � � Ai is not affected by the value of e , because ifn �

� � � �y � y � 3� for all 1 
 j 
 � , then by the same argument as in the��j n�j m
� � Ž . � �proof of Lemma 1, x � x � ��2 provided m is large and so y � y � 3�n � n �

regardless of the values of e and e . Thus, the composition of the set Ai cann � n
� 4be determined without reference to the values of the random vectors e�

indexed by integers � 
 i mod 2� � 1.m
For each index n, the sets Ai may be partitioned as II � TT, where IIn

i '� �consists of the special index � and those indices i for which A � m , andn
TT consists of the remaining indices. For each i � TT, Chebyshev’s inequality
implies that for any � � 0,

i i 2 i 2 2 2'� � � �26 P e A � � A 
 � � A � 
 � � m � ,Ž . Ž .Ý � n n n� 0i��An

since the random vectors e indexed by � � Ai are independent of Ai , by the� n n
preceding paragraph. Since there are no more than 4� � 2 elements of II,m
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i '� �and A � m for each i � II,n

'27 e 
 4� � 2 m � .Ž . Ž .Ý Ý � m
ii�II ��An

� � 3�4 Ž . 1�4Consequently, if A 
 m and m is sufficiently large that 4� � 2 �mn m
� � � �� ��� then the event Ý e � A � 2� is contained in the union over� � A � nn

� � � i �ii � TT of the events Ý e � � A . It therefore follows from inequality� � A � nn
Ž .26 that

3�4 2 2'� � � �P e A � 2� A 
 m 
 2� � 1 � � m � .Ž . Ž .Ý � n n mž /��An

Together with Lemma 2, this implies that
m

� �28 P e A � 2� � o m ,Ž . Ž .Ý Ý � n½ 5
n�0 ��An

Ž .which, in view of Lemma 1, proves 12 . �

6. Proof of Theorem 2. The proof of Theorem 2 differs from that of
Ž .Theorem 1 in two respects: 1 Lemma 2 must be replaced by the stronger

statement that the cardinality of A is large for every index n between �n m
Ž .and m � � , and 2 Chebyshev’s inequality must be replaced by an exponen-m

tial large deviations probability inequality. The latter change is relatively
minor; the former, however, requires hard results from the ergodic theory of
Gibbs states on Axiom A basic sets. See the Appendix for a resume of the

� �most important definitions and facts, and 2 for a detailed exposition of the
theory.

Assume that � is an Axiom A basic set for F, that �� is a Gibbs state for
Ž .F supported by � see Section A.3 for the definition and basic properties , and

that the initial point x of the orbit x is distributed in � according to ��.0 n

LEMMA 3. For every � � 0, all sufficiently large m and all integers n �
Ž .� , m � � ,m m

� � 1�4� �� 429 P A 
 m 
 exp �m .Ž . Ž .n

PROOF. The basic set � admits a Markov partition MM of diameter less
Ž . �than � see Section A.2 below . Let z , z � � be points with orbits z �0 0 j

jŽ . � jŽ � . � 4 � � 4 ŽF z and z � F z and itineraries i and i relative to the Markov0 j 0 j j
. � � � � � �partition MM , respectively. If i � i for all j 
 � , then z � z � � for allj j m j j

� �j 
 � , since the diameters of the sets G of MM are less than � . Conse-m i
quently, if x and x are two points on the orbit of x � x with itinerariesn � 0
� 4 � � 4 � � � � � �i , i that coincide for j 
 � , then y � y � 3� for all j 
 � , andj j m n�j ��j m

Ž .so � � A . Thus, to prove the inequality 29 it suffices to prove that for everyn
� 4finite itinerary i � i of length 2� � 1, the probability that fewerj � j � 
 � mm

1�4� � 4than m of the points x share the itinerary i is smaller thann 1
 n
 m
� �4exp �m .
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Ž .Let I be the doubly infinite itinerary of a random point of � with
distribution ��. Because �� is a Gibbs state, there exists a constant 
 � 0

�and an integer L, both independent of m, such that the following is true see
Ž . Ž . �inequalities 38 and 39 of the Appendix : for any infinite itinerary i and any

finite itinerary i* of length 2� � 1,m

30 P I � i� � 1 
 n 
 2� � 1 � I � i � n 
 0 
 
 2 � m�1 .Ž . Ž .L�n n m n n

Thus, if the random itinerary I is broken up into segments of length
L � 2� � 1, each segment will provide an opportunity for the letters i* tom

2 � m�1 Ž .occur with success probability at least 
 . Hence, if N i* is the number
Ž .of times that the finite string i* occurs in the first m entries of I, then N i*

�� Ž .��stochastically dominates the sum of k � m� L � 2� � 1 i.i.d. Bernoullim
2 � m�1 Ž .random variables with success parameter 
 . Since � � o log m , form

sufficiently large m, this success probability is, for any � � 0, eventually
larger than m�� , and furthermore k 
 m1��. It follows that the expectation
of the sum is larger than m1�2 �. Consequently, by a very crude probability
inequality for sums of independent Bernoulli random variables,

1�4� � � 431 P N i* 
 m 
 exp �m . �� 4Ž . Ž .

LEMMA 4. With probability 1,

1
32 lim max e � 0.Ž . Ý �� �Am�� � �n�m��m m n ��An

PROOF. The proof will use the following standard large deviations proba-
bility estimate for sums of independent random variables: if � , � , . . . are1 2

Ž .independent random variables or vectors uniformly bounded by a constant
Ž .� � � and if E� � 0 for every j, then for every � � 0 there exists � � � �, �j

� 0 such that for all sufficiently large n,

n1
� 433 P � 
 � 
 exp �n� .Ž . Ý j½ 5n j�1

As in the proof of Theorem 1, the set A may be decomposed as then
� i Ž .disjoint union of the sets A and A ; see 25 . Recall that for each i the setn n

i � 4A is independent of the collection of random vectors e indexed by integersn �

� 
 i mod 2� � 1. Recall also that the indices �, i may be partitioned asm
II � TT, where II consists of the special index � and those indices i for which

i '� �A � m , and II consists of the remaining indices. For each i � TT, the largen
Ž .deviations inequality 33 implies that for any � � 0 and all sufficiently large

m,

1
i i '� �34 P e � � A 
 exp �� A 
 exp �� m� 4Ž . � 4Ý � n ni� �Až /in ��An
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for a constant � � 0 depending on � and � but not on m. Now for sufficiently
large m,

3�4 i� � � � � �35 e � 2� A 	 A 
 m � e � � A .Ž . � 4Ý � Ý� n n � n½ 5 ½ 5ž /i��A i�TT ��An n

Ž .Consequently, by Lemma 3 and inequality 34 , for all large m and � � n �m
m � � ,m

1
1�16' � 436 P e � 2� 
 2� � 1 exp �� m � exp �m .� 4Ž . Ž .Ý � m� �ž /A in ��An

Since the series Ý me�a m 	

is summable for any values of a � 0 and 	 � 0,m
Ž .the result 32 follows from the Borel�Cantelli lemma. �

Theorem 2 follows immediately from Lemmas 3 and 4.

APPENDIX

Markov partitions for Axiom A basic sets.

A.1. Example: Smale’s solenoid. In this example there is a simple Markov
partition, and the resulting ‘‘symbolic dynamics’’ is relatively transparent.

Ž .Partition the attractor � or its basin of attraction � into two sets,

G � � , z : 0 
 � 
 � ,� 4Ž .0

G � � , z : � 
 � 
 2� .� 4Ž .1

ŽThis isn’t really a partition in the usual sense of the word, since the sets
have nonempty intersection, nor would Markov understand why his name is

.attached, but it is called a Markov partition anyway. For any point x � �,
� 4define an itinerary of x to be a doubly infinite sequence i � i of 0’s andn n� �

nŽ .1’s such that F x � G for each integer n. Observe that if i is an itineraryin
Ž .of x � � , z then i i i . . . is a binary expansion of ��2� ; moreover, if0 1 2

x � � for some particular cross-sectional slice � then the value of i
 
 �1
Ž .indicates which of the two ‘‘first generation’’ circles see Figure 2 contains x,

and i i ��� i determines which of the 2n ‘‘nth generation’’ circles�n �n�1 �1
Ž .contains x. With this in mind, it is not difficult to see that 1 every infinite
Ž .sequence of 0’s and 1’s is an itinerary of a unique x � �, and 2 for ��-a.e. x

there is only one itinerary. The projection from sequence space to �
Ž .semi conjugates the forward shift operator on sequence space to the solenoid

Žmapping F . In fact, Smale invented the solenoid mapping for just this	

. � �reason. See 4 , Chapter 2, for further details concerning this example.

A.2. Markov partitions and symbolic dynamics. Every Axiom A basic set
admits Markov partitions of arbitrarily small diameter, but in general nei-

� �ther the partitions nor their construction are simply described. See 2 ,
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� �Chapter 3, or 16 , Chapter 10 for the precise definition and construction. A
Markov partition MM consists of finitely many closed sets G , G , . . . , G whose1 2 r

nŽ .union contains �, and such that for ��-a.e. z , every point z � F z in0 n 0
the orbit of z lies in only one of the sets G . The diameter of the partition is0 i
the maximum of the diameters of its constituent sets. For any point z � �,0
define an itinerary of z to be a two-sided sequence . . . i i i . . . such that0 �1 0 1
for each n, z � G ; note that for ��-a.e. z , there is only one itinerary. Ifn i 0n

the diameter of MM is sufficiently small, then no two distinct points x, x� � �
may share the same itinerary, since this would entail a violation of the orbit
separation property mentioned in Section 2.3.

Let � be the space of all doubly infinite itineraries, and let � be the
forward shift operator on �. Since distinct points of � may not share the
same itinerary, there is a projection � : � � � that maps each itinerary i to
the unique point x � � with itinerary i. It is not difficult to see that � is

Žcontinuous and even Holder continuous with respect to the appropriate¨
� � � �.metric on Ý; see 2 or 16 . Clearly, F�� � � �� , and so � is a homeomor-

phism of �, since F is a homeomorphism of �. Not every sequence i need be
an element of �; however, the Markov property of the partition MM implies
that the space � of all doubly infinite itineraries, together with the forward

Ž � �shift operator � , is a topologically mixing shift of finite type see 2 , Lemma
. Ž .1.3 and Proposition 3.19 . A shift �, � is of finite type if there exists a finite

� 4set FF of finite words from the alphabet AA � 1, 2, . . . , r such that for any
doubly infinite sequence i with entries in AA, i is an element of � if and only if

Ž .i contains none of the words in FF. In general, a shift �, � of finite type is
topologically mixing if there exists an integer M � � such that for every pair
�, �� � � there exists a finite word w of length M such that the concatena-
tion

��� � � � w w ��� w �� ��
����2 �1 0 1 2 M 1 2

is an element of �. For shifts constructed from Markov partitions for topologi-
cally mixing Axiom A basic sets, M � 1.

A.3. Gibbs states. A Gibbs state �� on � is defined to be an invariant
probability measure whose pullback to a shift-invariant probability measure

� ��� on the sequence space � has the Gibbs property described in 2 , Chapter
Ž � � .1 see 2 , Chapter 4, for the proof . In particular, �� must satisfy a system of

inequalities,

�� w � � : w � i � 0 
 j 
 n� 4j j
37 C 
 
 C ,Ž . 1 2n jexp �
n � Ý � � iŽ .� 4j�0

valid for all itineraries i and all integers n 
 0, for constants 0 � C � C � �1 2
independent of n and of the itinerary i. Here � is a real-valued, Holder¨
continuous function on the space of all doubly infinite sequences i, � is the

� �forward shift operator and 
 � � is a constant called the pressure. See 2 ,
Ž .Section 1.4, for details. Note that 37 implies that there exists a constant
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 � 0 such that for any finite itinerary i i ��� i ,1 2 n

n38 �� w � � : w � i � 1 
 j 
 n 
 
 .� 4Ž . j j

Ž � �The SRB measure �� for an Axiom A attractor is a Gibbs state see 2 ,
.Chapter 4 for a proof . For Smale’s solenoid mapping F , the measure �� is	

the product Bernoulli-1�2 measure, that is, the measure that makes the
coordinate random variables i.i.d. Bernoulli-1�2. In general, Gibbs states
enjoy very strong mixing properties, among which the following, concerning
the conditional distribution of the future given the past, is perhaps the most
useful.

PROPOSITION 1. There exist constants � � 0 satisfying lim � � 1k k �� k
and such that for every infinite itinerary i � ��� i i i ��� � � and every�1 0 1

� � � Ž .finite itinerary i* � i i ��� i of any positive length ,1 2 n

��� w � i � 1 
 j 
 n � w � i � j 
 0Ž .j�M�k j j j

�
 � �� w � i � 1 
 j 
 n ,� 4k j j

39Ž .

where M 
 1 is the integer in the definition of topological mixing.

� �See 13 for a proof.
Ž . Ž .Equations 38 and 39 have the following consequence: there is a constant

� � � Ž
 � 0 such that for any finite itinerary i* � i i ��� i of any positive1 2 n
.length , the conditional probability, given the past, that the next M � n steps

of the itinerary will end in i� i� ��� i� is at least 
 n.1 2 n

ŽA.4. Homoclinic pairs. One of the important features of Axiom A and,
.more generally, hyperbolic systems is the existence of homoclinic pairs. Two

distinct points x and x� are said to be a homoclinic pair if, for some � � 0,

� �n n n� �40 lim 1 � � F x � F x� � 0;Ž . Ž . Ž . Ž .
� �n ��

in words, x, x� are distinct but their orbits approach each other exponentially
fast both forwards and backwards in time. In Axiom A systems, homoclinic
pairs are dense; in particular, for any points � , � � � � and any � � 0, there

� � � �exists a homoclinic pair of points such that x � � � � and x� � � � � � .
This may be proved using the existence of Markov partitions of small

diameter. Let i and i� be itineraries of � and � �, respectively. By the
separation of orbits property, there exists an integer k such that if the

� � � � �itinerary i� of a point x � � satisfies i � i for all j 
 k, then x � � � � ,j j
� � � � � �and similarly, if i � i for all j 
 k, then x � � � � � . But topologicalj j

Ž .mixing see Section A.2 guarantees that itineraries may be spliced together
Ž . � � � Ž . �� �to obtain itineraries i* and i** so that 1 i � i for all j 
 k; 2 i � ij j j j

� � Ž . � �� � �for all j 
 k and 3 i � i for all j � M � k. If x and x� have itinerariesj j
� � � � Ž . Ž .i* and i**, respectively, then x � � � � and x� � � � � � , by 1 and 2 ,

Ž .and x, x� are a homoclinic pair, by 3 and the orbit separation property.
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The foregoing argument may be adapted to prove the following proposition,
which is the key to Theorem 3.

PROPOSITION 2. On some probability space there exist random vectors
X �, X � valued in � such that:

Ž .a Each of X � and X � has marginal distribution ��.
Ž .b With probability 1, X � and X � are a homoclinic pair.
Ž .c With positive probability, X � � X �.

PROOF. The probability space should be large enough to accommodate a
Ž .random vector X with distribution �� and several independent uniform- 0, 1

random variables. Let I � ��� I I I ��� be the itinerary of X. Construct�1 0 1
new itineraries I�, I� as follows: for some large integer k, set I � � I� � I forj j j

� � Ž � � . Ž � � .all j � k and choose the random vectors I , . . . , I and I , . . . , I�k k �k k
Ž . � 4independently from the conditional distribution of I , . . . , I given I .�k k j � j � � k

ŽThis is possible if the underlying probability space supports uniform random
.variables independent of I. By construction, each of I� and I� will be an

itinerary. Define X � and X � to be the unique points with itineraries I� and I�,
respectively. Clearly, each of X � and X � has the same marginal distribution
as X. Moreover, since the itineraries of X � and X � coincide except in finitely
many entries, X � and X � must be a homoclinic pair. Finally, Proposition 1

Ž .implies that if k is large, then the joint distribution of X �, X � approximates
the product measure �� � ��. Since under �� � �� there is positive proba-
bility that the coordinates are not equal, the same is true for the joint

Ž .distribution of X �, X � . �
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