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EATON’S MARKOV CHAIN, ITS CONJUGATE
PARTNER AND ��� -ADMISSIBILITY

By James P. Hobert1 and C. P. Robert

University of Florida and CREST, INSEE

Suppose that X is a random variable with density f�x�θ� and that
π�θ�x� is a proper posterior corresponding to an improper prior ν�θ�. The
prior is called � -admissible if the generalized Bayes estimator of every
bounded function of θ is almost-ν-admissible under squared error loss.
Eaton showed that recurrence of the Markov chain with transition density
R�η�θ� = ∫

π�η�x�f�x�θ�dx is a sufficient condition for � -admissibility of
ν�θ�. We show that Eaton’s Markov chain is recurrent if and only if its
conjugate partner, with transition density R̃�y�x� = ∫

f�y�θ�π�θ�x�dθ, is
recurrent. This provides a new method of establishing � -admissibility. Of-
ten, one of these two Markov chains corresponds to a standard stochastic
process for which there are known results on recurrence and transience.
For example, when X is Poisson�θ� and an improper gamma prior is placed
on θ, the Markov chain defined by R̃�y�x� is equivalent to a branching
process with immigration. We use this type of argument to establish � -
admissibility of some priors when f is a negative binomial mass function
and when f is a gamma density with known shape.

1. Introduction. We will be interested in the following univariate deci-
sion problem. Suppose that X is a single observation from the probability
density (or mass) function f�x�θ� whose support � ⊆ � does not depend on
the parameter θ, which we assume belongs to the set � ⊆ �. Suppose that
ν�θ� is an improper prior density (or mass) function with support � that yields
a proper posterior, π�θ�x�; that is, we assume that for all x ∈ � ,

m�x� 	=
∫
�
f�x�θ�ν�θ�dθ <∞�

This setup is a special case of the decision problem considered by Eaton (1992),
who first introduced what we call � -admissibility.

Definition 1. The prior, ν�θ�, is called � -admissible if the generalized
Bayes estimate of every bounded function of θ is almost-ν-admissible [Stein
(1965)] under squared error loss.

Of course, the generalized Bayes estimate of g�θ� under squared error loss
is the posterior expectation

δg�x� 	=
∫
�
g�θ�π�θ�x�dθ�
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Also, since ν has support �, almost-ν-admissibility implies admissibility as
long as all finite valued risk functions are continuous [Berger (1985), Sec-
tion 8.8].

Note that � -admissibility is an endorsement of the improper prior itself
and not just an individual estimator based on the prior. This is quite different
from a typical result concerning admissibility where a single function of the
parameter is of interest, and an improper prior is judged indirectly through
its generalized Bayes estimator. See Eaton (1982) for more on this point of
view.

Eaton (1992) established that � -admissibility is implied by the local-ν-
recurrence of a Markov chain constructed using f and ν. This sufficient condi-
tion is an essential tool for establishing � -admissibility because a direct proof
is often quite difficult to obtain. The Markov chain is now described. Suppose
for the moment that f and ν are both density functions and note that, for
fixed θ, the function π�η�x�f�x�θ� is a joint density in the variable �η�x� with
support �×� . Therefore, for any θ ∈ �,

R�η�θ� 	=
∫
�
π�η�x�f�x�θ�dx(1)

is a density function in the variable η with support �. Let W = �W0�W1�
W2� � � �� be a time-homogeneous Markov chain on the infinite product space
�∞ with transition density given by R�·�·�; that is,

P�Wt ∈ A�wt−1� =
∫
A
R�η�wt−1�dη�

Eaton (1992) showed that local-ν-recurrence of this Markov chain, which we
call the R-chain, implies � -admissibility of ν�θ�. More specifically, he devel-
oped a sufficient condition, which we call � , for � -admissibility of ν and then
showed that � is equivalent to local-ν-recurrence of theR-chain. The condition
� is described in Eaton (1992), page 1149, Theorem 1.1. [See Eaton (1997) for
an introduction to these ideas.] Because we are not directly interested in � ,
it will not be stated explicitly here.

Two different notions of recurrence are considered in this paper: Eaton’s
(1992) local-ν-recurrence and the Meyn and Tweedie (1993), page 496 version,
which is referred to simply as “recurrence.” As we explain in Section 2, re-
currence implies local-ν-recurrence for the models considered in this paper.
Thus, for these models, recurrence of the R-chain is a sufficient condition for
� -admissibility of ν.

Example 1.1. Let X�θ ∼N�θ�1� and ν�θ� ∝ exp�−bθ2/2+ abθ�. Then the
posterior is normal with mean �x+ ab�/�b+ 1� and variance 1/�b+ 1�. Thus,
we have an improper prior yielding a proper posterior whenever b ∈ �−1�0�.
Using (1) it follows that

η�θ ∼N

(
θ+ ab
b+ 1

�
b+ 2

�b+ 1�2

)
�
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Therefore, the R-chain can be written as an autoregressive process of order
one; that is, for t = 0�1�2� � � � �

Wt+1 = 1
b+ 1

Wt +Ut+1�

where U1�U2�U3� � � � is an independent and identically distributed (iid) se-
quence of normal random variables with mean ab/�b + 1� and variance �b +
2�/�b + 1�2. When b = 0, this is a standard random walk with a mean-zero
increment, and is therefore recurrent. When b ∈ �−1�0�, the coefficient of Wt

is larger than 1, and W is transient, that is, not recurrent [Meyn and Tweedie
(1993), page 221]. Thus, � -admissibility holds when b = 0, that is, when the
prior is Lebesgue measure. Indeed, Eaton (1992), page 1157, shows that, un-
der very minimal conditions, � -admissibility holds when Lebesgue measure
is used as a prior for a translation parameter. We return to this example
below.

Other works regarding relationships between admissibility and recurrence
properties include Brown (1971), who related admissibility of estimators of the
multivariate normal mean to recurrence properties of associated diffusions,
and Johnstone (1984), who reported similar results for Poisson means and
associated birth and death processes [see also Johnstone (1986)]. Both of these
authors considered continuous time Markov processes on the sample space
while, in contrast, Eaton (1992) looked at discrete time Markov chains on the
parameter space. We show that an obvious counterpart to the R-chain, which
lives on the sample space, is recurrent if and only if the R-chain is recurrent.
Therefore, at least in our context, Eaton’s results can be viewed as involving
a Markov chain on the sample space. The counterpart of Eaton’s R-chain is
now described.

Using arguments similar to those above, it follows that for any x ∈ � ,

R̃�y�x� 	=
∫
�
f�y�θ�π�θ�x�dθ(2)

is a density function in the variable y with support � . Let V = �V0�V1�
V2� � � �� be a time-homogeneous Markov chain on the infinite product space
� ∞ with transition density R̃�·�·�. Eaton (1992) did not study this Markov
chain, which we call the R̃-chain, but did mention it (page 1171).

Example 1.1 (Continued). Using (2), we find that the transitions for the
R̃-chain are given by

y�x ∼N

(
x+ ab
b+ 1

�
b+ 2
b+ 1

)
�

Thus, the R̃-chain is equal in distribution to the following autoregressive pro-
cess of order one:

Vt+1 = 1
b+ 1

Vt +U′
t�
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whereU′
1�U

′
2�U

′
3� � � � is an iid sequence of normal random variables with mean

ab/�b + 1� and variance �b + 2�/�b + 1�. Except for a slight difference in the
variance of the error sequence ��b + 2�/�b + 1�2 versus �b + 2�/�b + 1��, the
R and R̃-chains are the same in this case, and it follows that the R̃-chain is
recurrent when b = 0 and transient when b ∈ �−1�0�.

While the R and R̃-chains are always either both recurrent or both tran-
sient (see Section 2), the similarity in form exhibited in the previous example
is not typical. In many situations one of the chains is much easier to analyze
than the other, and this is the case in the following example.

Example 1.2. Suppose that X�θ ∼ Poisson�θ� and ν�θ� ∝ θa−1e−bθ. Then
θ�x ∼ Gamma�x+a� b+1�. Thus, we have an improper prior yielding a proper
posterior when a > 0 and b ∈ �−1�0�. A simple calculation shows that

R�η�θ� =
∞∑
x=0

e−θθx

x!
�b+ 1�x+a
��x+ a� ηx+a−1 exp�−η�b+ 1��(3)

for θ�η ∈ �0�∞�. Feller [(1971), page 58] calls (3) a randomized gamma density.
When b = −1/2 and a is a multiple of 1/2, it is the noncentral chi-squared
density. Eaton [(1992), page 1165] considered the case in which b = 0 and
proved directly that the condition � holds when a ∈ �0�1�. It follows that, in
this specific case, � -admissibility holds and the R-chain is locally-ν-recurrent.

In Remark 5.1, Eaton (1992) reverifies local-ν-recurrence of the R-chain
(when b = 0 and a ∈ �0�1�), using a theorem of Lamperti (1960). There is
a problem with this application, however, as Lamperti’s regularity condition
(3.11) is not satisfied. In a Ph.D. dissertation, Lai (1996) proved a modified
version of Lamperti’s theorem and used it to reverify local-ν-recurrence of the
R-chain when b = 0 and a ∈ �0�1�. (Lai also shows how this theorem can be
used to establish admissibility results in the multivariate Poisson problem.)
See Kersting (1986) for another extension of Lamperti’s (1960) results.

In contrast to the rather complicated form of the R-chain in this example,
the R̃-chain has a simple interpretation, and results concerning its recurrence
and transience have been around for over 25 years. The transition density for
the R̃-chain is given by

R̃�y�x� = ��y+ x+ a�
y!��x+ a� p

x+a�1 − p�y�

where p = �b+1�/�b+2� and x�y ∈ �0�1�2� � � ��. This is a generalized negative
binomial mass function [Feller (1968), page 269]. Indeed, when a is a positive
integer, it is the usual negative binomial mass function. If Z is a random
variable supported on the nonnegative integers and

P�Z = z� = ��z+ c�
z!��c� d

c�1 − d�z

for d ∈ �0�1� and c > 0, we write Z ∼ NB�c� d�. Note that E�Z� = c�1 − d�/d
and Var�Z� = c�1−d�/d2. It follows from the form of the probability generating
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function that if Z1�Z2� � � � �Zn are independent random variables with Zi ∼
NB�ci� d�, then

∑
Zi ∼ NB�∑ ci� d�. Using these facts, it is clear that the

R̃-chain can be written as a branching process with immigration; that is,

Vt+1 =
Vt∑
i=1

Ni� t +Mt+1�

where N1� t�N2� t� � � � �NVt� t
are iid NB�1� p� and Mt+1 (independent of the

Ni�t’s) is NB�a�p�. Think of the chain as follows. At generation t, there are
Vt animals in the population. Each animal, independently of all others, has
a random number of offspring whose distribution is NB�1� p�. Also at gener-
ation t, a random number (NB�a�p�) of animals migrate into the society. The
population at the �t+1�th generation consists of all of those offspring and the
immigrants. The mean and variance of the offspring distribution are 1/�b+1�
and �b+ 2�/�b+ 1�2, respectively.

Results in Pakes (1971) show that this branching process is recurrent if
b = 0 and a ∈ �0�1� and is transient otherwise. This is intuitively reason-
able because when b ∈ �−1�0�, the mean number of offspring per animal
is larger than one (supercritical case) and the population explodes. On the
other hand, when b = 0 each animal averages a single offspring (critical case),
and the stability of the population depends upon the rate of immigration. We
have extended Eaton’s (1992) analysis of this example by showing that � -
admissibility cannot be established through recurrence of the R-chain when
b = 0 and a > 1 nor when b ∈ �−1�0�.

The rest of the paper is laid out as follows. The theorem showing that
the R and R̃-chains are always either both recurrent or both transient is
presented in Section 2. In Section 3 we consider the case in which X has a
gamma density with known shape parameter and an improper gamma prior
is placed on the unknown scale. Here the R̃-chain turns out to be a bilinear
model [Meyn and Tweedie (1993), page 30], and recent results of Babillot,
Bougerol and Elie (1997) can be used to establish recurrence, and hence, � -
admissibility. Section 4 studies the case of the NB�k�p� distribution with k
known and an improper beta prior on the unknown success probability, p. A
transformation of the R-chain gives another bilinear model and the results of
Babillot, Bougerol and Elie (1997) can again be applied. Because the success
probability is bounded, our results yield a class of admissible estimators of p.
Finally, conclusions and avenues for future research are discussed in Section 5.

2. Recurrence duality. Let ���� and ��� � be the appropriate σ-
algebras on � and � ; that is, the Borel σ-algebra if the set is uncountable
and the set of all subsets in the countable case. Let µ� be Lebesgue or count-
ing measure on ���� as appropriate, and define µ� similarly. Put S = � ×�
and let µS be the product measure on the product σ-algebra ��S�.

Let �Vn�Wn�, n = 0�1�2� � � � � be the bivariate, discrete time, time homoge-
neous Markov chain on the product space S∞ defined by the Markov transition
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density

M�y�η�x� θ� = π�η�y�f�y�θ��(4)

where we use �x� θ� and �y�η�, instead of �vn�wn� and �vn+1�wn+1�, respec-
tively, to avoid excessive subscripting. This Markov chain, which we call the
extended chain, is similar to that used in data augmentation [Tanner and Wong
(1987); Liu, Wong and Kong (1994)]. For any fixed �x� θ� ∈ S, M�y�η�x� θ� is
strictly positive on S. Thus, the extended chain is µS-irreducible and aperiodic.
Let j�x� θ� = f�x�θ�ν�θ� and note that

j�y�η� =
∫
S
M�y�η�x� θ�j�x� θ�µS�d�x� θ���(5)

which shows that j is an invariant density for the extended chain.
It is clear from (4) that given Wn, �Vn+1�Wn+1� is conditionally indepen-

dent of Vn; that is, x does not appear on the right side of (4). Similarly, given
Vn, �Wn�Vn+1� is conditionally independent of Wn−1. As a result, �Wn	 n =
0�1�2� � � �� and �Vn	 n = 0�1�2� � � �� are both univariate Markov chains and,
following Liu, Wong and Kong (1994), we call them conjugate Markov chains.
Indeed, �Wn	 n = 0�1�2� � � �� is the R-chain and its Markov transition den-
sity is

R�η�θ� =
∫
�
π�η�x�f�x�θ�µ� �dx��

It follows directly from the µS-irreducibility of the extended chain that the
R-chain is µ�-irreducible and aperiodic. The R-chain satisfies the detailed
balance condition

R�η�θ�ν�θ� = R�θ�η�ν�η�(6)

from which it follows that ν�η� = ∫
� R�η�θ�ν�θ�µ��dθ�; that is, the prior, ν,

is an invariant density for the R-chain. [Another way to establish that ν is
invariant is to integrate both sides of (5) with respect to y.] We note in passing
that Eaton refers to a chain satisfying (6) as ν-symmetric, while other authors
[e.g., Lyons (1983)] use the term reversible despite the fact that ν�·� is improper
[Kelly (1979), page 5].

Analogously, �Vn	 n = 0�1�2� � � �� is the R̃-chain whose transition density is

R̃�y�x� =
∫
�
f�y�θ�π�θ�x�µ��dθ��

The R̃-chain is µ� -irreducible and aperiodic, and has m�·� as an invariant
density. Note that the invariant densities for the R and R̃-chains are the
marginals of the invariant density for the extended chain.

We now formally define recurrence. Let �+��� be the class of sets in ����
with positive measure [and define �+�� � similarly]. The R-chain is recurrent
if, for any A ∈ �+��� and any starting value,

∞∑
n=1

E �IA�Wn�� = ∞�
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(Of course, recurrence of the R̃-chain is defined analogously.) This is a
standard definition of recurrence for irreducible Markov chains [Meyn and
Tweedie (1993), page 496]. In order to “� � � circumvent a discussion of irre-
ducibility issues � � � ,” Eaton (1992) used a slightly different version called
local-ν-recurrence, which is defined in terms of hitting times. Under our
assumptions, recurrence implies local-ν-recurrence. This follows from a com-
parison of Eaton’s (1992) Definition A.2, with Meyn and Tweedie’s [(1993),
page 497] hitting time characterization of recurrence and the fact that our
prior measure is absolutely continuous with respect to µ�.

A Markov chain that is irreducible and recurrent possesses a unique (up to
constant multiples) invariant measure. When the invariant measure is finite,
the chain is called positive [Meyn and Tweedie (1993), Chapter 10]. A conse-
quence of uniqueness is that a Markov chain possessing an invariant measure
with infinite mass cannot be positive recurrent. Such a chain is either null re-
current or transient. Thus, the R-chain is positive recurrent only when ν is
proper and, similarly, the R̃-chain is positive recurrent only when m is proper.
[This makes sense from a decision-theoretic standpoint because unique proper
Bayes estimators are admissible [Lehmann and Casella (1998), page 323] and
Eaton’s (1992) results deal with the more challenging case where ν is im-
proper.] Since m is proper if and only if ν is proper, it follows that the R-chain
is positive recurrent if and only if the R̃-chain is positive recurrent. This cor-
respondence can be viewed as a special case of the duality principle [Diebolt
and Robert (1994)]. Our main result shows that this connection between the
chains can be extended.

Theorem 1. The R-chain is recurrent if and only if the R̃-chain is recur-
rent.

Proof. Suppose that the R̃-chain is recurrent. For A ∈ �+���, there ex-
ists an ε > 0 such that µ� �Bε� > 0 where

Bε 	=
{
x ∈ � 	

∫
A
π�η�x�µ��dη� > ε

}
�

This is true since if no such ε exists, then
∫
A π�η�v�µ��dη� = 0 almost every-

where (µ� ), which contradicts the fact that A ∈ �+���. Therefore,
∞∑
n=1

E�IA�Wn�� =
∞∑
n=1

E�E�IA�Wn��Vn��

≥
∞∑
n=1

E�IBε�Vn�E�IA�Wn��Vn��

≥ ε
∞∑
n=1

E�IBε�Vn�� = ∞�

This shows that recurrence of the R̃-chain implies recurrence of the R-chain.
The reverse implication can be shown using the same type of argument. ✷
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Theorem 1 shows that, at least for the models that we consider, Eaton’s
(1992) result may be regarded as concerning a Markov chain on the sample
space, which is the domain of the Markov processes constructed by Brown
(1971) and Johnstone (1984). More importantly, our result is useful in situa-
tions where recurrence of the R̃-chain is easier to establish than recurrence of
the R-chain. In Example 1.2, the R̃-chain turned out to be a standard Markov
chain for which the transience–recurrence behavior is already known. The
next section concerns a similar example.

3. Gamma-gamma model. Suppose that X�θ ∼ Gamma�α� θ� (α > 0
known) and ν�θ� ∝ θa−1e−bθ. Then θ�x ∼ Gamma�α+a� b+x�. In this case, we
have an improper prior yielding a proper posterior when b = 0 and a > −α
and when b > 0 and a ∈ �−α�0�. Most of the admissibility and domination
results for gamma models concern estimators of θ or the scale parameter 1/θ
[e.g., Berger (1980, 1985), pages 255, 305; Das Gupta (1984)], whereas our
results concern � -admissibility of improper conjugate priors.

The transition density for the R-chain is given by

R�η�θ� = θαηα+a−1 exp�−ηb�
��α+ a���α�

∫ ∞

0
�b+ x�α+axα−1 exp�−x�η+ θ��dx�

for η� θ ∈ �0�∞�. This density involves an integral that cannot be written in
closed form unless b = 0. On the other hand, the transition density for the
R̃-chain has a closed form expression for all values of a and b,

R̃�y�x� = ��2α+ a��b+ x�α+a
��α+ a���α�

yα−1

�x+ y+ b�2α+a

for x�y ∈ �0�∞�. We now state the result.

Theorem 2. The Markov chains are recurrent if and only if a = 0. Thus,
� -admissibility holds when a = 0.

Proof. Consider the R̃-chain. By noting that the random variable Z =
Y/�x + b� has a density that is free of x, we may write the R̃-chain as a
bilinear model [Meyn and Tweedie (1993), page 30],

Vt+1 = �Vt + b�Zt+1�(7)

where Z1�Z2�Z3� � � � is an iid sequence of random variables with density

fZ�z� =




��2α+ a�
��α+ a���α�

zα−1

�z+ 1�2α+a � if z > 0�

0� otherwise�

The random variable �α + a�Z/α has an F�2α�2�α + a�� distribution, which
implies that Z has an infinite mean whenever α+ a ≤ 1.



MARKOV CHAINS AND � -ADMISSIBILITY 369

First, consider the case b = 0. A log transformation of (7) leads to the
following random walk on �:

Lt+1 = Lt + logZt+1�(8)

where Lt = logVt, t = 0�1�2� � � � � Suppose B ∈ ��� �, thenVt ∈ B if and only
if Lt ∈ B∗ where B∗ = �y ∈ �	 ey ∈ B�. Then since B has positive Lebesgue
measure if and only if B∗ has positive Lebesgue measure, it follows that (7)
and (8) are either both recurrent or both transient.

Feller [(1971), page 50] shows that Z has the same distribution as B−1 − 1
where B is Beta�α+ a� α�, from which it follows that the moment generating
function of logZ exists. Therefore, the random walk (8) is recurrent if and
only if logZ has mean zero [Meyn and Tweedie (1993), page 247]. Now,

E�logZ� = ��2α+ a�
��α+ a���α�

[∫ 1

0

zα−1 log z
�z+ 1�2α+a dz+

∫ ∞

1

zα−1 log z
�z+ 1�2α+a dz

]

= ��2α+ a�
��α+ a���α�

∫ 1

0

zα−1 log z
�z+ 1�2α+a �1 − za�dz�

which implies that the mean of logZ is negative when a > 0, zero when a = 0
and positive when a < 0. Thus, (7) is recurrent when a = b = 0 and transient
when b = 0 and a �= 0.

We now present a result of Babillot, Bougerol and Elie (1997) that will en-
able us to deal with the remaining cases; that is, when b > 0. Let ��At�Bt��t≥1
be an iid sequence of random variables taking values in �+ ×�. Consider the
Markov chain X0�X1�X2� � � � � defined by the stochastic difference equation
Xt+1 = At+1Xt + Bt+1, t = 0�1�2� � � � � The following proposition is part of
Babillot, Bougerol and Elie’s (1997) Corollary 4.2.

Proposition 1. Suppose that:

(i) For all x ∈ �, P�A1x+B1 = x� < 1;
(ii) For some δ > 0,

E��� logA1� + �log �B1��+�2+δ� <∞�
where x+ = max�0� x�; and

(iii) E�logA1� = 0 and P�A1 = 1� < 1.

Then the Markov chain X0�X1�X2� � � � is recurrent.

When E�logA1� < 0, the chain is positive recurrent [Brandt (1986)]. On the
other hand, if E�logA1� > 0, then the random walk

∑t
i=1 logAi, and hence∏t

i=1Ai, diverge to infinity w.p. 1. Note that

Xt =X0

t∏
i=1

Ai +Bt +
t−1∑
i=1

Bi

t∏
j=i+1

Aj�

Therefore, when E�logA1� > 0 and P�B1 ≥ 0� = 1, the Markov chain
X0�X1�X2� � � � is transient.
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Now consider again the R̃-chain. When b > 0, (7) fits into the Babillot,
Bougerol and Elie (1997) framework with At = Zt and Bt = bZt. Assumptions
(i) and (ii) of Proposition 1 are clearly satisfied, and we conclude that, in the
case of strictly positive b, the R̃-chain is recurrent when a = 0 and transient
when a ∈ �−α�0�. ✷

Note that when α = 1, f�x�θ� is an exponential density, which is a scale
family, and the Markov chains are recurrent under the prior ν�θ� = 1/θ. This
is actually a special case of a general result in Eaton [(1992), page 1159]
concerning scale families and the right invariant Haar prior [Berger (1985),
page 409].

4. Negative binomial-beta model. Suppose that X�θ ∼ NB�k� θ� and
that ν�θ� ∝ θa−1�1 − θ�b−1. Then θ�x ∼ Beta�a + k� b + x�, and we have an
improper prior yielding a proper posterior as long as b > 0 and a ∈ �−k�0�.

Theorem 3. For b ≥ k, the Markov chains are recurrent if and only if
a = 0. Thus, � -admissibility holds when b ≥ k and a = 0.

Proof. The transition density for the R-chain is given by

R�η�θ� = ηk+a−1�1 − η�b−1θk

��k+ a���k�
∞∑
x=0

��k+ a+ b+ x���x+ k�
x!��b+ x� ��1 − η��1 − θ��x

for η� θ ∈ �0�1�. When k = b, the summand is the kernel of a NB�k+a+b�1−
�1 − η��1 − θ�� mass function, and we have

R�η�θ� = ��k+ a+ b�
��k+ a���k�

ηk+a−1�1 − η�b−1θk

�1 − �1 − η��1 − θ��k+a+b �

By noting that the density of ηθ−1�1 − η�−1 is free of θ, we may write the
R-chain as a nonlinear state space model [Meyn and Tweedie (1993), page 29]

Wt+1 = Wt

Zt+1 +Wt

�(9)

where Z1�Z2�Z3� � � � is an iid sequence of random variables such that �k +
a�Z1/k has an F�2k�2�k+ a�� distribution. Letting It = 1/Wt, (9) becomes

It+1 = ItZt+1 + 1

for t = 0�1�2� � � � and by an argument similar to that used in Section 3, this
Markov chain is recurrent if and only if the R-chain is recurrent. We know
from Section 3 that E�logZ� = 0 when a = 0 and is strictly positive when
a < 0. Appealing to Proposition 1, the chain It, and hence the R-chain, are
recurrent when a = 0 and transient when a < 0.

Now consider the case in which b > k. Let η1 ∼ Beta�a + k� b − k� and
η2 ∼ Beta�a + b� k + x�. It is straightforward to show that if η1 and η2 are
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independent, then η1η2 has a Beta�a+k� b+x� distribution. We can therefore
write the R-chain as

Wt+1 = Bt+1
Wt

Zt+1 +Wt

�(10)

where Z1�Z2�Z3� � � � is an iid sequence of random variables such that �a +
b�Z1/k has an F�2k�2�a + b�� distribution, and B1�B2�B3� � � � is an iid se-
quence of Beta�a + k� b − k� random variables, which are independent of the
Z’s. Again, letting It = 1/Wt, (10) becomes

It+1 = It
Zt+1

Bt+1
+ 1
Bt+1

for t = 0�1�2� � � � � The behavior of this chain depends upon the expectation
of the logarithm of Zt+1/Bt+1. Using moment generating functions, one can
show that

E

[
log

(
Zt+1

Bt+1

)]
= ψ�k� − ψ�a+ k��

where ψ is the derivative of the log gamma function; that is, ψ�x� = �′�x�/��x�.
Now, since ψ�·� is increasing, E�log�Zt+1/Bt+1�� = 0 when a = 0 and is strictly
positive when a ∈ �−k�0�. Another application of Proposition 1 yields the
result. ✷

Most of the admissibility and domination results for negative binomial mod-
els concern estimators of θ [e.g., Hwang (1982a, b)]. Since θ is a bounded
parameter in this example, Theorem 3 shows that if b ≥ k,

δ�X� = k/�X+ k+ b�
is an admissible estimator of θ under squared error loss. Although admissibil-
ity of generalized Bayes estimates of the negative binomial success probability
based on conjugate priors seems like an obvious question, we were unable to
find this result in the literature. (A direct computation of the generalized
Bayes risk shows that it is finite, but � -admissibility implies that admissibil-
ity also holds for every bounded transform of θ.)

Finally, the transition density for the R̃-chain is given by

R̃�y�x� = ��y+ k���k+ a+ b+ x���2k+ a���b+ x+ y�
y!��k���k+ a���b+ x���2k+ a+ b+ x+ y�

for y�x ∈ �0�1�2� � � ��. It is called the generalized Waring distribution [John-
son, Kotz and Kemp (1992), page 242]. When b and k are positive integers
and a ∈ �−k+ 1�−k+ 2� � � � �−1�0�, the R̃-chain has a Pólya urn representa-
tion [Panaretos and Xekalaki (1986)] which is now described. Suppose that Vt

represents the current state of the Markov chain. Consider an urn containing
k + a white balls and k black balls. A ball is drawn at random, its color is
noted and the ball is replaced along with one additional ball of the same color
before the next ball is drawn. This procedure is continued until Vt + b white
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balls have been drawn, and Vt+1 is defined to be the number of black balls
drawn before the �Vt+b�th white ball is drawn. Note that a negative value of
a would mean more black balls than white at the start. Thus, it makes sense
that the chain is recurrent when a = 0 and transient when a is negative.

5. Discussion. We have shown that Eaton’s (1992) Markov chain is re-
current if and only if its conjugate partner is recurrent. This result may be
viewed as an extension of Diebolt and Robert’s (1994) duality principle. It is
interesting from a theoretical standpoint in that Eaton’s (1992) results can
now be viewed as concerning a Markov chain on the sample space, which is
the domain of the Markov processes constructed by Brown (1971) and John-
stone (1984). From a practical point of view, this result is useful because it
allows one to prove � -admissibility by establishing the recurrence of the R̃-
chain, which can be much easier than doing the same for the R-chain. Finally,
we have used Eaton’s (1992) theory and our extensions to establish that cer-
tain priors for the gamma scale parameter and the negative binomial success
probability are � -admissible.
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