ON THE MULTIVARIATE RUNS TEST

By Norbert Henze and Mathew D. Penrose

Universität Karlsruhe and University of Durham

For independent d-variate random variables X_1,\ldots,X_m with common density f and Y_1,\ldots,Y_n with common density g, let $R_{m,n}$ be the number of edges in the minimal spanning tree with vertices $X_1,\ldots,X_m,$ Y_1,\ldots,Y_n that connect points from different samples. Friedman and Rafsky conjectured that a test of H_0 : f=g that rejects H_0 for small values of $R_{m,n}$ should have power against general alternatives. We prove that $R_{m,n}$ is asymptotically distribution-free under H_0 , and that the multivariate two-sample test based on $R_{m,n}$ is universally consistent.

1. Introduction and results. Suppose X_1, X_2, X_3, \ldots are independent d-dimensional variables with common probability density function f, and independently, Y_1, Y_2, \ldots are independent d-dimensional variables with common density function g. An important and challenging problem in multivariate statistics is the two-sample problem: given observations of $\mathscr{X}_m := \{X_1, \ldots, X_m\}$ and $\mathscr{Y}_n := \{Y_1, \ldots, Y_n\}$, find a good test for the null hypothesis H_0 : f = g, against a general alternative. A number of well-understood tests are known in the case d = 1; these are based on the ranks of observations within the sorted list of the pooled sample and hence are distribution-free under H_0 . For samples in \mathbb{R}^d , $d \geq 2$, the problem has been studied far less fully (see [3], [4], [6], [7], [13], [21]).

The subject of this paper is the *multivariate runs test* proposed by Friedman and Rafsky [8], which is defined as follows. Given a finite set $S \subset \mathbb{R}^d$, a spanning tree on S is a connected graph \mathcal{F} with vertex-set S and no cycles; its length $l(\mathcal{F})$ is the total of its Euclidean edge lengths. A minimal spanning tree (MST) is a spanning tree with $l(\mathcal{F}) \leq l(\mathcal{F}')$ for all spanning trees \mathcal{F}' . Denote $S \subset \mathbb{R}^d$ nice if it is locally finite and all interpoint distances among elements of S are distinct. If S is nice and finite, it has a unique MST (see, e.g., [2] or [16]). If S is nice and infinite, an analogous notion of minimal spanning forest (MSF) was developed by Aldous and Steele in [2] and denoted g(S) there. In this paper, for nice $S \subset \mathbb{R}^d$ we denote the MST (if S is finite) or MSF (if infinite) by $\mathcal{F}(S)$.

Given finite sets S and T in \mathbb{R}^d such that $S \cup T$ is nice, let R(S,T) denote the number of edges of $\mathcal{F}(S \cup T)$ which connect a point of S to a point of T. Friedman and Rafsky's test statistic $R_{m,n}$ is given by

$$R_{m,n} = R(\mathscr{X}_m, \mathscr{Y}_n).$$

Received July 1998; revised December 1998.

AMS 1991 subject classifications. Primary 62H15; secondary 62G10, 60F05, 60F15.

Key words and phrases. Multivariate two-sample problem, minimal spanning tree, multivariate runs test, homogeneous Poisson process.

In fact, Friedman and Rafsky consider $1+R_{m,n}$, which is the number of disjoint subtrees that result from removing all edges of $\mathcal{F}(\mathscr{X}_m \cup \mathscr{Y}_n)$ that join vertices of different samples. They conjecture that rejection of H_0 for small values of $R_{m,n}$ "can be expected to have power against general alternatives" ([8], page 708). We verify this by proving the consistency of the multivariate runs test against general alternatives. Furthermore, we show that the test statistic is asymptotically distribution-free under H_0 .

For asymptotics, we take $m \to \infty$ and $n \to \infty$ in a linked manner so that $m/(m+n) \to p \in (0,1)$, which we shall call the *usual limiting regime*. Set q=1-p and r=2pq, and write $\to_{\mathscr{D}}$ for convergence in distribution. Let $\mathscr{N}(\mu,\sigma^2)$ denote the normal distribution with expectation μ and variance σ^2 . For $\lambda>0$, let \mathscr{P}_{λ} denote a homogeneous Poisson process on \mathbb{R}^d of rate λ , with a point added at the origin.

THEOREM 1. In the usual limiting regime, under H_0 ,

$$(m+n)^{-1/2}\left(R_{m,\,n}-rac{2mn}{m+n}
ight)
ightarrow_{\mathscr{G}}\mathscr{N}(0,\,\sigma_d^2),$$

where

$$\sigma_d^2 = r(r + \frac{1}{2} \text{Var}(D_d) (1 - 2r)).$$

Here D_d is the degree of the vertex at 0 in the MSF $\mathcal{F}(\mathscr{P}_1)$.

THEOREM 2. In the usual limiting regime,

(1)
$$\frac{R_{m,n}}{m+n} \to 2pq \int \frac{f(x)g(x)}{pf(x) + qg(x)} dx \quad almost surely.$$

REMARK 1. The right-hand side of (1) equals $1 - \delta(f, g, p)$, where

$$\delta(f, g, p) = \int \frac{p^2 f^2(x) + q^2 g^2(x)}{p f(x) + q g(x)} dx$$

is a member of a general class of separation measures of several probability distributions (see [9], [10] and [11]). From Theorem 1, Theorem 2 and the fact that the inequality $\delta(f,g,p) \geq \delta(f,f,p) = p^2 + q^2$ is strict for densities f and g differing on a set of positive measure (see [9], Theorem 1 and Corollary 1), it follows that a level- α test which rejects H_0 for small values of $R_{m,n}$ is consistent against general alternatives. Such a test may be carried out as an exact permutation test.

REMARK 2. Numerical estimates of $Var(D_d)$ for low dimensions are given in Section 2, along with a proof of Theorem 1. Interestingly, the dependence of σ_d^2 on the dimension d via $Var(D_d)$ vanishes if p=1/2 since then $\sigma_d^2=1/4$. It is also of interest to compare σ_d^2 with the asymptotic variance of a closely related two-sample statistic considered in [21] and [13], namely the number

 $\begin{array}{c} \text{TABLE 1} \\ \text{Estimates of } \alpha_{k..d} \; (= P(D_d = k)) \; and \; \text{Var}(D_d) \end{array}$

				k					
d	1	2	3	4	5	6	7	$\widehat{\text{Var}}(\pmb{D_d})$	
2	0.221	0.566	0.206	0.007	0.000	_	_	0.455	cf. [22]
2	0.2108	0.5694	0.2121	0.0077	0.0000			0.453	
3	0.2858	0.4595	0.2216	0.0314	0.0017	0.0000	0.0000	0.648	
4	0.3021	0.4238	0.2209	0.0478	0.0052	0.0002	0.0000	0.763	
∞	0.40658	0.32429	0.17112	0.06835	0.02201	0.00593	0.00138	1.192	

 $\mathbf{N}_{m,\,n}$ of elements of the pooled sample $\mathscr{X}_m \cup \mathscr{Y}_n$ that have a *nearest neighbor* from the same sample. The asymptotic variance of $\mathbf{N}_{m,\,n}$ under H_0 is

$$\tilde{\sigma}_d^2 = r(1+v_d) + \frac{1}{2}\operatorname{Var}(\tilde{D_d}) (1-2r)$$

(see [13], Proposition 3.3). Here v_d is the probability that 0 is the nearest neighbor of its own nearest neighbor in \mathscr{P}_1 , and \tilde{D}_d stands for the number of points of \mathscr{P}_1 which have the origin as their nearest neighbor. If p=1/2, then $\tilde{\sigma}_d^2=(1+v_d)/2$ so that, in contrast to the Friedman–Rafsky statistic, there is still a dependence of $\tilde{\sigma}_d^2$ on d via the probability v_d for the "reciprocity" of the nearest neighbor relation. A closed-form expression for v_d is given in [18] (see also [12]).

2. The limiting null distribution. Some limited information on $\operatorname{Var}(D_d)$ and thus on σ_d^2 may be obtained from Table 1 which presents estimates $\hat{\alpha}_{k,\,d}$ of the probabilities $\alpha_{k,\,d} = P(D_d = k)$ and hence also an estimate $\widehat{\operatorname{Var}}(D_d)$ of $\operatorname{Var}(D_d)$ for the cases d=2,3,4.

The first row reproduces the estimates $\hat{\alpha}_{k,2}$ obtained in [22] as the average fraction of observed vertices of degree k from 20 independently generated minimal spanning trees, each tree formed by 65,536 vertices taken independently at random from the unit square. The entries in the dth row, where d=2,3,4, are the average fractions out of 10,000 independent replications of the MST formed by 0 and the nearest, second-nearest, ..., 1,000th nearest neighbor of 0 in $\mathcal{F}(\mathscr{P}_1)$ on \mathbb{R}^d , in which the degree of the vertex at 0 is k. Since, for low dimensions such as 2, 3 or 4, the union of the nearest, second-nearest, ..., 1,000th nearest neighbor of 0 should with high probability be a "blocking set around the origin" in the language of [16], this simulation design should produce a variable with a distribution very close to that of D_d . Computations were carried out at the Rechenzentrum of the University of Karlsruhe using an IBM RS/6000 SP parallel computer. The CPU computing time for the case d=4 was about 15 hours.

It is known [17] that $\alpha_{k,d} \to \alpha_k$ as $d \to \infty$, where

$$\alpha_k = \int_0^1 \exp(-\varphi(u)) \frac{\varphi(u)^{k+1}}{(k+1)!} du$$

and

$$\varphi(u) = \int_0^u \frac{\log(1/x)}{1-x} dx, \qquad u < 1$$

(see [1], page 385). If D_{∞} denotes a variable with $P[D_{\infty}=k]=\alpha_k$ $(k=1,2,3,\ldots)$, then $E[D_{\infty}]=2$ (see [1]) and $Var(D_d)\to Var(D_{\infty})$ as $d\to\infty$. This can be proved using the methods of [17], in particular Lemma 3 and the proof of Lemma 4 from that paper.

The row denoted " ∞ " in Table 1 contains numerical values for α_k . These were obtained using an IMSL routine (Gauss–Kronrod numerical integration) and, complemented by $\alpha_8 = 0.00028$ and $\alpha_9 = 0.00005$, should be accurate up to five digits, in contrast with the values given in [1], page 396, which gives $E(D_\infty) = 1.994$ when it should be 2 (the values in [1] were reported incorrectly in [17]).

PROOF OF THEOREM 1. The conditional variance of $R_{m,n}$ given the pooled sample $\mathscr{X}_m \cup \mathscr{Y}_n$, is

$$egin{aligned} \operatorname{Var}(R_{m,\,n}|\mathscr{X}_m \cup \mathscr{Y}_n) \ &= rac{2mn}{N(N-1)} \end{aligned}$$

(2)
$$= \frac{1}{N(N-1)} \times \left(\frac{2mn-N}{N} + \frac{C_N - N + 2}{(N-2)(N-3)} [N(N-1) - 4mn + 2] \right),$$

where N=m+n is the total sample size, and C_N is the number of edge pairs in $\mathscr{F}(\mathscr{X}_m \cup \mathscr{Y}_n)$ that share a common vertex (see [8], page 701). Putting

$$ilde{R}_{m,\,n} = rac{R_{m,\,n} - 2mn/(m+n)}{ ext{Var}(R_{m,\,n}|\mathscr{X}_m \cup \mathscr{Y}_n)^{1/2}},$$

Theorem 4.1.2 of [5] yields almost sure asymptotic normality of $\tilde{R}_{m,n}$ under the usual limiting regime, that is, $\lim P(\tilde{R}_{m,n} \leq t | \mathscr{X}_m \cup \mathscr{Y}_n) = \Phi(t)$ almost surely for each $t \in \mathbb{R}$, where Φ is the standard normal distribution function. Since, in the usual limiting regime,

$$\frac{\operatorname{Var}(R_{m,\,n}|\mathscr{X}_m\cup\mathscr{Y}_n)}{m+n}=r\bigg(r+\bigg(\frac{C_N}{N}-1\bigg)(1-2r)\bigg)+o_P(1),$$

it remains to prove

$$rac{C_N}{N} - 1
ightarrow rac{1}{2} ext{Var}(D_d) \quad ext{in probability}.$$

To this end, note first that $E[D_d]=2$ by Lemma 7 of [2], so $\frac{1}{2}\mathrm{Var}(D_d)=\frac{1}{2}E[D_d^2]-2$. Note also that $C_N=1/2\sum_{i=1}^NG_i^2-(N-1)$, where G_i is the degree of the ith vertex in $\mathscr{F}(\mathscr{X}_m\cup\mathscr{Y}_n)$, and the vertices are numbered completely at

random. Furthermore,

$$rac{1}{N}\sum_{i=1}^{N} \ G_i^2 = \sum_{k=1}^{K_d} \ k^2 \ rac{V_k(N)}{N},$$

where $V_k(N)$ is the number of vertices in $\mathcal{F}(\mathscr{X}_m \cup Y_n)$ with degree k, and K_d is the largest possible degree of any vertex of any MST in \mathbb{R}^d (see [2], Lemma 4). Since $V_k(N)/N$ converges almost surely to $P(D_d = k)$ ([17], page 1905), the proof is complete. \square

3. Proof of Theorem 2.

LEMMA 1. If S, T and $\{x\}$ are disjoint sets in \mathbb{R}^d such that $S \cup T \cup \{x\}$ is nice,

(3)
$$|R(S \cup \{x\}, T) - R(S, T)| \le K_d$$

where K_d is given in the proof of Theorem 1.

PROOF. By the revised add and delete algorithm of Lee [16], page 1000, the graph $\mathcal{T}(S \cup T)$ can be modified to get $\mathcal{T}(S \cup \{x\} \cup T)$ by adding at most K_d edges [those edges of $\mathcal{T}(S \cup \{x\} \cup T)$ which have an endpoint at $\{x\}$] and deleting at most $K_d - 1$ other edges of $\mathcal{T}(S \cup T)$. Then (3) follows. \Box

In the next result, suppose ϕ and ϕ_k , $k \geq 1$, are probability density functions on \mathbb{R}^d with identical support, and with $\phi_k(x)/\phi(x) \to 1$ as $k \to \infty$, uniformly on $\{x \colon \phi(x) > 0\}$. The most interesting special case has $\phi_k \equiv \phi$, but the more general case is needed later on. Recall that $x \in \mathbb{R}^d$ is a *Lebesgue point* of ϕ if the average of $|\phi(\cdot) - \phi(x)|$ over small balls centered at x tends to zero. Almost every $x \in \mathbb{R}^d$ is a Lebesgue point of ϕ ; see, for example, [20], Theorem 7.7.

PROPOSITION 1. Let $h: \mathbb{R}^d \times \mathbb{R}^d \to [0,1]$ be a symmetric, jointly measurable function, such that for almost every $x \in \mathbb{R}^d$, $h(x,\cdot)$ is measurable with x a Lebesgue point of the function $\phi(\cdot)h(x,\cdot)$. For each k, let $V_1^k, V_2^k, \ldots, V_k^k$ be independent d-dimensional variables with common density function ϕ_k , and set $\mathcal{V}_k = \{V_1^k, \ldots, V_k^k\}$. Then

$$(4) \quad \lim_{k\to\infty} k^{-1}E\sum_{1\leq i< j\leq k} h(\boldsymbol{V}_i^k,\boldsymbol{V}_j^k)\mathbf{1}\{(\boldsymbol{V}_i^k,\boldsymbol{V}_j^k)\in\mathscr{T}(\mathscr{V}_k)\} = \int_{\mathbb{R}^d} h(\boldsymbol{x},\boldsymbol{x})\phi(\boldsymbol{x})\,d\boldsymbol{x}.$$

PROOF. Given any nice $S \subset \mathbb{R}^d$, and given $x \in S$, let $\Delta(x;S)$ denote the degree of vertex x in the MST or MSF $\mathcal{F}(S)$. Let $\Delta_K(x;S)$ be the total number of edges of $\mathcal{F}(S)$, of length at most K, with one end at x. Let $\Delta^K(x;S) = \Delta(x;S) - \Delta_K(x;S)$. For $a \in \mathbb{R}$, and $x \in \mathbb{R}^d$, set $aS = \{aX \colon X \in S\}$ and $S - x = \{X - x \colon X \in S\}$. Let $\to_{\mathscr{D}}$ denote weak convergence of point processes as $k \to \infty$, where the topology on point measures on \mathbb{R}^d is as described in [2].

Let x be a Lebesgue point of ϕ with $\phi(x) > 0$. Let \mathcal{V}_k^x be the point process $\{x, V_2^k, V_3^k, \dots, V_k^k\}$, and let $\mathcal{W}_k^x = k^{1/d}(\mathcal{V}_k^x - x)$. By Proposition 3.21 of [19] and Theorem 7.10 of [20], $\mathcal{V}_k^x \to_{\mathscr{D}} \phi(x)^{-1/d} \mathscr{P}_{\phi(x)}$, with \mathscr{P}_{λ} as defined in Section 1. We follow pages 253–254 of [2]. By the Skorohod representation theorem,

We follow pages 253–254 of [2]. By the Skorohod representation theorem, we can take coupled point processes $\tilde{\mathscr{W}}_k^x$ and $\tilde{\mathscr{P}}_{\phi(x)}$ with the same distribution as \mathscr{W}_k^x and $\mathscr{P}_{\phi(x)}$, respectively, satisfying $\tilde{\mathscr{W}}_k^x \to \tilde{\mathscr{P}}_{\phi(x)}$ as $k \to \infty$, almost surely. By Lemma 6(a) of [2],

$$\liminf_{k \to \infty} \Delta(0; \tilde{\mathscr{W}}_k^x) \ge \Delta(0; \tilde{\mathscr{P}}_{\phi(x)})$$
 a.s.

By Lemma 7 of [2], $E[\Delta(0; \mathscr{P}_{\phi(x)})] = 2$. So by Fatou's lemma,

$$(5) 2 \leq E \liminf_{k \to \infty} \Delta(0; \tilde{\mathscr{W}}_k^x) \leq \liminf_{k \to \infty} E\Delta(0; \mathscr{W}_k^x).$$

Similarly, for any K > 0,

(6)
$$E\Delta_K(0; \mathscr{P}_{\phi(x)}) \leq \liminf_{k \to \infty} E\Delta_K(0; \mathscr{W}_k^x).$$

By (5) and Fatou's lemma again,

(7)
$$2 = \int 2\phi(x) dx \le \int \liminf_{k \to \infty} E\Delta(0; \mathscr{W}_{k}^{x}) \phi_{k}(x) dx \\ \le \int \limsup_{k \to \infty} E\Delta(0; \mathscr{W}_{k}^{x}) \phi_{k}(x) dx \le \limsup_{k \to \infty} \int E\Delta(0; \mathscr{W}_{k}^{x}) \phi_{k}(x) dx.$$

Since the total number of edges of $\mathcal{T}(\mathcal{V}_k)$ is k-1, it follows that $E\Delta(V_i^k; \mathcal{V}_k) = 2-2/k$ for each i, and hence $\int E\Delta(0; \mathcal{W}_k^x) \phi_k(x) dx = 2-(2/k)$, so the inequalities in (7) are all equalities. In particular, for almost all x with $\phi(x) > 0$,

(8)
$$\lim_{k \to \infty} E\Delta(0; \mathcal{W}_k^x) = 2,$$

and by (6),

(9)
$$\limsup_{k \to \infty} E[\Delta^K(0; \mathscr{W}_k^x)] \le 2 - E\Delta_K(0; \mathscr{P}_{\phi(x)}).$$

Let $B(x, r) = \{y: |y - x| \le r\}$. For any positive K,

$$egin{aligned} E \sum_{j=2}^k |h(x,V_j^k) - h(x,x)| \mathbf{1}\{V_j^k \in B(x;Kk^{-1/d})\} \ &= (k-1) \int_{B(x;Kk^{-1/d})} ig| (h(x,y)\phi_k(y) - h(x,x)\phi_k(x)) \ &+ h(x,x)(\phi_k(x) - \phi_k(y)) ig| \, dy, \end{aligned}$$

which tends to zero provided x is a Lebesgue point of both ϕ and $h(x, \cdot)\phi(\cdot)$. Therefore, since h has range [0, 1],

(10)
$$\limsup_{k \to \infty} E \sum_{j=2}^{k} |h(x, V_{j}^{k}) - h(x, x)| \mathbf{1}\{(x, V_{j}^{k}) \in \mathscr{T}(\mathscr{V}_{k}^{x})\}$$
$$\leq \limsup_{k \to \infty} E\Delta^{K}(0; \mathscr{W}_{k}^{x}),$$

and by (9), this can be made arbitrarily small by choice of K. Hence the left side of (10) is zero, so for almost all x with $\phi(x) > 0$,

$$(11) \qquad E\sum_{j=2}^k h(x,V_j^k)\mathbf{1}\{(x,V_j^k)\in \mathscr{T}(\mathscr{V}_k^x)\}=h(x,x)E\Delta(x;\mathscr{V}_k^x)+o(1).$$

Since h has range [0, 1], the left-hand side of (11) is bounded by K_d (defined in the proof of Theorem 1), while the right-hand side which tends to 2h(x, x) by (8). Hence, by the dominated convergence theorem,

$$\begin{split} k^{-1}E \sum_{1 \leq i < j \leq k} h(\boldsymbol{V}_i^k, \boldsymbol{V}_j^k) \mathbf{1} \{ (\boldsymbol{V}_i^k, \boldsymbol{V}_j^k) \in \mathcal{F}(\mathcal{V}_k) \} \\ &= \frac{1}{2}E \sum_{j=2}^k h(\boldsymbol{V}_1^k, \boldsymbol{V}_j^k) \mathbf{1} \{ (\boldsymbol{V}_1^k, \boldsymbol{V}_j^k) \in \mathcal{F}(\mathcal{V}_k) \} \\ &= \frac{1}{2} \int \phi_k(x) \, dx E \sum_{j=2}^k h(x, \boldsymbol{V}_j^k) \mathbf{1} \{ (x, \boldsymbol{V}_j^k) \in \mathcal{F}(\mathcal{V}_k^x) \} \\ &\to \int \phi(x) h(x, x) \, dx. \end{split}$$

PROOF OF THEOREM 2. Let M_m and N_n be Poisson variables with mean m and n, respectively, independent of one another and of $\{X_i\}$ and $\{Y_j\}$. Let \mathscr{X}'_m and \mathscr{Y}'_n be the Poisson processes $\{X_1,\ldots,X_{M_m}\}$ and $\{Y_1,\ldots,Y_{N_n}\}$, respectively. Set $R'_{m,n}=R(\mathscr{X}'_m,\mathscr{Y}'_n)$. By Lemma 1,

$$(12) |R'_{m,n} - R_{m,n}| \le K_d(|M_m - m| + |N_n - n|).$$

We shall prove below that in the usual limiting regime,

(13)
$$\frac{E[R'_{m,n}]}{m+n} \to 2pq \int \frac{f(x)g(x)}{pf(x) + qg(x)} dx.$$

This will suffice, since $(m+n)^{-1}E|R'_{m,n}-R_{m,n}|\to 0$ by (12), so that $ER_{m,n}/(m+n)$ also converges to the right side of (13). By Lemma 1, we can then apply Theorem 2.3 of [14] (with $d_{m,n}$ of that paper equal to a constant), to obtain (1).

It remains to prove (13). The point of the Poissonization is that the sample identities of the points of $\mathscr{X}'_m \cup \mathscr{Y}'_n$ are conditionally independent, given their positions. To make this precise, for each m, n let $Z_1^{m,n}, Z_2^{m,n}, Z_3^{m,n}, \ldots$ be independent variables with common density $\phi_{m,n}(x) := (mf(x) + ng(x))/(ng(x))$

(m+n), $x\in\mathbb{R}^d$. Let $L_{m,n}$ be an independent Poisson variable with mean m+n. Let $\mathscr{D}_{m,n}'=\{Z_1^{m,n},\ldots,Z_{L_{m,n}}^{m,n}\}$, a nonhomogeneous Poisson process of rate mf+ng.

Assign a mark from the set $\{1,2\}$ to each point of $\mathscr{D}'_{m,n}$, a point at x being assigned the mark 1 with probability mf(x)/(mf(x)+ng(x)) and a mark 2 otherwise, independently of other points. Let \mathscr{X}'_m be the set of points of $\mathscr{D}'_{m,n}$ marked 1, and let \mathscr{Y}'_n be the set of points of $\mathscr{D}'_{m,n}$ marked 2. By the marking theorem [15], \mathscr{X}'_m and \mathscr{Y}'_n are independent Poisson processes with the same distribution as \mathscr{X}'_m and \mathscr{Y}'_n , respectively. Hence $\tilde{R}'_{m,n} := R(\mathscr{X}'_m, \mathscr{Y}'_n)$ has the same distribution as $R'_{m,n}$, and it suffices to prove (13) with $R'_{m,n}$ replaced by $\tilde{R}'_{m,n}$.

 $\tilde{R}'_{m,n}$. Given points of $\mathscr{G}'_{m,n}$ at x and y, the probability that they have different marks is given by

$$h_{m,n}(x, y) := \frac{mf(x)ng(y) + ng(x)mf(y)}{(mf(x) + ng(x))(mf(y) + ng(y))}.$$

Then

(14)
$$E[\tilde{R}'_{m,n}|\mathcal{G}'_{m,n}] = \sum_{i < j \leq L_{m,n}} h_{m,n}(Z_i^{m,n}, Z_j^{m,n}) \mathbf{1}\{(Z_i^{m,n}, Z_j^{m,n}) \in \mathcal{F}(\mathcal{G}'_{m,n})\}.$$

Set

$$h(x, y) = \frac{pq(f(x)g(y) + g(x)f(y))}{(pf(x) + qg(x))(pf(y) + qg(y))}.$$

Observe that both $h_{m,n}$ and h have range [0,1]. In the usual limiting regime, $h_{m,n} \to h$ uniformly. Taking expectations in (14), we have

(15)
$$E[\tilde{R}'_{m,n}] = E \sum_{i < j \le L_{m,n}} h(Z_i^{m,n}, Z_j^{m,n}) \mathbf{1}\{(Z_i^{m,n}, Z_j^{m,n}) \in \mathcal{F}(\mathcal{Y}'_{m,n})\} + o(m+n).$$

Let $\mathscr{D}_{m,n}$ be the non-Poisson point process $\{Z_1^{m,n},Z_2^{m,n},\ldots,Z_{m+n}^{m,n}\}$. By the proof of Lemma 1 and the fact that $E[|M_m+N_n-m-n|]=o(m+n)$,

$$E[\tilde{R}'_{m,n}] = E \sum_{i < j < m+n} h(Z_i^{m,n}, Z_j^{m,n}) \mathbf{1} \{ (Z_i^{m,n}, Z_j^{m,n}) \in \mathscr{T}(\mathscr{D}_{m,n}) \} + o(m+n).$$

Set $\phi(x) = pf(x) + qg(x)$. Then $\phi_{m,n}(x)/\phi(x) \to 1$, uniformly on $\{x: \phi(x) > 0\}$. By Proposition 1,

$$\frac{E\tilde{R}'_{m,n}}{m+n} \to \int h(x,x)\phi(x)\,dx = \int \frac{2\,pqf(x)g(x)}{pf(x)+qg(x)}\,dx.$$

Acknowledgment. The authors thank Nora Gürtler for assistance in computation.

REFERENCES

- ALDOUS, D. (1990). A Random tree model associated with random graphs. Random Structures Algorithms 1 383

 –401.
- [2] Aldous, D. and Steele, J. M. (1992). Asymptotics for Euclidean minimal spanning trees on random points. Probab. Theory Related Fields 92 247–258.
- [3] ANDERSON, N. H., HALL, P. and TITTERINGTON, D. M. (1994). Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. J. Multivariate Anal. 50 41–54.
- [4] BAHR, R. (1996). A new test for the multivariate two-sample problem with general alternatives (in German). Doctoral thesis, Univ. Hannover.
- [5] BLOEMENA, A. R. (1964). Sampling from a graph. Mathematical Centre Tracts 2. Math. Centrum, Amsterdam.
- [6] EINMAHL, J. H. J. and KHMALADZE, E. V. (1998). The two-sample problem in \mathbb{R}^m and measure-valued martingales. Report S98-2, Dept. Statistics, Univ. New South Wales, Sidney.
- [7] FERGER, D. (1997). Optimal tests for the general two-sample problem. *Dresdener Schriften* zur Mathematischen Stochastik Technische Univ. Dresden.
- [8] FRIEDMAN, J. H. and RAFSKY, L. C. (1979). Multivariate generalizations of the Wolfowitz and Smirnov two-sample tests. Ann. Statist. 7 697-717.
- [9] GYÖRFI, L. and NEMETZ, T. (1975). f-dissimilarity: A general class of separation measures of several probability measures. In Topics in Information Theory. Colloq. Math. Soc. János Bolyai 16 309–321.
- [10] GYÖRFI, L. and NEMETZ, T. (1977). On the dissimilarity of probability measures. Problems Control Inform. Theory 6 263–267.
- [11] GYÖRFI, L. and NEMETZ, T. (1978). f-dissimilarity. A generalization of affinity of several distributions. Ann. Inst. Statist. Math. 30 105–113.
- [12] HENZE, N. (1986). On the probability that a random point is the jth nearest neighbour to its own kth nearest neighbour. J. Appl. Probab. 23 221–226.
- [13] HENZE, N. (1988). A multivariate two-sample test based on the number of nearest-neighbor type coincidences. Ann. Statist. 16 772–783.
- [14] HENZE, N. and VOIGT, B. (1992). Almost sure convergence of certain slowly changing symmetric one- and multi-sample statistics. Ann. Probab. 20 1086–1098.
- [15] KINGMAN, J. F. C. (1993). Poisson Processes. Oxford Univ. Press.
- [16] LEE, S. (1997). The central limit theorem for Euclidean minimal spanning trees I. Ann. Appl. Probab. 7 996–1020.
- [17] PENROSE, M. D. (1996). The random minimal spanning tree in high dimensions. Ann. Probab. $\bf 24$ 1903–1925.
- [18] PICKARD, D. K. (1982). Isolated nearest neighbours. J. Appl. Probab. 19 444-449.
- [19] RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.
- [20] RUDIN, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York.
- [21] SCHILLING, M. F. (1986). Multivariate two-sample tests based on nearest neighbors. J. Amer. Statist. Assoc. 81 799–806.
- [22] STEELE, J. M., SHEPP, L. A. and EDDY, W. F. (1987). On the number of leaves of a Euclidean minimal spanning tree. J. Appl. Prob. 24 809–826.

INSTITUT FÜR MATHEMATISCHE STOCHASTIK

Universität Karlsruhe

Englerstr. 2

D-76128 Karlsruhe

GERMANY

E-MAIL: norbert.henze@math.uni-karlsruhe.de

DEPARTMENT OF MATHEMATICAL SCIENCES

University of Durham

SOUTH ROAD

DURHAM DH1 3LE

UNITED KINGDOM

E-MAIL: mathew.penrose@durham.ac.uk