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ON THE MULTIVARIATE RUNS TEST

By Norbert Henze and Mathew D. Penrose

Universität Karlsruhe and University of Durham

For independent d-variate random variables X1� � � � �Xm with com-
mon density f and Y1� � � � �Yn with common density g, let Rm�n be the
number of edges in the minimal spanning tree with vertices X1� � � � �Xm�
Y1� � � � �Yn that connect points from different samples. Friedman and
Rafsky conjectured that a test of H0� f = g that rejects H0 for small
values of Rm�n should have power against general alternatives. We prove
that Rm�n is asymptotically distribution-free under H0, and that the
multivariate two-sample test based on Rm�n is universally consistent.

1. Introduction and results. Suppose X1�X2�X3� � � � are independent
d-dimensional variables with common probability density function f, and in-
dependently, Y1�Y2� � � � are independent d-dimensional variables with com-
mon density function g. An important and challenging problem in multi-
variate statistics is the two-sample problem: given observations of �m �=
�X1� � � � �Xm� and �n �= �Y1� � � � �Yn�, find a good test for the null hypothesis
H0� f = g, against a general alternative. A number of well-understood tests
are known in the case d = 1; these are based on the ranks of observations
within the sorted list of the pooled sample and hence are distribution-free un-
der H0. For samples in R

d, d ≥ 2, the problem has been studied far less fully
(see [3], [4], [6], [7], [13], [21]).

The subject of this paper is the multivariate runs test proposed by Friedman
and Rafsky [8], which is defined as follows. Given a finite set S ⊂ R

d, a
spanning tree on S is a connected graph � with vertex-set S and no cycles;
its length l�� � is the total of its Euclidean edge lengths. A minimal spanning
tree (MST) is a spanning tree with l�� � ≤ l�� ′� for all spanning trees � ′.
Denote S ⊂ R

d nice if it is locally finite and all interpoint distances among
elements of S are distinct. If S is nice and finite, it has a unique MST (see,
e.g., [2] or [16]). If S is nice and infinite, an analogous notion of minimal
spanning forest (MSF) was developed by Aldous and Steele in [2] and denoted
g�S� there. In this paper, for nice S ⊂ R

d we denote the MST (if S is finite)
or MSF (if infinite) by � �S�.

Given finite sets S and T in R
d such that S∪T is nice, let R�S�T� denote

the number of edges of � �S ∪T� which connect a point of S to a point of T.
Friedman and Rafsky’s test statistic Rm�n is given by

Rm�n = R��m��n��
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In fact, Friedman and Rafsky consider 1+Rm�n, which is the number of dis-
joint subtrees that result from removing all edges of � ��m ∪ �n� that join
vertices of different samples. They conjecture that rejection of H0 for small
values of Rm�n “can be expected to have power against general alternatives”
([8], page 708). We verify this by proving the consistency of the multivariate
runs test against general alternatives. Furthermore, we show that the test
statistic is asymptotically distribution-free under H0.

For asymptotics, we take m → ∞ and n → ∞ in a linked manner so that
m/�m + n� → p ∈ �0�1�, which we shall call the usual limiting regime. Set
q = 1 − p and r = 2pq, and write →� for convergence in distribution. Let
� �µ�σ2� denote the normal distribution with expectation µ and variance σ2.
For λ > 0, let �λ denote a homogeneous Poisson process on R

d of rate λ, with
a point added at the origin.

Theorem 1. In the usual limiting regime, under H0,

�m+ n�−1/2
(
Rm�n −

2mn
m+ n

)
→� � �0� σ2

d��

where

σ2
d = r(r+ 1

2 Var�Dd� �1 − 2r�)�
Here Dd is the degree of the vertex at 0 in the MSF � ��1�.

Theorem 2. In the usual limiting regime,

Rm�n
m+ n → 2pq

∫ f�x�g�x�
pf�x� + qg�x� dx almost surely�(1)

Remark 1. The right-hand side of (1) equals 1 − δ�f�g�p�, where

δ�f�g�p� =
∫ p2f2�x� + q2g2�x�

pf�x� + qg�x� dx

is a member of a general class of separation measures of several probability
distributions (see [9], [10] and [11]). From Theorem 1, Theorem 2 and the fact
that the inequality δ�f�g�p� ≥ δ�f�f�p� = p2+q2 is strict for densities f and
g differing on a set of positive measure (see [9], Theorem 1 and Corollary 1),
it follows that a level-α test which rejects H0 for small values of Rm�n is
consistent against general alternatives. Such a test may be carried out as an
exact permutation test.

Remark 2. Numerical estimates of Var�Dd� for low dimensions are given
in Section 2, along with a proof of Theorem 1. Interestingly, the dependence of
σ2
d on the dimension d via Var�Dd� vanishes if p = 1/2 since then σ2

d = 1/4.
It is also of interest to compare σ2

d with the asymptotic variance of a closely
related two-sample statistic considered in [21] and [13], namely the number
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Table 1
Estimates of αk�d �= P�Dd = k�� and Var�Dd�

k

d 1 2 3 4 5 6 7 V̂ar�Dd�

2 0.221 0.566 0.206 0.007 0.000 — — 0.455 cf. [22]
2 0.2108 0.5694 0.2121 0.0077 0.0000 — — 0.453
3 0.2858 0.4595 0.2216 0.0314 0.0017 0.0000 0.0000 0.648
4 0.3021 0.4238 0.2209 0.0478 0.0052 0.0002 0.0000 0.763
∞ 0.40658 0.32429 0.17112 0.06835 0.02201 0.00593 0.00138 1.192

Nm�n of elements of the pooled sample �m ∪ �n that have a nearest neighbor
from the same sample. The asymptotic variance of Nm�n under H0 is

σ̃2
d = r�1 + vd� + 1

2 Var�D̃d� �1 − 2r�
(see [13], Proposition 3.3). Here vd is the probability that 0 is the nearest
neighbor of its own nearest neighbor in �1, and D̃d stands for the number of
points of �1 which have the origin as their nearest neighbor. If p = 1/2, then
σ̃2
d = �1 + vd�/2 so that, in contrast to the Friedman–Rafsky statistic, there

is still a dependence of σ̃2
d on d via the probability vd for the “reciprocity” of

the nearest neighbor relation. A closed-form expression for vd is given in [18]
(see also [12]).

2. The limiting null distribution. Some limited information on Var�Dd�
and thus on σ2

d may be obtained from Table 1 which presents estimates α̂k�d
of the probabilities αk�d = P�Dd = k� and hence also an estimate V̂ar�Dd� of
Var�Dd� for the cases d = 2�3�4.

The first row reproduces the estimates α̂k�2 obtained in [22] as the aver-
age fraction of observed vertices of degree k from 20 independently generated
minimal spanning trees, each tree formed by 65,536 vertices taken indepen-
dently at random from the unit square. The entries in the dth row, where
d = 2�3�4, are the average fractions out of 10,000 independent replications
of the MST formed by 0 and the nearest, second-nearest, � � � � 1,000th nearest
neighbor of 0 in � ��1� on R

d, in which the degree of the vertex at 0 is k.
Since, for low dimensions such as 2, 3 or 4, the union of the nearest, second-
nearest, � � � � 1,000th nearest neighbor of 0 should with high probability be a
“blocking set around the origin” in the language of [16], this simulation design
should produce a variable with a distribution very close to that of Dd. Compu-
tations were carried out at the Rechenzentrum of the University of Karlsruhe
using an IBM RS/6000 SP parallel computer. The CPU computing time for the
case d = 4 was about 15 hours.

It is known [17] that αk�d → αk as d→ ∞, where

αk =
∫ 1

0
exp�−ϕ�u��ϕ�u�

k+1

�k+ 1�! du
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and

ϕ�u� =
∫ u

0

log�1/x�
1 − x dx� u < 1

(see [1], page 385). If D∞ denotes a variable with P�D∞ = k� = αk �k = 1�2�
3� � � ��� then E�D∞� = 2 (see [1]) and Var�Dd� → Var�D∞� as d → ∞. This
can be proved using the methods of [17], in particular Lemma 3 and the proof
of Lemma 4 from that paper.

The row denoted “∞” in Table 1 contains numerical values for αk. These
were obtained using an IMSL routine (Gauss–Kronrod numerical integration)
and, complemented by α8 = 0�00028 and α9 = 0�00005, should be accurate up
to five digits, in contrast with the values given in [1], page 396, which gives
E�D∞� = 1�994 when it should be 2 (the values in [1] were reported incorrectly
in [17]).

Proof of Theorem 1. The conditional variance of Rm�n given the pooled
sample �m ∪�n, is

Var�Rm�n��m ∪�n�

= 2mn
N�N− 1�

×
(

2mn−N
N

+ CN −N+ 2
�N− 2��N− 3� �N�N− 1� − 4mn+ 2�

)
�

(2)

where N =m+n is the total sample size, and CN is the number of edge pairs
in � ��m ∪�n� that share a common vertex (see [8], page 701). Putting

R̃m�n = Rm�n − 2mn/�m+ n�
Var�Rm�n��m ∪�n�1/2

�

Theorem 4.1.2 of [5] yields almost sure asymptotic normality of R̃m�n under
the usual limiting regime, that is, limP�R̃m�n ≤ t��m ∪ �n� = %�t� almost
surely for each t ∈ R, where % is the standard normal distribution function.
Since, in the usual limiting regime,

Var�Rm�n��m ∪�n�
m+ n = r

(
r+

(
CN
N

− 1
)
�1 − 2r�

)
+ oP�1��

it remains to prove

CN
N

− 1 → 1
2

Var�Dd� in probability�

To this end, note first that E�Dd� = 2 by Lemma 7 of [2], so 1
2 Var�Dd� =

1
2E�D2

d�−2. Note also that CN = 1/2
∑N
i=1G

2
i −�N−1�, where Gi is the degree

of the ith vertex in � ��m ∪�n�, and the vertices are numbered completely at
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random. Furthermore,

1
N

N∑
i=1

G2
i =

Kd∑
k=1

k2 Vk�N�
N

�

where Vk�N� is the number of vertices in � ��m ∪ Yn� with degree k, and
Kd is the largest possible degree of any vertex of any MST in R

d (see [2],
Lemma 4). Since Vk�N�/N converges almost surely to P�Dd = k� ([17], page
1905), the proof is complete. ✷

3. Proof of Theorem 2.

Lemma 1. If S, T and �x� are disjoint sets in R
d such that S ∪T ∪ �x� is

nice,

�R�S ∪ �x��T� −R�S�T�� ≤Kd�(3)

where Kd is given in the proof of Theorem 1.

Proof. By the revised add and delete algorithm of Lee [16], page 1000,
the graph � �S∪T� can be modified to get � �S∪ �x� ∪T� by adding at most
Kd edges �those edges of � �S∪ �x� ∪T� which have an endpoint at �x�� and
deleting at most Kd − 1 other edges of � �S ∪T�. Then (3) follows. ✷

In the next result, suppose φ and φk, k ≥ 1� are probability density func-
tions on R

d with identical support, and with φk�x�/φ�x� → 1 as k → ∞,
uniformly on �x� φ�x� > 0�. The most interesting special case has φk ≡ φ,
but the more general case is needed later on. Recall that x ∈ R

d is a Lebesgue
point of φ if the average of �φ�·� − φ�x�� over small balls centered at x tends
to zero. Almost every x ∈ R

d is a Lebesgue point of φ; see, for example, [20],
Theorem 7.7.

Proposition 1. Let h� R
d×R

d → �0�1� be a symmetric, jointly measurable
function, such that for almost every x ∈ R

d, h�x� ·� is measurable with x a
Lebesgue point of the function φ�·�h�x� ·�. For each k, let Vk

1�V
k
2� � � � �V

k
k be

independent d-dimensional variables with common density function φk, and
set �k = �Vk

1� � � � �V
k
k�. Then

lim
k→∞

k−1E
∑∑

1≤i<j≤k
h�Vk

i �V
k
j�1��Vk

i �V
k
j� ∈� ��k��=

∫
R
d
h�x� x�φ�x�dx�(4)

Proof. Given any nice S ⊂ R
d, and given x ∈ S, let .�x�S� denote the

degree of vertex x in the MST or MSF � �S�. Let .K�x�S� be the total number
of edges of � �S�, of length at most K, with one end at x. Let .K�x�S� =
.�x�S� − .K�x�S�. For a ∈ R, and x ∈ R

d, set aS = �aX� X ∈ S� and
S−x = �X−x �X ∈ S�. Let →� denote weak convergence of point processes
as k→ ∞, where the topology on point measures on R

d is as described in [2].
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Let x be a Lebesgue point of φ with φ�x� > 0. Let � x
k be the point process

�x�Vk
2�V

k
3� � � � �V

k
k�, and let � x

k = k1/d�� x
k −x�. By Proposition 3.21 of [19] and

Theorem 7.10 of [20], � x
k →� φ�x�−1/d�φ�x�� with �λ as defined in Section 1.

We follow pages 253–254 of [2]. By the Skorohod representation theorem,
we can take coupled point processes �̃ x

k and �̃φ�x� with the same distribution
as � x

k and �φ�x�, respectively, satisfying �̃ x
k → �̃φ�x� as k→ ∞, almost surely.

By Lemma 6(a) of [2],

lim inf
k→∞

.�0� �̃ x
k � ≥ .�0� �̃φ�x�� a.s.

By Lemma 7 of [2], E�.�0��φ�x��� = 2. So by Fatou’s lemma,

2 ≤ E lim inf
k→∞

.�0� �̃ x
k � ≤ lim inf

k→∞
E.�0�� x

k ��(5)

Similarly, for any K > 0,

E.K�0��φ�x�� ≤ lim inf
k→∞

E.K�0�� x
k ��(6)

By (5) and Fatou’s lemma again,

2 =
∫

2φ�x�dx ≤
∫

lim inf
k→∞

E.�0�� x
k �φk�x�dx

≤
∫

lim sup
k→∞

E.�0�� x
k �φk�x�dx ≤ lim sup

k→∞

∫
E.�0�� x

k �φk�x�dx�
(7)

Since the total number of edges of � ��k� is k−1, it follows that E.�Vk
i � �k� =

2−2/k for each i, and hence
∫
E.�0�� x

k �φk�x�dx = 2−�2/k�, so the inequal-
ities in (7) are all equalities. In particular, for almost all x with φ�x� > 0,

lim
k→∞

E.�0�� x
k � = 2�(8)

and by (6),

lim sup
k→∞

E�.K�0�� x
k �� ≤ 2 −E.K�0��φ�x���(9)

Let B�x� r� = �y� �y− x� ≤ r�. For any positive K,

E
k∑
j=2

�h�x�Vk
j� − h�x� x��1�Vk

j ∈ B�x�Kk−1/d��

= �k− 1�
∫
B�x�Kk−1/d�

∣∣�h�x�y�φk�y� − h�x� x�φk�x��
+ h�x� x��φk�x� −φk�y��

∣∣dy�
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which tends to zero provided x is a Lebesgue point of both φ and h�x� ·�φ�·�.
Therefore, since h has range �0�1�,

lim sup
k→∞

E
k∑
j=2

�h�x�Vk
j� − h�x� x��1��x�Vk

j� ∈ � �� x
k ��

≤ lim sup
k→∞

E.K�0�� x
k ��

(10)

and by (9), this can be made arbitrarily small by choice of K. Hence the left
side of (10) is zero, so for almost all x with φ�x� > 0,

E
k∑
j=2

h�x�Vk
j�1��x�Vk

j� ∈ � �� x
k �� = h�x� x�E.�x� � x

k � + o�1��(11)

Since h has range �0�1�, the left-hand side of (11) is bounded by Kd (defined
in the proof of Theorem 1), while the right-hand side which tends to 2h�x� x�
by (8). Hence, by the dominated convergence theorem,

k−1E
∑∑

1≤i<j≤k
h�Vk

i �V
k
j�1��Vk

i �V
k
j� ∈ � ��k��

= 1
2E

k∑
j=2

h�Vk
1�V

k
j�1��Vk

1�V
k
j� ∈ � ��k��

= 1
2

∫
φk�x�dxE

k∑
j=2

h�x�Vk
j�1��x�Vk

j� ∈ � �� x
k ��

→
∫
φ�x�h�x� x�dx�

Proof of Theorem 2. Let Mm and Nn be Poisson variables with mean
m and n, respectively, independent of one another and of �Xi� and �Yj�.
Let � ′

m and � ′
n be the Poisson processes �X1� � � � �XMm

� and �Y1� � � � �YNn
�,

respectively. Set R′
m�n = R�� ′

m��
′
n�� By Lemma 1,

�R′
m�n −Rm�n� ≤Kd��Mm −m� + �Nn − n���(12)

We shall prove below that in the usual limiting regime,

E�R′
m�n�

m+ n → 2pq
∫ f�x�g�x�
pf�x� + qg�x� dx�(13)

This will suffice, since �m + n�−1E�R′
m�n − Rm�n� → 0 by (12), so that

ERm�n/�m+ n� also converges to the right side of (13). By Lemma 1, we can
then apply Theorem 2.3 of [14] (with dm�n of that paper equal to a constant),
to obtain (1).

It remains to prove (13). The point of the Poissonization is that the sample
identities of the points of � ′

m ∪ � ′
n are conditionally independent, given their

positions. To make this precise, for each m�n let Zm�n1 �Z
m�n
2 �Z

m�n
3 � � � � be

independent variables with common density φm�n�x� �= �mf�x� + ng�x��/
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�m + n�, x ∈ R
d. Let Lm�n be an independent Poisson variable with mean

m + n. Let 	′
m�n = �Zm�n1 � � � � �Z

m�n
Lm�n

�, a nonhomogeneous Poisson process of
rate mf+ ng.

Assign a mark from the set �1�2� to each point of 	′
m�n, a point at x being

assigned the mark 1 with probability mf�x�/�mf�x� + ng�x�� and a mark 2
otherwise, independently of other points. Let �̃ ′

m be the set of points of 	′
m�n

marked 1, and let �̃ ′
n be the set of points of 	′

m�n marked 2. By the marking
theorem [15], �̃ ′

m and �̃ ′
n are independent Poisson processes with the same

distribution as � ′
m and � ′

n, respectively. Hence R̃′
m�n �= R��̃ ′

m� �̃
′
n� has the

same distribution as R′
m�n, and it suffices to prove (13) with R′

m�n replaced by
R̃′
m�n.
Given points of 	′

m�n at x and y, the probability that they have different
marks is given by

hm�n�x�y� �=
mf�x�ng�y� + ng�x�mf�y�

�mf�x� + ng�x���mf�y� + ng�y�� �

Then

E�R̃′
m�n�	′

m�n�=
∑∑
i<j≤Lm�n

hm�n�Zm�ni �Z
m�n
j �1��Zm�ni �Z

m�n
j � ∈� �	′

m�n���(14)

Set

h�x�y� = pq�f�x�g�y� + g�x�f�y��
�pf�x� + qg�x���pf�y� + qg�y�� �

Observe that both hm�n and h have range �0�1�. In the usual limiting regime,
hm�n → h uniformly. Taking expectations in (14), we have

E�R̃′
m�n�

= E ∑∑
i<j≤Lm�n

h�Zm�ni �Z
m�n
j �1��Zm�ni �Z

m�n
j � ∈ � �	′

m�n�� + o�m+ n��(15)

Let 	m�n be the non-Poisson point process �Zm�n1 �Z
m�n
2 � � � � �Z

m�n
m+n�. By the

proof of Lemma 1 and the fact that E��Mm +Nn −m− n�� = o�m+ n�,
E�R̃′

m�n� = E
∑∑
i<j≤m+n

h�Zm�ni �Z
m�n
j �1��Zm�ni �Z

m�n
j � ∈ � �	m�n�� + o�m+ n��

Set φ�x�=pf�x�+qg�x�. Then φm�n�x�/φ�x�→1, uniformly on �x� φ�x� > 0�.
By Proposition 1,

ER̃′
m�n

m+ n →
∫
h�x� x�φ�x�dx =

∫ 2pqf�x�g�x�
pf�x� + qg�x� dx�
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