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ON THE MULTIVARIATE RUNS TEST

BY NORBERT HENZE AND MATHEW D. PENROSE

Universitit Karlsruhe and University of Durham

For independent d-variate random variables X4, ..., X,, with com-
mon density f and Yy,...,Y, with common density g, let R,, , be the
number of edges in the minimal spanning tree with vertices X1,..., X,,,
Yq,..., Y, that connect points from different samples. Friedman and
Rafsky conjectured that a test of Hy: f = g that rejects H, for small
values of R, , should have power against general alternatives. We prove
that R,, , is asymptotically distribution-free under H,, and that the
multivariate two-sample test based on R,, ,, is universally consistent.

1. Introduction and results. Suppose X;, X,, X3, ... are independent
d-dimensional variables with common probability density function f, and in-
dependently, Y, Y,,... are independent d-dimensional variables with com-
mon density function g. An important and challenging problem in multi-
variate statistics is the two-sample problem: given observations of Z;, =
{X{,..., X,,}and %, :={Y, ..., Y}, find a good test for the null hypothesis
H,: f = g, against a general alternative. A number of well-understood tests
are known in the case d = 1; these are based on the ranks of observations
within the sorted list of the pooled sample and hence are distribution-free un-
der H,. For samples in R?, d > 2, the problem has been studied far less fully
(see [3], [4], [6], [7], [13], [21D).

The subject of this paper is the multivariate runs test proposed by Friedman
and Rafsky [8], which is defined as follows. Given a finite set S c R%, a
spanning tree on S is a connected graph 7 with vertex-set S and no cycles;
its length 1(9") is the total of its Euclidean edge lengths. A minimal spanning
tree (MST) is a spanning tree with I(.77) < I(.7") for all spanning trees 7.
Denote S C R? nice if it is locally finite and all interpoint distances among
elements of S are distinct. If S is nice and finite, it has a unique MST (see,
e.g., [2] or [16]). If S is nice and infinite, an analogous notion of minimal
spanning forest (MSF) was developed by Aldous and Steele in [2] and denoted
g(S) there. In this paper, for nice S ¢ R? we denote the MST (if S is finite)
or MSF (if infinite) by 77 (S).

Given finite sets S and T in R such that S U T is nice, let R(S, T') denote
the number of edges of 7 (S U T) which connect a point of S to a point of T'.
Friedman and Rafsky’s test statistic R, , is given by
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In fact, Friedman and Rafsky consider 1+ R,, ,,, which is the number of dis-
joint subtrees that result from removing all edges of .7 (Z;, U %) that join
vertices of different samples. They conjecture that rejection of H, for small
values of R,, , “can be expected to have power against general alternatives”
([8], page 708). We verify this by proving the consistency of the multivariate
runs test against general alternatives. Furthermore, we show that the test
statistic is asymptotically distribution-free under H,,.

For asymptotics, we take m — oo and n — oo in a linked manner so that
m/(m +n) - p € (0, 1), which we shall call the usual limiting regime. Set
q=1— pand r = 2pq, and write —, for convergence in distribution. Let
A (u, 0?) denote the normal distribution with expectation u and variance o2.
For A > 0, let &, denote a homogeneous Poisson process on R? of rate A, with
a point added at the origin.

THEOREM 1. In the usual limiting regime, under H,,

2mn
m+4n

(m + n)*l/z (Rm,n - > -4 A0, 03),

where
o =r(r+ 3 Var(D,) (1-2r)).
Here Dy is the degree of the vertex at 0 in the MSF 7 (#).

THEOREM 2. In the usual limiting regime,

o [ L8

W P () + 42(x)

dx almost surely.
m + n

REMARK 1. The right-hand side of (1) equals 1 — 6(f, g, p), where

2f2(x) + ¢*8%(x)
pf(x) + qg(x)

is a member of a general class of separation measures of several probability
distributions (see [9], [10] and [11]). From Theorem 1, Theorem 2 and the fact
that the inequality 6(f, g, p) = 8(f, f, p) = p?>+q? is strict for densities f and
g differing on a set of positive measure (see [9], Theorem 1 and Corollary 1),
it follows that a level-a test which rejects H, for small values of R,, , is
consistent against general alternatives. Such a test may be carried out as an
exact permutation test.

5(f. g p) = [~

REMARK 2. Numerical estimates of Var(D,) for low dimensions are given
in Section 2, along with a proof of Theorem 1. Interestingly, the dependence of
o2 on the dimension d via Var(D,) vanishes if p = 1/2 since then o2 = 1/4.
It is also of interest to compare 03 with the asymptotic variance of a closely
related two-sample statistic considered in [21] and [13], namely the number
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TABLE 1
Estimates of ay, 4 (= P(Dg = k)) and Var(D,)

E
d 1 2 3 4 5 6 7 Var(Dg)
0221 0566 0206  0.007  0.000 — — 0.455  cf [22]
0.2108 0.5694 02121  0.0077  0.0000 — — 0.453

0.2858 0.4595 0.2216 0.0314 0.0017 0.0000 0.0000 0.648
0.3021  0.4238 0.2209 0.0478 0.0052 0.0002  0.0000 0.763
0.40658 0.32429 0.17112 0.06835 0.02201 0.00593 0.00138 1.192

R N w N

N,, , of elements of the pooled sample 2;, U %, that have a nearest neighbor
from the same sample. The asymptotic variance of N,, , under H| is

65 =r(14vy)+ 3 Var(Dy) (1 - 2r)

(see [13], Proposition 3.3). Here v, is the probability that 0 is the nearest
neighbor of its own nearest neighbor in &, and ljd stands for the number of
points of & which have the origin as their nearest neighbor. If p = 1/2, then
G2 = (1 + vy)/2 so that, 1n contrast to the Friedman—Rafsky statistic, there
is still a dependence of & o-d on d via the probability v, for the “reciprocity” of
the nearest neighbor relation. A closed-form expression for v, is given in [18]
(see also [12]).

2. The limiting null distribution. Some limited information on Var(D,)
and thus on ¢ may be obtained from Table 1 which presents estimates &, 4

of the probabilities «;, ; = P(D,; = k) and hence also an estimate \7a\r(Dd) of
Var(D,) for the cases d = 2, 3, 4.

The first row reproduces the estimates &, 5 obtained in [22] as the aver-
age fraction of observed vertices of degree £ from 20 independently generated
minimal spanning trees, each tree formed by 65,536 vertices taken indepen-
dently at random from the unit square. The entries in the dth row, where
d = 2, 3,4, are the average fractions out of 10,000 independent replications
of the MST formed by 0 and the nearest, second-nearest, ..., 1,000th nearest
neighbor of 0 in .7(#) on R%, in which the degree of the vertex at 0 is k.
Since, for low dimensions such as 2, 3 or 4, the union of the nearest, second-
nearest, ..., 1,000th nearest neighbor of 0 should with high probability be a
“blocking set around the origin” in the language of [16], this simulation design
should produce a variable with a distribution very close to that of D;. Compu-
tations were carried out at the Rechenzentrum of the University of Karlsruhe
using an IBM RS/6000 SP parallel computer. The CPU computing time for the
case d = 4 was about 15 hours.

It is known [17] that «;, ; — «; as d — oo, where

)k+1

= [ exp-e) e d
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and

u<l

o) = /u log(1/x) da

o 1—x ’

(see [1], page 385). If D, denotes a variable with P[D_ = k] =«a; (k= 1,2,
3,...), then E[D ] = 2 (see [1]) and Var(D,;) — Var(D,) as d — oo. This
can be proved using the methods of [17], in particular Lemma 3 and the proof
of Lemma 4 from that paper.

The row denoted “co” in Table 1 contains numerical values for «;. These
were obtained using an IMSL routine (Gauss—Kronrod numerical integration)
and, complemented by ag = 0.00028 and «ag = 0.00005, should be accurate up
to five digits, in contrast with the values given in [1], page 396, which gives
E(D,) = 1.994 when it should be 2 (the values in [1] were reported incorrectly
in [17]).

PROOF OF THEOREM 1. The conditional variance of R,, , given the pooled
sample 2,, U%Z,,, is
Var(R,, ,|2;,U%,)
2mn
2) TN(N-1)
2mn — N Cy—N+2
(o

[N(N-1)—4mn + 2]),
where N = m +n is the total sample size, and C is the number of edge pairs
in (2, U%,) that share a common vertex (see [8], page 701). Putting

B R, ,—2mn/(m +n)
™" Var(R,, |, U %,)12°

Theorem 4.1.2 of [5] yields almost sure asymptotic normality of Rm’n under
the usual limiting regime, that is, lim P(R,, , < t|2;, U%,) = ®(t) almost
surely for each ¢ € R, where ® is the standard normal distribution function.
Since, in the usual limiting regime,

Var(R, |2 U%,) _ ,.(r . (CWN . 1>(1 - 2r)> +op(1),

m+n

it remains to prove

1
CWN -1- 3 Var(D;) in probability.
To this end, note first that E[D;] = 2 by Lemma 7 of [2], so %Var(Dd) =
%E[Dg]—z Note also that Cy = 1/2YY, G? — (N —1), where G, is the degree
of the ith vertex in .7 (2;,U%,,), and the vertices are numbered completely at
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random. Furthermore,

1 N 9 K, 9
- Z Gi = Z k )
N i=1 k=1 N

where V(N) is the number of vertices in .7 (Z;, UY,) with degree %, and
K is the largest possible degree of any vertex of any MST in R? (see [2],
Lemma 4). Since V,(N)/N converges almost surely to P(D,; = k) ([17], page
1905), the proof is complete. O

3. Proof of Theorem 2.

LEMMA 1. If S, T and {x} are disjoint sets in R? such that SUT U {x} is
nice,

(3) |IR(SU{x},T)— R(S,T)| < Kq,

where K ; is given in the proof of Theorem 1.

PROOF. By the revised add and delete algorithm of Lee [16], page 1000,
the graph (S UT) can be modified to get .7 (SU{x}UT) by adding at most
K ; edges [those edges of 7 (S U{x}UT) which have an endpoint at {x}] and
deleting at most K ; — 1 other edges of (S U T'). Then (3) follows. O

In the next result, suppose ¢ and ¢,, £ > 1, are probability density func-
tions on R? with identical support, and with ¢,(x)/¢d(x) — 1 as k — oo,
uniformly on {x: ¢(x) > 0}. The most interesting special case has ¢, = ¢,
but the more general case is needed later on. Recall that x € R? is a Lebesgue
point of ¢ if the average of |$(-) — ¢(x)| over small balls centered at x tends
to zero. Almost every x € R? is a Lebesgue point of ¢; see, for example, [20],
Theorem 7.7.

PROPOSITION 1. Let h: R? x R? — [0, 1] be a symmetric, jointly measurable
function, such that for almost every x € R%, h(x, ) is measurable with x a
Lebesgue point of the function ¢(-)h(x,-). For each k, let V*, Vé’, cees V’,ﬁ be
independent d-dimensional variables with common density function ¢, and
set 1, ={V% ..., V). Then

@ lm kB Y W(VEVHL(VE VE e (1)} = /];{ h(x, x)é(x) dx.

1<i<j<k

PROOF. Given any nice S c R?, and given x € S, let A(x; S) denote the
degree of vertex x in the MST or MSF .7°(S). Let Ag(x; S) be the total number
of edges of 7(S), of length at most K, with one end at x. Let AX(x;S) =
A(x;S) — Ag(x;8). For a € R, and x € R?, set aS = {aX: X € S} and
S—x={X—-—x:X e S}. Let -, denote weak convergence of point processes
as k — oo, where the topology on point measures on R? is as described in [2].
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Let x be a Lebesgue point of ¢ with ¢(x) > 0. Let 7,* be the point process
{x, VE, VE .. VEY andlet 7 = kY¢(7;* —x). By Proposition 3.21 of [19] and
Theorem 7.10 of [20], 7} —, ¢(x)"V94 2., with Z, as defined in Section 1.

We follow pages 253—-254 of [2]. By the Skorohod representation theorem,
we can take coupled point processes ¥, and %, with the same distribution

as 7} and &, ,), respectively, satisfying vE— 97(,,(,6) as k — oo, almost surely.
By Lemma 6(a) of [2],

h?liélf A(0; 7;F) = A(0; ,97¢(x)) a.s.
By Lemma 7 of [2], E[A(0; #,))] = 2. So by Fatou’s lemma,
(5) 2<E 1ilxgi£f AO; 7)) < 1122 iong EA0; 7).
Similarly, for any K > 0,

(6) EAg(0; Zyxy)) < liin inf EAg(0; 7,7).
By (5) and Fatou’s lemma again,

2= /2¢(x)dx < /ngiogf EA(0; #;%)by(x) dx

(7
< flim sup EA(0; 7,7 ) (x) dx < lim sup/EA(O; .5 )pp(x)dx.
k— o0

k— o0

Since the total number of edges of 7 (7;,) is k— 1, it follows that EA(V%;7,) =
2—2/F for each i, and hence [ EA(0; #;)¢,(x) dx = 2—(2/k), so the inequal-
ities in (7) are all equalities. In particular, for almost all x with ¢(x) > 0,

(8) lim EA0;7;) =2,

and by (6),

9 lim sup E[A%(0; 7;7)] < 2 — EAg(0; Py(x))-
k—o0

Let B(x,r)={y: |y — x| < r}. For any positive K,

k
E Y |h(x, Vf») — h(x, x)|1{V’;. € B(x; KkY4)}
Jj=2

=(k-1) (R, Y)Pr(y) = h(x, %) by (x))

B(x; Kk~1/d)
+ h(x, x)(dp(x) = di(¥))] dy,
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which tends to zero provided x is a Lebesgue point of both ¢ and A(x, -)¢(-).
Therefore, since 2 has range [0, 1],

k
limsup E Y |h(x, V%) — h(x, x)[1{(x, V%) e 7 ()}
(10) k—o0 Jj=2
< lim sup EAK(O; ),
k—o00
and by (9), this can be made arbitrarily small by choice of K. Hence the left
side of (10) is zero, so for almost all x with ¢(x) > 0,

k
(1) E Y h(x, VO1{(x, V%) e 7(7F)} = h(x, x) EA(x; 73F) + o(1).
j=2
Since & has range [0, 1], the left-hand side of (11) is bounded by K, (defined
in the proof of Theorem 1), while the right-hand side which tends to 2A(x, x)
by (8). Hence, by the dominated convergence theorem,

EE 3 M(VE VIHH(VE VE) e 7))

13
1<i<j<k

k
=L1EY W(VE VHI{(VE VY e 7(1)}
Jj=2

k
=1 [u(x)dxE Y h(x, VHL{(x, VE) e 7(17)}

j=2
- /¢(x)h(x, x)dx.

ProOF OF THEOREM 2. Let M,, and N, be Poisson variables with mean
m and n, respectively, independent of one another and of {X,;} and {Y ;}.
Let 27, and %, be the Poisson processes {X,..., Xy } and {Y4,..., Yy },
respectively. Set R, , = R(Z,,,%,). By Lemma 1,

(12) |Rop.n = B nl = Ka(|M,, — m| + N, — nl).
We shall prove below that in the usual limiting regime,

E[R, ,] f(x)g(x)
m+n 2pq/ Pf(x) + qg(x)

This will suffice, since (m + n)’1E|R/m,n - R, ,| — 0 by (12), so that
ER,, ,/(m + n) also converges to the right side of (13). By Lemma 1, we can
then apply Theorem 2.3 of [14] (with d,, , of that paper equal to a constant),
to obtain (1).

It remains to prove (13). The point of the Poissonization is that the sample
identities of the points of 2, U %, are conditionally independent, given their
positions. To make this precise, for each m,n let Z7"", Z"", Z5"", ... be
independent variables with common density ¢,, ,(x) := (mf(x) + ng(x))/

(13)
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(m 4+ n), x € R%. Let L,, , be an independent Poisson variable with mean
m+n. Let 2, , ={Z{"",..., Z1'" }, a nonhomogeneous Poisson process of
rate mf + ng. ,

Assign a mark from the set {1, 2} to each point of 2;, ,, a point at x being
assigned the mark 1 with probability mf(x)/(mf(x) + ng(x)) and a mark 2
otherwise, independently of other points. Let 27, be the set of points of 2, ,
marked 1, and let /] be the set of points of 9, , marked 2. By the marking
theorem [15], Qﬂ”n’l and @;ﬁ are independent Poisson processes with the same
distribution as Z;, and %/, respectively. Hence R’mn = R(Z},,%!) has the
same distribution as R;, ,, and it suffices to prove (13) with R;, , replaced by
R, ..

Given points of 2,, , at x and y, the probability that they have different
marks is given by

b ()i M INEG) + ng(RImf ()
I G () + ng()(mf () + ng ()

Then

(14) E[R,, ,|Zn.2)= 20 R u(Z"", Z7"(Z]", 277" € T (P n)}-
i<j<L,, ,

Set

pq(f(x)g(y)+ g(x)f(y))
(pf(x) + qg(x))(pf (y) +ag(y))

Observe that both #,, , and 2 have range [0, 1]. In the usual limiting regime,
Ry n — h uniformly. Taking expectations in (14), we have

h(x, y) =

E[R), ,]
15 _E Y Mz, 2T Z, 2 € T( Do)} + o(m 1),

i<j<L,, ,

Let 2, , be the non-Poisson point process {Z7"", Z;"",..., Z,;\,}. By the
proof of Lemma 1 and the fact that E[|M,, + N,, — m — n|] = o(m + n),

E[R, ,J=E >3 WZP". Z7"(Z"", Z5") € T(Pm )} + o(m + n).

i<j<m+n

Set ¢(x) = pf(x)+qg(x). Then ¢, ,(x)/d(x) — 1, uniformly on {x: ¢(x) > 0}.
By Proposition 1,
EBpn /h(x,x)¢(x)dx =/

m+n

2pqf(x)g(x)
pf(x)+qg(x)
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