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The local asymptotic normality property is established for a regression
model with fractional ARIMA�p�d� q� errors. This result allows for solv-
ing, in an asymptotically optimal way, a variety of inference problems in
the long-memory context: hypothesis testing, discriminant analysis, rank-
based testing, locally asymptotically minimax and adaptive estimation, etc.
The problem of testing linear constraints on the parameters, the discrimi-
nant analysis problem, and the construction of locally asymptotically min-
imax adaptive estimators are treated in some detail.

1. Introduction. Local asymptotic normality [LAN; see, e.g., Le Cam
(1960, 1986); Strasser (1985); Le Cam and Yang (1990)] constitutes a key re-
sult in asymptotic inference and allows for the solution of virtually all asymp-
totic inference problems. The LAN approach recently has been adopted in the
study of a variety of time series models. Swensen (1985) established LAN for
autoregressive models of finite order with a regression trend and applied it in
the derivation of the local power of the Durbin–Watson test. For a stationary
ARMA �p�q� process (without trend), Kreiss (1987, 1990) also proved the LAN
property, and constructed locally asymptotically minimax LAM adaptive esti-
mators, as well as locally asymptotically maximin tests for AR models. Based
on the LAN property, Hallin and Puri (1988, 1994) discussed the problem
of testing arbitrary linear constraints on the parameters of an ARMA model
with trend. Kreiss (1990) showed the LAN for autoregressive processes of infi-
nite order and discussed adaptive estimation. For multivariate ARMA models
with a linear trend, Garel and Hallin (1995) established the LAN property
and gave various expressions for the central sequence. Unit root and coin-
tegrated models have been studied by Jeganathan (1995, 1997). Benghabrit
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and Hallin (1998) investigate the bilinear case in the vicinity of AR depen-
dence. Other nonlinear time series models have been considered, for example,
by Hwang and Basawa (1993), Drost, Klaassen and Werker (1997) and Koul
and Schick (1997).

All the above results are for short-memory time series models. The long-
memory case, from this point of view, remains largely, if not totally, unexplored.
Asymptotic results, though, exist. But they mainly deal with the asymptotic
behavior of traditional MLEs or LSEs. For a Gaussian long-memory process,
Dahlhaus (1989) proved the asymptotic normality of the maximum likelihood
estimator of spectral parameters and discussed its asymptotic efficiency. Ya-
jima (1985, 1991) elucidated problems related with the asymptotics of the
BLUE and the LSE in a regression model with long-memory stationary er-
rors. Beran (1995) considers the case of the differencing parameter. Sethu-
raman and Basawa (1997) consider the MLE for a multivariate fractionally
differenced AR model and obtain its asymptotic distribution. The monograph
by Beran (1994) gives an extensive review of various problems in long-memory
time series. However, the systematic approach based on the LAN property ap-
parently has not been considered so far. This paper develops the asymptotic
theory based on the LAN approach for a regression model with stationary
non-Gaussian FARIMA�p�d� q� long-memory errors. In Section 2, we show
that the log-likelihood ratios exhibit the typical LAN behavior, so that the
local experiments converge weakly to a Gaussian shift experiment. This re-
sult is used, in Section 3, in the solutions of a variety of inference problems.
Examples are given, and a general formula for the distribution, under con-
tiguous sequences of alternatives, of a wide class of statistics is established.
These results are quite general, and remain valid under a very large family
of innovation densities.

Throughout the paper we denote by � = �1�2� � � �� and � = �0�±1�±2� � � ��
the sets of (natural) integers.

2. Local asymptotic normality (LAN). Suppose that we observe Y�n� =
�Y1� � � � �Yn�′ generated by

Yt = X′
t�+ et � t ∈ ��(2.1)

where �Xt = �Xt1� � � � �Xtb�′� t ∈ �� is a sequence of b-dimensional real-valued
nonstochastic regressors, � = �β1� � � � � βb�′ is a vector of nonserial parameters
and �et� t ∈ �� is a stationary long-memory process generated by the fractional
ARIMA [in short, FARIMA�p�d� q�] model (L, as usual, stands for the lag
operator),

p∑
k=0

φkL
k�1−L�det =

q∑
k=0

ηkL
kεt � t ∈ �� φ0 = η0 = 1�(2.2)

with a vector of serial parameters

� = �θ1� � � � � θp+q+1�′ = �d�φ1� � � � � φp�η1� � � � � ηq�′ = �d��′��′�′
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and an i.i.d. innovation process �εt� t ∈ ��, with nonvanishing innovation
density g. In matrix notation, (2.1) also writes

Y�n� = X�n��+ e�n� � t ∈ ��(2.3)

where X�n� = �X1� � � � �Xn�′ and e�n� = �e1� � � � � en�′.
The following assumptions are made on � and g [(S1)–(S3)], and X�n� [(G1)–

(G6)], respectively.

(S1) The characteristic polynomials φ�z� =� ∑p
k=0φkz

k and η�z� =� ∑q
k=0 ηkz

k

have no roots within the unit disc � = �z ∈ �� � z �≤ 1��
(S2) 0 < d < 1/2; denote by � the set of all �’s satisfying (S1)–(S2).
(S3) The innovation density g is such that

∫
zg�z�dz = 0 and

∫
z2g�z�dz =�

σ2 < ∞; moreover, g is absolutely continuous, with a.e. derivative g′

satisfying

0 < 	 �g� =�
∫
�g′�z�/g�z��2g�z�dz <∞ and∫

�g′�z�/g�z��4g�z�dz <∞�

(2.4)

These assumptions imply the quadratic mean differentiability of
√
g. Also,

note that (S3) entails E �g′�εt�/g�εt�� = 0 and that the second part of condition
(2.4) is not required when inference is restricted to the serial part of the model
[i.e., when � is specified; see Swensen (1985)].

Under these assumptions, ψ�z� =� φ�z�η�z�−1�1−z�d admits the absolutely
convergent development

ψ�z� =
∞∑
k=0

ψkz
k� z ∈ � �(2.5)

which implies that �et� has the AR�∞� representation
∞∑
k=0

ψket−k = εt � t ∈ ��(2.6)

Similarly, letting ξ�z� =� ∑∞
k=0 ξkz

k =� �ψ�z��−1, z ∈ � , �et� has the MA�∞�
representation

et =
∞∑
k=0

ξkεt−k � t ∈ ��(2.7)

where �ξk� is a square-summable sequence. Of course, the coefficients ψk

and ξk in (2.5)–(2.7) depend on �, with ψ0 = ξ0 = 1. The coefficients ψν are
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differentiable, with gradient grad��ψν� = �gν� 1� � � � � gν� p+q+1�′, where

gν� j =




∫ π

−π
e−iνλφ�eiλ� (η�eiλ�)−1 (1− eiλ

)d
log�1− eiλ�dλ� j = 1

∫ π

−π
e−i�ν−j�λ

(
η�eiλ�)−1 (1− eiλ

)d
dλ� j = 2� � � � � p+ 1

−
∫ π

−π
e−i�ν−j�λφ�eiλ� (η�eiλ�)−2 (1− eiλ

)d
dλ�

j = p+ 2� � � � � p+ q+ 1�

(2.8)

and �et� has spectral density

f��λ� =
σ2

∣∣∑q
k=0 ηke

ikλ
∣∣2

2π � 1− eiλ �2d ∣∣∑p
k=0φke

ikλ
∣∣2 �(2.9)

On the regression constants X�n�, we impose a sort of Grenander’s conditions
[see, e.g., Hannan (1970)]. Letting

ankj�h� =




n−h∑
t=1

Xt+h�kXtj� h = 0� 1� � � � �

n∑
t=1−h

Xt+h�kXtj� h = −1�−2� � � � �
(2.10)

the following conditions are assumed to hold:

(G1) ankk�0� → ∞ as n→ ∞� k = 1� � � � � b�
(G2) limn→∞ X2

n+1�k/a
n
kk�0� = 0� k = 1� � � � � b�

(G3) limn→∞ ankj�h�/�ankk�0�anjj�0��1/2 = rkj�h� exists for every k� j = 1� � � � � b

and h ∈ �; denote by R̃�h� the b× b matrix
(
rkj�h�

)
.

(G4) R̃�0� is nonsingular; then there exists a Hermitian matrix function
M�λ� = (

Mkj�λ�
)
with positive semidefinite increments such that

R̃�h� =
∫ π

−π
eihλ dM�λ��(2.11)

Still on X�n�, we also make the following two assumptions:

(G5) anll�0� = O�n1+α� for some α ≥ 0, and max1≤t≤n X
2
tl/a

n
ll�0� = O�n−δ�,

l = 1� � � � � b, for some δ > 1− 2d.
(G6) There exist b1� b2 ∈ �, 0 ≤ b1 ≤ b2 ≤ b, such that Xtk is of the order of

tjk−1 (notation: Xtk ∼ tjk−1), k + 1� � � � b1, for some sequence of integers
1 ≤ j1 ≤ · · · < jk−1 ≤ jk ≤ · · · ≤ jb1 , that is, 0 < lim inf t→∞Xtkt

−jk+1 ≤
lim supt→∞Xtkt

−jk+1 < ∞; for the sake of simplicity, we assume in the
sequel that jk = k, k = 1� � � � � b1, so that this assumption takes the form

(i) Xtk ∼ tk−1, k = 1� � � � � b1, which implies Mkk�0+� − Mkk�0� = 1,
k = 1� � � � � b1; moreover,

(ii) 0 <Mkk�0+� −Mkk�0� < 1, k = b1 + 1� � � � � b2 and
(iii) Mkk�0+� −Mkk�0� = 0, k = b2 + 1� � � � � b.
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Assumption (G6) distinguishes three types of regressors, according to their
asymptotic behaviors.

Letting X�m�
·k = �X1k� � � � , Xnk�1� k = 1� � � � , b, and

D̃n =� diag�n−d�X·1�� � � � � n−d�X·b1�� �X·b1+1�� � � � � �X·b��
(here � · � denotes the Euclidean norm), define the local sequences

��n� = �+ n−1/2h � ��n� = �+ D̃−1
n k�

where h is a �p+ q+ 1�-dimensional real vector, and u = �h′�k′�′ belongs to
some open subset 
 of �p+q+1. Also, denote by �ψ�n�

k � and �ξ�n�k � the sequences
resulting from substituting ��n� for � in the definitions of ψ and ξ [(2.6) and
(2.7)], respectively.

The sequence of statistical experiments under study is

�n =
{
���
��

{
P�n�
��� � ����� ∈ �× �b

}}
� n ∈ ��

where 
� denotes the Borel σ-field on �� and P�n�
��� the joint distribution

� �εs� s ≤ 0� Y1� � � � �Yn� characterized by the parameter value ����� and the
innovation density g. Denote byH�n�

g ����� the sequence of simple hypotheses{
�P�n�

����� n ∈ �
}
. The log-likelihood ratio for H�n�

g ���n����n�� with respect to

H
�n�
g ����� takes the form [under H�n�

g �����]

-
�n�
g ����� =� log

dP�n�
��n����n�

dP�n�
���

=
n∑
t=1

{
log g

(
εt +

t−1∑
ν=0

ψ�n�
ν �Yt−ν − X′

t−ν�
�n��

−
t−1∑
ν=0

ψν�Yt−ν − X′
t−ν��(2.12)

+
∞∑
r=0

r∑
µ=0

�ψ�n�
µ+tξ

�n�
r−µ − ψµ+tξr−µ�ε−r

)
− log g�εt�

}
�

The same log-likelihood ratio would have been obtained from conditional like-
lihoods [associated with the distribution of �Y1� � � � �Yn� conditional upon the
starting values �εt� t ≤ 0�], since the innovations εt have the same distribu-
tion under H�n�

g ����� as under H�n�
g ���n����n��. As we shall see, these starting

values have no influence on the form (2.14) of the subsequent LAN result—
hence of the asymptotic form of local experiments. Another way of handling
the starting value problem is developed in Koul and Schick (1997), but is
hardly applicable here due to the infinite-dimensional nature of initial values.
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Define the b× b matrix

W��� = 1
2π


W1��� O

O W2���


 �(2.13)

where W1��� is the b1 × b1 matrix with �k� j�th entry,

/�k− d�/�j− d���2k− 1��2j− 1��−1/2
�σ2/2π� �η�1�/φ�1��2 /�k− 2d�/�j− 2d��k+ j− 1− 2d�

[/�·� stands for the classical gamma function] andW2��� is the �b−b1�×�b−b1�
matrix with �k� j�th entry,∫ π

−π
f��λ�−1 dMk+b1� j+b1�λ��

We then have the following LAN result.

Proposition 1 (LAN). Suppose that (S1)–(S3) and (G1)–(G6) hold. Then
the sequence of experiments �n� n ∈ �, is locally asymptotically normal (LAN)
and equicontinuous on compact subsets � of 
 . That is:

(i) For all ���, the log-likelihood ratio (2.12) admits, under H
�n�
g �����, as

n→ ∞, the asymptotic representation

-
�n�
g ����� = �h′� k′���n�

g �����
− 1

2

[
σ2	 �g�h′Q���h+	 �g�k′W���k]+ oP�1��(2.14)

with the �b+ p+ q+ 1�-dimensional random vector (the central sequence)

�
�n�
g ����� =� n−1/2




n∑
t=1

g′�Zt�
g�Zt�

t−1∑
ν=1

grad��ψν� et−ν

−D̃−1
n

n∑
t=1

g′�Zt�
g�Zt�

t−1∑
ν=0

ψνXt−ν


 �(2.15)

the �p+ q+ 1� × �p+ q+ 1� matrix,

Q��� =� �4π�−1
∫ π

−π
grad� �log f��λ�� grad′

� �log f��λ�� dλ�(2.16)

and the b × b matrix W��� defined in (2.13); Zt� t = 1� � � � � n stands for the
approximate residual Zt����� =� ∑t−1

k=0ψk�Yt−k − X′
t−k��, and grad′

� �ψν� is
given in (2.8).

(ii) Still under H�n�
g �����, as n → ∞, �

�n�
g ����� is asymptotically normal,

with mean 0 and covariance matrix �g�����, where

�g����� =�

σ2	 �g�Q��� 0

0 	 �g�W���


 �(2.17)
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(iii) For all n ∈ � and all ����� ∈ 
 , the mapping u = �h�k� �→ P�n�
��n����n� is

continuous with respect to the variational distance.

See Section 4 for the proof.

3. Applications.

3.1. Hypothesis testing. As mentioned in the introduction, Proposition 1 is
the key result for virtually all problems in asymptotic inference connected with
the FARIMA model under study. We illustrate this fact with some examples.
For a general theory on locally asymptotically optimal testing in LAN families,
the reader is referred to Strasser (1985) or Le Cam (1986). The following is
borrowed from Strasser (1985).

Let �0 denote the intersection of 
 with a linear subspace of �p+q+1,
equipped with the norm � · ��g associated with the covariance matrix (2.17);
namely, ����g =� �′�−1

g �. We consider the problem of testing the null hypoth-
esis under which ����� ∈ �0 against the alternative ����� /∈ �0. Denote by
��0��g the projection matrix (projection here means the orthogonal projection
associated with the norm � · ��g ) mapping �b+p+q+1 onto �0, and by I the
identity map (in �b+p+q+1). Put 
c =� �u ∈ 
 � ��I−��0��g �u��g = c�� c > 0.

Also, let E�n�
u stand for the expectation underH�n�

g ������+n−1/2u�. A sequence
of tests ϕn� n ∈ � is said to be asymptotically unbiased at level α ∈ �0� 1� for
the testing problem just described if

lim sup
n→∞

E�n�
u �ϕn� ≤ α� u ∈ �0�

lim inf
n→∞ E�n�

u �ϕn� ≥ α� u /∈ �0�

Proposition 2. Suppose that (S1)–(S3) and (G1)–(G6) hold. Let α ∈ �0� 1�
and choose kα ∈ �0� ∞� such that

lim
n→∞P�n�

���

[∥∥∥[I−��0��g
]
�

�n�
g �����

∥∥∥
�g
> kα

]
= α�

Then:
(i) the sequence of tests

ϕ∗
n =

{1� if
∥∥∥�I−��0��g ��

�n�
g ��̂�n�� �̂�n��

∥∥∥
�g
> kα�

0� if
∥∥∥�I−��0��g ��

�n�
g ��̂�n�� �̂�n��

∥∥∥
�g

≤ kα�

(3.1)

where �̂�n� and �̂�n� are locally discrete [see, for instance, Le Cam and Yang

(1990), page 60] estimators such that n1/2
(
�̂�n� − �

)
and D̃n

(
�̂�n� − �

)
are

OP�1�, as n→ ∞ under the null hypothesis [note that they also play a role in
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the definition of the matrix �g = �g��̂�n�� �̂�n��] is asymptotically unbiased at
level α for the problem under study.

(ii) �ϕ∗
n� n ∈ �� is locally asymptotically maximin, in the sense that, denot-

ing by �ϕn� n ∈ �� any other sequence of asymptotically unbiased tests at level
α for the same problem,

lim sup
n→∞

inf
u∈
c

E�n�
u �ϕn� ≤ lim

n→∞ inf
u∈
c

E�n�
u �ϕ∗

n� �(3.2)

The result readily follows from Theorem 82.21 in Strasser (1985).

Note that, when �0 is the linear space spanned by the columns of a full-
rank matrix B, the test statistic in (3.1) takes the form∥∥∥�I−��0��g ��

�n�
g ��̂�n�� �̂�n��

∥∥∥
�g

= �
�n�
g ��̂�n�� �̂�n��′

[
�−1
g ��̂�n�� �̂�n�� −B′

(
B′�g��̂�n�� �̂�n��B

)−1
B′
]

×�
�n�
g ��̂�n�� �̂�n���

The local and asymptotic optimality property (ii) of ϕ∗
n also could be de-

scribed in terms of local asymptotic stringency; see Le Cam [(1986), Chapter
11.9, Corollaries 2 and 3].

Let us give an explicit example. Let the innovation density g be Gaussian;
the process �et� then is completely characterized by its spectral density (2.9).
For simplicity, set σ2 = 1 (in case σ2 is unknown, as it usually is in prac-
tice, it always can be replaced by its empirical residual version, based on the
estimates provided below). The assumptions of Proposition 2 are assumed to
hold, with b2 = 0 in (G6). From Theorem 2.4 of Yajima (1991), the BLUE
�̂
�n�
BL = (

X�n�′�−1
n ���X�n�)−1 X�n�′�−1

n ���Y�n�, where �n��� is the covariance ma-

trix of e�n�, and the LSE �̂
�n�
LS = (

X�n�′X�n�)−1X�n�′Y�n� are asymptotically equiv-

alent (namely, D̃n��̂�n�
BL −�� = D̃n��̂�n�

LS −�� + oP�1�), as n→ ∞. The MLE �̂
�n�
ML

of � is obtained by maximizing

5n����� = − 1
2 log ��n���� − 1

2

(
Yn − Xn�̂

�n�
LS

)′
�−1
n ���

(
Yn − Xn�̂

�n�
LS

)

with respect to �. As in Dahlhaus (1989),we can show that �̂�n�ML →P �, and that
the mth element of n1/2Q�����̂�n�ML − �� satisfies

n1/2
(
Q�����̂�n�ML − ��

)
m
= n−1/2

[
e�n�′Ame�n� − tr��n����Am���

]
+ oP�1��

where Am = Am��� is the n× n Toeplitz matrix with entries

Am
k�j = 1

8π2

∫ π

−π
ei�k−j�λ

�∂/∂ θm�f��λ�
f2��λ�

dλ�
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Denote by � �B� the linear space spanned by the columns of a matrix B. The
problem consists in testing the null hypothesis H�n�

0 under which

��− �0� ∈ � �B1� and ��− �0� ∈ � �B2�
for some given �p+q+1�×�p+q+1−51� and b×�b−52�matrices B1 and B2 of
maximal ranks, and given vectors �0 ∈ �p+q+1 and �0 ∈ �b, respectively. Then
Proposition 2 implies that the test rejecting H�n�

0 whenever the test statistic

Tn = n��̂�n�ML − �0�′
{
Q��̂�n�ML� −Q��̂�n�ML�B1

[
B′
1Q��̂�n�ML�B1

]−1
B′
1Q��̂�n�ML�

}

×��̂�n�ML − �0�

+��̂�n�
LS − �0�′D̃n

{
W2

2π
− D̃nB2

[
B′
2D̃n

W2

2π
D̃nB2

]−1
B′
2D̃n

}

×D̃n��̂�n�
LS − �0�

(3.3)

exceeds the α-quantile χ25�α of a chi-square distribution with 5 = 51+52 degrees
of freedom, has asymptotic level α and is locally asymptotically optimal in the
sense of (3.2).

3.2. Discriminant analysis. Before turning to the discriminant analysis
problem, we establish a general result on the asymptotic distribution of a
class of statistics which plays a central role in this specific context, but also in
a variety of testing and estimation problems. Let B = (

Bk� 5

)
denote the n×n

matrix with elements

Bk�5 =
∫ π

−π
ei�k−5�λfbb�λ�dλ�

where fbb is a real, even integrable function defined on �−π� π�, such that

1
n
tr
(�B�n����2

) −→ 1
2π

∫ π

−π
�fbb�λ�f��λ��2 dλ <∞(3.4)

as n→ ∞. Let �′
n = �α1� � � � � αn� be a nonrandom vector satisfying

(T1) n−1/2∑n
r=1 αr −→ 0;

(T2) There exists a spectral measure Mα�λ� such that

lim
n→∞

n∑
j=1

αjαj+s =
∫ π

−π
eisλ dMα�λ�

and

�′
n�n����n →

∫ π

−π
f��λ�dMα�λ� =� c����(3.5)
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The class of statistics we are considering here (actually, a class of sequences
of statistics) is

� �n� =
{
T�n�

∣∣∣∣ T�n� = n−1/2
n∑

k=1

n∑
5=1

�eke5 −R�k− 5��Bk� 5

+�′
nen + oP�1�

}
�

(3.6)

where the oP�1� term is under some sequence H
�n�
g �����, as n → ∞, and

R�k− 5� = E �eke5� [expectations, here and below, are taken underH�n�
g �����].

The motivation for considering this class � �n� is as follows. For simplicity,
assume that � = 0 and that the parameter � is a scalar θ. Consider the dis-
criminant analysis problem under which the observation Y�n� is to be assigned
either to population <1, described by the spectral density fθ1�λ�, or to popula-
tion <2, described by the spectral density fθ2�λ�. The following approximate
Gaussian log-likelihood ratio formally can be constructed for this problem [see
Dahlhaus (1989)]:

GLR =� n

4π

∫ π

−π

[
log

fθ2�λ�
fθ1�λ�

+ In�λ�
(

1
fθ2�λ�

− 1
fθ1�λ�

)]
dλ�

where In�λ� =� �2πn�−1�∑n
t=1Yt exp�−itλ��2. We can use GLR as a discrimi-

nant criterion: namely, select <1 or <2 according as GLR > 0 or GLR ≤ 0. A
measure of performance of GLR as a discriminant criterion is the probability
of misclassification when <1 and <2 are close to each other, or the asymptotic
behavior of this probability when <2 is contiguous to <1: for instance, under
θ2 = θ1 +n−1/2h. Expanding the corresponding GLR around θ1 yields a linear
term which belongs to � �n�, with � = 0.

Letting St = g′�εt�/g�εt�, also define
RSe�5� = E�Stet+5� and CSee�5� m� = cum �St� et+5� et+m�

[for the definition of the joint cumulants cum � · · · �, see Brillinger (1981)].
The corresponding cross-spectral (fSe�λ�) and cumulant spectral (fSee�λ�µ�)
densities are characterized by

RSe�5� =
∫ π

−π
ei5λfSe�λ�dλ

and

CSee�5� m� =
∫ π

−π

∫ π

−π
ei�5λ+mµ�fSee�λ�µ�dλdµ�

respectively. Finally, define f̃ψX�λ� and f̃αψX�λ�µ�η� by means of the limits

∫ π

−π
f̃ψX�λ�dλ = lim

n→∞
1
2π

∫ π

−π
n−1/2

n∑
ν=1

ψνe
−iνλk′D̃−1

n

n∑
5=1

X5e
−i5λ dλ
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and∫ π

−π

∫ π

−π

∫ π

−π
f̃αψX�λ�µ�η�dλdµdη

= lim
n→∞

∫ π

−π

∫ π

−π

∫ π

−π

[
n∑
5=1

α5e
i5λ

]

×
[

n∑
j=1

j−1∑
ν=1

(
ψνe

−iνµ)k′D̃−1
n Xj−νe

−i�j−ν�η
]
dλdµdη�

The notation f̃�1�
ψX, etc. will be used in an obvious way [instead of f̃ψ�1�X, etc.]

when the sequence ψ�1�
ν = h′ grad��ψν� is substituted for ψν.

Proposition 3. Assume that (S1), (S2), (G1)–(G6), (T1), (T2) and (3.4) hold.
Then, under the sequence of alternatives H

�n�
g ���n����n��, as n→ ∞, the distri-

bution of T�n� ∈ � �n� is asymptotically normal � �m� v2�, with
m = 8π2

∫ π
−π

[∑∞
ν=1 h

′grad��ψν�eiλν
]
fbb�λ�f��λ�fSe�−λ�dλ

+4π2
∫ π
−π

∑∞
j=1 e

ijλf̃ψX�λ�dλ
∫ π
−π fbb�η�fSee�−η�η�dη

+2π ∫ π
−π f̃

�1�
ψα�λ�fSee�λ�0�dλ+ ∫ π

−π f̃αψX�λ� λ�−λ�fSe�λ�dλ
=m1 +m2 +m3 +m4 say,

(3.7)

and

v2 = 16π3
∫ π

−π
�fbb�λ�f��λ��2 dλ+ µ4

[
2π

∫ π

−π
fbb�λ�f��λ�dλ

]2
+ c����

where µ4 denotes the fourth cumulant of g, and c��� is given in (3.5).

See Section 4 for the proof.

We now describe in some detail the discriminant analysis problem to be
solved. Let b�λ� denote a real, even, integrable function, defined over �−π� π�.
Assuming again that g is Gaussian, define

T�n� = n1/2

4π

∫ π

−π
b�λ�In�λ� − f��λ�

f��λ�
dλ+ k′D̃−1

n X′�−1
n ���en�

with In�λ� = �2πn�−1 �∑n
t=1 et exp�−itλ��2. This statistic appears in the dis-

criminant analysis problem for time series. Consider indeed the case when
the observed series �Yt � t = 1� � � � � n�, defined in (2.1), belongs to one of the
two types (sequences of models) <�n�

1 or <�n�
2 described by

<
�n�
1 � residual spectral density f1�λ�� regression coefficients �1�

<
�n�
2 � residual spectral density f2�λ�� regression coefficients �2�
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Then, T�n� provides an approximation of the log-likelihood ratio under the
conditions

f1�λ� = f��λ�� f2�λ� = f1�λ��1+ n−1/2b�λ�� and �2 − �1 = D̃−1
n k

[see Shumway and Unger (1974), Zhang and Taniguchi (1994) and Taniguchi
(1998) for the short-memory case]. Obviously, T�n� ∈ � �n�. Hence, Proposition
3 allows for evaluating the asymptotic probabilities of misclassification asso-
ciated with the rule assigning the observed series to <�n�

1 or <�n�
2 according as

T�n� is larger or smaller than zero. Indeed, we obtain that T�n� is asymptoti-
cally normal, as n→ ∞, with mean and variance

m =
∫ π

−π

[ ∞∑
ν=1

h′ grad′
��ψν�eiλν

]
b�λ�fSe�−λ�dλ+

∫ π

−π
f̃αψZ�λ� λ�−λ�fSe�λ�dλ

and

v2 = 1
4π

∫ π

−π
�b�λ��2 dλ+ 1

2π
k′

∫ π

−π
�f��λ��−1 dM�λ�k�

respectively, under <�n�
2 . The asymptotic misclassification probability is thus

A�−m/v�, where A, as usual, stands for the standard normal distribution
function.

3.3. Adaptive estimation. Another application of the LAN property is adap-
tive estimation. For the sake of simplicity, we concentrate on adaptive estima-
tion of � = �d� φ�′ in the FARIMA�1� d�0� model

�1+φL��1−L�dXt = εt � t ∈ ��(3.8)

where �εt � t ∈ �� is an i.i.d. sequence with unspecified probability density g;
though, of course, the more general case (2.1) and (2.2) could be considered as
well. We provide two distinct versions, according as a symmetry assumption
can be made on g or not. The methods we describe are adapted from Koul and
Schick (1997), which we refer to for details.

The LAN property for model (3.8) follows from Proposition 2.1, with [same
notation as in (2.14)]

-
�n�
g �d� φ� = h′��n�

g �d� φ� − 1
2σ

2	 �g�h′Q�d� φ�h+ oP�1��
where

ψν�d� φ� =
(
1−φ− 1+ d

ν

)
/�ν − 1− d�
/�−d�/�ν� �

gradd�φ�ψν� =
{ �1� 1�′ � ν = 1�

−/�ν − 1− d�
/�−d�/�ν�

(
1�

1
ν
+ 1−φ− 1+ d

ν

ν−2∑
i=0

1
i− d

)′
� ν ≥ 2�

Q�d� φ� = 1
4π

∫ π

−π
gradd�φ�log fd�φ�λ��grad′

d�φ�log fd�φ�λ��dλ�
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with

fd�φ�λ� =� σ
2

2π
�1− eiλ�−2d
�1−φeiλ�2 = σ2

2π
�2 sin�λ/2��−2d

1+φ2 − 2 φ cos�λ�
and

�
�n�
g �d� φ� = n−1/2

n∑
t=1

g′�Zt�
g�Zt�

t−1∑
ν=1

gradd�φ�ψν�Xt−ν�(3.9)

Putting ϕg =� −g′/g,

Ht�d� φ� =�
t−1∑
ν=1

ψν�d� φ�Xt−ν, and

Ḣt�d� φ� =�
t−1∑
ν=1

gradd�φ�ψν�Xt−ν�

(3.10)

the residuals Z�n�
t and the central sequence take the form

Z
�n�
t �d� φ� =Xt −

t−1∑
ν=1

ψν�d� φ�Xt−ν =Xt −Ht�d� φ�(3.11)

and

�
�n�
g �d� φ� = −n−1/2

n∑
t=1

Ḣt�d� φ�ϕg�Z�n�
t �d� φ���

respectively.
Before turning to the construction of adaptive estimates, we first show that

some of the technical conditions involved in Koul and Schick’s results hold
under our model.

Lemma 3.1. For all local sequence ��n� such that ��n� − � = O�n−1/2�, the
following properties hold, under H�n��d�φ�, as n→ ∞:

(i)
∑n

t=1
∣∣Ht���n�� −Ht��� − ���n� − ��′Ḣt���

∣∣2 = oP�1�;
(ii) max1≤t≤n �Ḣt���� = oP�n1/2�;
(iii) �1/n�∑n

t=1 Ḣt��� = oP�1�;
(iv) �1/n�∑n

t=1 Ḣt���
(
Ḣt���

)′ = Q��� + oP�1��
(v) �1/n�∑n

t=1
∥∥Ḣt���n�� − Ḣt���

∥∥2 = oP�1�;
(vi) For any positive sequence cn → ∞,

1
n

n∑
t=1

∥∥Ḣt���n��
∥∥2 I [∥∥Ḣt���n��

∥∥ > cn

]
= oP�1��

(vii) For any positive sequence an → 0, there exists a sequence of positive
integers mn → ∞ such that

n−1 ∑
1≤t� i≤n
�t−i�>mn

E��n�

[∥∥∥Ḣt���n�� − E��n�

[
Ḣt���n��

∣∣∣
n� i���n��
]∥∥∥2] = o�a2n�
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as n→ ∞, where 
n� i��� denotes the σ-algebra generated by
��εt� t ≤ 0��Z1���� � � � �Zi−1����Zi+1���� � � � �Zn���� �

See Section 4 for the proof.

Let an → 0� bn → 0� cn → ∞, and dn = o�n� denote three sequences of
positive real numbers and one sequence of positive integers (all convergences
are as n→ ∞). Denote by �

�n�
0 a preliminary, root-n consistent estimate of � =

�d�φ�′, by ψ̂�n�
ν and Ẑ

�n�
t = Z

�n�
t ���n�0 � the corresponding estimated residuals;

let Ẑ�n� =�
(
Ẑ

�n�
dn
� Ẑ

�n�
dn+1� � � � � Ẑ

�n�
n

)
.

First, consider the case under which the unknown g can be assumed to be
symmetric. Choosing the sequences an� bn and cn such that

n−1a−3
n b−1n → 0 as n→ ∞�(3.12)

define the estimator of the score function ϕ by

ϕ̂�n��z� =� −
f′
Nn

(
z� Ẑ�n�

)
− f′

Nn

(
−z� Ẑ�n�

)
bn + fNn

(
z� Ẑ�n�

)
+ fNn

(
−z� Ẑ�n�

) �(3.13)

with Nn = n− dn + 1 and

fn�z� y1� � � � � yn� =� 1
nan

n∑
t=1

k

(
z− yt
an

)
�

f′
n�z� y1� � � � � yn� =� 1

na2n

n∑
t=1

k′
(
z− yt
an

)
�

(3.14)

where the kernel k is assumed to satisfy [see Schick (1993)]

(K) The kernel k is three times continuously differentiable, with deriva-
tives k�i� satisfying �k�i��z�� ≤ ck�z�� i = 1�2�3 for some positive c, and∫∞
−∞ z2k�z�dz <∞.

The technical advantages of using this type of kernel were noted first in Bickel
and Klaassen (1986).

We then have the following result.

Proposition 4. Assume that (S1)–(S3) hold, that g is symmetric, that �
�n�
0

is root-n consistent, that the kernel k is symmetric and satisfies condition (K),
and that the constants involved in (3.15) satisfy (3.12). Then, the sequence

�̂�n� =� ��n�0 +
(
Ĵ�n�Q̂�n�

)−1 1
Nn

n∑
t=dn

Ḣ�n�
t ���n�0 �ϕ̂�n��Ẑ�n�

t ��(3.15)

where

Ĵ�n� =� 1
Nn

n∑
t=dn

[
ϕ̂�n��Ẑ�n�

t �
]2

and

Q̂�n� =� 1
Nn

n∑
t=dn

Ḣ�n�
t ���n�0 �

(
Ḣ�n�
t ���n�0 �

)′
�

(3.16)
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is locally asymptotically minimax (LAM).

Proof. The proposition results from Koul and Schick’s (1997) Theorem
5.2, which shows that, under conditions (i)–(vi) of Lemma 1,

n1/2
(
�̂�n� − �

)
= (

σ2	 �g�Q���)−1��n�
g ��� + oP�1�

under H�n�
g ���, as n→ ∞. ✷

When the assumption of symmetry cannot be made, the construction of the
adaptive estimator is slightly different. Using the same notation as above, we
now assume that the constants an� bn� cn and the sequence mn of Lemma 1
are such that

n−1a−4
n b−2n c2n → 0 and n−1a−3

n b−1n c2nmn → 0(3.17)

as n→ ∞. The estimator of the score function is

ϕ̂�n��z� =� −
f′
Nn

(
z� Ẑ�n�

)
bn + fNn

(
z� Ẑ�n�

) �(3.18)

still with Nn = n− dn + 1 and fn given in (3.14).

Proposition 5. Assume that (S1)–(S3) hold, that ��n�0 is root-n consistent,
that the kernel k satisfies condition (K), and that the constants involved in
(3.15) satisfy (3.17). Then, the sequence

�̂�n� =� ��n�0 +
(
Ĵ�n�Q̂�n�

)−1
× 1
Nn

∑n
t=dn

(
Ḣ�n�
t ���n�0 � − 1

Nn

∑n
t=dn Ḣ

�n�
t ���n�0 �

)
×ϕ̂�n��Ẑ�n�

t ��

(3.19)

with Ĵ�n� given in (3.16) and

Q̂�n� =� 1
Nn

n∑
t=dn

(
Ḣ�n�
t ���n�0 � − 1

Nn

n∑
t=dn

Ḣ�n�
t ���n�0 �

)

×
(
Ḣ�n�
t ���n�0 � − 1

Nn

∑n
t=dn Ḣ

�n�
t ���n�0 �

)′
(3.20)

is locally asymptotically minimax (LAM).

The result again follows from Koul and Schick [(1997), Theorem 6.2]; here,
conditions (i)–(vii) of Lemma 1 are required.

The adaptive estimation of the lag parameter d in the FARIMA�0� d�0�
model �1−L�dXt = εt has been treated in Hallin and Serroukh (1999).
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Table 1

Square roots of the mean square errors of the Gaussian maximum likelihood estimator φ�n�
0 and

the adaptive estimator φ̂�n� of φ, in model (3.8), with d = 0�2 and centered exponential errors εt,
for φ = ±0�5 and ±0�8, respectively. Series length: n = 40. Number of replications: 40

�
�n�
0 �̂

�n�
�

�n�
0 �̂

�n�

φ = −0.8 0.10575 0.10549 φ = 0.8 0.09663 0.09646
φ = −0.5 0.11061 0.10938 φ = 0.5 0.10419 0.10414

While the theoretical interest of adaptive estimation for long and very long
time series is obvious from the LAM property of the resulting estimates, the
practical virtues of adaptivity for short series lengths should be investigated
by means of an extensive Monte Carlo study. Such an investigation is beyond
the scope of this paper. A modest simulation nevertheless has been conducted
and yields encouraging results, despite the very short length (n = 40) of the
(non-Gaussian) series considered.

Forty replications of FARIMA�1� d�0� processes of length n = 40, char-
acterized by (3.8), with centered exponential errors εt have been generated
for the parameter values d = 0�2� φ = ±0�5 and ±0�8, respectively. For
each replication, a LAM estimation φ̂�n� of φ has been computed along the
lines of Proposition 5. Dahlhaus’ (1989) Gaussian MLE was used as the ini-
tial estimate �

�n�
0 = �φ�n�

0 � d
�n�
0 �. The sequences an = bn = n−1/16� cn =

mn = n−1/8� dn = n/2 and Nn = n − dn + 1 were adopted, with the ker-
nel k�u� = 3

4

√
5
(
1− u2/5

)
I ��u� ≤ 5�. Table 1 presents, for each value of φ,

the square root of the mean square error computed over the 40 replications,
for the Gaussian MLE φ

�n�
0 and the adaptive φ̂�n�, respectively.

3.4. Other inference problems. As already mentioned, the LAN result in
Proposition 1 is the key to most inference problems for the long memory
FARIMA model (2.2). Further examples are:

1. Locally asymptotically minimax estimation; the construction of locally
asymptotically minimax estimates in the parametric models with speci-
fied innovation density g readily follows from Proposition 1 by applying
the usual methods described, for example, in Section 5.3 of Le Cam and
Yang (1990).

2. Maximum likelihood estimation; the asymptotic behavior of maximum like-
lihood estimators similarly follows from Proposition 1.

3. Rank-based testing; rank-based tests can be derived, along the same gen-
eral lines as in Hallin and Puri (1994), from rank-based versions of the
central sequences �

�n�
f �����. This approach is adopted in Serroukh (1996).

4. Adaptive rank-based testing methods; adaptive rank-based tests—actually,
permutation tests—enjoying the same (conditional) distribution-freeness
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properties as rank tests but also yielding the uniformly optimal perfor-
mance of adaptive tests, can be constructed in the same spirit as in the
simpler case of AR models; see Hallin and Werker (1998) for a brief outline
in the traditional short memory AR�p� context.

4. Proofs.

4.1. Proof of Proposition 1. It is well known that

�1− eiλ�d =
∞∑
k=0

πke
iλk and �1− eiλ�−d =

∞∑
k=0

ρke
iλk�

where

πk = /�k− d�
/�k+ 1�/�−d� and ρk = /�k+ d�

/�k+ 1�/�d� �

It follows that

πk = O�k−1−d�� ρk = O�k−1+d��
∂πk
∂d

= O�k−1−d log k�� ∂ρk
∂d

= O�k−1+d log k��
∂2πk
∂2d

= O�k−1−d �log k�2�� ∂2ρk
∂2d

= O�k−1+d �log k�2��
(4.1)

Considering the characteristic polynomials φ�z� and η�z� in (S1), φ�z�/η�z�
is expanded as the absolutely convergent (for �z� < 1) power series,

φ�z�
η�z� =

∞∑
k=0

γkz
k�

where the γk’s are such that

�γk� = O��γ����k�(4.2)

for some bounded, C2 function γ�·� of � satisfying �γ���� < 1; compare Fuller
(1996). Similarly, defining the sequence �αk� by

η�z�
φ�z� =

∞∑
k=0

αkz
k � �z� < 1�

there exists a C2 function α��� such that �α���� < 1 and

�αk� = O��α����k��(4.3)

It follows from (4.1) and (4.2) that the sequence �ψk� defined in (2.5) satisfies∣∣∣∣∣ ∂jψk

∂θi1 · · · ∂θij

∣∣∣∣∣ = O�k−1−d�log k�j�� j = 0� 1� 2�(4.4)
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as k→ ∞. Similarly, for the sequence �ξk� defined in (2.6), it is easily shown
that ∣∣∣∣∣ ∂jξk

∂θi1 · · · ∂θij

∣∣∣∣∣ = O�k−1+d�log k�j�� j = 0� 1� 2�(4.5)

as k→ ∞.
Our proof of the LAN result in Proposition 1 is based on a slight modifica-

tion [see, e.g., Garel and Hallin (1995)] of Swensen’s (1985) Lemma 1 [itself
based on McLeish (1974)], applicable to a wide class of models with dependent
observations. Note that, from (2.12),

-
�n�
g ����� =

n∑
t=1

log
(
�A�n�

t ���n����n�� �����2
)
�

with [
A

�n�
t ���n����n�� ����

]2

=�
{
g

(
εt +

t−1∑
ν=0

ψ�n�
ν �Yt−ν − Z′

t−ν�
�n�� −

t−1∑
ν=0

ψν�Yt−ν − Z′
t−ν��

+
∞∑
r=0

r∑
µ=0

�ψ�n�
t+µξ

�n�
r−µ − ψt+µξr−µ�ε−r

)}

×�g�εt��−1 �
Define

U
�n�
t = A

�n�
t

(
��n����n�� ���

)
− 1�

and

W
�n�
t = 1

2
g′�εt�
g�εt�

{
n−1/2

t−1∑
ν=1

�h′ grad��ψν��et−ν −
t−1∑
ν=0

ψνZ
′
t−νD̃

−1
n k

}
�

and denote by �t the σ-field generated by �εk� k ≤ 0� Y1� � � � �Yt�. In order to
prove parts (i) and (ii) of Proposition 1, it is sufficient to check for the following
six conditions: see Swensen’s Lemma 1 [note that (L1)–(L5) are Swensen’s
conditions (1.2)–(1.6), whereas (L6) is assumption (iii) in his Theorem 1]. All
expectations and convergences are under H�n�

g �����, as n→ ∞.

(L1) E
[
W

�n�
t ��t−1

]
= 0 a.s.;

(L2) limn→∞ E
[∑n

t=1�U�n�
t −W

�n�
t �2

]
= 0;

(L3) supn E
[∑n

t=1�W�n�
t �2

]
<∞;

(L4) max1≤t≤n �W�n�
t � = oP�1�;

(L5)
∑n

t=1�W�n�
t �2 − τ2/4 = oP�1� for some positive constant τ;
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(L6)
∑n

t=1 E
[
�W�n�

t �2I��W�n�
t � > δ���t−1

]
= oP�1� for some δ > 0 (I� · � stands

for the indicator function).

We successively prove that (L1)–(L6) hold here. Condition (L1) immediately
follows from the definition of W�n�

t . In order to prove (L2), let

Q
�n�
t =

t−1∑
ν=0

ψ�n�
ν

[
Yt−ν − Z′

t−ν�
�n�
]
−

t−1∑
ν=0

ψν

[
Yt−ν − Z′

t−ν�
]

+
∞∑
r=0

r∑
µ=0

[
ψ

�n�
µ+tξ

�n�
r−µ − ψµ+tξr−µ

]
ε−r

= Q
�n�
t�1 +Q

�n�
t�2 +Q

�n�
t�3 say.

Expanding at � yields

r∑
µ=0

[
ψ

�n�
µ+tξ

�n�
r−µ − ψµ+tξr−µ

]

=
[
O�n−1/2�

r∑
µ=0

�grad� ψµ+t��ξr−µ� +O�n−1/2�
r∑

µ=0
�ψµ+t��grad� ξr−µ�

]
�=�∗

= O�n−1/2�A1 +O�n−1/2�A2 say,

where � ≤ �∗ ≤ ��n�. In view of (4.4) and (4.5),

A1 =
�r/2�∑
µ=0

O
(
�µ+ t�−1−d log�µ+ t�

)
O
(
�r− µ�−1+d log�r− µ�

)

+
r∑

µ=�r/2�+1
O
(
�µ+ t�−1−d log�µ+ t�

)
O
(
�r− µ�−1+d log�r− µ�

)

= O�r−1+d�O�t−d/2�O�log r�
�r/2�∑
µ=0

O
(
�µ+ t�−1−d/2

)
O�log µ+ log t�

+O�r−1−d/2�O�t−d/2�O�log t�O�log r�
r∑

µ=�r/2�+1
O
(
�r− µ�−1+d

)
�

Noting that
∑r

µ=0 µ
α = O�rα+1� for α > −1, we have that

A1 = O�t−d/2 log t�O�r−1+d log r��
Similarly, it can be shown that A2 is O�t−d/2 log t�O�r−1+d log r�, which im-
plies

r∑
µ=0

[
ψ

�n�
µ+tξ

�n�
r−µ − ψµ+tξr−µ

]
= O�n−1/2�O�t−d/2 log t�O�r−1+d log r��(4.6)
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Hence, Q�n�
t�1 +Q

�n�
t�2 can be written as

t−1∑
ν=0

[
ψ�n�
ν − ψν

]
et−ν −

t−1∑
ν=0

ψνZ
′
t−νD̃

−1
n k −

t−1∑
ν=0

[
ψ�n�
ν − ψν

]
Z′
t−νD̃

−1
n k

= n−1/2
t−1∑
ν=0

[
h′ grad��ψν�

]
et−ν +

1
2n

t−1∑
ν=1

[
h′

(
∂2

∂θiθj
ψν

)
�∗
h

]
et−ν(4.7)

−
t−1∑
ν=0

ψνZ
′
t−νD̃

−1
n k −

t−1∑
ν=0

[
ψ�n�
ν − ψν

]
Z′
t−νD̃

−1
n k�

where �∗ is some intermediate point between � and ��n�. On account of (4.4),
(4.6) and (4.8), and by Theorem 2.3 in Yajima (1991), we obtain that

lim
n→∞

n∑
t=1

E
[
�Q�n�

t �2
]
<∞�(4.8)

Next, let us show that

E
�n�
1 =�

n∑
t=1

E

[(
U

�n�
t − 1

2
g′�εt�
g�εt�

Q
�n�
t

)2
]
= o�1��(4.9)

For every c1 > 0, we have

E
�n�
1 =

n∑
t=1

E

[
I
[
n1/2�Q�n�

t � ≤ c1

](
U

�n�
t − 1

2
g′�εt�
g�εt�

Q
�n�
t

)2
]

+
n∑
t=1

E

[
I
[
n1/2�Q�n�

t � > c1

](
U

�n�
t − 1

2
g′�εt�
g�εt�

Q
�n�
t

)2
]

= E
�n�
1�1 +E

�n�
1�2 say.

It follows from Lemma 2.2(ii) in Garel and Hallin (1995) that

E
�n�
1�1 ≤

{
n∑
t=1

E
[(
Q

�n�
t

)2]}
oc1�1��

where limn→∞ oc1�1� = 0 for any given c1 > 0. Hence, E�n�
1�1 also is o�1�. Part

(i) of the same lemma yields

E
�n�
1�2 ≤

1
n

n∑
t=1

E
[
I
[
n1/2�Q�n�

t � > c1

]
n
(
Q

�n�
t

)2
	 �g�

]
�(4.10)

From Ash [(1972), page 297], n
(
Q

�n�
t

)2
is uniformly integrable, which implies

that the right-hand side in (4.10) converges to zero as c1 → ∞; (4.9) follows.
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Finally, one easily checks that
n∑
t=1

E

[(
1
2
g′�εt�
g�εt�

Q
�n�
t −W

�n�
t

)2
]

=
n∑
t=1

E

[(
1
4n

g′�εt�
g�εt�

t−1∑
ν=1

[
h′

(
∂2

∂θiθj
ψν

)
�∗
h

]
et−ν

−
t−1∑
ν=0

[
ψ�n�
ν − ψν

]
Z′
t−νD̃

−1
n k

)2



also converges to zero as n→ ∞. This completes the proof of (L2).
(L3). Note that
n∑
t=1

E
[(
W

�n�
t

)2]
= 1

4n
	 �g�

n∑
t=1

t−1∑
ν1=1

t−1∑
ν2=1

[
h′ grad��ψν1

�]Re�ν1 − ν2�
[
grad′

��ψν2
�h]

+1
4
	 �g�

(
D̃−1
n k

)′ [ n∑
t=1

t−1∑
ν1=0

t−1∑
ν2=0

ψν1
ψν2

Zt−ν1Z
′
t−ν2

]
D̃−1
n k�

where Re�ν1 − ν2� =� E�et−ν1et−ν2�. Lemma 4.4 of Garel and Hallin (1995) and
Theorem 2.3 of Yajima (1991), along with (4.4), imply that∑n

t=1 E
[(
W

�n�
t

)2] → τ2/4 as n→ ∞, where

τ2 =� σ2	 �g�h′Q���h+	 �g�k′W���k�
hence, (L3) is satisfied.
(L4). Turning to (L4), decompose W�n�

t into W�n�
t�1 +W

�n�
t�2, with

W
�n�
t�1 =� 1

2
√
n

g′�εt�
g�εt�

t−1∑
ν1=0

[
h′ grad��ψν�

]
et−ν(4.11)

and

W
�n�
t�2 =� −1

2
g′�εt�
g�εt�

t−1∑
ν1=0

ψνZ
′
t−νD̃

−1
n k�(4.12)

For every ε > 0,

P

[
max
1≤t≤n

�W�n�
t � > 2ε

]
≤ P

[
max
1≤t≤n

�W�n�
t�1 � > ε

]
+P

[
max
1≤t≤n

�W�n�
t�2 � > ε

]
�

The Markov inequality implies that

P
[
max1≤t≤n �W�n�

t�1 � > ε
]
≤ P

[
n∑
t=1

(
W

�n�
t�1
)2
I
[
�W�n�

t�1 � > ε
]
> ε2

]

≤ ε−2n−1
n∑
t=1

E
[
n
(
W

�n�
t�1
)2
I�n1/2�W�n�

t�1 � > εn1/2�
]
�

(4.13)
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Just as n
(
Q

�n�
t

)2
, n

(
W

�n�
t�1
)2

is uniformly integrable, so that (4.13) is o�1� as
n→ ∞. In view of (G5), the case of W�n�

t�2 is entirely similar; (L4) follows.
(L5). For the sake of simplicity, write ψ̇ν = ψ̇ν�h� instead of h′ grad��ψν�.

Then,W�n�
t�1 =�1/2√n��g′�εt�/g�εt��

∑t−1
ν=1 ψ̇νet−ν, with an 51-summable sequence

�ψ̇ν� . For any fixed ε > 0, we can chooseM> 0 such that
∑∞

ν=M �ψ̇ν�E ��et−ν�� <
ε. Note that the process �g′�εt�/g�εt��

∑∞
ν=1 ψ̇νet−ν is ergodic. Theorem 2 of

Hannan [(1970), page 203] thus entails
n∑
t=1

(
W

�n�
t�1
)2

−→ σ2

4
	 �g�h′Q���h a.s.

Similarly, showing that

E

[
n∑
t=1

(
W

�n�
t�2
)2]

−→ 1
4	 �g�k′Wk

and that

Var

[
n∑
t=1

(
W

�n�
t�2
)2]

−→ 0�

we obtain
n∑
t=1

(
W

�n�
t�2
)2 P−→ 1

4
	 �g�k′Wk and

n∑
t=1
W

�n�
t�1W

�n�
t�2

P−→ 0�

(L6). Since
∑n

t=1 E
[(
W

�n�
t

)2
I��W�n�

t � > δ�
∣∣∣�t−1

]
is a nonnegative variable, it

is sufficient, in order to prove (L6), to show that
n∑
t=1

E
[(
W

�n�
t

)2
I��W�n�

t � > δ�
]
= o�1�(4.14)

as n→ ∞. This, however, already has been shown in the proof of (L4).
Finally, part (iii) of Proposition 1 readily follows from Scheffé’s lemma and

the continuity of g. ✷

4.2. Proof of Proposition 3. The proof relies on Proposition 1 and Le Cam’s
so-called third lemma. We just briefly outline it here. Giraitis and Surgailis
(1990) established the asymptotic normality, under (3.4), as n→ ∞, of

T
�n�
1 = n−1/2

n∑
t=1

n∑
s=1

�etes −R�t− s��B�t− s��

In their proof, they approximate the sums T�n�
1�1 = n−1/2∑n

t=1
∑n

s=1 etes with

sequences of the form U
�n�
1 = n−1/2∑n

t=1 e1�t�e2�t�, where ei�t�� i = 1�2, are
finite linear combinations of the εt’s, involving 2M terms. For M sufficiently
large, the approximation of T�n�

1�1 by U
�n�
1 can be made arbitrarily good. On the
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other hand, we can approximate �′
nen by V�n�

1 = ∑n
t=1 αt

∑t
j=0 βjεt−j, where

�βj� is 52-summable. The joint asymptotic normality of �-�n��T�n�� then fol-

lows from that of �-�n��U�n�
1 +V

�n�
1 �, which in turn follows from checking for

McLeish’s classical conditions. Next, we need an evaluation of the variance of
T�n�, which is equal to

lim
n→∞

[
Var�T�n�

1�1� + 2 Cov�T�n�
1�1� �

′
nen�

]
+ c����

Giraitis and Surgailis (1990) give

lim
n→∞Var�T�n�

1�1� = 16π3
∫ π

−π
�f��λ�fbb�λ��2 dλ+ µ4

[
2π

∫ π

−π
f��λ�fbb�λ�dλ

]2
�

On the other hand, we have

Cov�T�n�
1�1� �

′
nen� = n−1/2

n∑
r=1

n∑
k=1

n∑
5=1

αrB�k− 5�cum�er� ek� e5�

= n−1/2
n∑
r=1

αr

∫ π

−π

∫ π

−π

∫ π

−π
Dn�η+ λ�Dn�−η+ µ�e−irλ−irµ(4.15)

×fbb�λ�feee�λ�µ�dλdµdη�
where Dn�λ� =

∑n
k=1e

ikλ. Now, (4.15) reduces to

n−1/2
n∑
r=1

αr

[
�2π�2

∫ π

−π
fbb�η�feee�−η�η�dη+ o�1�

]
�

a quantity which, by assumption (T1), tends to zero as n → ∞. Finally, we
evaluate the asymptotic covariance

Cov�-�n��T�n��

= Cov

(
n−1/2

n∑
j=1

Sj

j−1∑
ν=1

[
h′ grad��ψν�

]
ej−ν − k′D̃−1

n

n∑
j=1

Sj

j−1∑
ν=0

ψνZj−ν�

n−1/2
n∑

k=1

n∑
5=1

eke5B�k− 5� + �′
nen

)

= Cov ��1� + �2�� �3� + �4�� say.

The resulting four terms yield m1, � � �, m4 in (3.7). We provide some details on
the derivation of m1; the three other terms are obtained along the same lines.
Putting ψ̇ν�h� =� h′ grad��ψν�, we obtain

Cov��1�� �3�� = Cov

(
n−1/2

n∑
j=1

Sj

j−1∑
ν=1

ψ̇ν�h�ej−ν� n−1/2
n∑

k=1

n∑
5=1

eke5B�k− 5�
)

= n−1
n∑
j=1

j−1∑
ν=1

n∑
k=1

n∑
5=1

ψ̇ν�h�B�k− 5� [Cov�Sj� ek�Cov�ej−ν� e5�
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+Cov�Sj� e5�Cov�ej−ν� ek�
]

= C
�n�
1 +C

�n�
2 say.

The first term yields

C
�n�
1 = 2π

n

n∑
j=1

n∑
k=1

∫ π

−π

∫ π

−π
eiλ�k−j�

[
j−1∑
ν=1

ψ̇ν�h�eiλν
]

×fbb�λ�f��λ�dλ ei�k−j�µfSe�µ�dµ

= �2π�2
∫ π

−π

[ ∞∑
ν=1

ψ̇ν�h�eiλν
]
fbb�λ�f��λ�fSe�−λ�dλ+ o�1��

The case of C�n�
2 is quite similar, and it is easily shown that C�n�

2 converges to
the same limit as C�n�

1 . The proposition follows. ✷

4.3. Proof of Lemma 1. We successively establish the seven statements of
the lemma.

(i) Letting ���n� − �� = n−1/2�h�n�
1 � h

�n�
2 �′, we have

n∑
t=1

∣∣Ht���n�� −Ht��� − ���n� − ��′Ḣt���
∣∣2

= 1
4n2

n∑
t=1

∣∣∣∣∣
t−1∑
ν=1

2∑
i�j=1

h
�n�
i h

�n�
j

(
∂2ijψν

)
�+c���n�−��Xt−ν

∣∣∣∣∣
2

�

where c = ct�X1� � � � �Xn� ∈ �0�1�. Taking expectations and bounding E�Xt−ν1
Xt−ν2� with E�X2

t � yields

E

[
n∑
t=1

∣∣Ht���n�� −Ht��� − ���n� − ��′Ḣt���
∣∣2]

≤ 1
4n2

n∑
t=1

∣∣∣∣∣
t−1∑
ν=1

2∑
i� j=1

h
�n�
i h

�n�
j sup

c∈�0�1�

(
∂2ijψν

)
�+c���n�−��

∣∣∣∣∣
2

E
[
X2

t

]
�

a quantity which, for n sufficiently large, is less than

K

4n

∣∣∣∣∣
∞∑
ν=1

2∑
i� j=1

∣∣∂2ijψν���
∣∣
∣∣∣∣∣
2

�

where K is an appropriate constant. The result then follows from the fact
that, in view of (4.4),

∑∞
ν=1

∑2
i�j=1

∣∣∂2ijψν���
∣∣ <∞.

(ii) This is an immediate consequence of (L4); see the proof of Proposition 1.
(iii) and (iv) For any h ∈ �2, h′Ḣt has (up to the choice of the score func-

tion, which here is g′�x�/g�x� =� x) the same form as defined as 2n1/2W�n�
t�1
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appearing in (4.11) [proof of conditions (L4) and (L5) of Proposition 1]. The
same ergodicity argument used there yields

1
n

n∑
t=1

h′Ḣt

P−→ E�h′Ḣt� = 0 and
1
4n

n∑
t=1

h′ḢtḢ
′
th

a�s�−→ σ2

4
h′Q���h�

The statement follows.
(v) A Taylor expansion of ψ�n�

ν =� ψν���n�� yields, for some c ∈ �0�1�,

�Ḣt���n�� − Ḣt����2 =
2∑
i=1

∣∣∣∣∣
t−1∑
ν=1

(
∂

∂θi
ψν���n�� −

∂

∂θi
ψν���

)
Xt−ν

∣∣∣∣∣
2

≤
2∑
i=1

{
2∑

j=1

t−1∑
ν=1

n−1/2
∣∣∣∣h�n�

j

∂2

∂θi∂θj
ψν��+ cn−1/2h�n��Xt−ν

∣∣∣∣
}2

≤ 4
n
�h�n��2

2∑
i�j=1

{
t−1∑
ν=1

∣∣∣∣ ∂2

∂θi∂θj
ψν��+ cn−1/2h�n��Xt−ν

∣∣∣∣
}2

�

Summing over t and taking expectation yields, as in the proof of (i), an O�1�
quantity. The result follows.

(vi) This statement is an immediate consequence of (4.13).
(vii) From (3.10), we have

Ḣt���n�� =
∞∑
k=0

t−1∑
j=1

grad�ψ�n�
j �ξ�n�k Zt−j−k���n���

Under H�n����n��� Zi���n�� coincides with

εi +
∞∑
j=t

ψ
�n�
j Xt−j�

Since
∑∞

j=t ψ
�n�
j Xt−j is measurable with respect to �ε0� ε−1� � � � �,

Ḣt���n�� − E��n�

[
Ḣt���n��

∣∣∣
n� i���n��
]

=




t−i−1∑
k=0

grad�ψ�n�
t−i−k�ξ

�n�
k εi� 1 ≤ i ≤ t�

0� t < i�

Since moreover
∑∞

k=0
(
ξ
�n�
k

)2
< ∞, and since, in view of (4.4), �grad�ψ�n�

j ��2 =
O��j−1−d log j�2�, it follows that

n−1
n∑
t=1

t−mn∑
i=1

E��n�



∥∥∥∥∥
t−i−1∑
k=0

grad�ψ�n�
t−i−k�ξ

�n�
k εi

∥∥∥∥∥
2


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=Kn−1
n∑

t=mn

t−mn∑
i=1

∥∥∥grad�ψ�n�
t−i−k�

∥∥∥2

< K′n−1
n∑

t=mn

�t−mn�O���t−mn�−1−d log �t−mn��2� ≤K′′n−mn

n
�

where K, K′, and K′′ are adequate constants. This latter quantity is o�a2n�
provided that mn is such that the ratio �n −mn�/n goes to zero sufficiently
fast, letting, for example, mn = n− o�na2n�. ✷
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