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ADAPTIVE WAVELET ESTIMATOR FOR NONPARAMETRIC
DENSITY DECONVOLUTION

By Marianna Pensky and Brani Vidakovic

University of Central Florida and Duke University

The problem of estimating a density g based on a sampleX1�X2� � � � �
Xn from p = q ∗ g is considered. Linear and nonlinear wavelet estima-
tors based on Meyer-type wavelets are constructed. The estimators are
asymptotically optimal and adaptive if g belongs to the Sobolev space Hα.
Moreover, the estimators considered in this paper adjust automatically to
the situation when g is supersmooth.

1. Introduction. Let θ and ε be independent random variables with den-
sity functions g and q, respectively, where g is unknown and q is known. One
observes a sample of random variables,

Xi = θi + εi� i = 1�2� � � � � n�(1.1)

The objective is to estimate the density function g. In this situation the density
function p of Xi� i = 1� ���� n� is the convolution of q and g,

p�x� =
∫ ∞

−∞
q�x− θ�g�θ�dθ�(1.2)

Hence the problem of estimating g in (1.2) is called a deconvolution prob-
lem. The problem arises in many applications [see, e.g., Desouza (1991), Louis
(1991), Zhang (1992)] and, therefore, it was studied extensively in the last
decade. The most popular approach to the problem was to estimate p�x� by
a kernel estimator and then solve equation (1.2) using a Fourier transform
[see Carroll and Hall (1988), Devroye (1989), Diggle and Hall (1993), Efro-
movich(1997), Fan (1991a, c), Liu and Taylor (1989), Masry (1991, 1993a, b),
Stefansky (1990), Stefansky and Carroll (1990), Taylor and Zhang (1990),
Zhang (1990)]. Fan (1991a, 1993) proved that the estimators of g�θ� are
asymptotically optimal pointwise and globally, if the kernel has a limited
bandwidth, that is, the Fourier transform of the kernel has bounded support.
The estimators based on the deconvolution of kernel estimators and similar
methods were studied in many different contexts: the asymptotic normality
was established [see, e.g., Fan (1991b), Piterbarg and Penskaya (1993), Masry
(1993a)]; the case of dependent εi was examined [Masry (1991, 1993b)], etc.

This present paper deals with the estimation of a deconvolution density
using a wavelet decomposition. The underlying idea is to present g�θ� via a
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wavelet expansion and then to estimate the coefficients using a deconvolution
algorithm. The proposed approach is based on orthogonal series methods for
the estimation of a prior density [see Walter (1981), Penskaya (1985)], and also
on modern developments of wavelet techniques in curve estimation [see An-
toniadis, Gregoire and McKeague (1994), Abramovich and Silverman (1997),
Donoho and Johnstone (1995), Hall and Patil (1995), Hall, Penev, Kerkyachar-
ian and Picard (1997), Hall, Kerkyacharian and Picard (1998), Kerkyacharian
and Picard (1992), Masry (1994) and Walter (1994), among others].

Estimation of the density g�θ� is conducted in the well-known Sobolev space
Hα which describes the level of smoothness of a deconvolution density in terms
of its characteristic function g̃. Estimation of g�θ� splits into two different
cases: the case when the distribution of the error ε is supersmooth, that is,
the Fourier transform q̃ of q has exponential descent, and the case when q̃
has polynomial descent. In the first case, even when α is unknown, the linear
wavelet estimator proposed in the paper allows an adaptive choice of param-
eters that ensures the optimal convergence rate of the estimator. In the case
where q̃ has polynomial descent, the linear wavelet estimator fails to provide
the optimal convergence rate if α is unspecified. In this case a nonlinear adap-
tive wavelet estimator is constructed which achieves the optimal convergence
rate.

The estimators proposed in this paper are based on Meyer-type wavelets
rather than on wavelets with bounded support. Meyer-type wavelets form a
subset of the set of band-limited wavelets that allow immediate deconvolution.
It should be noted that the nonlinear wavelet estimator constructed in this
paper is based on a “global thresholding” which is somewhat different from
the “block thresholding” suggested by Hall, Penev, Kerkyacharian and Picard
(1997): in the “global thresholding” procedure all coefficients of the same level
are thresholded simultaneously, while “block thresholding” groups together
only a finite number of coefficients.

The estimators based on Meyer-type wavelets are asymptotically optimal
in the sense that for g ∈Hα the rates of convergence of the mean integrated
squared error (MISE) cannot be improved [see Fan (1993)]. Moreover, the es-
timators obtained in this paper adjust automatically to the situation when
g�θ� is supersmooth. In this case, without any change of parameters, both
the linear and the nonlinear wavelet estimators achieve better convergence
rates. Namely, if both g�θ� and q�x� are supersmooth, then the linear wavelet
estimator has a polynomial rate of convergence which is better than the loga-
rithmic rate of convergence that can be attained for g ∈Hα. If g�θ� is super-
smooth and q̃ has polynomial descent, then the MISE of the nonlinear wavelet
estimator is O�n−1 lnν n� with ν > 0 as n→ ∞.

This article is organized in the following way. In Section 2 we give a brief de-
scription of Meyer-type wavelets and derive the linear and nonlinear wavelet
estimators of g�θ�. In Section 3 we investigate asymptotic behavior of the
estimators when g�θ� ∈ Hα. The case of supersmooth g�θ� is considered in
Section 4. In Section 5 we illustrate the theory by examples. Section 6 con-
cludes the paper with discussion. Section 7 contains proofs of the theorems.
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2. Wavelet estimation of a deconvolution density based on Meyer-
type wavelets. Throughout this paper we use the notation � �f��ω� or
f̃�ω� for the Fourier transform

∫ ∞
−∞ exp�−iωx�f�x�dx of a function f�x� and

� −1�f̃��x� for the inverse Fourier transform of f̃�ω�. Let 
f
c = supy �f�y��
for any continuous function f and 
f
Lk

= { ∫ ∞
−∞ �f�x��k dx}1/k. Assume that

g�θ� is square integrable and that q̃�ω� does not vanish for real ω.
If ϕ�θ� and ψ�θ�, respectively, are a scaling function and a wavelet generated

by an orthonormal multiresolution decomposition of L2�−∞�∞�, then for any
integer m the density function g�θ� allows the following representation:

g�θ� = ∑
k∈Z

am�kϕm�k�θ� +
∑
k∈Z

∞∑
j=m

bj�kψj�k�θ��(2.1)

where ϕm�k�θ� = 2m/2ϕ�2mθ − k� and ψj�k�θ� = 2j/2ψ�2jθ − k�� and the coef-
ficients am�k and bj�k have the forms

am�k =
∫ ∞

−∞
ϕm�k�θ�g�θ�dθ� bj�k =

∫ ∞

−∞
ψj�k�θ�g�θ�dθ�(2.2)

respectively.
A special class of wavelets are band-limited wavelets, the Fourier transform

of which have bounded support [see Hernández and Weiss (1996)]. In this
article, we shall use a particular type of band-limited wavelet, a Meyer-type
wavelet [see Walter (1994), Zayed and Walter (1996)]. Let P be a probability
measure with support in �−π/3� π/3�. Define the scaling function ϕ�x� and
the wavelet function ψ�x� as the functions whose Fourier transforms are

ϕ̃�ω� =
[∫ ω+π

ω−π
dP

]1/2

� ψ̃�ω� = exp�−iω/2�
[∫ �ω�−π

�ω�/2−π
dP

]1/2

�(2.3)

the nonnegative square roots of the integrals. Then ϕ̃�ω� and ψ̃�ω� both have
bounded support: supp ϕ̃ ⊂ �−4π/3�4π/3� and supp ψ̃ ⊂ !1 ∪!2 with

!1 = �−8π/3�−2π/3�� !2 = �2π/3�8π/3��(2.4)

Moreover, ϕ̃�ω� = 1 if �ω� < 2π/3. In order to ensure that ϕ�x� and ψ�x� have
sufficient rates of descent as �x� → ∞, we choose P to be smooth, so that
the functions ϕ̃�ω� and ψ̃�ω� are s ≥ 2 times continuously differentiable on
�−∞�∞�. Since ϕ̃�ω� and ψ̃�ω� both have bounded support, this implies that

Cϕ = sup
x

[�ϕ�x�� ��x�s + 1�] <∞� Cψ = sup
x

[�ψ�x�� ��x�s + 1�] <∞�(2.5)

The coefficients am�k and bj�k can be viewed as mathematical expectations
of the functions um�k and vj�k

am�k =
∫ ∞

−∞
um�k�x�p�x�dx� bj�k =

∫ ∞

−∞
vj�k�x�p�x�dx�(2.6)

provided that um�k�x� and vj�k�x� are solutions of the following equations:∫ ∞

−∞
q�x− θ�um�k�x�dx = ϕm�k�θ��

∫ ∞

−∞
q�x− θ�vj�k�x�dx = ψj�k�θ��
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Taking the Fourier transform of both sides, we obtain um�k�x� = 2m/2 ·
Um�2mx−k�, vj�k�x� = 2j/2Vj�2jx−k�, whereUm�·� andVj�·� are the inverse
Fourier transforms of the functions

Ũm�ω� = ϕ̃�ω�/q̃�−2mω�� Ṽj�ω� = ψ̃�ω�/q̃�−2jω��(2.7)

respectively. Therefore, estimating am�k and bj�k by

âm�k = n−1
n∑
l=1

2m/2Um�2mXl − k�� b̂j� k = n−1
n∑
l=1

2j/2Vj�2jXl − k�(2.8)

and truncating the series (2.1), we obtain a linear wavelet estimator

ĝ
�L�
n �θ� = ∑

k∈Z
âm�k ϕm�k�θ��(2.9)

and a nonlinear wavelet estimator of g�θ�,

ĝ
�N�
n �θ� = ∑

k∈Z
âm�kϕm�k�θ� +

m+r∑
j=m

[∑
k∈Z

b̂j� kψj�k�θ�
]
I

(∑
k∈Z

b̂2j� k > δ2j�n

)
�(2.10)

Note that the estimator (2.10) has the block thresholding which is differ-
ent from the block thresholding used by Hall, Penev, Kerkyacharian and
Picard (1997) and Hall, Kerkyacharian and Picard (1998), who dealt with
the estimation of a density function based on direct observations by wavelets
with bounded support. Hall, Penev, Kerkyacharian and Picard (1997), and
Hall, Kerkyacharian and Picard (1998), partitioned coefficients bj�k into blocks
� = �bj�k� �j− 1�l < k < jl� of the length l and then thresholded all the co-
efficients of a block simultaneously. In the present paper all the coefficients
bj�k� k ∈ Z, are thresholded together.

At first glance, the estimators (2.9) and (2.10) seem computationally in-
tractable since their constructions involve the calculation of infinite series.
However, under very nonrestrictive conditions, the infinite series estimators
(2.9) and (2.10) can be replaced by finite series estimators,

ĝ
�LF�
n �θ� = ∑

�k�≤Kn

âm�kϕm�k�θ��(2.11)

ĝ
�NF�
n �θ� = ∑

�k�≤Mn

âm�kϕm�k�θ�

+
m+r∑
j=m

[ ∑
�k�≤Ln

b̂j� kψj�k�θ�
]
I

( ∑
�k�≤Ln

b̂2j� k > δ2j�n

)(2.12)

without any loss in the rate of convergence.
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3. Asymptotic behavior of wavelet estimators. To investigate asymp-
totic properties of the estimators (2.9) and (2.10), we assume that the density
g belongs to the following class:

�α�Aα� =
{
g ∈Hα� 
g
α ≤ Aα� α > 0

}
(3.1)

where 
g
α is the norm in the Sobolev space Hα,


g
α =
{∫ ∞

−∞
�g̃�ω��2�ω2 + 1�α dw

}1/2

<∞�

We shall measure the performance of an estimator gn�θ� by

MISE �gn� = E
∫ ∞

−∞

(
gn�θ� − g�θ�)2 dθ�(3.2)

Let

31�m�=
∫ ∞

−∞
�ϕ̃�ω��2��q̃�2mω��−2 dω�

3k�j�=
∫ ∞

−∞
�ψ̃�ω��k �q̃�2jω��−k dω� k = 2�4�

(3.3)

The following theorem establishes the upper bound for the MISE of the linear
wavelet estimator (2.9) uniformly over the class �α�Aα� defined in (3.1).

Theorem 1.

sup
g∈�α

MISE
(
ĝ

�L�
n

)
≤ 2π−1�2π/3�−2α
ψ
2c A2

α 2
−2mα + n−12m+131�m��(3.4)

Corollary 1. If �q̃�ω�� ≥ A0�w2 + 1�−γ/2 exp�−B�ω�β� and m is such that

2m =



n1/�2α+2γ+1�� if B = 0,


(
2B

(
4π
3

)β

+ 7

)−1

lnn




1/β

� if B > 0,
(3.5)

with 7 > 0, then

sup
g∈�α

MISE
(
ĝ

�L�
n

)
=

{
O

(
n−2α/�2α+2γ+1�)� if B = 0,

O
(�lnn�−2α/β

)
� if B > 0.

(3.6)

Observe that the rates of convergence in (3.6) coincide with the optimal
rate of convergence [see Fan (1993)]. Also, in the case of exponential descent
of q̃�ω�, the linear wavelet estimator is adaptive, that is, the choice of the
parameter m does not depend on the unknown smoothness α of the density
g�θ�. However, in the case of polynomial descent, the estimator (2.9) fails to
provide the optimal convergence rate when α is unknown. This difficulty can
be overcome by using the nonlinear estimator (2.10).
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Theorem 2. Suppose �q̃�ω�� ≥ A0�w2 + 1�−γ/2� Let ĝ�N�
n be the estima-

tor (2.10) with m = �2 + ε� log2�lnn� where ε > 0, m + r = �2γ + 1�−1 log2 n

and δj�n = 2j�γ+0�5�δn. If δn = δ0n
−1/2 with δ0 ≥ 2

√
2K2 and 34�j�/32

2�j� ≤ C0
for any j, then

sup
g∈�α

MISE
(
ĝ

�N�
n

) = O
(
n−2α/�2α+2γ+1�)�(3.7)

Here K2 is an absolute constant [see (A.1)].

The reasoning behind Theorem 2 is as follows. If the value of α were known,
then the best choice of m in the linear estimator (2.9) would be mopt ∼ �2α+
2γ+1�−1 log2 n. Since α is unknown, we can only tell that for any λ, the optimal
value of m lies between λ log2�lnn� and �2γ + 1�−1 log2 n. Thus we construct
the nonlinear estimator (2.10) with m = �2 + ε� log2�lnn�, which is smaller
than the optimal value mopt and m+ r = �2γ + 1�−1 log2 n. By doing this, we
include all terms with j ≤ �2 + ε� log2�lnn� and exclude the terms with j >
�2γ + 1�−1 log2 n. The terms with �2+ ε� log2�lnn� < j ≤ �2γ + 1�−1 log2 n are
included only if

∑
k∈Z b̂

2
j� k ≥ δ2j�n, where δ2j�n ∼ n−1 ∑

k∈Z Var b̂j� k. It enables
one to include only terms whose variance does not exceed O�n−2α/�2α+2γ+1��
and, therefore, to ensure the optimal convergence rate. Note that in order
that m < mopt for finite values of n, the value of ε should not be large, say,
ε < ε0, where ε0 is chosen in advance.

In order to replace the estimators (2.9) and (2.10) by their finite series
counterparts, we assume that g has a certain rate of descent as �θ� → ∞.
Namely, let

� ∗
α �Aα�Ag� =

{
g� g ∈ �α�Aα�� sup

θ
��θ�g�θ�� ≤ Ag

}
�(3.8)

where �α�Aα� is defined in (3.1) and assume that g ∈ � ∗
α �Aα�Ag�. Note that

the condition sup��θ�g�θ�� < ∞ is very nonrestrictive and holds for every fa-
miliar p.d.f. The following theorem shows that the rate of convergence of (2.11)
and (2.12) uniformly over � ∗

α �Aα�Ag� is the same as the rate of convergence
of (2.9) and (2.10), respectively, uniformly over �α�Aα�.

Theorem 3. Assume that the assumptions of Corollary 1 and Theorem 2
are valid and Kn, Mn and Ln are such that

lim
n→∞nK

−1
n = 0� lim

n→∞nM
−1
n = 0� lim

n→∞n
�2γ+2�/�2γ+1�L−1

n = 0�

Then the estimators (2.11) and (2.12), with the same choice of parameters m�r,
and δj�n as in Corollary 1 and Theorem 2, have the following rates of conver-
gence uniformly over � ∗

α �Aα�Ag�:

sup
g∈� ∗

α

MISE
(
ĝ

�LF�
n

) = O
(�lnn�−2α/β)

if B > 0�(3.9)
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sup
g∈� ∗

α

MISE
(
ĝ

�LF�
n

)∼ sup
g∈� ∗

α

MISE
(
ĝ

�NF�
n

)
=O(

n−2α/�2α+2γ+1�) if B = 0�
(3.10)

4. Estimation in the case of a supersmooth g���. The asymptotic re-
sults provided by Theorems 1–3 are not very optimistic: if q�x� is supersmooth,
the estimator has a logarithmic convergence rate. Nevertheless, it is the best
we can do if g ∈Hα. But is the situation always so gloomy? One can immedi-
ately guess that a better rate of convergence can be achieved provided that g
belongs to a subset of Hα; for example, if g is supersmooth itself. Let

�� α� ν� 9�Aα� =
{
g�

∫ ∞

−∞
�g̃�ω��2�ω2 + 1�α exp{

29�ω�ν}dw ≤ Aα

}
�(4.1)

�� ∗
α� ν� 9�Aα�Ag� =

{
g� g ∈ �� α� ν� 9�Aα�� sup

θ
��θ�g�θ�� ≤ Ag

}
(4.2)

and assume that g ∈ �� ∗
α� ν� 9�Aα�Ag� with positive 9 and ν. Observe that

�� α� ν� 9�Aα� ⊆ �α�Aα�, �� ∗
α� ν� 9�Aα�Ag� ⊆ � ∗

α �Aα�Ag�, and for 9 = 0 the
sets coincide: �� α� ν� 9�Aα� = �α�Aα�, �� ∗

α� ν� 9�Aα�Ag� = � ∗
α �Aα�Ag�.

The advantage of Meyer-type wavelet estimators is that they adjust au-
tomatically to the degree of smoothness of g�θ�. It means that the estima-
tors (2.11) and (2.12), with the same choice of parameters m, r and δj�n as
before, achieve better convergence rates if g�θ� is supersmooth.

Theorem 4. If the conditions of Corollary 1 are valid, then the estima-
tor (2.11) with m given by (3.5) attains the following convergence rate:

supg∈�� ∗
α� ν� 9

MISE
(
ĝ

�LF�
n

)

=




O
(
n−1 �lnn��2γ+1�/ν

)
� if B = 0,

O
(
n−η lnξ n

)
� if B > 0 and ν ≥ β,

O
(
�lnn�−2α/β exp�−ζ �lnn�ν/β�

)
� if B > 0 and ν < β,

(4.3)

provided limn→∞K−1
n nµ = 0. Here ν and 9 are positive, µ = 1 if B > 0 and

µ = �2γ + 1�−1 �2γ + 2� if B = 0; ζ = �2B�4π/3�β + 7�−1 29�2π/3�ν. If β = ν,
then ξ = β−1�2γ + 1�I�7 ≥ 29�2π/3�β� − 2αβ−1I�7 < 29�2π/3�β� and η =
�2B�4π/3�β + 7�−1 min�7�29�2π/3�β�. If β < ν, then ξ = β−1 �2γ + 1� and
η = �2B�4π/3�β + 7�−1 7.

Theorem 5. Let the assumptions of Theorem 2 hold and let Ln and Mn be
such that

lim
n→∞nM

−1
n = 0� lim

n→∞n
�2γ+2�/�2γ+1�L−1

n = 0�
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Then

sup
g∈�� ∗

α� ν� 9

MISE
(
ĝ

�NF�
n

) = O
(
�lnn�κ�2γ+1� n−1

)
�(4.4)

with κ = ν−1 if ν < 0�5 and κ = 2+ε if ν ≥ 0�5. Here ε is an arbitrary constant.

5. Examples. Let us now consider some examples of applications of
Meyer-type wavelets to nonparametric density deconvolution.

Example 1. Let q�x� = �√2πσ�−1 exp�−0�5x2 σ−2� be the normal p.d.f.
Then q̃�ω� = exp�−0�5ω2σ2� so that β = 2, B = 0�5σ2, γ = 0. Since q�x� is
supersmooth, we use the linear wavelet estimator ĝ�LF�

n . If g ∈ � ∗
α �Aα�Ag�,

then ĝ
�LF�
n has the optimal rate of convergence MISE �ĝ�LF�

n � = O��lnn�−α�.
Moreover, if g ∈ �� ∗

α� ν� 9�Aα�Ag� with 9 > 0 and ν < β, then MISE �ĝ�LF�
n � =

O��lnn�−2α/β exp�−ζ �lnn�ν/β�� with ζ given by Theorem 4. For example,
if g�θ� is the Cauchy p.d.f. g�θ� = �π�θ2 + 1��−1, then g̃�ω� =
0�5 exp�−�ω��. Hence, applying Theorem 4 with ν = 9 = 1 and α = 0, we
obtain MISE �ĝ�LF�

n � = O��lnn�−α exp�−ζ√lnn��. Note that in this case
MISE �ĝ�LF�

n � is exp�−ζ√lnn� times smaller than in the case of g ∈ Hα.
Here exp�−ζ√lnn� = o��lnn�−τ� for any positive τ as n→ ∞.

If ν = β, then MISE �ĝ�LF�
n � = O�n−η lnξ n� with ξ and η given by The-

orem 4. In particular, if g�θ� is also the p.d.f. of a normal distribution with
variance σ2

0 , then formula (4.3) is valid with η = �7 + �4πσ/3�2�−1 min�7�
�2πσ0/3�2�; ξ = 0�5 if 7 ≥ σ2

0 �2π/3�2 and ξ = 0 otherwise. Note that in this
case ĝ�LF�

n �θ� has a polynomial rate of convergence, which is significantly bet-
ter than the logarithmic rate of convergence in the case of g ∈ � ∗

α �Aα�Ag�.

Example 2. Let q�x� = 0�5σ exp�−σ �x��, the p.d.f. of a double-exponential
distribution. Then q̃�ω� = �1+ σ2ω2�−1, that is, γ = 2. Hence, Theorems 3–5
yield

sup
g∈�� ∗

α� ν� 9

MISE
(
ĝ

�LF�
n

)
=



O

(
n−2α/�2α+5�

)
� if 9 = 0,

O
(
n−1�lnn�5/ν

)
� if 9 > 0,

sup
g∈�� ∗

α� ν� 9

MISE
(
ĝ

�NF�
n

)
=



O

(
n−2α/�2α+5�

)
� if 9 = 0,

O
(
n−1�lnn�5κ

)
� if 9 > 0,

where κ is defined in Theorem 5. Although the estimator ĝ�LF�
n �θ� has better

convergence rates than ĝ
�NF�
n �θ�, it must be noted that the first estimator is

constructed under the assumption that α, 9 and ν are known, while the second
estimator is adaptive and does not assume any knowledge of α, 9 and ν.
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For instance, if g�θ� is the p.d.f. of a normal distribution, then ν = 2 and
MISE �ĝ�LF�

n � = O�n−1�lnn�5/2�, while MISE �ĝ�NF�
n � = O�n−1�lnn�10+ε�. On

the other hand, in the situation when g�θ� is the p.d.f. of a double-exponential
distribution, MISE �ĝ�LF�

n � ∼ MISE �ĝ�NF�
n � ∼ O�n−2α/�2α+5��.

In what follows we conduct a numerical study of the construction of the
deconvolution density when q�x� is the p.d.f. of a double-exponential distri-
bution

q�x� = 0�5σ exp�−σ �x��� σ = 0�1�(5.1)

We investigate the two cases when g�θ� is the standard normal p.d.f. and g�θ�
is the standard double-exponential p.d.f. g�θ� = 0�5 exp�−�θ��. We compare
the Meyer-type wavelet estimators ĝ�NF�

n �θ� of the form (2.12) with the kernel
deconvolution estimators based on the kernel K�x�,

ĝ
�K�
n �θ� = 1

nh

n∑
l=1

L

(
θ−Xl

h
�h

)
with L̃�ω�h� = �q̃�h−1ω��−1 K̃�ω��(5.2)

Here L�·� h� is the inverse Fourier transform of L̃�ω�h�. We consider two types
of kernels, K1�x� = ϕ�x� where ϕ�x� is the Meyer-type scale function and
K2�x� = �√2π�−1 exp�−0�5x2�. We denote the kernel deconvolution estimators
based on kernels K1 and K2 by ĝ�K1�

n �θ� and ĝ�K2�
n �θ�, respectively. It is easy

to show that for q�x� given by (5.1),

Um�x� = ϕ�x� + 22mσ2ϕ′′�x�� Vj�x� = ψ�x� + 22jσ2ψ′′�x��
L1�x�h� = ϕ�x� + h−2σ2ϕ′′�x��
L2�x� = �√2π�−1 exp�−0�5x2��1+ h−2σ2�x2 − 1���

(5.3)

Therefore, the coefficients âm�k and b̂j� k of the wavelet estimator ĝ�NF�
n �θ�

are calculated according to (2.8) with Um and Vj given by (5.3). For practical
purposes, we use the approximations ϕ�x� = MeyerPhi�s� x�20� and ψ�x� =
MeyerPsi�s� x�20� included with the Mathematica Wavelet Package with s = 2.
All simulations are conducted with n = 500.

Figure 1a–c presents the simulation study when g�θ� is the p.d.f. of the
standard normal distribution. The estimators ĝ�NF�

n �θ�, ĝ�K1�
n �θ� and ĝ�K2�

n �θ�
are based on the same sample of n = 500 observations. Panel (a) shows
ĝ

�NF�
n �θ� with m = −1, r = 0, Mn = Ln = 10 and δ−1� n = 0�003. Observe

that the sum
∑m+r
j=m contains one term with j = −1, so that the estimator is

nonlinear. Panels (b) and (c) depict ĝ�K1�
n �θ� and ĝ

�K2�
n �θ�, respectively, with

h = 0�5. In all three panels, the exact density g�θ� is shown in dashed lines.
Figure 2a–c presents an investigation, analagous to that in Figure 1a–c,

when g�θ� is the p.d.f. of the standard double-exponential distribution. Since
the p.d.f. g�θ� is “unknown” we conduct estimation with the same values of
the parametersm, r,Mn, Ln δ−1� n and h as in the case of the standard normal
g�θ� and with the same sample size n = 500.
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Fig. 1. Deconvolutions with normal prior and double-exponential conditional distribution.
(a) Estimation with Meyer-type wavelets. (b) Estimation with Meyer-type kernels. (c) Estimation
with the standard normal kernels.

6. Discussion. In this paper we constructed the linear and the nonlinear
estimators of a deconvolution density g�θ� based on Meyer-type wavelets. We
showed that the estimators are asymptotically optimal for g ∈Hα. Moreover,
we demonstrated that, for B > 0, the linear wavelet estimator, and, for B = 0,
the nonlinear wavelet estimator are globally adaptive. That is, the choice of
parameters is independent of the unknown parameter α.

Another merit of the estimators (2.11) and (2.12) is that they can adjust
even to a supersmooth deconvolution density. It is easy to see that the estima-
tor (2.11) provides a better convergence rate if g�θ� is supersmooth. Namely,
if q�x� is also supersmooth and ν < β, then supg∈�� ∗

α� ν� 9
MISE �ĝ�LF�

n � =
o��lnn�−τ� for any positive τ as n → ∞. If ν ≥ β, then ĝ

�LF�
n �θ� has a poly-

nomial rate of convergence [see (4.3)]. The rate of convergence is governed by
the parameter 7. A large value of 7 ensures that the estimator has a high
convergence rate when g�θ� is supersmooth (9 > 0) without affecting the
convergence rate when g�θ� has a finite degree of smoothness (9 = 0). How-
ever, increasing 7 immediately leads to the increase of a constant in front
of �lnn�−2α/β in (3.9). Therefore, there is an obvious trade-off between one’s
desire to accommodate the case of supersmooth g�θ� and reluctance to slow
down the convergence provided g�θ� is not supersmooth.

In the caseB = 0, the linear wavelet estimator (2.11) has a convergence rate
close to O�n−1� when the values of α, 9 and ν are known. If (and it is usually
the case) they are unknown, the nonlinear wavelet estimator ĝ�NF�

n �θ� attains
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Fig. 2. Deconvolutions with a double-exponential prior and double-exponential conditional
distribution. (a) Estimation with Meyer-type wavelets. (b) Estimation with Meyer-type kernels.
(c) Estimation with the standard normal kernels.
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a convergence rate which either coincides with the convergence rate of the
linear estimator (if ν < 0�5) or is �lnn��2γ+1��2+ε−ν−1� times greater (if ν ≥ 0�5).
It should be noted that an estimator based on a wavelet with bounded support
fails to provide a convergence rate better than O�n−2s/�2s+1��, where s is the
degree of regularity of the wavelet. The fact that Meyer-type wavelets work
better in the situation of a supersmooth g�θ� seems completely natural: Meyer-
type wavelets are supersmooth and, consequently, are suitable to estimate a
supersmooth density function.

Section 5 provides finite sample size simulations study of the performance of
the Meyer-type wavelet estimators versus the kernel deconvolution estimators.
In the case when g�θ� is the standard normal p.d.f., the Meyer-type wavelet
estimator ĝ�NF�

n �θ� is more precise than ĝ�K1�
n �θ� and is as precise as ĝ�K2�

n �θ�
(see Figure 1a–c). In the situation where g�θ� = 0�5 exp�−�θ��, ĝ�NF�

n �θ� is
closer to g�θ� than its kernel deconvolution counterparts (see Figures 2a–c).
However, the simulation sudy conducted in the present paper is very limited.
The detailed simulation study of the performance of the method is the authors’
ongoing research project.

Let us also make a remark about the use of Meyer-type wavelet estima-
tors for the estimation of p�x�. Without loss of generality, let us consider
the linear wavelet estimator ĝ

�L�
n �θ�. It is easy to see that the estimator

p̂
�L�
n �x� = ∫ ∞

−∞ q�x− θ�ĝ�L�
n �θ�dθ can be written as

p̂
�L�
n �x� = ∑

k∈Z
âm�kCm�k�x��(6.1)

where the coefficients âm�k are given by (2.8) and Cm�k�x� = 2m/2C∗
m�2mx−k�

with C∗
m�y� = ∫ ∞

−∞ q�2−my − z�ϕ�2mz�dz. The estimator (6.1) does not have
desirable properties: the variances of the coefficients âm�k are high since âm�k
are based on a “deconvolved” sample while the functions 2m/2C∗

m�2mx−k� are
not orthonormal unlike 2m/2ϕ�2mx − k�. Also, C∗

m depends on m. Therefore,
p̂

�L�
n �x� cannot be recommended as the estimator of p�x�.
On the other hand, the conditional expectation ĝ∗

n = E�ĝ�L�
n �θ1� θ2� � � � � θn�

is an adequate approximation of g�θ�. It is easy to show that

ĝ∗
n�θ� =

∑
k∈Z

â∗
m�kϕm�k�θ� = n−1

n∑
l=1

∑
k∈Z

ϕm�k�θl�ϕm�k�θ��(6.2)

that is, ĝ∗
n�θ� is a linear wavelet estimator of g�θ� based on θ1� θ2� � � � � θn ∼

g�θ�. The properties of the estimator (6.2) were studied by several authors
[see, e.g., Walter (1994), Pensky (1999)]. It is easy to show that∣∣Eĝ∗

n�θ� − g�θ�∣∣ = O
(
2−mα)� Var ĝ∗

n�θ� = O
(
n−12m

)
�

Therefore, the precision of (6.2) depends on the choice of m. If m has the
form (3.5), then ĝ∗

n�θ� has the same convergence rate as ĝ�L�
n �θ�. However,

if m is such that 2m ∼ n1/�2α+1�, then MISE �ĝ∗
n� has the optimal rate of

convergence in Hα� MISE �ĝ∗
n� = O�n−2α/�2α+1��.
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APPENDIX

The proofs of all major statements are based on several auxiliary lemmas.

Lemma 1 [Talagrand (1994)]. Let X1� � � � �Xn be independent and identi-
cally distributed random variables, let ε1� � � � � εn be independent Rademacher
variables, also independent of X1� � � � �Xn and let � be a class of functions
uniformly bounded by T. If

sup
f∈�

Varf�X� ≤ υ and E�sup
f∈�

n∑
l=1

εlf�Xl�� ≤ nH�

then there exist universal constants K1�K2 such that for νn�f� =
n−1 ∑n

l=1 f�Xl� −Ef�X� and any t > 0 we have

P

{
sup
f∈�

νn�f� ≥ t+K2H

}
≤ exp

{
−nK1 min

(
t2

υ
�
t

T

)}
�(A.1)

Lemma 2. If 9 ≥ 0 and ν ≥ 0, then

sup
g∈�� α� ν� 9

∑
k∈Z

b2j� k ≤ Cb2
−2jα exp

{−29�2π/3�ν2jν} εj�
with Cb = π−1
ψ
2c �2π/3�−2α and

∑
j∈Z εj ≤ 2A2

α. Here �� α� ν� 9�Aα� is de-
fined in (4.1).

Proof. The proof of Lemma 2 is similar to the proof of Theorem 3.4 by
Zayed and Walter (1996). We represent the coefficients bj�k as bj�k = b

�1�
j� k +

b
�2�
j� k, where

b
�l�
j� k = �2π�−12j/2

∫
!l

exp�ikω� g̃�2jω�ψ̃�ω�dω� l = 1�2�

with !1 and !2 defined in (2.4). It is easy to notice that b�l�j� k are the Fourier
coefficients of the functions �2π�−12j/2g̃�2jω�ψ̃�ω�I�ω ∈ !l�, l = 1�2, so
that

∑
k∈Z �b�l�j� k�2 = �2π�−12j

∫
!l

�g̃�2jω��2�ψ̃�ω��2dω. Since
∑
k∈Z �bj�k�2 ≤

2
∑
k∈Z �b�1�j� k�2 + 2

∑
k∈Z �b�2�j� k�2, we conclude that∑

k∈Z
�bj�k�2 ≤ π−1 
ψ̃
2c �2π/3�−2α 2−2jα exp

{−29�2π/3�ν2jν} εj�
Here εj =

∫
Wj

�g̃�ω��2�ω2+1�α exp�29�ω�ν�dωwithWj = �−2j8π/3�−2j2π/3�
∪ �2j2π/3�2j8π/3� which implies

∑
j εj ≤ 2A2

α <∞.

Lemma 3. For 31�m� and 32�j� defined in (3.3) the following inequalities
are valid:

sup
x

∑
k∈Z

∣∣Vj�2jx− k�∣∣2 ≤ 232�j��(A.2)

sup
g∈�α

[∑
k∈Z

Var�b̂j� k�
]
≤ n−12j+132�j��(A.3)
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sup
g∈�α

[∑
k∈Z

Var�âm�k�
]
≤ n−12m+131�m��(A.4)

Proof. Observe that Vj�2jx − k� = β
�1�
k �2jx� + β

�2�
k �2jx� where the func-

tions β�l�
k �2jx� = �2π�−1

∫
!l

exp�−ikω� exp�i2jxω�Ṽj�ω�dω� l = 1�2� are the

Fourier coefficients of the functions exp�i2jxω�Ṽj�ω�I�ω ∈ !l� = exp�i2jxω� ·
ψ̃�ω��q̃�−2jω��−1I�ω ∈ !l�� l = 1�2. Therefore,

∑
k∈Z

∣∣Vj�2jx− k�∣∣2 ≤ 2
2∑
l=1

∑
k∈Z

∣∣β�l�
k �2jx�∣∣2 ≤ 232�j��

which implies (A.2). To prove (A.3) notice that
∑
k∈Z Var�b̂j� k� ≤ n−1

∫ ∞
−∞ 2j ·∑

k∈Z �Vj�2jx − k��2p�x�dx ≤ n−12j supx�
∑
k∈Z �Vj�2jx − k��2�. Inequality

(A.4) can be derived in a manner similar to (A.3).

Lemma 4. Let 9k� l�j� =
∫ ∞
−∞ 2jVj�2jx− k�Vj�2jx− l�p�x�dx� Then

sup
g∈�α

[ ∑
k� l∈Z

∣∣9k� l�j�∣∣2
]
≤ C92

j34�j��

where �α�Aα� and 34�j� are defined in (3.1) and (3.3), respectively, and C9 =
2πA2

α
q
2L2 .

Proof. To simplify notation, we drop the argument j of 9k� l�j� in the
proof and refer to 9k� l�j� as 9k� l� Using Parseval’s identity and properties of
Fourier transform, we write 9k� l as

9k� l =
2j

�2π�2
∫ ∞

−∞

∫ ∞

−∞
exp�−izk− iyl� ψ̃�z�ψ̃�y�

q̃�−2jz�q̃�−2jy�
×p̃�−2j�y+ z��dydz�

(A.5)

Therefore 9k� l = ∑2
s=1

∑2
r=1 9

�s� r�
k� l , where the only difference between 9

�s� r�
k� l

and 9k� l is that the integral for 9�s� r�
k� l is calculated over !s ∪ !r� s� r = 1�2

[see (2.4)]. It is easy to see that 9�s� r�
k� l are the Fourier coefficients of the func-

tions

�q̃�−2jz�q̃�−2jy��−1ψ̃�z�ψ̃�y�p̃�−2j�y+z��I�y ∈ !s�I�z ∈ !r�� r� s = 1�2�

respectively, which implies that
∑
k� l∈Z �9�s� r�

k� l �2 is equal to the integral of the
square of the magnitude of the function generating the coefficients 9�s� r�

k� l . To
complete the proof, note that the function �q̃�ω�� is even and that 
p̃
L2 ≤
Aα
q̃
L2 .
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Lemma 5. Denote λj�n = λn
√
2j32�j�. Then for any λn > 0,

sup
g∈�α

P

{∑
k∈Z

�b̂j� k − bj�k�2 ≥ λ2
j�n

[
1+

√
2K2√
nλn

]2
}

≤ exp
{
−nK1

(
2j/232�j�λ2

n√
C9 34�j�

∧ λn√
2

)}
�

(A.6)

Here K1 and K2 are the absolute constants in Talagrand’s inequality, a∧ b =
min�a� b� and C9 is defined in Lemma 4.

Proof of Lemma 5. The proof is based on Talagrand’s inequality
(Lemma 1). Consider an infinite sequence � = ��ek�k∈Z�

∑
k∈Z e

2
k ≤ 1� and

a class of functions � = �f� f�x� = 2j/2
∑
k∈Z ekVj�2jx − k��� It is easy to

notice that

∑
k∈Z

�b̂j� k − bj�k�2 =
[
sup
e∈�

∑
k∈Z

�b̂j� k − bj�k�ek
]2

= sup
f∈�

�νn�f��2�

Now to complete the proof we need to find υ, H and T in Talagrand’s inequal-
ity. From Lemma 3 it follows that

�f�x�� ≤
(∑
k∈Z

e2k

)1/2(∑
k∈Z

2j�Vj�2jx− k��2
)1/2

≤ 2�j+1�/2
√
32�j��

that is, T = 2�j+1�/2√32�j�. Also, if ε1� � � � � εn are independent Rademacher
variables, then

E

[
sup
e∈�

n∑
l=1

{∑
k∈Z

ek2
j/2Vj�2jXl − k�εl

}]
≤

[∑
k∈Z

E

{
n∑
l=1

2j/2Vj�2jXl − k�εl
}2]1/2

≤
[∑
k∈Z

E

{
n∑
l=1

2jV2
j�2jXl − k�

}]1/2

≤ 2�j+1�/2
√
n32�j��

which implies that H = n−1/2 2�j+1�/2√32�j�� To obtain an upper bound for υ
we apply Lemma 4: supf∈� Varf�X� ≤ supe∈�

∑
k� l ekel9k� l ≤

[ ∑
k� l �9k� l�2

]1/2 ·
�∑k∈Z e

2
k�, that is, υ ≤ 2j/2

√
C9 34�j�. To complete the proof, rewrite (A.1) with

t = λj�n and take the supremum of both sides over �α�Aα�. ✷

Proof of Theorem 1. The validity of Theorem 1 follows directly from
Lemma 2 with 9 = 0, Lemma 3 and the inequality

MISE
(
ĝ

�L�
n

) ≤ ∞∑
j=m

∑
k∈Z

b2j� k +
∑
k∈Z

Var âm�k� ✷
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Proof of Corollary 1. Formulas (3.5) and (3.6) follow directly from The-
orem 1 and the asymptotic equality 31�m� ∼ 22γm exp�2B�4π/3�β 2mβ�� ✷

Proof of Theorem 2. Note that MISE �ĝ�N�
n � can be written as the sum

of four components,

MISE
(
ĝ

�N�
n

)
=R1 +R2 +R3 +R4

≡
m+r∑
j=m

E

{∑
k∈Z

�b̂j� k − bj�k�2 I
(∑
k∈Z

b̂2j� k ≥ δ2j�n

)}

+
m+r∑
j=m

(∑
k∈Z

b2j� k

)
P

(∑
k∈Z

b̂2j� k ≤ δ2j�n

)
+

∞∑
j=m+r+1

∑
k∈Z

b2j� k

+ ∑
k∈Z

E�âm�k − am�k�2�

(A.7)

so that

sup
g∈�α

MISE
(
ĝ

�N�
n

)
≤ sup

g∈�α

R1 + sup
g∈�α

R2 + sup
g∈�α

R3 + sup
g∈�α

R4�(A.8)

Let us analyze each term Ri� i = 1�2�3�4 in turn.

The upper bound for supg∈�α
R1. Observe that

I

(∑
k∈Z

b̂2j� k > δ2j�n

)
≤ I

(∑
k∈Z

�b̂j� k−bj�k�2 > 0�25 δ2j�n

)
+I

(∑
k∈Z

b2j� k > 0�25 δ2j�n

)
�

so that R1 ≤ R1�1 +R1�2 where

R1�1 =
m+r∑
j=m

E

{∑
k∈Z

�b̂j� k − bj�k�2 I
(∑
k∈Z

�b̂j� k − bj�k�2 > 0�25 δ2j�n

)}
�(A.9)

R1�2 =
m+r∑
j=m

E
{∑
k∈Z

�b̂j� k − bj�k�2
}
I

(∑
k∈Z

b2j� k > 0�25 δ2j�n

)
�(A.10)

The first term, R1�1, is dominated by

R1�1 ≤ ∑m+r
j=m

[
E

{∑
k∈Z�b̂j� k − bj�k�2

}2

×P

(∑
k∈Z�b̂j� k − bj�k�2 > 0�25 δ2j�n

)]1/2

�

(A.11)
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the sum of the products of two factors. The first factors in (A.11) are majorized
by

E

{∑
k∈Z

�b̂j� k − bj�k�2
}2

≤ E

{∑
k∈Z

�b̂j� k − bj�k�2
∑
k∈Z

[
n−1

n∑
l=1

2j/2Vj�2jXl − k� − bj�k

]2
}

≤
{
2j+1 sup

x

[∑
k∈Z

∣∣Vje�2jx− k�∣∣2] + 2
∑
k∈Z

b2j� k

} ∑
k∈Z

Var b̂j� k

= O
(
n−1 22j+4�32�j��2

)
�

(A.12)

according to Lemmas 2 and 3. Construction of the upper bounds for the sec-
ond factors in (A.11) is based on Lemma 5. Choose λn = λ0 δn with λ0 ≤
0�5δ0 −

√
2K2 and note that in this case 0�25 δ20 λ

−2
0 ≥ �1+√

2λ−1
0 K2�2� There-

fore, 0�25 δ2j�n = 0�25 δ20 n
−1 2j 32�j� ≥ λ2

j�n�1 + λ−1
n n−1/2

√
2K2�2� Hence, from

Lemma 5 it follows that

P

(∑
k∈Z

�b̂j� k − bj�k�2 > 0�25 δ2j�n

)
≤ exp

[
−�C12

j/2 ∧C2
√
n�

]
(A.13)

with C1 =K1 λ
2
0C

−1
0 C

−1/2
9 and C2 = λ0K1/

√
2, since 32

2�j�3−1
4 �j� ≥ C−1

0 � Com-
bining (A.11)–(A.13), taking into account that 2j/2 > �lnn�1+0�5 ε and taking
supremum over �α�Aα�, we obtain

sup
g∈�α

R1�1 = o
(
n−1)�(A.14)

Now let us calculate R1�2 [see (A.10)]. Since 32�j� ≤ C322γj with C3 =
�A0�2��8π/3�2 + 1�, according to Lemmas 2 and 3,

R1�2 ≤ n−1
m+r∑
j=m

2j+1C32
2γj I

(
Cbεj2

−2αj > 0�25 δ20C3 n
−1 2j�2γ+1�

)
�

Rearranging the last formula, we have

R1�2 ≤ 2C3δ
−�2�2γ+1��/�2α+2γ+1�
0

(
4Cbεj

C3

)�2γ+1�/�2α+2γ+1�
n−2α/�2α+2γ+1��

which implies that

sup
g∈�α

R1�2 = O
(
n−2α/�2α+2γ+1�

)
�(A.15)

since
∑
j∈Z εj ≤ 2A2

α� Combining (A.14) and (A.15), we obtain supg∈�α
R1 =

O�n−2α/�2α+2γ+1��, as n→ ∞.
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The upper bound for supg∈�α
R2. To find the upper bound for R2 we intro-

duce M = �2α+ 2γ + 1�−1 log2 n and note that

I

(∑
k∈Z

b̂2j� k ≤ δ2j�n

)
≤ I

(∑
k∈Z

b2j� k ≤ 2�5 δ2j�n

)
+ I

(∑
k∈Z

�b̂j� k − bj�k�2 > 0�25 δ2j�n

)

by virtue of the inequality b̂2j� k ≥ 0�5 b2j� k − �b̂j� k − bj�k�2. Thus,

R2 ≤ R2�1 +R2�2 +R2�3�(A.16)

where

R2�1 =
m+r∑

j=M+1

(∑
k∈Z

b2j� k

)
P

(∑
k∈Z

b̂2j� k ≤ δ2j�n

)
�

R2�2 =
M∑
j=m

(∑
k∈Z

b2j� k

)
I

(∑
k∈Z

b2j� k ≤ 2�5 δ2j�n

)
�

R2�3 =
M∑
j=m

(∑
k∈Z

b2j� k

)
P

(∑
k∈Z

�b̂j� k − bj�k�2 > 0�25 δ2j�n

)
�

Now, from the choice of M and Lemma 2 with 9 = 0, it follows that

sup
g∈�α

R2�1 ≤ 2CbA
2
α

m+r∑
j=M+1

2−2αj = O
(
n−2α/�2α+2γ+1�

)
�

Also, using Lemma 3 we derive that

R2�2 =
M∑
j=m

(∑
k∈Z

b2j� k

)
I

(∑
k∈Z

b2j� k ≤ 2�5C3 δ
2
0 2

�2γ+1�j n−1

)
�

which implies that

sup
g∈�α

R2�2 ≤ 2�5C3 δ
2
0 n

−1 2M�2γ+1� = O
(
n−2α/�2α+2γ+1�

)
�

The last term, R2�3, can be majorized by applying Lemma 2 and formula
(A.13),

sup
g∈�α

R2�3 ≤ 2Cba
2
α

M∑
j=m

[
2−2αj exp

{
−�C12

j/2 ∧C2
√
n�

}]
�

and therefore supg∈�α
R2�3 = o�n−1�. Combining all three components in

(A.16), we conclude that supg∈�α
R2 = O�n−2α/�2α+2γ+1��, as n→ ∞.
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The upper bounds for supg∈�α
R3 and supg∈�α

R4. The upper bounds for
supg∈�α

R3 and supg∈�α
R4 follow directly from Lemma 2 with 9 = 0 and

Lemma 3, respectively,

sup
g∈�α

R3 ≤
∞∑

j=m+r
2CbA

2
α2

−2αj = o
(
n−1)�

sup
g∈�α

R4 ≤2m+131�m�n−1 = o
(
n−2α/�2α+2γ+1�

)
�

which completes the proof of the theorem. ✷

Proof of Theorem 3. Assume that g ∈ � ∗
α �Aα�Ag� where the class

� ∗
α �Aα�Ag� is defined in (3.8). Then the coefficients am�k satisfy the chain

of inequalities

k�am�k� ≤ 2m/2
∫ ∞

−∞

∣∣�2mθ− k� − 2mθ
∣∣ ∣∣ϕ�2mθ− k�∣∣g�θ�dθ

≤ 2m/2 sup
z

��z� �ϕ�z���
∫ ∞

−∞
g�θ�dθ

+23m/2 sup
θ

��θ�g�θ��
∫ ∞

−∞
�ϕ�2mθ− k��dθ

≤ 2m/2Cϕ + 2m/2 sup
θ

��θ�g�θ�� 
ϕ
L1
�

where 
ϕ
L1
<∞ by virtue of (2.5). Let C∗

ϕ = Cϕ + supθ��θ�g�θ�� 
ϕ
L1
. Thus,

∑
�k�>Kn

a2
m�k ≤ �C∗

ϕ�22m
∑

�k�>Kn

k−2 = O
(
2mK−1

n

)
�

Repeating similar calculations for bj�k we obtain

∑
�k�>Ln

b2j� k = O
(
2jL−1

n

)
�

Then,

sup
g∈� ∗

α

MISE
(
ĝ

�LF�
n

)
≤ sup

g∈� ∗
α

MISE
(
ĝ

�L�
n

)
+ ∑

�k�>Kn

a2
m�k

≤ O
(
n−2α/�2α+2γ+1�

)
+O

(
n1/�2α+2γ+1�K−1

n

)
= O

(
n−2α/�2α+2γ+1�

)
+O

(
nK−1

n n−2α/�2α+2γ+1� n−2γ/�2α+2γ+1�
)
�

which implies (3.9).
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To obtain (3.11), note that MISE �ĝ�NF�
n � = R1 +R2 +R3 +R4 +R5 +R6�

where R1�R2�R3 and R4 have the same form as in (A.8), the only difference
being that the infinite sums

∑
k∈Z are replaced by their finite analogs and

R5 = ∑
�k�>Mn

a2
m�k� R6 =

m+r∑
j=m

∑
�k�>Ln

b2j� k�(A.17)

Repeating the proof of Theorem 2 with finite sums, we show that replacing in-
finite sums by finite sums does not increase supg∈� ∗

α
�R1+R2+R3+R4�. For the

last two components, R5 and R6, the following relations hold: supg∈� ∗
α
R5 =

O��lnn�2+εM−1
n � = o�n−2α/�2α+2γ+1�� and supg∈� ∗

α
R6 = O�n1/�2γ+1�L−1

n � =
o�n−2α/�2α+2γ+1��. This completes the proof. ✷

Proof of Theorem 4. The proof follows directly from Theorem 1 and the
fact that

supg∈�� ∗
α� ν� 9

∑
�k�>Kn

a2
m�k ≤ O

(
n−2α/�2α+2γ+1�

)
+O

(
n1/�2α+2γ+1�K−1

n

)
= O�n−1�� ✷

Proof of Theorem 5. The proof is identical to the proof of Theorem 2;
the only difference is that 9 > 0 in Lemma 2. Therefore, supg∈�� ∗

α� ν� 9
R1�2 =

O�n−1�lnn��2γ+1�/ν�,
2M = �29�−1/ν�3/2π�[lnn− ν−1�2α+ 2γ + 1� ln lnn

]1/ν
and supg∈�� ∗

α� ν� 9
R2�1 ∼ supg∈�� ∗

α� ν� 9
R2�2 = O�n−1�lnn��2γ+1�/ν�� To complete

the proof, note that supg∈�� ∗
α� ν� 9

R4 = O�n−1�lnn��2γ+1��2+ε��. ✷
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Antoniadis, A., Grégoire, G. and McKeague, I. W. (1994). Wavelet method for curve estimation.
J. Amer. Statist. Assoc. 89 1340–1353.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density.
J. Amer. Statist. Assoc. 83 1184–1186.

Desouza, C. M. (1991). An empirical Bayes formulation of cohort models in cancer epidemiology.
Statistics in Medicine 10 1241–1256.

Devroye, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17 235–
239.

Diggle, P. J. andHall, P. (1993). A Fourier approach to nonparametric deconvolution of a density
estimate. J. Roy. Statist. Assoc. Ser. B 55 523–531.

Donoho, D. and Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage.
J. Amer. Statist. Assoc. 90 1200–1224.



2052 M. PENSKY AND B. VIDAKOVIC

Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1996). Density estimation by
wavelet thresholding. Ann. Statist. 24 508–539.

Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error.
J. Amer. Statist. Assoc. 92 526–535.

Fan, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problem.
Ann. Statist. 19 1257–1272.

Fan, J. (1991b). Asymptotic normality for deconvolution kernel density estimators. Sankhyā
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