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ASYMPTOTICS OF REWEIGHTED ESTIMATORS OF
MULTIVARIATE LOCATION AND SCATTER

By Hendrik P. Lopuhaä

Delft University of Technology

We investigate the asymptotic behavior of a weighted sample mean
and covariance, where the weights are determined by the Mahalanobis
distances with respect to initial robust estimators. We derive an explicit
expansion for the weighted estimators. From this expansion it can be seen
that reweighting does not improve the rate of convergence of the initial
estimators. We also show that if one uses smooth S-estimators to deter-
mine the weights, the weighted estimators are asymptotically normal. Fi-
nally, we will compare the efficiency and local robustness of the reweighted
S-estimators with two other improvements of S-estimators: τ-estimators
and constrained M-estimators.

1. Introduction. Let X1�X2� � � � be independent random vectors with a
distribution Pµ�	 on �k, which is assumed to have a density

f�x� = �	�−1/2h
(�x− µ��	−1�x− µ�)�(1.1)

where µ ∈ �k, 	 ∈ PDS�k�, the class of positive definite symmetric matri-
ces of order k, and h � 	0�∞� → 	0�∞� is assumed to be known. Suppose
we want to estimate �µ�	�. The sample mean and sample covariance may
provide accurate estimates, but they are also notorious for being sensitive to
outlying points. Robust estimates Mn and Vn may protect us against outlying
observations, but these estimates will not be very accurate in case no outlying
observations are present.

Two concepts that reflect to some extent the sensitivity of estimators are
the finite sample breakdown point and the influence function, whereas the
asymptotic efficiency may give some indication of how accurate the estimators
are. The finite sample (replacement) breakdown point [Hampel (1968), Donoho
and Huber (1983)] is roughly the smallest fraction of outliers that can take the
estimate over all bounds. It must be seen as a global measure of robustness as
opposed to the influence function [Hampel (1968), Hampel (1974)] as a local
measure which measures the influence of an infinitesimal pertubation at a
point x on the estimate. Affine equivariant M-estimators [Maronna (1976)]
are robust alternatives to the sample mean and covariance, defined as the
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solution θn = �Tn�Cn� of
n∑
i=1

��Xi� θ� = 0�(1.2)

where � attains values in �k ×PDS�k�. They have a bounded influence func-
tion and a high efficiency. Their breakdown point, however, is at most 1/�k+1�,
due to the increasing sensitivity of covariance M-estimators to outliers con-
tained in lower-dimensional hyperplanes as k gets larger [Tyler (1986)].

Affine equivariant estimators with a high breakdown point where intro-
duced by Stahel (1981), Donoho (1982) and Rousseeuw (1985). The Stahel–
Donoho estimator converges at rate n1/2 [Maronna and Yohai (1995)], however,
the limiting distribution is yet unknown, and Rousseeuw’s minimum volume
ellipsoid (MVE) estimator converges at rate n1/3 to a nonnormal limiting dis-
tribution [Kim and Pollard (1990), Davies (1992a)]. Multivariate S-estimators
[Davies (1987), Lopuhaä (1989)] are smoothed versions of the MVE estimator,
which do converge at rate

√
n to a limiting normal distribution. Nevertheless,

one still has to make a tradeoff between breakdown point and asymptotic ef-
ficiency. Further extensions of S-estimators, such as τ-estimators [Lopuhaä
(1991)] and constrained M (CM)-estimators [Kent and Tyler (1997)], are able
to avoid this tradeoff.

Several procedures have been proposed that combineM-estimators together
with a high breakdown estimator with bounded influence [see, e.g., Yohai
(1987), Lopuhaä (1989)]. Unfortunately, a similar approach for covariance
estimators would fail because of the low breakdown point of covariance M-
estimators. Another approach is to perform a one-step “Gauss–Newton” ap-
proximation to (1.2),

θn = θ0�n +
[

n∑
i=1

D��Xi� θ0�n�
]−1

n∑
i=1

��Xi� θ0�n��

starting from an initial estimator θ0�n = �Mn�Vn� with high breakdown point
and bounded influence [Bickel (1975), Davies (1992b)]. Such a procedure im-
proves the rate of convergence and the one-step estimator has the same lim-
iting behavior as the solution of (1.2). The breakdown behavior is, however,
unknown and might be as poor as that of the covariance M-estimator.

Rousseeuw and Leroy (1987) proposed to use the MVE estimator, omit ob-
servations whose Mahalanobis distance with respect to this estimator exceeds
some cut-off value and compute the sample mean and sample covariance of the
remaining observations. This method looks appealing and found his way for
instance in the area of computer vision [see Jolion, Meer and Bataouche (1991)
and Matei, Meer and Tyler (1998) for an application of the reweighted MVE,
and also Meer, Mintz, Rosenfeld and Kim (1991) for an application of a simi-
lar procedure in the regression context]. In Lopuhaä and Rousseeuw (1991) it
is shown that such a procedure preserves affine equivariance and the break-
down point of the initial estimators. It can also be seen that reweighting has
close connections to (1.2) (see Remark 2.1). It is therefore natural to question
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whether one-step reweighting also improves the rate of convergence and what
the limit behavior of the reweighted estimators is.

We will derive an explicit asymptotic expansion for the reweighted esti-
mators. From this expansion it can be seen immediately that the reweighted
estimators converge at the same rate as the initial estimators. A similar re-
sult in the regression context can be found in He and Portnoy (1992). We will
also show that, if smooth S-estimators are used to determine the weights, the
reweighted estimators are n1/2 consistent and asymptotically normal. Simi-
lar to τ-estimators and CM-estimators, reweighted S-estimators are able to
avoid the tradeoff between asymptotic efficiency and breakdown point. How-
ever, with all three methods there still remains a tradeoff between efficiency
and local robustness. In the last section we will compare the efficiency to-
gether with the local robustness of reweighted S-estimators with those of the
τ-estimators and the CM-estimators.

2. Definitions. LetMn ∈ �k andVn ∈ PDS�k� denote (robust) estimators
of location and covariance. EstimatorsMn andVn are called affine equivariant
if,

Mn�AX1 + b� � � � �AXn + b� = AMn�X1� � � � �Xn� + b�

Vn�AX1 + b� � � � �AXn + b� = AVn�X1� � � � �Xn�A��

for all nonsingular k × k matrices A and b ∈ �k. We will use Mn and Vn as
a diagnostic tool to identify outlying observations, rather than using them as
actual estimators of location and covariance. If we think of robust estimators
Mn and Vn as reflecting the bulk of the data, then outlying observations Xi

will have a large squared Mahalanobis distance,

d2�Xi�Mn�Vn� = �Xi −Mn��V−1
n �Xi −Mn��(2.1)

compared to the distances of those observations that belong to the majority.
Once the outliers have been identified, one could compute a weighted sample
mean and covariance to obtain more accurate estimates. Observations with
large d2�Xi�Mn�Vn� can then be given a smaller weight or, even more dras-
tically, one could assign weight 0 to Xi whenever d2�Xi�Mn�Vn� exceeds
some kind of threshold value c > 0.

Therefore, let w� 	0�∞� → 	0�∞� be a (weight) function, that satisfies

(W) w is bounded and of bounded variation, and almost everywhere
continuous on 	0�∞�.

Define a weighted sample mean and covariance as follows

Tn =
∑n
i=1w

(
d2�Xi�Mn�Vn�

)
Xi∑n

i=1w
(
d2�Xi�Mn�Vn�

)(2.2)

Cn =
∑n
i=1w

(
d2�Xi�Mn�Vn�

)(
Xi −Tn

)(
Xi −Tn

)�∑n
i=1w

(
d2�Xi�Mn�Vn�

) �(2.3)
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A typical choice for w would be the function

w�y� = 1	0�c��y��(2.4)

in which case Tn and Cn are simply the sample mean and sample covariance
of theXi with d2�Xi�Mn�Vn� ≤ c. Note that (W) also permits w ≡ 1, in which
case Tn and Cn are the ordinary sample mean and covariance matrix based
on all observations.

Under additional restrictions on the function w, the finite sample break-
down point of Mn and Vn is preserved [Lopuhaä and Rousseeuw (1991)].
Typical examples for �Mn�Vn� are the MVE estimators and S-estimators. If
Mn and Vn are affine equivariant it is easy to see that, for each i = 1� � � � � n,
the Mahalanobis distance d2�Xi�Mn�Vn� is invariant under affine transfor-
mations of Xi. This means that affine equivariance of Mn and Vn carries over
to the weighted estimators Tn and Cn.

Remark 2.1. Consider the following score equations for multivariate M-
estimators:

n∑
i=1

w
(
d2�Xi� t�C�

)�Xi − t� = 0�

n∑
i=1

w
(
d2�Xi� t�C�

) [�Xi − t��Xi − t�� −C
] = 0�

If we would replace �Mn�Vn� by �Tn�Cn� in (2.2) and (2.3), then �Tn�Cn�
would be a fixed point of the above M-score equations. Hence the reweighted
estimators can be seen as a one-step iteration towards the fixed point of the
M-score equations.

We investigate the asymptotic behavior of Tn and Cn, as n → ∞, under
the location-scale model (1.1). This means that most of the constants that will
follow can be rewritten by application of the following lemma [see Lopuhaä
(1997)].

Lemma 2.1. Let z� 	0�∞� → � and write x = �x1� � � � � xk��. Then
∫
z�x�x�dx = 2πk/2

!�k/2�
∫ ∞

0
z�r2�rk−1dr�

∫
z�x�x�x2

i dx = 1
k

∫
z�x�x��x�x�dx�

∫
z�x�x�x2

i x
2
jdx = 1 + 2δij

k�k+ 2�
∫
z�x�x��x�x�2dx�

for i� j = 1� � � � � k, where δij denotes the Kronecker delta.
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In order to avoid smoothness conditions on the function w, we assume some
smoothness of the function h:

(H1) h is continuously differentiable.

We also need that h has a finite fourth moment:

(H2)
∫
�x�x�2h�x�x�dx <∞�

This is a natural condition, which, for instance, is needed to obtain a central
limit theorem for Cn. Note that by Lemma 2.1, condition (H2) implies that∫ ∞

0
h�r2�rk−1+jdr <∞ for j = 0�1� � � � �4�(2.5)

Finally we will assume that the initial estimators Mn and Vn are affine equiv-
ariant and consistent, that is, �Mn�Vn� → �µ�	� in probability.

Write & = �k × PDS�k�, θ = �m�V� and d�x� θ� = d�x�m�V�. Multiplying
the numerator and denominator in (2.2) and (2.3) by 1/n leaves Tn and Cn

unchanged. This means that if we define

�1�x� θ� = w�d�x� θ���
�2�x� θ� = w�d�x� θ��x�

�3�x� θ� t� = w�d�x� θ���x− t��x− t���
and write θn = �Mn�Vn�, then Tn and Cn can be written as

Tn =

∫
�2�x� θn�dPn�x�∫
�1�x� θn�dPn�x�

�

Cn =

∫
�3�x� θn�Tn�dPn�x�∫

�1�x� θn�dPn�x�
�

where Pn denotes the empirical measure corresponding to X1�X2� � � � �Xn.
For each of the functions �j, j = 1�2 we can write∫

�j�x� θn�dPn�x� =
∫

�j�x� θn�dP�x� +
∫

�j�x� θ0�d�Pn −P��x�

+
∫ (

�j�x� θn� − �j�x� θ0�
)
d�Pn −P��x��

(2.6)

where θ0 = �µ�	�. From here we can proceed as follows. The first term on
the right-hand side can be approximated by a first-order Taylor expansion
which is linear in θn−θ0. The second term can be treated by the central limit
theorem. The third term contains most of the difficulties but is shown to be
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of smaller order. For this we will use results from empirical process theory as
treated in Pollard (1984). A similar decomposition holds for �3.

We will first restrict ourselves to the case �µ�	� = �0� I�, that is, f�x� =
h�x�x� and �Mn�Vn� → �0� I� in probability. In that case it is more convenient
to reparametrize things and to write V = �I+A�2, so that Vn can be written
as

Vn = �I+An�2 with �An� = oP�1��
where, throughout the paper, �·� will denote Euclidean norm. In order to obtain
the linear Taylor approximations for the first term, we define for j = 1�2,

λj�P�m�A� =
∫

�j�x�m� �I+A�2�dP�x�

and

λ3�P�m�A� t� =
∫

�3�x�m� �I+A�2� t�dP�x��

Then the first term on the right-hand side of (2.6) can be written as∫
�j�x� θn�dP�x� = λj�P�Mn�An��

where �Mn�An� → �0�0� in probability. We will first investigate the ex-
pansions of λj�P�m�A�, j = 1�2, as �m�A� → �0�0�, and λ3�P�m�A� t�, as
�m�A� t� → �0�0�0�.

3. Expansions of � j�P. Denote by tr�A� the trace of a square matrix A.
The following lemma gives the expansions of λj�P, as m → 0, A → 0 and
t→ 0.

Lemma 3.1. Let w satisfy (W) and let f�x� = h�x�x� satisfy (H1) and (H2).
Then the following hold:

(i) As �m�A� → �0�0�,
λ1�P�m�A� = c1 + c0tr�A� + o���m�A����
λ2�P�m�A� = c2m+ o���m�A����

(ii) As �m�A� t� → �0�0�0�,
λ3�P�m�A� t� = c3I+ c4 �tr�A�I+ 2A� + o���m�A� t����

The constants are given by

c0 = 2πk/2

!�k/2�
∫ ∞

0

2
k
w�r2�h′�r2�rk+1dr�(3.1)

c1 = 2πk/2

!�k/2�
∫ ∞

0
w�r2�h�r2�rk−1dr > 0�(3.2)
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c2 = 2πk/2

!�k/2�
∫ ∞

0
w�r2�

[
h�r2� + 2

k
h′�r2�r2

]
rk−1dr�(3.3)

c3 = 2πk/2

!�k/2�
∫ ∞

0

1
k
w�r2�h�r2�rk+1dr > 0�(3.4)

c4 = 2πk/2

!�k/2�
∫ ∞

0
w�r2�

[
r2

k
h�r2� + 2r4

k�k+ 2�h
′�r2�

]
rk−1dr�(3.5)

Remark 3.1. Note that in case w ≡ 1, the constants are given by c0 = −1,
c1 = 1, c2� c4 = 0 and c3 = E�X1�2/k.

Proof. First note that because w is bounded, property (2.5) together with
partial integration implies that the constants c0� c1� c2� c3 and c4 are finite.

(i) After transformation of coordinates, for λ1�P we may write

λ1�P�m�A� = �I+A�
∫
w�x�x�f�m+ x+Ax�dx�

Note that

�I+A� = 1 + tr�A� + o��A�� for A→ 0�(3.6)

The derivative of φ1�x�m�A� = f�m + x + Ax� with respect to �m�A� at a
point �m0�A0� is the linear map

Dφ1�x�m0�A0�� �m�A� �→ 2h′(�m0 + x+A0x�2)�m0 + x+A0x���m+Ax�
[see Dieudonné (1969), Chapter 8]. The conditions on f imply thatDφ1�x�0�0�
is continuous. Therefore by Taylor’s formula,

φ1�x�m�A� = φ1�x�0�0� +Dφ1�x�0�0��m�A�

+
∫ 1

0
	Dφ1�x� ζm� ζA� −Dφ1�x�0�0��dζ�m�A��

Together with (3.6) this means that

λ1�P�m�A� = �1 + tr�A��λ1�P�0�0� +
∫
w�x�x�Dφ1�x�0�0��m�A�dx

+R1�m�A� + o��A���

where

R1�m�A� =
∫
w�x�x�

∫ 1

0
	Dφ1�x� ζm� ζA� −Dφ1�x�0�0�� �m�A�dζdx�

According to Lemma 2.1, we have λ1�P�0�0� = c1. By symmetry and the fact
that x�Ax = tr�Axx��, it follows from Lemma 2.1 that∫
w�x�x�Dφ1�x�0�0��m�A�dx = 2tr

[
A

∫
w�x�x�h′�x�x�xx�dx

]
= c0tr�A��
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Obviously o��A�� = o���m�A��� and that R1�m�A� = o���m�A��� can be
seen as follows. Write R1�m�A� as

2
∫
w�x�x�

∫ 1

0
h′��ζm+ x+ ζAx�2��ζm+ x+ ζAx���m+Ax�dζdx

−2
∫
w�x�x�h′��x�2�x��m+Ax�dx�

(3.7)

By a change of variables y = ζm+ x+ ζAx in (3.7),

R1�m�A� = 2
∫ ∫ 1

0
h′�y�y�y�r1�ζ�y�m�A�dζdy�

where

r1�ζ�y�m�A�=�I+ ζA�−1w
(��I+ ζA�−1�y− ζm��2)(m+A�I+ ζA�−1�y− ζm�)

−w��y�2��m+Ay��
Note that for �A� sufficiently small, �I+ ζA� ≥ 1

2 and (2.5) implies
∫
h′�y�y�

�y�2dy < ∞. Therefore, since w is bounded and a.e. continuous, it follows by
dominated convergence that R1�m�A� = o��m��+o��A�� = o���m�A���. This
proves the first part of (i). Similarly for λ2�P, we may write

λ2�P�m�A� = �I+A�
∫
w�x�x��m+ x+Ax�f�m+ x+Ax�dx�

The derivative of φ2�x�m�A� = �m + x +Ax�f�m + x +Ax� with respect to
�m�A� at �0�0� is the continuous linear map

Dφ2�x�0�0�� �m�A� �→ [
h�x�x� + 2h′(x�x

)
xx�] �m+Ax��

Note that by symmetry λ2�P�0�0� =
∫
w�x�x�h�x�x�xdx = 0. Hence, similarly

to the reasoning above, it follows that

λ2�P�m�A� =
∫
w�x�x� [h�x�x� + 2h′�x�x�xx�]mdx+R2�m�A� + o��A���

where

R2�m�A� =
∫
w�x�x�

∫ 1

0
	Dφ2�x� ζm� ζA� −Dφ2�x�0�0�� �m�A�dζdx�

According to Lemma 2.1,∫
w�x�x� [h�x�x� + 2h′�x�x�xx�]mdx = c2m�

Similar to R1�m�A�, using that (2.5) implies
∫
f�y��y�dy < ∞ and∫

h′�y�y��y�3dy < ∞, it follows by dominated convergence that R2�m�A� =
o���m�A���.

(ii) Write λ3�P�m�A� t� as

�I+A�
∫
w�x�x��m− t+ x+Ax��m− t+ x+Ax��f�m− t+ x+Ax�dx�
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The derivative of φ3�m�A� t� = �m − t + x + Ax��m − t + x + Ax��f�m −
t+ x+Ax� with respect to �m�A� t� at �0�0�0� is the continuous linear map
Dφ3�x�0�0�0�:

�m�A� t� �→ h�x�x��m− t+Ax�x� + h�x�x�x�m− t+Ax��
+2h′�x�x��x�Ax�xx��

Similarly to the reasoning above, using (3.6), it follows that

λ3�P�m�A� t� = �1 + tr�A��
∫
w�x�x�h�x�x�xx�dx

+
∫
w�x�x�h�x�x�Axx�dx+

∫
w�x�x�h�x�x�xx�Adx

+2
∫
w�x�x�h′�x�x��x�Ax�xx�dx+R3�m�A� t� + o��A���

where

R3�m�A� t� =
∫
w�x�x�

∫ 1

0
	Dφ3�x� ζm� ζA� ζt�

− Dφ3�x�0�0�0�� �m�A� t�dζdx�
Consider the �i� j�th entry of the fourth term on the right-hand side of
λ3�P�m�A� t�:

2
∫
w�x�x�h′�x�x��x�Ax�xixjdx�(3.8)

When i = j, then (3.8) is equal to

2
∫
w�x�x�x2

i �x2
1a11 + · · · + x2

i aii + · · · + x2
papp�h′�x�x�dx

and when i �= j, then (3.8) is equal to

2
∫
w�x�x�h′�x�x��xixjaij + xjxiaji�xixjdx�

With Lemma 2.1 we find that for all i� j = 1� � � � � k the �i� j�th entry (3.8) is
equal to

2
∫
w�x�x�h�x�x��x�x�2dxδijtr�A� + 2aij

k�k+ 2� �

It follows that

λ3�P�m�A� t� = �1 + tr�A��
∫
w�x�x�h�x�x�xx�dx

+
∫
w�x�x�h�x�x�Axx�dx+

∫
w�x�x�h�x�x�xx�Adx

+ 2tr�A�
k�k+ 2�

∫
w�x�x�h′�x�x��x�x�2dx · I

+ 4A
k�k+ 2�

∫
w�x�x�h′�x�x��x�x�2dx+R3�m�A� t� + o��A���
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By Lemma 2.1 we find that

λ3�P�m�A� t� = c3I+ c4tr�A�I+ 2c4A+R3�m�A� t��
Similarly to R1�m�A� and R2�m�A�, using that (2.5) implies∫

f�y��y�2dy <∞ and
∫
h′��y�2��y�4dy <∞�

it follows by dominated convergence that R3�m�A� t� = o���m�A� t���. ✷

4. Expansion of Tn and Cn. The main problem in obtaining the limiting
behavior of Tn and Cn, is to bound the following expressions:

√
n
∫ (

�j�x� θn� − �j�x� θ0�
)
d�Pn −P��x� for j = 1�2�(4.1)

√
n
∫ (

�3�x� θn�Tn� − �3�x� θ0� µ�
)
d�Pn −P��x��(4.2)

as n→ ∞, where θn = �Mn�Vn� and θ0 = �µ�	�. For this we will use results
from empirical process theory as treated in Pollard (1984). These results apply
only to real valued functions, whereas the functions �2�x� θ� and �3�x� θ�
are vector and matrix valued, respectively. This can easily be overcome by
considering the real valued components individually.

Lemma 4.1. Let θn = �Mn�Vn� and θ0 = �µ�	� = �0� I�. Suppose that w
and h satisfy (W) and (H2). Then the following hold:
(i) If θn → θ0 in probability, then for j = 1�2,∫ (

�j�x� θn� − �j�x� θ0�
)
d�Pn −P��x� = oP�n−1/2��

(ii) If θn → θ0 in probability, and Tn → 0 in probability, then

∫ (
�3�x� θn�Tn� − �3�x� θ0�0�

)
d�Pn −P��x� = oP�n−1/2��

Proof. Consider the classes � = �w�d�x� θ��� θ ∈ &�, �j = �w�d�x� θ��xj �
θ ∈ &� and �ij = �w�d�x� θ��xixj � θ ∈ &�, for i� j = 1� � � � � k. Denote by � ,
�j and �ij the corresponding classes of graphs of functions in � , �j and
�ij, respectively. Because w is of bounded variation, it follows from Lemma
3 in Lopuhaä (1997) that � , �j and �ij all have polynomial discrimination
for i� j = 1� � � � � k. Since w is bounded and h satisfies (H2), � , �j and �ij,
all have square integrable envelopes. As θn → θ0 in probability, from Pollard
(1984) we get that

∫ (
w�d�x� θn�� −w�d�x� θ0��

)
d�Pn −P��x� = oP�n−1/2��(4.3)
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∫ (
w�d�x� θn�� −w�d�x� θ0��

)
xid�Pn −P��x� = oP�n−1/2��(4.4)

∫ (
w�d�x� θn�� −w�d�x� θ0��

)
xixjd�Pn −P��x� = oP�n−1/2��(4.5)

for every i� j = 1�2� � � � � k. Case (i) follows directly from (4.3) and (4.4). For
case (ii), split �3�x� θn�Tn� − �3�x� θ0�0� into(

w�d�x� θn�� −w�d�x� θ0��
){
xx� − xT�

n −Tnx
� +TnT

�
n

}
+w�d�x� θ0��

{
xT�

n +Tnx
� −TnT

�
n

}
�

Note that by the central limit theorem,
∫
w�d�x� θ0��d�Pn−P��x� = OP�n−1/2�

and
∫
w�d�x� θ0��xd�Pn −P��x� = OP�n−1/2�. Because w is bounded and con-

tinuous, and h satisfies (H2) and because Tn → 0 in probability, together with
(4.4) and (4.5), it follows that if we integrate with respect to d�Pn −P��x� all
terms are oP�n−1/2�, which proves (ii). ✷

We are now able to prove the following theorem, which describes the asymp-
totic behavior of Tn and Cn.

Theorem 4.1. LetX1� � � � �Xn be independent with density f�x� = h�x�x�.
Suppose that w � 	0�∞� → 	0�∞� satisfies (W) and h satisfies (H1) and (H2).
Let Mn and Vn = �I + An�2 be affine equivariant location and covariance
estimators such that �Mn�An� = oP�1�. Let Tn and Cn be defined by (2.2) and
(2.3). Then

Tn = c2

c1
Mn +

1
nc1

n∑
i=1

w�X�
i Xi�Xi + oP�1/

√
n� + oP

(��Mn�An��
)

and

Cn = c3

c1
I+ c4

c1
�tr�An�I+ 2An�

+ 1
nc1

n∑
i=1

{
w�X�

i Xi�XiX
�
i − c3I

}+ oP�1/
√
n� + oP

(��Mn�An�Tn��
)
�

where c1, c2, c3 and c4 are defined in (3.1), (3.3), (3.4) and (3.5).

Proof. First consider the denominator of Tn and Cn, and write this as∫
�1�x� θn�dPn�x� =

∫
�1�x� θn�dP�x� +

∫
�1�x� θ0�d�Pn −P��x�

+
∫ (

�1�x� θn� − �1�x� θ0�
)
d�Pn −P��x��
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where θ0 = �0� I�. According to Lemma 3.1, the first term on the right-hand
side is c1 + op�1�. The second term on the right-hand side is Op�1/

√
n�, ac-

cording to the central limit theorem. The third term is op�1/
√
n�, according to

Lemma 4.1. It follows that∫
�1�x� θn�dPn�x� = c1 + op�1��(4.6)

Similarly, write the numerator of Tn as∫
�2�x� θn�dPn�x� =

∫
�2�x� θn�dP�x� +

∫
�2�x� θ0�d�Pn −P��x�

+
∫ (

�2�x� θn� − �2�x� θ0�
)
d�Pn −P��x��

According to Lemma 3.1, the first term on the right-hand side is c2Mn +
op���Mn�An��� and the third term is op�1/

√
n�, according to Lemma 4.1. The

second term is equal to∫
�2�x� θ0�d�Pn −P��x� = 1

n

n∑
i=1

w�X�
i Xi�Xi�

because by symmetry Ew�X�
1X1�X1 = 0. Together with (4.6) this proves the

expansion for Tn. The argument for Cn is completely similar using that, ac-
cording to Lemma 2.1,

Ew�X�
1X1�X1X

�
1 = c3I

and that the expansion for Tn implies Tn = oP�1�. ✷

The result for the general case with X1� � � � �Xn being a sample from Pµ�	

follows immediately from Theorem 4.1, using affine equivariance of Mn and
Vn and basic properties for positive definite symmetric matrices. For 	 ∈
PDS�k�, write 	 = B2, with B ∈ PDS�k�, and write Vn = B2

n, with Bn ∈
PDS�k�.

Corollary 4.1. Let X1� � � � �Xn be a sample from Pµ�	. Suppose that w �
	0�∞� → 	0�∞� satisfies (W) and h satisfies (H1) and (H2). LetMn and Vn =
B2
n be affine equivariant location and covariance estimates such that �Mn −

µ�Bn −B� = oP�1�. Let Tn and Cn be defined by (2.2) and (2.3). Then

Tn = µ + c2

c1
�Mn − µ� + 1

nc1

n∑
i=1

w
(
d2�Xi�µ�	�

) �Xi − µ�

+ oP�1/
√
n� + oP

(��Mn − µ�Bn −B��)
and

Cn = c3

c1
	+ c4

c1

{
tr

(
B−1�Bn −B�)	+ 2B−1�Bn −B�	}

+ 1
nc1

n∑
i=1

{
w
(
d2�Xi�µ�	�

) �Xi − µ��Xi − µ�� − c3	
}
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+oP�1/
√
n� + oP

(��Mn − µ�Bn −B�Tn − µ��)�
where c1, c2, c3 and c4 are defined in (3.2), (3.3), (3.4) and (3.5).

If w has a derivative with w′ < 0, then from (3.3) and (3.5) it follows by
partial integration that

c2 = − 4πk/2

k!�k/2�
∫ ∞

0
w′�r2�h�r2�rkdr > 0�

c4 = − 4πk/2

k�k+ 2�!�k/2�
∫ ∞

0
w′�r2�h�r2�rk+3dr > 0�

Similarly, for w as defined in (2.4), we have c2� c4 > 0. In these cases it fol-
lows immediately from Corollary 4.1 that if the initial estimators Mn and Vn

converge to µ and 	, respectively, at a rate slower than
√
n, the reweighted

estimators Tn and Cn converge to µ and �c3/c1�	, respectively, at the same
rate. A typical example might be to do reweighting on basis of MVE estimators
of location and scatter. However, these estimators converge at rate n1/3 [see
Davies (1992a)]. Reweighting does not improve the rate of convergence.

On the other hand, note that the constants c2/c1 and c4/c3 can be inter-
preted as the relative efficiency of the (unbiased) reweighted estimators with
respect to the initial estimators. From (3.2) and (3.3) it can be seen that at
the multivariate normal, in which case h′�y� = − 1

2h�y�, we always have

c2

c1
= 1 − 2πk/2

c1k!�k/2�
∫ ∞

0
w�r2�h�r2�rk+1dr < 1�

for nonnegative weight functions w.
If we take w as defined in (2.4), then by partial integration it follows that

c2

c1
= 2πk/2

c1k!�k/2�
h�c2�ck < 1�

for any unimodal distribution with h�y� nonincreasing for y ≥ 0. For c4/c3
we find similar behavior. For w as defined in (2.4) both ratios are plotted in
Figure 1 as a function of the cutoff value c, at the standard normal (solid line)
and at the symmetric contaminated normal (SCN) �1−ε�N�µ�	�+εN�µ�9	�
for ε = 0�1 (dotted), ε = 0�3 and ε = 0�5 (dashed).

We observe that reweighting leads to an important gain in efficiency despite
the fact that there is no improvement in the rate of convergence. In order to
end up with

√
n consistent estimators Tn and Cn, we have to start with

√
n

consistent estimators Mn and Vn. For this one could use smooth S-estimators.
The resulting limiting behavior is treated in the next section.

Remark 4.1. The influence function IF for the reweighted estimators can
be obtained in a similar way as the expansions in Corollary 4.1. A formal
definition of the IF can be found in Hampel (1974). If the functionals corre-
sponding to the initial estimators are affine equivariant, for the location-scale
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Fig. 1. Ratios c2/c1 and c4/c3.

model it suffices to give the IF at spherically symmetric distributions, that is,
�µ�	� = �0� I�. In that case one can show that

IF�x�T�P� = c2

c1
IF�x�M�P� + w�x�x�x

c1
�

IF�x�C�P� = c4

c1
IF�x�V�P� + c4

2c1
tr �IF�x�V�P��I+ w�x�x�xx� − c3I

c1
�

where IF�x�M�P� and IF�x�V�P� denote the influence functions of the initial
estimators, and P has density f. Hence if w�u2�u2 is bounded, reweighting
also preserves bounded influence of the initial estimators.

5. Reweighted S-estimators. Multivariate S-estimators are defined as
the solution �Mn�Vn� to the problem of minimizing the determinant �V� among
all m ∈ �k and V ∈ PDS�k� that satisfy

1
n

n∑
i=1

ρ�d�Xi�m�V�� ≤ b�(5.1)

where ρ� � → � and b ∈ �. These estimators arise as an extension of the MVE
estimators (ρ�y� = 1− 1	0�c��y�). With ρ�y� = y2 and b = k one obtains the LS
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estimators [see Grübel (1988)]. Results on properties of S-estimators and S-
functionals can be found in Davies (1987) and Lopuhaä (1989). To inherit the
high breakdown point of the MVE estimators as well as the limiting behavior
of the LS estimators, that is,

√
n rate of convergence and a limiting normal

distribution, one must choose a bounded smooth function ρ. The exact asymp-
totic expansion of the S-estimator �Mn�Vn� is derived in Lopuhaä (1997).
From this expansion a central limit theorem for reweighted S-estimators can
easily be obtained.

To describe the limiting distribution of a random matrix, we consider the
operator vec�·� which stacks the columns of a matrix M on top of each other,
that is,

vec�M� = �M11� � � � �M1k� � � � �Mk1� � � � �Mkk���
We will also need the commutation matrix Dk�k, which is a k2 × k2 matrix
consisting of k× k blocks: Dk�k = �7ij�ki�j=1, where each �i� j�th block is equal
to a k × k-matrix 7ji, which is 1 at entry �j� i� and 0 everywhere else. By
A ⊗ B we denote the Kronecker product of matrices A and B, which is a
k2 × k2 matrix with k× k blocks, the �i� j�th block equal to aijB.

Theorem 5.1. Let X1� � � � �Xn be a sample from Pµ�	. Suppose that w �
	0�∞� → 	0�∞� satisfies (W) and h satisfies (H1) and (H2). Let �Mn�Vn� be S-
estimators defined by (5.1), where ρ and b satisfy the conditions of Theorem 2 in
Lopuhaä (1997). Then Tn and Cn are asymptotically independent,

√
n�Tn−µ�

has a limiting normal distribution with zero mean and covariance matrix α	,
and

√
n�Cn−�c3/c1�	� has a limiting normal distribution with zero mean and

covariance matrix σ1�I+Dk�k��	⊗ 	� + σ2vec�	�vec�	�, where

α = 2πk/2

!�k/2�
∫ ∞

0

1
k
a2�r�h�r2�rk+1dr�

σ1 = 2πk/2

!�k/2�
∫ ∞

0

1
k�k+ 2� l

2�r�h�r2�rk−1dr�

σ2 = 2πk/2

!�k/2�
∫ ∞

0

[
1

k�k+ 2� l
2�r� +m2�r� + 2

k
l�r�m�r�

]
h�r2�rk−1dr�

with

a�u� = w�u2�
c1

− c2ψ�u�
c1β2u

�

l�u� = w�u2�u2

c1
− 2kc4ψ�u�u

c1β3
�

m�u� = −c3

c1
− �k+ 2�c4�ρ�u� − b�

kc1β1
+ 2c4ψ�u�u

c1β3
�

where ψ denotes the derivative of ρ, β1� β2� β3 are given in Lemma 2 of Lopuhaä
(1997) and c1, c2, c3 and c4 are defined in (3.2), (3.3), (3.4) and (3.5).
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Proof. First consider the case �µ�	� = �0� I�, and write Vn = �I +An�2.
According to Theorem 2 in Lopuhaä (1997), the S-estimators admit the fol-
lowing expansions:

tr�An� = − 1
nβ1

n∑
i=1

{
ρ��Xi�� − b

}
+ oP�1/

√
n��

Mn = − 1
nβ2

n∑
i=1

ψ��Xi��
�Xi�

Xi + oP�1/
√
n��

An = − 1
n

n∑
i=1

[
kψ��Xi��
β3�Xi�

XiX
�
i +

{
ρ��Xi�� − b

kβ1
− ψ��Xi���Xi�

β3

}
I

]

+oP�1/
√
n��

where the constants β1, β2 and β3 are defined in Lemma 2 in Lopuhaä (1997).
Together with the expansions given in Theorem 4.1, it follows immediately

that

Tn = 1
n

∑
i=1

a��Xi��Xi + op�1/
√
n��

According to the central limit theorem, using boundedness of w�u� and ψ�u�u
together with (H2),

√
nTn has a limiting normal distribution with zero mean

and covariance matrix

Ea2��X1��X1X
�
1 = αI�

according to Lemma 2.1. Similarly for Cn we get that

Cn −
c3

c1
I = 1

n

n∑
i=1

[
l��Xi��

XiX
�
i

�Xi�2
+m��Xi��I

]
+ op�1/

√
n��

The conditions imposed on b imply that Eρ��X1�� = b, so that l�·� and m�·�
satisfy

E 	l��X1� + km��X1��� = 0�

From Lemma 5 in Lopuhaä (1997), again using boundedness of w�u�, ψ�u�u
and ρ�u� together with (H2), it then follows that

√
n�Cn − �c3/c1�I� has a

limiting normal distribution with zero mean and covariance matrix σ1�I +
Dk�k� + σ2vec�I�vec�I�.

That Tn and Cn are asymptotically independent can be seen as follows.
If we write X1 = �X11� � � � �X1k�, then the limiting covariance between an
element of the vector

√
nTn and an element of the matrix

√
n�Cn − �c3/c1�I�

is given by

E

[
a��X1��X1i

(
l��X1��X1sX1t +m��X1��δst

)]
(5.2)

for i = 1� � � � � k and s� t = 1� � � � � k. Hence by symmetry, (5.2) is always equal
to zero, which implies that Tn and Cn are asymptotically uncorrelated. From
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the expansions for Tn and Cn it follows again by means of the central limit
theorem, that the vector

√
n�Tn� vec�Cn − �c3/c1�I� is asymptotically normal,

so that Tn and Cn are also asymptotically independent.
Next consider the general case where X1� � � � �Xn are independent with dis-

tribution Pµ�	, where 	 = B2. Because of affine equivariance it follows imme-
diately that

√
n�Tn−µ� converges to a normal distribution with zero mean and

covariance matrix B�αI�B = α	, and
√
n�Cn−�c3/c1�	� converges to a normal

distribution with mean zero and covariance matrix Evec�BMB�vec�BMB��,
where M is the random matrix satisfying Evec�M�vec�M�� = σ1�I+Dk�k� +
σ2vec�I�vec�I��. It follows from Lemma 5.2 in Lopuhaä (1989) that

Evec�BMB�vec�BMB�� = σ1�I+Dk�k��	⊗ 	� + σ2vec�	�vec�	��� ✷

Remark 5.1. When b in Theorem 5.1 is different from bh = ∫
ρ��x��

h�x�x�dx, the location S-estimator Mn still converges to µ, whereas the co-
variance S-estimator Vn converges to a multiple of 	. In that case it can be
deduced by similar arguments that

√
n�Tn − µ� and

√
n�Cn − γ	� are still

asymptotically normal with the same parameters α, σ1, where

γ = c3

c1
+ c4�k+ 2��b− bh�

kc1β1
�

6. Comparison with other improvements of S-estimators. In this
section we will investigate the efficiency and robustness of the reweighted S-
estimator and compare this with two other improvements of S-estimators: τ-
estimators proposed in Lopuhaä (1991) and CM-estimators proposed by Kent
and Tyler (1997). We follow the approach taken by Kent and Tyler (1997), who
consider an asymptotic index for the variance for the location and covariance
estimator separately and an index for the local robustness also for the location
and covariance estimator separately. For the underlying distribution we will
consider the multivariate normal (NOR) distributionN�µ�	� and the symmet-
ric contaminated normal (SCN) distribution �1 − ε�N�µ�	� + εN�µ�9	� for
ε = 0�1�0�3 and 0�5.

The asymptotic variance of the location estimators is of the type α	. We
will compare the efficiency of the location estimators by comparing the corre-
sponding values of the scalar α. To compare the local robustness of the location
estimators, we compare the corresponding values of the gross-error-sensitivity
(GES) defined to be

G1 = sup
x∈�k

�IF�x�P���

where IF denotes the influence function of the corresponding location func-
tionals at P.

The asymptotic variance of the covariance estimators is of the type

σ1�I+Dk�k��	⊗ 	� + σ2vec�	�vec�	��(6.1)
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Kent and Tyler (1997) argue that the asymptotic variance of any shape com-
ponent of the covariance estimator only depends on the asymptotic variance
of the covariance estimators via the scalar σ1. A shape component of a matrix
C is any function H�C� that satisfies H�λC� =H�C�, λ > 0. We will compare
the efficiency of the covariance estimators by comparing the corresponding
values of the scalar σ1. Note that if Cn is asymptotically normal with asymp-
totic variance of type (6.1), also λCn is asymptotically normal with asymptotic
variance of type (6.1) with the same value for σ1. Kent and Tyler (1997) also
motivate a single scalar G2 for the local robustness of a covariance estimator
and show that

G2 = GES�C�P�(
1 + 2

k

) (
1 − 1

k

)1/2 �
where GES�C�P� is the gross-error-sensitivity of the functional

C�P�
trace�C�P�� �(6.2)

which is a shape component for the covariance functional C�P�. We will com-
pare the robustness of the covariance estimators by comparing the correspond-
ing values of the scalar G2. Note that since (6.2) is a shape component for
C�P�, the values of G2 for C�P� and λC�P� are the same.

6.1. Reweighted biweight S-estimator. For the reweighted S-estimator we
define the initial S-estimator by

ρ�u� =




y2

2
− y4

2c2
+ y6

6c4
� �y� ≤ c�

c2

6
� �y� > c�

(6.3)

Its derivative ψ�y� = ρ′�y� is known as Tukey’s biweight function. We take
b = EAρ��X�� in (5.1), so that the initial S-estimator is consistent for �µ�	� in
the normal model. The cut-off value is choosen in such a way that the resulting
S-estimator has 50% breakdown point. Finally we take weight function w
defined in (2.4).

The initial S-estimator may not be consistent at the SCN, but we will always
have that the reweighted biweight S-estimators �Tn�Cn� are consistent for
�µ� γ	� (see Remark 5.1). As mentioned before, the values of σ1 and G2 are
the same for Cn and its asymptotically unbiased version γ−1Cn.

The expressions for α and σ1 can be found in Theorem 5.1. For the indices
of local robustness we find

G1�rw = sup
s>0

�a�s��s and G2�rw = 1
k+ 2

sup
s>0

�l�s���

with a and l defined in Theorem 5.1. Graphs of α�G1� σ1 and G2 as a function
of the cut-off value c of the weight function (2.4) are given in Figures 2, 3 and
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4, for k = 2�5�10 at the NOR (solid lines) and at the SCN for ε = 0�1 (dotted),
ε = 0�3 and ε = 0�5 (dashed). The values α and σ1 for the initial S-estimator
at the NOR are displayed by a horizontal line.

For k = 2 we see that one can improve the efficiency of both the location
biweight S-estimator (αs = 1�725) and the covariance biweight S-estimator
(σ1�s = 2�656) at the NOR. This is also true for both at the SCN for ε = 0�1
(αs = 1�953 and σ1�s = 3�021), ε = 0�3 (αs = 2�637 and σ1�s = 4�129), and
for the location biweight S-estimator at the SCN with ε = 0�5 (αs = 3�988).
At the SCN with ε = 0�5 we have σ1�s = 6�342 for the covariance biweight
S-estimator. One cannot improve the local robustness of the location biweight
S-estimator (G1�s = 2�391). The behavior of the scalar G2 in the case k = 2 is
special, since

G2�c� ∼
k!�k/2�c2−k

�k+ 2�2πk/2h�0� as c ↓ 0�

In contrast, Kent and Tyler (1997) observed that at the NOR theCM-estimators
can improve both the efficiency and local robustness of the location biweight S-
estimator, and similarly for the covariance biweight S-estimator for k ≤ 5. For
the value c = 5�207 of the weight function w, the scalar G1 for the reweighted
biweight S-estimator attains its minimum value G1�rw = 2�569 at the NOR.
For this value of c we have αrw = 1�374, σ1�rw = 2�111 andG2�rw = 1�563 at the
NOR. In comparison, for theG1-optimal CM-estimator we haveG1�cm = 1�927,
αcm = 1�130, σ1�cm = 1�243 and G2�cm = 1�369.

For k = 5 we observe a similar behavior for the reweighted biweight S-
estimator. One can improve the efficiency of both the location biweight S-
estimator (αs = 1�182) and the covariance biweight S-estimator (σ1�s = 1�285)
at the NOR. This is also true for both at the SCN for ε = 0�1 (αs = 1�318
and σ1�s = 1�437) and for the location estimator at the SCN with ε = 0�3
(αs = 1�713) and ε = 0�5 (αs = 2�444). One cannot improve the local robustness
of the biweight S-estimator (G1�s = 2�731 and G2�s = 1�207). For the value
c = 10�53, the scalar G1 attains its minimum value G1�rw = 3�643 at the NOR.
For this value of c we have αrw = 1�179, σ1�rw = 1�393 andG2�rw = 1�769 at the
NOR. In comparison, for the G1 optimal CM-estimator we have G1�cm = 2�595,
αcm = 1�072, σ1�cm = 1�068 and G2�cm = 1�271.

For k = 10 one can improve the efficiency of both the location biweight
S-estimator (αs = 1�072) and the covariance biweight S-estimator (σ1�s =
1�093) at the NOR. This is also true for both at the SCN for ε = 0�1 (αs =
1�191 and σ1�s = 1�215), ε = 0�3 (αs = 1�534 and σ1�s = 1�565) and for
the location biweight S-estimator at the SCN with ε = 0�5 (αs = 2�151).
One cannot improve the local robustness of the biweight S-estimator (G1�s =
3�482 and G2�s = 1�142). The scalar G1 attains its minimum value G1�rw =
4�670 at the NOR for c = 18�25. For this value of c we have αrw = 1�114,
σ1�rw = 1�218 and G2�rw = 1�705 at the NOR. In comparison, for the G1
optimal CM-estimator we have G1�cm = 3�426, αcm = 1�043, σ1�cm = 1�054
and G2�cm = 1�218.
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Fig. 2. Indices α�G1� σ1 and G2 for reweighted S: k = 2.
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Fig. 3. Indices α�G1� σ1 and G2 for reweighted S: k = 5.
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Fig. 4. Indices α�G1� σ1 and G2 for reweighted S: k = 10.
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6.2. Multivariate τ-estimators. Multivariate τ-estimators �Mτ
n�C

τ
n� are de-

fined by

Cτ
n = Vτ

n

nb2

n∑
i=1

ρ2�d�Xi�M
τ
n�V

τ
n���

where �Mτ
n�V

τ
n� minimizes �V�1/k∑n

i=1 ρ2�d�Xi�m�V�� subject to

1
n

n∑
i=1

ρ1�d�Xi�m�V�� = b1�(6.4)

For both ρ-functions we take one of the type (6.3). Note that when ρ1 = ρ2
and b1 = b2 then �Mτ

n�C
τ
n� are just the ordinary S-estimators. If bi =

∫
ρi��x��

h�x�x�dx, then �Mτ
n�C

τ
n� → �µ�	� in probability. We take bi = EAρi��X��,

for i = 1�2, so that the τ-estimator is consistent for �µ�	� in the normal model.
In Lopuhaä (1991) it is shown that Mτ

n and Cτ
n are asymptotically equivalent

with the S-estimators defined by the function

ρ̃ = Aρ1 +Bρ2�(6.5)

where A = E0�I	2ρ2��X�� − ψ2��X���X�� and B = E0�I	ψ1��X���X��. The
breakdown point of the τ-estimators only depends on ρ1 and the efficiency
may be improved by varying c2. We choose the cut-off value c1 such that the
resulting τ-estimator has 50% breakdown point. At the SCN we still have that
Mτ

n is consistent for µ, but Cτ
n is consistent for γ	, with γ �= 1. However, as

mentioned before, the values for σ1 and G2 are the same for Cτ
n and γ−1Cτ

n.
The behavior of the multivariate τ-estimator is similar to that of the CM-

estimators. Since the limiting distribution of the multivariate τ-estimator is
the same as that of an S-estimator defined with the function ρ̃ in (6.5), the
expression for ατ and σ1�τ can be found in Corollary 5.1 in Lopuhaä (1989).
For the indices of local robustness we find

G1�τ =
1

β̃
sup
s>0

�ψ̃�s�� and G2�τ =
k

�k+ 2�γ̃1
sup
s>0

�ψ̃�s�s��

where β̃ and γ̃1 are the constants β and γ1 defined in Corollary 5.2 in Lopuhaä
(1989), corresponding with the function ρ̃.

Graphs of α�G1� σ1 and G2 as a function of the cut-off value c2 of ρ2 for
c2 ≥ c1 are given in Figure 5, for k = 2 at the NOR (solid) and at the SCN for
ε = 0�1 (dotted), ε = 0�3 and ε = 0�5 (dashed). Note that for c2 = c1 we have
the corresponding values for the initial biweight S-estimator defined with the
function ρ1. We observe the same behavior as with CM-estimators, that is,
one can improve simultaneously the efficiency and local robustness of both the
location biweight S-estimator and the covariance biweight S-estimator. This
remains true at the SCN with ε = 0�1�0�3 and ε = 0�5. For instance, at the
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Fig. 5. Indices α�G1� σ1 and G2 for multivariate τ: k = 2.
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value c2 = 5�06 the scalar G1 for the τ-estimator attains its minimum value
G1�τ = 1�861 at the NOR. For this value of c2 we have ατ = 1�104, σ1�τ = 1�153
and G2�τ = 1�415 at the NOR. These values, are slightly smaller (except for
G2) than the corresponding indices for the G1-optimal CM-estimator.

For dimension k = 5 we observe a similar behavior. One can improve simul-
taneously the efficiency and local robustness of both the location and covari-
ance biweight S-estimator at the NOR and also at the SCN for ε = 0�1�0�3
and 0�5. However, the decrease of the scalars G1 and G2 is only little. For
instance, the scalar G2 for the covariance τ-estimator attains its minimum
value G2�τ = 1�203 at the NOR for c2 = 4�94. For this value of c2 we have
ατ = 1�492, σ1�τ = 1�230 and G1�τ = 2�676 at the NOR. These values are al-
most the same as the corresponding indices for the G2-optimal CM-estimator:
αcm = 1�153, σ1�cm = 1�237, G1�cm = 2�682 and G2�cm = 1�204. For the G1-
optimal τ-estimator the indices α�σ1 and G1 are slightly smaller. The scalar
G1 attains its minimum value G1�τ = 2�588 at the NOR for c2 = 6�14. For this
value of c2 we have ατ = 1�069, σ1�τ = 1�099 and G2�τ = 1�275 at the NOR,
which are almost the same as the corresponding indices for the G1-optimal
CM-estimator.

Similar to what Kent and Tyler (1997) observed, we found that in dimension
k = 10 one can no longer improve both the efficiency and the local robustness
of the covariance biweight S-estimator. It is still possible to improve the effi-
ciency of the location and covariance biweight S-estimator as well as the local
robustness of the location biweight S-estimator. Again this remains true at
the SCN with ε = 0�1�0�3 and 0.5. The scalar G1 attains its minimum value
G1�τ = 3�425 at the NOR for c2 = 7�87. For this value of c2 we have ατ = 1�041,
σ1�τ = 1�052 and G2�τ = 1�224 at the NOR, which are almost the same as the
corresponding indices for the G1-optimal CM-estimator.

6.3. Comparing GES at given efficiency. Another comparison between the
three methods can be made by comparing the scalar of local robustnessG1 at a
given level of efficiency α for the location estimators at the NOR, and similarly
comparing the scalar of local robustness G2 at a given level of efficiency σ1 for
the covariance estimators at the NOR. In Figure 6 we plotted the graphs of
G1 and G2 as a function of α ≤ αs and σ1 ≤ σ1�s, respectively, at the NOR for
k = 2�5�10. The graphs for the τ-estimators, CM-estimators and reweighted
biweight S-estimators are represented by the solid, dotted and dashed lines,
respectively. We observe that the local robustness of the τ-estimators and CM-
estimators is considerably smaller than that of the reweighted estimators at
the same level of efficiency.

In dimension k = 2, the minimum value G1�τ = 1�861 of the location τ-
estimator corresponds with efficiency α = 1�104. For this value of efficiency
we have G1�cm = 1�932 and G1�s = 2�881 for the location CM-estimator and
reweighted location biweight S-estimator, respectively. The minimum value
G2�τ = 1�260 for the covariance τ-estimator corresponds with efficiency σ1 =
1�308. For this value of efficiency we have G2�cm = 1�350 and G2�s = 2�107 for
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Fig. 6. Indices G1 and G2 at given levels of efficiency.

the covarianceCM-estimator and reweighted covariance biweight S-estimator,
respectively.

In dimension k = 5, the minimum value G1�τ = 2�588 of the location τ-
estimator corresponds with efficiency α = 1�069. For this value of efficiency
we have G1�cm = 2�595 and G1�s = 3�773 for the location CM-estimator and
reweighted location biweight S-estimator, respectively. The minimum value
G2�τ = 1�203 for the covariance τ-estimator corresponds with efficiency σ1 =
1�231. For this value of efficiency we have G2�cm = 1�204 and G2�s = 1�910 for
the covarianceCM-estimator and reweighted covariance biweight S-estimator,
respectively.

In dimension k = 10, the minimum value G1�τ = 3�425 of the location τ-
estimator corresponds with efficiency α = 1�041. For this value of efficiency
we have G1�cm = 3�426 and G1�s = 4�780 for the location CM-estimator and
reweighted location biweight S-estimator, respectively. The minimum value
G2�τ = 1�142 for the covariance τ-estimator corresponds with efficiency σ1 =
1�093, and is the same as that for the initial covariance biweight S-estimator.
Hence the corresponding value for the covariance CM-estimator is the same.
For this value of efficiency we have G2�s = 1�875 for the reweighted covariance
biweight S-estimator.
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