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SOME THEORETICAL RESULTS FOR FRACTIONAL FACTORIAL
SPLIT-PLOT DESIGNS1

By D. R. Bingham and R. R. Sitter

Simon Fraser University

Fractional factorial (FF) designs are commonly used in industrial ex-
periments to identify factors affecting a process. When it is expensive or
difficult to change the levels of some of the factors, fractional factorial split-
plot (FFSP) designs represent a practical design option. Though FFSP de-
sign matrices correspond to FF design matrices, the randomization struc-
ture of the FFSP design is different. In this paper, we discuss the impact
of randomization restrictions on the choice of FFSP designs and develop
theoretical results. Some of these results are very closely related to those
available for FF designs while others are more specific to FFSP designs
and are more useful in practice. We pay particular attention to the min-
imum aberration criterion (MA) and emphasize the differences between
FFSP and FF designs.

1. Introduction. Suppose we wish to run an experiment with n factors,
each at two levels in 2n−k runs. Typically, we would perform a 2n−k fractional
factorial design. Further suppose that it is very expensive or difficult to change
the levels for some of the factors, say n1 of them. To reduce costs, we could
instead randomly choose one of the factor level settings of these n1 hard-to-
change factors and then run all of the level combinations of the remaining
n2 factors in a random order, while holding the n1 factors fixed. This is re-
peated for each level combination of the n1 factors. If the design matrix for
this experimental setup is identical to a 2n−k FF design, where n = n1 + n2
and k = k1 + k2, then it is said to be a 2�n1+n2�−�k1+k2� FFSP design [Huang,
Chen and Voelkel (1997), Bingham and Sitter (1999)]. The n1 and n2 factors
are called whole-plot (WP) and subplot (SP) factors, respectively, and there
are k1 and k2 WP and SP fractional generators, respectively. While a FFSP
design matrix corresponds to a FF design matrix, the randomization of the
experiment is different. For a discussion on split-plot designs in an industrial
setting, see Box and Jones (1992).

The choice of factor level settings to be performed is determined by k frac-
tional generators. For example, consider a 2�3+3�−�1+1� 16-run FFSP design. It
is easy to write down the 24 full factorial design matrix of 0’s and 1’s. To con-
struct a 2�3+3�−�1+1� design, we must assign one WP factor and one SP factor to
interactions involving the remaining factors. A possible assignment of these
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factors is

3 = 12 and 6 = 1245�

where factors 1, 2 and 3 are WP factors and factors 4, 5 and 6 are SP factors.
In this case, the settings of factor 3 for each run are determined by the sum
of the level combinations of factors 1 and 2 modulo 2. Similarly, the settings
of factor 6 are determined by the sum of the level combinations of factors 1,
2, 4 and 5 modulo 2. Letting I be the identity column of 0’s, the fractional
generators for this design are I = 123 and I = 12456. The two generators
imply a third relation, I = 3456, and together, the three relations form the
defining contrast subgroup,

I = 123 = 12456 = 3456�

Let Ai denote the number of words of length i in the defining contrast
subgroup, and

W = �A1�A2� � � ��
be the word-length pattern of the design. The resolution of a design is the
smallest i such that Ai �= 0. So the above 2�3+3�−�1+1� FFSP design has reso-
lution III, and word-length pattern

W = �0�0�1�1�1�0�0��
Designs with larger resolution are typically said to be better than designs

with smaller resolution. However, designs with equal resolution may have dif-
ferent word-length patterns and therefore are not all the same. A refinement
of the resolution criterion that sorts through designs with equal resolution is
the MA criterion [Fries and Hunter (1980)]. Applied to FFSP designs [Huang,
Chen and Voelkel (1998), Bingham and Sitter (1999)] it is written as in the
following.

Definition (Minimum aberration fractional factorial split-plot). Let Ai

denote the number of words of length i in the defining contrast subgroup of
a FFSP design, and W = �A1�A2� � � � �An1+n2

� be the word-length pattern for
the FFSP design. Suppose that D1 and D2 are 2�n1+n2�−�k1+k2� FFSP designs.
Let r be the smallest i such that Ai�D1� �= Ai�D2�. Then D1 is said to have
less aberration than D2 if Ar�D1� < Ar�D2�. If no such i exists, then D1 and
D2 have equal aberration. A design is said to be MA if no other design has
less aberration.

While the MA criterion has no statistical meaning, it does provide a good
general rule for comparing designs, particularly those designs with equal res-
olution.

It turns out that the above 2�3+3�−�1+1� FFSP design is the MA 2�3+3�−�1+1�

FFSP design [Bingham and Sitter (1999)]. It is not, however, the MA 26−2 FF
design. This is because the restrictions on the randomization of a FFSP design
have implications on the way the design is constructed. For instance, when
viewing the WP factors alone, they must form a 23−1 FF design. Consequently,
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the WP generators may contain only WP factors. On the other hand, SP factors
must be assigned to interactions involving at least one other SP factor. That
is, SP generators must contain at least 2 SP factors. If a SP generator contains
only one SP factor, then the SP factor level settings will be fixed when the WP
factors are fixed. This amounts to moving the SP factor to the WP level of
the design. Thus, not all 2n−k FF designs correspond to a 2�n1+n2�−�k1+k2� FFSP
design for fixed n1, n2, k1 and k2.

In the next section, we generalize the representation of FF designs, due
to Franklin (1984) and Chen and Wu (1991), to FFSP designs. We introduce
this representation first through an example and then via a more detailed
development. In Section 3, we develop results for FFSP designs, some of which
are related to those that apply to FF designs [Chen and Wu (1991), Chen
(1992)] while others are more specialized to FFSP designs and are more useful
in practice.

2. Representation of FFSP designs.

2.1. Development of notation through an example. Franklin (1984) and
Chen and Wu (1991) introduce a matrix representation for the defining con-
trast subgroup of FF designs. This alternate representation allows for some
theoretical development, with emphasis on the MA criterion. In the following
discussion, we modify their representation so that it applies to FFSP designs.
We then use this new representation to develop some theoretical results for
FFSP designs and to highlight some of the differences between FF and FFSP
designs. We introduce the new representation through an example and then
by a more detailed discussion in the next section.

Example 1. Suppose an experimenter wishes to run a 2�7+3�−�2+2� FFSP
design. The experimenter selects a design with the following fractional gener-
ators:

I = 126� I = 2347� I = 12589 and I = 2348t10�

where factors 1 to 7 are WP factors and factors 8, 9 and t10 are SP factors.
The defining contrast subgroup for this design is

I = 126 = 2347 = 13467 = 12589

= 5689 = 1345789 = 23456789 = 2348t10

= 13468t10 = 78t10 = 12678t10 = 13459t10

= 23459t10 = 12579t10 = 5679t10�

(2.1)

Ignoring the fact that there are WP and SP factors for the moment, the
defining contrast subgroup for the 210−4 FF design in Example 1 can be written
as a matrix (see Table 1). In this representation, wi denotes the ith word in
the defining contrast subgroup and is obtained by looking at the ith row and
identifying those factors which have a 1 in their column. For example, in
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Table 1, w1 = 126, since there are 1’s in columns 1, 2 and 6. Using this table,
it is easy to reconstruct the defining contrast subgroup given in (2.1).

In Table 1 we see that columns 3 and 4 are identical, as are columns 5 and
9. So writing these columns more than once is redundant. For FF designs,
Chen and Wu (1991) noted that we could describe the FF design by a matrix
containing only the unique columns and a frequency vector f . For example,
if the defining contrast subgroup in (2.1) is viewed as a FF design, then the
design is represented by the reduced matrix,

M1 =




1 1 0 0 1 0 0 0

0 1 1 0 0 1 0 0

1 0 1 0 1 1 0 0

1 1 0 1 0 0 1 0

0 0 0 1 1 0 1 0

1 0 1 1 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 0 0 0 1 1

1 0 1 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 0 0 1 1 1 1

1 0 1 1 0 0 0 1

0 1 1 1 0 0 0 1

1 1 0 1 0 1 0 1

0 0 0 1 1 1 0 1




and the frequency vector f = �1�1�2�2�1�1�1�1�, where fi is the number of
factors associated with the ith column of M1.

For FFSP designs, we must indicate which factors are WP factors and which
are SP factors so that we completely specify the design with this representa-
tion. So, rather than using a frequency vector, we use a split-plot frequency
matrix. For the FFSP design in (2.1),

f =
(

1 1 2 1 1 1 0 0

0 0 0 1 0 0 1 1

)
�

In this representation, �f1� i� f2� i�′ indicates that column i of M1 has a fre-
quency of f1� i + f2� i, of which f1� i is due to WP factors and f2� i is due to SP
factors. So, given a split-plot frequency matrix, f , and a matrix M1 as above,
we can reconstruct the defining contrast subgroup for a FFSP design.
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Table 1

1 2 3 4 5 6 7 8 9 10

w1 1 1 0 0 0 1 0 0 0 0

w2 0 1 1 1 0 0 1 0 0 0
w3 1 0 1 1 0 1 1 0 0 0
w4 1 1 0 0 1 0 0 1 1 0
w5 0 0 0 0 1 1 0 1 1 0
w6 1 0 1 1 1 0 1 1 1 0
w7 0 1 1 1 1 1 1 1 1 0
w8 0 1 1 1 0 0 0 1 0 1
w9 1 0 1 1 0 1 0 1 0 1
w10 0 0 0 0 0 0 1 1 0 1
w11 1 1 0 0 0 1 1 1 0 1
w12 1 0 1 1 1 0 0 0 1 1
w13 0 1 1 1 1 0 0 0 1 1
w14 1 1 0 0 1 0 1 0 1 1
w15 0 0 0 0 1 1 1 0 1 1

2.2. A more detailed development. Let M2 be a �2k − 1� × �2k − 1� matrix
such that

M2 =
(
Ik B

B
′
B

′
B

)
�(2.2)

where Ik is the k×k identity matrix and the columns of �Ik�B� form the vec-
tor space spanned by the columns of Ik over the finite field GF�2�, excluding
the identity column of 0’s. For the remainder of this paper, all operations on
a vector space or subspace are assumed to be over the finite field GF�2�. Sim-
ilarly, the rows of M2 form the vector space spanned by the rows of �Ik�B�,
excluding the identity row of 0’s. A Hadamard matrix can be derived by re-
placing the 0’s and 1’s in M2 with +1’s and −1’s, respectively, and adding a
row and column of +1’s.

Chen and Wu (1991) showed that one can identify a 2n−k FF design by as-
signing the n factors to the 2k − 1 columns of M2. The fact that more than
one factor may be assigned to a column is captured by the associated fre-
quency vector, f . Note that M2 is in a slightly different form than M1 in the
previous section. However, M1 is simply a subset of columns from M2 with a
permutation of the rows and columns of M2, which does not affect the design.

To specify a FFSP design, we must indicate which factors are WP factors
and which factors are SP factors. To assign WP and SP factors to the columns
of M2, we partition the first k rows of (2.2) into the following form(

Ik1
0 B1 0 C1

0 Ik2
0 B2 C2

)
�

where Ik1
is the k1 ×k1 identity matrix and Ik2

is the k2 ×k2 identity matrix.
See that the columns of �Ik1

�B1� form the subspace spanned by the columns
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of Ik1
, and the columns of �Ik2

�B2� form the subspace spanned by the columns
of Ik2

, excluding the identity column in both cases. Therefore, B1 and B2 have
2k1 − k1 − 1 and 2k2 − k2 − 1 columns, respectively. M2 can now be written as

M2 =




Ik1
0 B1 0 C1

0 Ik2
0 B2 C2

B
′
1 0 B

′
1B1 0 B

′
1C1

0 B
′
2 0 B

′
2B2 B

′
2C2

C
′
1 C

′
2 C

′
1B1 C

′
2B2 C

′
1C1 +C

′
2C2



�

For simplicity of presentation, we reorder the columns of M2 to get M=
�A1 A2� where

A1 =




0 0

Ik2
B2

0 0

B
′
2 B

′
2B2

C
′
2 C

′
2B2




(2.3)

and

A2 =




Ik1
B1 C1

0 0 C2

B
′
1 B

′
1B1 B

′
1C1

0 0 B
′
2C2

C
′
1 C

′
1B1 C

′
1C1 +C

′
2C2



�

A FFSP design can now be represented by the matrix M and a split-plot
frequency matrix,

f =
(
f1�1� f1�2� � � � � f1�2k2−1� f1�2k2 � � � � � f1�2k−1

f2�1� f2�2� � � � � f2�2k2−1� 0 � � � � � 0

)
�

with 2k−1 columns �f1� i� f2� i�′ . In this representation, the frequencies in the
ith column of f correspond to the number of factors assigned to the ith column
of M. Then it is obvious that

∑
f1� i = n1 and

∑
f2� i = n2.

SP generators may contain both WP and SP factors. For that reason we can
assign the WP factors to any of the 2k−1 columns of M [see Huang, Chen and
Voelkel (1997) or Bingham and Sitter (1999) for discussion on the selection
of fractional generators for FFSP designs]. However, WP generators cannot
contain SP factors; therefore we may not assign the n2 SP factors to all of the
columns of M. This implies that f2� i may only be nonzero for columns in A1.
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3. Main results.

3.1. Results analogous to those for FF designs. Once the representation
of the previous section for a FFSP design is formulated, we can generalize
some of the results of Chen and Wu (1991) and Chen (1992) for FF designs to
FFSP designs, using similar techniques. In doing so, we must pay particular
attention to the restrictions on the assignment of SP factors. These results
enable us to search for FFSP designs with a large number of factors from sets
of smaller FFSP designs and reveal some of the differences between FF and
FFSP designs.

Theorem 1. Let D�n1� n2� k1� k2� be a 2�n1+n2�−�k1+k2� FFSP design with
word-length pattern W, and let lag�W�m� = �0�0� � � � �0�W� be the lag vector
of the word-length pattern W with m leading zeroes. For 0 ≤ r ≤ 2k2 − 1, there
exists a D�n1+2k−r−1� n2+r� k1� k2� with word-length pattern lag�W�2k−1�.

Proof. Suppose D1 is a D�n1� n2� k1� k2� FFSP design represented by
�M� f�. Let f∗ be a split-plot frequency matrix with 2k−1 columns �f∗

1� i� f
∗
2� i�

′

such that there are 2k − r− 1 columns of f∗ of the form �1�0�′ and r columns
of the form �0�1�′ . Furthermore, columns of the form �0�1�′ are assigned only
to columns in (2.3). The 2k − r− 1 columns of the form �1�0�′ are assigned to
the remaining columns of M. It is obvious that

∑�f1� i+f∗
1� i� = n1 +2k−r−1

and
∑�f2� i + f∗

2� i� = n2 + r.
Let D2 be the FFSP design corresponding to �M� f + f∗�. This amounts

to adding r new SP factors and 2k − r − 1 WP factors to D1. Thus, D2 is
a D�n1 + 2k − r − 1� n2 + r� k1� k2� FFSP design. Since M is analogous to
a Hadamard matrix, there are 2k−1 1’s in each row of M. Therefore, since
we have assigned each of the 2k − 1 new factors to separate columns of M,
each word in the defining contrast subgroup of D2 is 2k−1 longer than the
corresponding word in D1. Consequently, the word-length pattern of D2 is
lag�W�2k−1�. ✷

In Theorem 1, we use the properties of the Hadamard matrix to show that,
by assigning new WP and SP factors to each of the columns, we can guarantee
the existence of larger designs and predict their word-length patterns. This is
similar to the FF case. However, there are some distinguishing features for
FFSP designs that should be noted. Firstly, we notice the restriction, r, placed
on the number of SP factors being added. Since we can only add factors to
columns in (2.3), we can add at most 2k2 − 1 SP factors by this procedure.
This is different from FF designs where all factors are treated the same and r
has no meaning. Furthermore, because the number of SP factors being added
ranges from 0 to 2k2 − 1, starting with a MA 2�n1+n2�−�k1+k2� FFSP design D
with word-length pattern W, we guarantee the existence of 2k2 different larger
designs and their word-length patterns are known. For example, letting r = 2
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we can guarantee the existence of a 2��n1+2k−3�+�n2+2��−�k1+k2� FFSP design with
word-length pattern lag�W�2k−1�.

Theorem 1 allows us to find larger designs by only adding WP factors (i.e.,
r = 0) with the word-length pattern of the larger design known. This is useful
since we may be interested in searching for designs with a large number
of WP factors and only a few SP factors. The same cannot be said for SP
factors because we cannot add SP factors to each column of M. We will delay
consideration of adding only SP factors to Section 3.2 as this case is less
apparent and of more practical interest and thus warrants detailed discussion.

As a result of Theorem 1, we know the word-length pattern of larger de-
signs based on the properties of designs with fewer factors. Therefore, we can
establish a lower bound on the maximum resolution of the set of larger de-
signs. This is quite useful if we are searching for MA designs. For example,
we could begin with a MA design with word-length pattern W for a smaller
design and find a design with more factors by applying Theorem 1. In search-
ing for the MA design for the larger design we discard any designs that have
smaller resolution than the design with word-length pattern lag�W1�2k−1�.
The following theorem illustrates this more clearly.

Theorem 2. Let R�n1� n2� k1� k2� be the maximum resolution for a D�n1�
n2� k1� k2� FFSP design. For 0 ≤ r ≤ 2k2 − 1, R�n1 + 2k − r − 1� n2 + r� k1�
k2� ≥ 2k−1 +R�n1� n2� k1� k2�.

Proof. Suppose D1 is a maximum resolution D�n1� n2� k1� k2� FFSP de-
sign represented by �M� f� and has word-length pattern W. Let D2 be the
FFSP design corresponding to �M� f + f∗�, where f∗ is defined in the proof of
Theorem 1. Then by Theorem 1, D2 is a D�n1 +2k−r−1� n2 +r� k1� k2� FFSP
design with word-length pattern lag�W�2k−1� and therefore has resolution
R�n1� n2� k1� k2�+2k−1. Thus, the maximum resolutionD�n1+2k−1� n2� k1� k2�
design must have resolution at least R�n1� n2� k1� k2� + 2k−1. ✷

Theorem 1 guarantees the existence of larger FFSP designs, and Theorem 2
shows that we have a lower bound on the maximum resolution of the larger
design. According to this result, we can find optimal designs of a larger size
through a smaller search. That is, we need not consider designs with resolution
less than those that result from application of Theorem 2.

Theorem 2 allows us to reduce the number of designs considered when
searching for MA FFSP designs. The search for optimal designs could be re-
duced further if we had an upper bound on the resolution. We do not have a
solution to this problem, but we can show that there is a limit to the upper
bound. Chen and Wu (1991) show that the maximum resolution of a FF design
is periodic. Using similar techniques, we show in Theorem 3 below that the
maximum resolution of a FFSP design is also periodic. In the FFSP case, how-
ever, the maximum resolution need not correspond to the maximum resolution
FF design.
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Theorem 3. For any fixed n1, n2, k1, k2 and 0 ≤ r ≤ 2k2 − 1 there exists
L1 such that

R
(
n1 + l�2k − r− 1�� n2 + lr� k1� k2

)
= 2k−1 +R

(
n1 + �l− 1��2k − r− 1�� n2 + �l− 1�r� k1� k2

)
∀ l > L1. That is, there exists L1 such that ∀ l > L1 the maximum resolution of
a FFSP design is periodic.

Proof. We prove the theorem by contradiction. That is, we assume that
there are infinitely many l1� i such that

R
(
n1 + l1� i�2k − r− 1�� n2 + l1� ir� k1� k2

)
≥ 2k−1 +R

(
n1 + �l1� i − 1��2k − r− 1�� n2 + �l1� i − 1�r� k1� k2

)+ 1�
(3.1)

Therefore, there exists an infinite sequence of l1’s, �l1� i�∞i=0, such that (3.1) is
satisfied. Applying Theorem 2 and (3.1) again and again, we see that

R
(
n1 + l1� i�2k − r− 1�� n2 + l1� ir� k1� k2

)
≥ l1� i2

k−1 +R�n1� n2� k1� k2� + i�
(3.2)

Because of a result due to Plotkin (1960), we know that there is an upper
bound on the maximum resolution for a FF design. That is, if R�n�k� is the
maximum resolution for the 2n−k FF design, then

R�n�k� ≤ 2k−1

2k − 1
n�

It is obvious that R�n1� n2� k1� k2� ≤ R�n�k� and, consequently,

R�n1� n2� k1� k2� ≤
2k−1

2k − 1
�n1 + n2��(3.3)

It follows from (3.3) that

R
(
n1 + l1� i�2k − r− 1�� n2 + l1� ir� k1� k2

)
≤ 2k−1

2k − 1

{
n1 + l1� i�2k − r− 1� + n2 + l1� ir

}
= 2k−1

2k − 1

{
n1 + n2 + l1� i�2k − 1�}

= 2k−1

2k − 1
�n1 + n2� + l1� i2

k−1�

(3.4)

From (3.2) and (3.4) we get

2k−1

2k − 1
�n1 + n2� ≥ R�n1� n2� k1� k2� + i�

which is clearly not true as i→ ∞. ✷
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In the FF case, only the number of fractional generators, k, need be fixed.
In the FFSP case with fixed k1 and k2, the value of L1 may vary for different
values of n1, n2 and r. This is due to the restrictions on the allocation of SP
factors to the columns of M.

It turns out that not only is the maximum resolution property periodic,
but so is the MA criterion. This is useful, since if we can identify smaller
MA designs, we can more easily identify larger MA designs without searching
through the set of larger designs.

Theorem 4. For any fixed n1, n2, k1, k2 and 0 ≤ r ≤ 2k2 − 1� there exists

Q1 such that ∀q > Q1, if the MA 2��n1+�q−1��2k−r−1��+�n2+�q−1�r��−�k1+k2� FFSP

design has word-length pattern W� then the MA 2��n1+q�2k−r−1��+�n2+qr��−�k1+k2�

FFSP design has word-length pattern lag�W�2k−1�.

Proof. The proof parallels that of Theorem 2 in Chen and Wu (1991) and
therefore, we provide only a sketch to make apparent the connection. For the
FFSP case, let vq1� i

be the number of shortest length words in the defining

contrast subgroup of the MA 2��n1+q1� i�2k−r−1��+�n2+q1� ir��−�k1+k2� FFSP design,
with q1� i < q1� j ∀ i < j. Using Theorems 1, 2 and 3 and the definition of the
MA property for FFSP designs, one can show that for large enough i, there
exists a positive integer v1 such that vq1� i

= v1. That is, there exists a limit to
the number of words of shortest length, and by the periodicity of maximum
resolution this limit is nonzero. One constructs a similar sequence for the
number of second shortest length words, third shortest and so on. It remains
only to show that there are only finitely many such sequences, which is done
by showing that the word lengths lie in an interval of finite length for any
q1� i. ✷

Theorem 4 allows us to determine large MA FFSP designs from smaller
MA FFSP designs. Finding MA designs in the FF case can be quite difficult
when there are many factors, and in the FFSP case these difficulties are com-
pounded by the fact that we must consider the two different types of factors.
The periodicity property of the MA criterion is quite useful in the sense that it
makes it easier to find larger MA designs, since we can find the MA design for
a smaller design and appeal to the periodicity properties. Application of Theo-
rems 2, 3, or 4 imply that we must add 2k−1 new factors to a small MA design
to find a larger one. So for instance, if we begin with the MA 2�3+3�−�1+2� 8 run
FFSP design with word-length pattern W and let r = 2, then, by application
of Theorem 1, we know that there exists a 2��3+8−2−1�+�3+2��−�1+2� = 2�8+5�−�1+2�

FFSP design with word-length pattern lag�W�2k − 1�. In this case, it turns
out that for this choice of n1� n2� k1� k2 and r that Theorem 4 applies and
the MA design is immediately periodic [Bingham (1998)]. However, the uses of
such a large design are limited at best. In the next section we will consider the
case where only SP factors are added and demonstrate that using the results
therein one can obtain much smaller and thus more practical designs.
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3.2. Adding SP factors only. As previously noted, letting r = 0 in Theo-
rem 1 amounts to adding 2k−1 WP factors and no SP factors. The same cannot
be done with SP factors because we cannot add SP factors to each column of
M. However, despite the restriction on the number of SP factors being added,
we can guarantee the existence of larger SP designs by assigning SP factors
to all of the columns of (2.3) and not adding any additional WP factors. The
existence of the larger design is guaranteed, but the length of the words con-
taining only WP factors will remain unchanged. On the other hand, because
of the properties of the Hadamard matrix, we can be sure that the lengths
of all words containing SP factors will increase by 2k2−1. We summarize this
result in the following theorem.

Theorem 5. Let D�n1� n2� k1� k2� be a 2�n1+n2�−�k1+k2� FFSP design with
word-length pattern W. Let WWP be the word-length pattern of D for words
containing only WP factors and WSP be the word-length pattern of D for words
containing at least one SP factor. There exists a D�n1� n2+2k2 −1� k1� k2� FFSP
design with word-length pattern WWP + lag�WSP�2k2−1�.

Proof. The proof of this theorem is similar to the proof of Theorem 1.
However, in this case, we only assign factors to the columns in (2.3) and not
the entire matrix M. Suppose D1 is a D�n1� n2� k1� k2� FFSP design, then D1
can be represented by �M� f�. Let f∗ be a split-plot frequency matrix with
2k2 − 1 columns of the form �0�1�′ and 2k − 2k2 columns of the form �0�0�′ .
The 2k2 − 1 columns of the form �0�1�′ are assigned to each of the 2k2 − 1
columns of (2.3). Let D2 be the FFSP design corresponding to �M� f + f∗�.
Since

∑�f1� i + f∗
1� i� = n1 and

∑�f2� i + f∗
2� i� = n2 + 2k2 − 1, then D2 is a

D�n1� n2 + 2k2 − 1� k1� k2� FFSP design.
To complete the proof, we must now prove that the word-length pattern of

the D�n1� n2 + 2k2 − 1� k1� k2� FFSP design is WWP + lag�WSP�2k2−1�. In the
same manner as the matrix M,

M3 =
(
Ik2

B2

B
′
2 B

′
2B2

)

can be viewed as similar to a Hadamard matrix. Therefore, there are 2k2−1 1’s
in each row of M3. Furthermore, the rows of (2.3) corresponding to �C′

2�C
′
2B2�

are simply nonzero linear combinations of the rows of M3 and also have 2k2−1

1’s in each row. Therefore, by assigning new SP factors to each of the columns
in (2.3), each word in the defining contrast subgroup containing a SP factor
is increased by 2k2−1. The lengths of the words with only WP factors remain
unchanged. ✷

Theorem 5 is not simply an extension of the results for FF designs. Instead,
it provides a compromise between finding larger designs and the restrictions
imposed by the split-plot structure of the design. Using Theorem 5, we can
obtain parallel results to Theorems 2, 3 and 4 for the case where we want to
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add only SP factors. We will state and prove these and then discuss how these
can be far more useful in practice.

Theorem 6. Let R�n1� n2� k1� k2� be the maximum resolution for a
2�n1+n2�−�k1+k2� FFSP design, and let RSP�n1� n2� k1� k2� be the maximum reso-
lution for the words containing at least one SP factor. Then RSP�n1� n2 +2k2 −
1� k1� k2� ≥ 2k2−1 +RSP�n1� n2� k1� k2�.

The result follows directly from Theorem 5 using the same argument as in
the proof of Theorem 2.

Theorem 7. For any fixed n1, n2, k1 and k2 there exists L2 such that ∀ l >
L2,

RSP
(
n1� n2 + l�2k2 − 1�� k1� k2

) = 2k2−1 +RSP
(
n1� n2 + �l− 1�r� k1� k2

)
�

That is, there exists L2 such that ∀ l > L2 the maximum resolution for words
in the defining contrast subgroup of a FFSP design containing SP factors is
periodic.

Proof. Like Theorem 3, we prove Theorem 7 by contradiction. So, we
assume the contrary for infinitely many l. That is, there exists an infinite
sequence of l’s, �l2� i�∞i=0, such that the following relation is satisfied:

RSP
(
n1� n2 + l2� i�2k2 − 1�� k1� k2

)
≥ 2k2−1 +RSP

(
n1� n2 + �l2� i − 1��2k2 − 1�� k1� k2

)+ 1�
(3.5)

It follows that by repeated application of Theorem 6 and (3.5), we get

RSP
(
n1� n2 + l2� i�2k2 − 1�� k1� k2

)
≥ RSP�n1� n2� k1� k2� + l2� i2

k2−1 + i�
(3.6)

We can view a FFSP as a combination of two designs, a 2n1−k1 FF and a
2�n1−k1+n2�−k2 FF. The defining contrast subgroup of the FFSP consists of the
defining contrast subgroup of the two separate FF designs and words gener-
ated by crossing the two subgroups. See that the 2k2−1 words in the defining
contrast subgroup of the second FF design are the result of assigning k2 SP
factors to interactions of some of the n1−k1 WP factors and n2−k2 SP factors.
Therefore, since we can view the words in this defining contrast subgroup as
words from a 2�n1−k1+n2�−k2 FF design, and because of the restriction on the
assignment of SP factors to the columns of M and the existence of k1 other
generators in the FFSP, RSP�n1� n2� k1� k2� ≤ R�n1 −k1 +n2� k2�. In addition,
it is obvious that R�n1 − k1 + n2� k2� ≤ R�n1 + n2� k2�. Then, applying the
result of Plotkin (1960),

RSP�n1� n2� k1� k2� ≤
2k2−1

2k2 − 1
�n1 + n2��
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Therefore, following the same argument as before we see that

2k2−1

2k2 − 1
�n1 + n2� ≥ RSP�n1� n2� k1� k2� + i�

which is clearly untrue as i→ ∞. ✷

Theorem 8. Let D be a 2�n1+n2�−�k1+k2� FFSP design with word-length pat-
tern W. Let WWP be the word-length pattern of D for words containing only
WP factors and WSP be the word-length pattern of D for words containing
at least one SP factor. For any fixed n1, n2, k1, k2, there exists Q2 such that

∀q > Q2, if the MA 2�n1+�n2+�q−1��2k2−1���−�k1+k2� FFSP design has word-length

pattern W then the MA 2�n1+�n2+q�2k2−1���−�k1+k2� FFSP design has word-length
pattern WWP + lag�WSP�2k2−1�.

Proof. Consider a 2�n1+�n2+q2� i�2k2−1���−�k1+k2� FFSP design. We begin this
proof by noting that each time we increase q by 1, we increase the length of
words with at least one SP factor by 2k2−1. Therefore, for large enough q, the
2k1 − 1 shortest words in the defining contrast subgroup will correspond only
to the words containing only WP factors. Therefore for large enough q, to be a
MA FFSP design the WP factors must be arranged as a MA 2n1−k1 FF design.

The remainder of the proof is similar to that of Theorem 2 in Chen and Wu
(1991), except that we begin with the WP factors arranged as a MA 2n1−k1 FF
design. Let vq2� i

be the number of shortest length words containing at least one

SP factor in the defining contrast subgroup of the MA 2�n1+�n2+q2� i�2k2−1���−�k1+k2�

FFSP design, and let q2� i < q2� j ∀ i < j. By Theorems 5 and 6 we see that
vq2� i

≥ vq2� j
∀ i ≤ j. Then there exists, for large enough i, a positive integer

v2 such that vq2� i
= v2. That is, there exists a limit to the number of shortest

length words containing at least one SP factor. Unlike Theorem 4, we are not
guaranteed that this limit is nonzero, but we are guaranteed that it exists
and naturally is periodic. In light of this periodicity property, the number of
shortest words is also periodic. We can construct a similar sequence for the
number of second shortest words, third shortest and so on. If there are finitely
many such sequences, then the result follows.

Again, we note that the length of the shortest word in the defining contrast
subgroup containing at least one SP factor is bounded below by 1. Therefore,
since we have added q2� i�2k2 − 1� SP factors to the design, by Theorem 5, the
length of the shortest word is bounded below by 1 + q2� i�2k2−1�.

To find an upper bound on the longest word containing SP factors, we begin
by noting an identity due to Brownlee, Kelly and Loraine (1948). The result
is modified slightly to incorporate both WP and SP factors and general q2� i:∑

iAi =
{
n1 +

[
n2 + q2� i�2k2 − 1�]}2k−1�(3.7)

Because the WP design is a 2n1−k1 FF design, we can modify (3.7) for the words
containing only WP factors, ∑

iAi = n12k1−1�(3.8)
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By (3.7) and (3.8), and summing over words containing at least one SP factor,∑
iAi =

{
n1 +

[
n2 + q2� i�2k2 − 1�]}2k−1 − n12k1−1�(3.9)

So, if the resolution of words containing SP factors is R, the longest possible
word length has an upper bound. That is, letting U be the length of the longest
word,

U ≤ {
n1 +

[
n2 + q2� i�2k2 − 1�]}2k−1 − n12k1−1 − �2k − 2k1 − 1�R�(3.10)

Let R0 be the maximum resolution for the design with q2� i = 0. Then by
Theorem 6 and (3.10),

U ≤ {
n1 +

[
n2 + q2� i�2k2 − 1�]}2k−1

− n12k1−1 − �2k − 2k1 − 1��R0 + q2� i2k2−1��
This reduces to

U ≤ �n1 + n2�2k−1 − n12k1−1 − �2k − 2k1�R0 + q2� i2
k2−1�

Consequently, the word lengths of words containing at least one SP factor
for the MA FFSP design is bounded by �1+q2� i�2k2−1�� �n1+n2�2k−1−n12k1−1−
�2k − 2k1�R0 + q2� i2k2−1�, which is of finite length for any q2� i. ✷

Theorems 6, 7 and 8 reveal a separate strategy from the one discussed in
the previous section that allows us to add only SP factors to the design. This
is useful when we are interested in a design with quite a few SP factors and
relatively few WP factors. In addition, the run sizes of such designs do not
become large as fast as following the previous procedure or that of Chen and
Wu (1991) and thus is of far more practical use.

Example 2. Again consider a 2�3+3�−�1+2� 8 run FFSP design. Letting 1, 2
and 3 represent the WP factors and 4, 5 and 6 be the SP factors, the MA FFSP
design [Bingham and Sitter (1999)] has fractional generators g1 = 123, g2 =
145 and g3 = 246 with word-length pattern W1 = �0�0�3�4�0�0�0�. Suppose
that a 2�3+6�−�1+2� 64 run FFSP design is desired. Theorem 8 demonstrates that
a 2�3+6�−�1+2� FFSP design can be constructed from the MA 2�3+3�−�1+2� design
by assigning the three additional SP factors, 7, 8 and 9, to the three columns
in (2.3). Therefore, the generators become g1 = 123, g2 = 14579 and g3 =
24689 and the design has word-length pattern W2 = �0�0�1�0�3�3�0�0�0�. It
turns out that this design is also the MA 2�3+6�−�1+2� FFSP design and that
the MA criterion for this choice of n1� n2� k1 and k2 is immediately periodic
[Bingham (1998)]. Unlike the large experiment created by adding factors to
each of the columns of M, this 64 run FFSP is a reasonable size design for
many experimental situations.

The theorems presented in this section also have applications beyond the
scope of FFSP designs. For example consider a situation where an experi-
menter has more interest in a subset of the factors under investigation. This
is often the case in robust parameter design where the experimenter is less
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interested in estimating main effects and interactions between “noise” factors,
even if the design was run in a completely randomized fashion. Theorem 8 pro-
vides the experimenter with a technique by which the resolution of the more
important factors can be made large at the expense of the remaining factors.

Example 3. Suppose an experimenter wishes to run a 29−3 64 run FF
design. In addition, suppose that the experimenter has particular interest in
all second order interactions of six of the factors. The MA 29−3 FF design, with
word-length pattern W = �0�0�0�1�4�2�0�0�0� [Chen, Sun and Wu (1993)],
will not allow estimation of all second-order interactions of a chosen six factors.
In fact, the ten best 29−3 FF designs in terms of aberration [Chen, Sun and
Wu (1993)] do not satisfy the experimenter’s needs. However, there does exist
a design that will estimate all second-order interactions involving six chosen
factors which can be found in the same manner as in Example 2. Begin with
the MA 2�3+3�−�1+2� 8 run FFSP design of Example 2. For the purpose of design
construction, treat the six factors for which all second-order interactions are
of interest as SP factors, and the remaining three factors as WP factors. Thus,
n1 = 3 is the number of factors for which we are not interested in all second-
order interactions, and n2 = 3 represents three of the six factors for which we
wish to estimate all second-order interactions. By definition of a FFSP design,
one of the three 3-letter words involves all three of the WP factors. Applying
Theorem 8 as in Example 2, we get a 2�3+6�−�1+2� design with word-length
pattern WWP

1 + lag�WSP
1 �23−1�, where the SP factors represent the factors for

which we wish to estimate all second-order interactions. Therefore, in our
case, we know that there exists a 29−3 FF design with word-length pattern
W = �0�0�1�0�3�3�0�0�0�, and it can be found from the MA 2�3+3�−�1+2� FFSP
design. Note that the one remaining three-letter word contains all three factors
that are treated as WP factors, so that the design is resolution V in the six
chosen factors (the SP factors) as desired.
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