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We consider abstractly defined time series arrays yt�T��1 ≤ t ≤ T, re-
quiring only that their sample lagged second moments converge and that

their end values y1+j�T� and yT−j�T� be of order less than T
1
2 for each

j ≥ 0. We show that, under quite general assumptions, various types of
arrays that arise naturally in time series analysis have these properties, in-
cluding regression residuals from a time series regression, seasonal adjust-
ments and infinite variance processes rescaled by their sample standard
deviation. We establish a useful uniform convergence result, namely that
these properties are preserved in a uniform way when relatively compact
sets of absolutely summable filters are applied to the arrays. This result
serves as the foundation for the proof, in a companion paper by Findley,
Pötscher and Wei, of the consistency of parameter estimates specified to
minimize the sample mean squared multistep-ahead forecast error when
invertible short-memory models are fit to (short- or long-memory) time se-
ries or time series arrays.

1. Introduction. This article provides uniform convergence results for
sample second moments of families of time series arrays under very weak
conditions. By array we mean data yt�T��1 ≤ t ≤ T, that may change as
the series length T increases. The motivation for considering such results is
two-fold: (i) These results serve as the foundation for very general consis-
tency results for parameter estimators obtained by minimizing sample mean
squared p-step-ahead forecast errors, p ≥ 1, that are presented in the compan-
ion article Findley, Pötscher and Wei (2000). Estimation based on multistep
prediction criteria has received increasing attention in recent years, mainly
because it can result in better forecasts than maximum likelihood estimation
when the model is misspecified; see Tiao and Xu (1993) and Findley (1983).
However, for the case p > 1, few results on the convergence of such estima-
tors are available. (ii) In practice, observations to which standard models are
fit are often not time series but rather time series arrays, a possibility the
conventional asymptotic theory does not address. Regression or other model
residuals, including forecast errors, are examples of arrays which are often
further analyzed by time series methods. So are outputs of time varying fil-
ters like the seasonally adjusted major economic indicators. A further source
of arrays is the data-dependent rescaling of infinite variance processes done to
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obtain arrays whose sample second moments converge; see Davis and Resnick
(1985). Also, the locally stationary processes considered in Dahlhaus (1997)
are arrays.

The precise description of general model classes to which we apply the
results of this article and the resulting convergence theory for the parame-
ter estimates are developed in a separate article [Findley, Pötscher and Wei
(2000)]. Here we shall only sketch the estimation problem enough to motivate
the formalism of the uniform convergence results of Section 2: Consider a class
of time series models indexed by a parameter vector θ which completely spec-
ifies the model’s autocovariance function, for example, autoregressive mov-
ing average models or the exponential model of Bloomfield (1973). Then the
infinite-past and finite-past p-step-ahead linear forecast functions, which are
mean square optimal for predicting a process xt whose autocovariances co-
incide with the model’s autocovariances, can be calculated as projections or,
equivalently, as conditional expectations w.r.t. the zero-mean Gaussian distri-
bution determined by the model’s autocovariance function,

xt+p�t �θ� = Eθ

(
xt+p�xs�−∞ < s ≤ t

) = ∞∑
j=0

πj �p� θ�xt−j(1.1)

and

x̃t+p�t �θ� = Eθ

(
xt+p�xs�1 ≤ s ≤ t

) = t−1∑
j=0

πt�j �p� θ�xt−j�

We wish to consider the case in which the linear forecast function in (1.1)
is applied to a weakly stationary series yt different from xt and we want to be
certain that the resulting infinite series

∑∞
j=0 πj �p� θ�yt−j converges. Mean

square convergence is guaranteed for every weakly stationary yt if

∞∑
j=0

∣∣πj �p� θ�∣∣ <∞�(1.2)

a property that holds for all models that are invertible (i.e., have a strictly posi-
tive spectral density) and that are of short-memory type in the sense that their
autocovariance sequences are absolutely summable; see Section 3 of Findley,
Pötscher and Wei (2000). Given only finitely many data y1� � � � � yT� or more
generally any array yt�T��1 ≤ t ≤ T, one can define the model-based trun-
cated infinite-past predictor for times t+ p� t ≤ T, as

yt+p�t �θ�T� =
t−1∑
j=0

πj �p� θ�yt−j �T� �

and its finite-past predictor as

ỹt+p�t �θ�T� =
t−1∑
j=0

πt�j �p� θ�yt−j �T� �
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It is of interest to establish the almost sure (in probability) convergence of
parameter estimates θ̂T obtained by minimizing one of the associated sample
mean squared p-step-ahead forecast errors,

sT�p �θ� =
1
T

T∑
t=1

(
yt �T� − yt�t−p �θ�T�)2

or

s̃T�p �θ� =
1
T

T∑
t=1

(
yt �T� − ỹt�t−p �θ�T�)2 �

over a parameter set �. Convergence of such θ̂T as T→ ∞ can be established
by standard arguments [see, e.g., Lemma 4.2 of Pötscher and Prucha (1997)]
if the uniform convergence on � of sT�p �θ� and s̃T�p �θ� can be shown. For the
case in which (1.2) holds for all θ ∈ �, the uniform convergence result given in
Theorem 2.1 below provides the foundation for a proof of this uniform conver-
gence since sT�p �θ� and s̃T�p �θ� are easily seen to be sample second moments
of linear filters applied to the array yt �T�. [For the uniform convergence of
s̃T�p �θ�, a bound for supθ∈�

∑t−1
j=0

∣∣πt�j �p� θ� − πj �p� θ�
∣∣ that yields condition

(2.15) of Theorem 2.1 below is also needed. This can be obtained from a simple
variant of Baxter’s inequality; see Findley (1991).]

The uniform convergence result is presented in Section 2. It only requires
the underlying array yt�T� to have convergent sample lagged second moments
(and satisfy natural negligibility conditions), thus covering a wide range of
dependent processes and arrays. Sections 3 and 4 are devoted to verifying
these properties for some important examples of arrays. Section 3 considers
yt�T� = ût �T� where

ût �T� = Yt − ÂTXt� 1 ≤ t ≤ T�

are the residuals from the estimation of a regression model of the form

Yt = AXt + ut�

in which the error process ut is weakly stationary and has convergent sample
lagged second moments. A substantial extension is obtained of a result by
Gleser (1966) on the almost sure convergence of the sample mean of squared
regression residuals to the regression error variance in the case of i.i.d. errors.
Section 4 considers arrays

yt�T� = yt

(
T−1∑T

t=1 y
2
t

)−1/2
obtained from rescaling processes yt with infinite variance. Implications, re-
lated results and extensions are discussed in the concluding Section 5. Most
proofs have been placed in appendices.
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2. The uniform convergence result. We start from an array of real-
valued random variables yt �T� �1 ≤ t ≤ T, defined on a common probability
space �����P�� In the statistical applications discussed in Findley, Pötscher
and Wei (2000) the array yt �T� has the interpretation of the (possibly pre-
processed) data available at each sample size T which are to be modeled. We
shall usually assume that their sequences of lag j sample second moments
converge to real numbers γj almost surely or in probability as T→ ∞:

�CVG� lim
T→∞

1
T

T−j∑
t=1

yt+j�T�yt�T� = γj a.s. �i�p��� j = 0�1� � � � �

Concerning extensions to the case of stochastic γj, see Section 5.2. Condition
CVG is clearly satisfied for many classes of long- and short-memory processes
or arrays: As a simple example, strictly stationary and ergodic processes yt
with finite second moments satisfy CVG almost surely with γj = Eyt+jyt�
Other sets of conditions that yield CVG for stationary processes are described
in Theorem IV.3.6 of Hannan [(1970), page 210]; cf. also Sections 3.1.1 and 3.2
below. In the context of not necessarily stationary processes/arrays, condition
CVG also holds for the class of asymptotically stationary processes considered
in Parzen (1962), or under standard mixing or near epoch dependence condi-
tions. Locally stationary processes [Dahlhaus (1997)] also satisfy CVG under
appropriate assumptions. Regression residuals and suitably rescaled infinite
variance processes will be shown to obey CVG; see Sections 3 and 4 below.

We shall usually also need the property that finitely many data at one or
both ends of the array can be neglected when calculating the limits in CVG.
It is convenient to express these negligibility conditions as

�N1� lim
T→∞

y1+j �T�
T1/2

= 0 a.s. �i�p��� j = 0�1� � � �

and

�N2� lim
T→∞

yT−j �T�
T1/2

= 0 a.s. �i�p��� j = 0�1� � � � �

[In expressions like these, whenever an index value (e.g., j = T) produces
a time index t outside �1�T� � set yt�T� = 0� Similarly, any empty sum (e.g.∑0

t=1) is assigned the value zero.] The pair of negligibility conditions will be
denoted by N. The combination of CVG and N is denoted by CVGN. We add
subscripts to restrict consideration to a particular mode of convergence, for ex-
ample, CVGa�s�. We note that a simple moment condition like supT≥1 sup1≤t≤T
E
∣∣yt �T�∣∣α < ∞ implies Ni�p� if α > 0� and implies Na�s� if α > 2� Throughout

this article, a statement such as that CVG plus N2 imply a property P is to
be interpreted as saying that Pa�s� follows from CVGa�s� plus N2a�s� and Pi�p�

follows from CVGi�p� plus N2i�p�.

Remark 2.1 (The time series case). For a real-valued time series yt� t =
1�2� � � � � the negligibility conditions are automatic in the following sense:
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N1a�s� (and hence N1i�p�) always holds. If yt satisfies CVG,

lim
T→∞

1
T

T−j∑
t=1

yt+jyt = γj a.s. �i�p��� j = 0�1� � � � �

then N2 also holds, that is, limT→∞ yT−j/T
1
2 = 0 a.s. �i�p��, j = 0�1� � � �. This

follows from

� yT �2
T

= 1
T

T∑
t=1

y2
t −

1
T

T−1∑
t=1

y2
t

= 1
T

T∑
t=1

y2
t −

T− 1
T

1
T− 1

T−1∑
t=1

y2
t → 0 a.s. �i�p���

2.1. Uniform analogues of CVG and N for families of arrays. Let zt�α�T�,
1 ≤ t ≤ T� T = 1�2� � � � � be arrays of real-valued random variables defined
for each α ∈ A, where A is some non-empty index set. We consider uniform
versions of CVG, N1 and N2 for zt�α�T� formulated as

lim
T→∞

sup
α�β∈A

∣∣∣∣∣ 1T
T−j∑
t=1

zt+j �α�T� zt �β�T� − γj�α�β�
∣∣∣∣∣ = 0 a.s. �i�p��(2.1)

for j = 0�1� � � � �

lim
T→∞

sup
α∈A

∣∣z1+j�α�T�∣∣
T

1
2

= 0 a.s. �i�p��� j = 0�1� � � �(2.2)

and

lim
T→∞

sup
α∈A

∣∣zT−j�α�T�∣∣
T

1
2

= 0 a.s. �i�p��� j = 0�1� � � � �(2.3)

with real numbers γj�α�β� in (2.1).
We shall make repeated use of the following elementary result, which pro-

vides conditions under which approximating arrays inherit properties like
CVG, N, or (2.1)–(2.3). Proposition 2.1 is proved in Appendix A, where we
also comment on measurability issues in Remark A.1.

Proposition 2.1. For each α ∈ A, a non-empty index set, let zt�α�T�, 1 ≤
t ≤ T� T = 1�2� � � � � be an array of real-valued random variables. Suppose
ẑt�α�T� is a second family of arrays of real-valued random variables that
approximates zt�α�T� in the sense that

lim
T→∞

sup
α∈A

1
T

T∑
t=1

�zt �α�T� − ẑt �α�T��2 = 0 a.s. �i�p��(2.4)
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holds. Then, if the family zt�α�T� satisfies �2�2� or �2�3�, so does ẑt�α�T�. If
�2�1� holds for j ∈ J, a set of nonnegative integers containing 0, and if γ0�α� α�
is bounded on A, then

lim
T→∞

sup
α�β∈A

∣∣∣∣∣ 1T
T−j∑
t=1

ẑt+j �α�T� ẑt �β�T� − γj�α�β�
∣∣∣∣∣ = 0 a.s. �i�p��(2.5)

holds for j ∈ J.

Remark 2.2. (i) In the case of a single array, that is, when A contains only
one element, Proposition 2.1 with J the set of all nonnegative integers shows
that CVGN and its sample second moment limits are inherited by approxi-
mating arrays for which (2.4) holds.

(ii) Condition (2.4) implies via the Cauchy-Schwarz inequality that

lim
T→∞

sup
α∈A

∣∣∣∣∣ 1T T∑
t=1

zt �α�T� − 1
T

T∑
t=1

ẑt �α�T�
∣∣∣∣∣ = 0 a.s. �i�p���

Hence, if one of these sample means converges, the other converges to the
same limit.

(iii) The proof of Proposition 2.1 in fact shows closeness of the sample sec-
ond moments of zt �α�T� and ẑt �α�T� uniformly in the lag [as well as in
�α�β�], that is,

lim
T→∞

max
0≤j≤T−1

sup
α�β∈A

∣∣∣∣∣ 1T
T−j∑
t=1

zt+j �α�T� zt �β�T� − 1
T

T−j∑
t=1

ẑt+j �α�T� ẑt �β�T�
∣∣∣∣∣

= 0 a.s. �i�p��
under the assumptions used to prove (2.5). Inequality (A.1) in Appendix A
then even shows that the rate of convergence to zero in the above display is
not slower than the square root of the rate of convergence to zero in (2.4).
This result is of interest as, for example, it allows one to establish closeness
uniformly in the lag of the sample second moments of the errors and the
residuals from a regression; cf. Section 3 and Pötscher (1998).

2.2. A uniform law of large numbers for convolution-filter families. Let �
be a set of absolutely summable sequences φ = �φ0� φ1� � � �� of real numbers
φj satisfying

sup
φ∈�

∞∑
j=k

�φj� ≤ Ck� k = 0�1�2� � � � �(2.6)

for some decreasing sequence Ck of real numbers converging to 0, that is,

Ck ↘ 0�(2.7)
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Conditions (2.6) and (2.7) characterize the relatively compact sets (i.e., sets
with compact closure) in the normed space l1 of absolutely summable se-
quences with norm �φ�1 = #∞

j=0
∣∣φj

∣∣. More precisely, for any decreasing se-
quence of real numbers �Ck�k≥0 satisfying (2.7), the set �C of all sequences φ
satisfying #∞

j=k
∣∣φj

∣∣ ≤ Ck� k = 0�1�2� � � � � is compact in l1, and every compact
set in the l1-norm topology is a subset of some �C; see Theorems IV.8.9 and
IV.13.3 of Dunford and Schwartz (1957).

Elements φ�ψ∈� define linear filters φ�B�=#∞
j=0φjB

j, ψ�B�=#∞
j=0ψjB

j,
where B denotes the backshift operator. Being absolutely summable, such fil-
ters are applicable to any covariance stationary time series yt; for example,
φ�B�yt = #∞

j=0φjyt−j (convergence in mean square). If F�λ� denotes the spec-
tral measure of yt, the second moment between φ�B�yt+j and ψ�B�yt has the
frequency domain formula

E�φ�B�yt+jψ�B�yt� =
∫ π

−π
e−ijλφ�eiλ�ψ�e−iλ�dF�λ��

with φ�eiλ� = #∞
j=0φje

ijλ, the frequency response function of φ�B�. If the sam-
ple second moments of the filtered series converge a.s. [i.p.] to their population
second moments, we obtain

lim
T→∞

1
T

T−j∑
t=1

φ�B�yt+jψ�B�yt =
∫ π

−π
e−ijλφ�eiλ�ψ�e−iλ�dF�λ� a.s. �i�p���

In the theorem below, we obtain an analogous integral formula for the limits of
the sample second moments, uniformly over �� for the more general situation
in which truncated versions of the filters are applied to arrays that satisfy CVG
and N or N2. The existence of a frequency domain formula for the limits rests
on the fact that, since the sample second moment limits γj� j = 0�1� � � � � in
CVG necessarily form a positive semidefinite sequence, there is an increasing
function G�λ�� −π ≤ λ ≤ π� having the property

γj =
∫ π

−π
e−ijλdG�λ�� j = 0�1� � � � �(2.8)

by a well-known Theorem of Herglotz. We note that G�λ� is non-constant if
and only if γ0 > 0�

The following theorem provides conditions under which (2.1)–(2.3) and, in
particular, CVG and N hold for the output of families of convolution filters
applied to yt�T�. Its proof is given in Appendix A. Many objective functions
defining parameter estimators in time series analysis, like the prediction error
criteria introduced in Section 1 or the Gaussian (pseudo) likelihood function,
can either be brought into the form of sample second moments of convolu-
tion filters applied to the data or are built up from such expressions. Hence,
Theorem 2.1 forms the basis for consistency proofs of such estimators. In par-
ticular, the consistency results in Findley, Pötscher and Wei (2000) are built
upon Theorem 2.1.
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Theorem 2.1. Given an array yt�T��1 ≤ t ≤ T� T = 1�2� � � � � let � denote
a set of sequences φ = �φ0, φ1� � � � ) for which �2�6� − �2�7� hold for some
sequence Ck. For each φ ∈ �, define

zt�φ�T� =
t−1∑
j=0

φjyt−j�T�� 1 ≤ t ≤ T� T = 1�2� � � � �(2.9)

(a) If the array yt�T� has the property CVGN, then (a1) and (a2) hold:
(a1) The arrays zt�φ�T� satisfy �2�2�–�2�3� (with A = �) and also property

�2�1� in the form

lim
T→∞

sup
φ�ψ∈�

∣∣∣∣∣T−1
T−j∑
t=1

zt+j�φ�T�zt�ψ�T� −
∫ π

−π
e−ijλφ�eiλ�ψ�e−iλ�dG�λ�

∣∣∣∣∣
= 0 a.s. �i�p��

(2.10)

for each j ≥ 0, with G�λ� as in �2�8�. The limit functions

γj�φ�ψ� =
∫ π

−π
e−ijλφ�eiλ�ψ�e−iλ�dG�λ�(2.11)

are bounded and jointly continuous on � w.r.t. coordinatewise convergence (and
hence w.r.t. the l1-norm). Specifically,

sup
φ�ψ∈�

∣∣γj�φ�ψ�∣∣ ≤ C2
0γ0�(2.12)

and, given sequences φN�ψN�N = 1�2� � � � � in � that converge coordinatewise
to limits φ�ψ ∈ �� we have

lim
N→∞

γj�φN�ψN� = γj�φ�ψ��(2.13)

(a2) For each φ ∈ �, let �φt0� φt1� � � � � φt�t−1�0�0� � � ��� t = 1�2� � � � � denote a
sequence of finite-length filters (not necessarily in �) approximating φ in such
a way that the following uniform boundedness and approximation properties
hold:

sup
φ∈�

�φtj� <∞� 0 ≤ j ≤ t− 1� t = 1�2� � � � �(2.14)

lim
k→∞

sup
φ∈�

∞∑
t=k

(
t−1∑
j=0

�φtj −φj�
)2

= 0�(2.15)

Then the arrays ẑt�φ�T� defined for each φ ∈ � by

ẑt�φ�T� =
t−1∑
j=0

φtjyt−j�T�� 1 ≤ t ≤ T� T = 1�2� � � � �

approximate the arrays zt�φ�T� in the sense of �2�4�. That is,

lim
T→∞

sup
φ∈�

1
T

T∑
t=1

�zt�φ�T� − ẑt�φ�T��2 = 0 a.s. �i�p���



TIME SERIES ARRAYS 823

Consequently, the arrays ẑt�φ�T� satisfy �2�2� − �2�3� and also �2�1� for all
j ≥ 0� with limits γj�φ�ψ� given by �2�11�.

(b) If the array yt�T� only has properties CVG and N2, then the arrays
zt�φ�T� defined in �2�9� satisfy all of the conclusions of part (a1) except possibly
�2�2�.

Remark 2.3 (Extensions of Theorem 2.1). (i) Suppose the array yt �T�
only satisfies N1. If � is any set of real-valued sequences (not necessarily
absolutely summable) such that (2.14) holds, then ẑt�φ�T� satisfies (2.2) as is
easily seen. From the special case φtj = φj�0 ≤ j ≤ t − 1, one obtains that
zt�φ�T� satisfies (2.2) if supφ∈�

∣∣φj

∣∣ <∞ for j ≥ 0.
(ii) Suppose � is as in Theorem 2.1 and yt �T� satisfies CVG and N2. If

supφ∈�
∑t−1

i=0 �φti −φi�2 → 0 as t → ∞ [which is weaker than (2.15)], then
ẑt�φ�T� satisfies (2.3).

(iii) Theorem 2.1(a2) also holds (with essentially the same proof) if the finite-
length filter approximating φ is allowed to depend on T, that is, φtj = φtj �T�,
provided (2.14) is changed to supT≥1 supφ∈� �φtj �T� � < ∞ for t ≥ 1� j ≥ 0
and a lim supT→∞-operator is inserted between the limit- and the supremum-
operators in (2.15).

3. Convergence of sample lagged second moments of residuals. In
this section we provide conditions under which the residuals from a linear
regression satisfy CVGN. Such results are of importance, for example, in case
a time series model is fit to the residuals rather than to the original data, and
consistency of the estimators for the time series model is to be established; cf.
Findley, Pötscher and Wei (2000).

Suppose that we observe dataYt� t = 1� � � � �T that conforms to a regression
model of the form

Yt = AXt + ut�(3.1)

in which the regressorsXt are nonstochastic column vectors of fixed dimension
dx ≥ 1. Any method of determining an estimate A∗

T of A from Y1� � � � �YT

defines an array of regression residuals u∗
t �T� = YT −A∗

TXT for 1 ≤ t ≤ T.
If the error process ut has the property CVG, that is,

lim
T→∞

1
T

T−j∑
t=1

ut+jut = γj a.s. �i�p�� for j = 0�1� � � � �(3.2)

it then automatically has property N by Remark 2.1, and the residuals u∗
t �T�

will have the property CVGN with γj given by (3.2) in view of Proposition 2.1
and Remark 2.2(i), provided u∗

t �T� approximates ut in the sense of (2.4), that
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is,

1
T

T∑
t=1

�u∗
t �T� − ut�2

= �A∗
T −A�

(
1
T

T∑
t=1

XtX
′
t

)
�A∗

T −A�′ → 0 a.s. �i�p��
(3.3)

as T → ∞ (′ denotes transpose). Given (3.2) and (3.3), Remark 2.2(iii) more-
over shows that the difference between the sample lagged second moments of
the errors ut and the residuals u∗

t �T� converges to zero uniformly in the lag,
that is,

max
0≤j≤T−1

∣∣∣∣∣ 1T
T−j∑
t=1

u∗
t+j �T�u∗

t �T� − 1
T

T−j∑
t=1

ut+jut

∣∣∣∣∣
= O

( 1
T

T∑
t=1

�u∗
t �T� − ut�2

) 1
2

 a.s. �i�p���
(3.4)

The crucial condition (3.3) for verifying CVGN for the residuals is satisfied,
for example, if the sequence T−1∑T

t=1XtX
′
t is bounded and A∗

T → A a.s.
[i.p.]. However, when the most familiar estimator of A is used, namely the
ordinary least squares estimator, we shall show in Sections 3.1 and 3.2 that
no assumptions concerningXt, and therefore none concerning the consistency
of the least squares estimator, are needed when ut in (3.1) has certain quite
general properties. [Inconsistency of the least squares estimator occurs, e.g.,
with additive outlier regressors and level shift regressors; see Findley et al.
(1998).]

With -+ denoting the Moore-Penrose inverse of a square matrix -, consider
the ordinary least squares estimator of A in (3.1) given by

ÂT =
T∑
t=1

YtX
′
t

(
T∑
t=1

XtX
′
t

)+
�(3.5)

and the associated regression residual array given for 1 ≤ t ≤ T by

ût �T� = Yt − ÂTXt �(3.6)

Using the reflexivity of the Moore-Penrose inverse, -+--+ = -+, condition
(3.3) now becomes

1
T

T∑
t=1

�ût �T� − ut�2 = 1
T

T∑
t=1

utX
′
t

(
T∑
t=1

XtX
′
t

)+
T∑
t=1

Xtut

→ 0 a.s. �i�p��
(3.7)

as T→ ∞. The ordinary least squares residuals satisfy

1
T

T∑
t=1

�ût �T� − ut�2 =
1
T

T∑
t=1

u2
t −

1
T

T∑
t=1

ût �T�2
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which makes it clear that, when (3.2) holds for ut, condition (3.7) is in fact
not only sufficient but also necessary for the residuals ût �T� to satisfy CVGN
[with γj the same as in (3.2)].

3.1. Obtaining CVGNa�s�. The set of assumptions yielding the a.s. version
of the crucial condition (3.7) under our least restrictive moment condition is:

Assumption A. The series ut has a linear representation,

ut =
∞∑

j=−∞
cjet−j�

( ∞∑
j=−∞

c2j <∞
)

(3.8)

in which et is a martingale difference sequence �w.r.t. an increasing sequence
of σ-fields Ft� having constant variance σ2

e = Ee2t and also the property that,
for some r > 2,

sup
−∞<t<∞

E � et �r<∞�(3.9)

Further, the spectral density fu�λ� = (
σ2
e /2π

) � ∑∞
j=−∞ cje

ijλ �2 of ut is essen-
tially bounded. That is, for some finite constant M,

fu�λ� ≤M �λ a�e���(3.10)

The following result is proved in Appendix B.

Theorem 3.1. Suppose that Yt has the form �3�1� with nonstochastic Xt

and with ut satisfying Assumption A. Then �3�7�a�s� holds for the residual array
ût�T� defined by �3�6�. Therefore, if ut also has the property �3�2�a�s� , then the
array ût�T� has the property CVGNa�s� �with the same limits γj as in �3�2��.

For the classical situation in which the regression errors ut are independent
and identically distributed with finite second moment γ0 = Eu2

t , Gleser (1966)
proved the a.s. convergence ofT−1∑T

t=1 ût�T�2 to γ0, assuming the invertibility
of the matrices

∑T
t=1XtX

′
t. Theorem 3.1 shows that, when the ut have bounded

higher-than-second moments, then Gleser’s i.i.d. assumption can be weakened
substantially. [Schmidt (1976) extended Gleser’s result to the case of i.i.d.
vectors ut and showed that Gleser’s invertibility assumption on

∑T
t=1XtX

′
t

could be avoided by use of the Moore-Penrose inverse. Theorem 3.1 can be
extended to the multivariate case easily.]

3.1.1. Variants of Assumption A. We first describe, in (a) below, a strength-
ening of Assumption A that yields (3.2)a�s� as well as (3.7)a�s� and therefore
CVGNa�s for ût �T�. In (b), we present an alternative set of conditions that
yields the same result without requiring (3.10).

(a) To obtain (3.2)a�s� in the simplest case ut = et, with et as in Assumption
A, we must achieve T−1∑T

t=1 e
2
t

a�s�→ γ0, most naturally with γ0 = σ2
e . Under
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(3.9), a necessary and sufficient condition for this is

lim
T→∞

T−1
T∑
t=1

E�e2t � Ft−1� = σ2
e a.s.(3.11)

[This follows from Corollary 2.8.5 of Stout (1974) and Kronecker’s lemma.] This
condition is therefore basic. In an unpublished note, T. Mikosch has shown how
(3.2)a�s� can be obtained from (3.8), (3.9) and (3.11) under additional constraints
on the coefficients in (3.8), namely

cj = 0 for j < 0 and
∞∑
j=1

jc2j <∞�(3.12)

[His proof is a modification of the arguments given in 3.7 and 3.9 of Phillips
and Solo (1992) for the case of i.i.d. et.] Hence, Assumption A augmented by
(3.11), (3.12) yields CVGNa�s� for ut and ût�T� (with the same limits γj).

(b) Alternatively, if we assume that the et in (3.8) are independent (with
zero mean and constant variance) and that r > 4 in (3.9), then CVGNa�s� holds
for ut and for ût �T� (with the same limits γj) if f �λ� is square integrable, a
weaker assumption than (3.10). This follows from Theorem 2.1 of Findley and
Wei (1993) via the Borel-Cantelli Lemma.

Remark 3.1. Under Assumption A or the assumptions of (b), it follows
from Theorems 1.1, 1.2 and Lemma 2.1 of Lai and Wei (1983) that the sample
means of ut�1 ≤ t ≤ T� converge to zero a.s. By Remark 2.2 (ii) and the results
of Theorem 3.1 or (b), it follows that the same is true of the sample means of
ût �T� �1 ≤ t ≤ T�

Remark 3.2. (a) Inspection of the proof of Theorem 3.1 shows that the
expression in (3.7) is in fact o�T 2

r−1α2T� a.s. for any sequence αT > 0 such that∑∞
T=1T

−1α−r
T < ∞ [e.g., α2T = �logT� 2

r �log logT� 2+β
r for β > 0]. This implies a

rate of convergence in (3.4) with u∗
t �T� = ût�T�. Under stronger assumptions,

including conditions on the regressors, Chen and Ni (1989) obtain the better
rate O�T−1 log logT� a.s. for the expression in (3.7).

(b) If ut is only assumed to be a mean zero, weakly stationary process with
essentially bounded spectral density, the property (3.7)a�s� can still be obtained
under suitable assumptions on the regressors and the rate of convergence of
T−1∑T

t=1 u
2
t ; see Theorem 3 of Hannan (1978). This theorem also yields rates

of convergence in (3.7).

3.2. Obtaining CVGNi�p�. For a mean zero, covariance stationary time se-
ries ut satisfying (3.2)i�p�, the essential boundedness of the spectral density,
that is, (3.10), is sufficient for CVGNi�p� to hold for the residuals ût �T�: With
M as in (3.10) and dx denoting the dimension of Xt, it is shown in Appendix
B that

E

{
1
T

T∑
t=1

�ût �T� − ut�2
}
≤ 2πdxM

T
�(3.13)
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This yields (3.7)i�p�� and therefore CVGNi�p� by Proposition 2.1 [with γj as
in (3.2)i�p�]. When the series ut is Gaussian and

∑T
t=1XtX

′
t is invertible for

some T, much less is required. In this case, continuity of the spectral measure
F�λ� of ut on �−π�π� yields CVGN for ût �T� with mean square convergence
and with γj = Eut+jut, by Theorem 2.2 of Štulajter (1991), Theorem IV.3.6 of
Hannan (1970) and Theorem III.9.6 of Zygmund (1968). Also (3.2) holds with
almost sure as well as mean square convergence and γj = Eut+jut.

In either case, the sample means of ut�1 ≤ t ≤ T� converge to zero in
probability. Hence, by Remark 2.2 (ii) the sample means of ût �T� �1 ≤ t ≤
T� have the same property. For further results and a discussion of rates of
convergence in (3.7)i�p� see Pötscher (1998).

4. Linear processes with infinite variance noise. Suppose yt is a lin-
ear process, that is,

yt =
∞∑
i=0

ciet−i�(4.1)

where et is i.i.d. If et has zero mean and finite variance and the coefficients ci
are square-summable, then CVGa�s� holds for yt as an immediate consequence
of the ergodic theorem; furthermore, N1a�s� and N2a�s� hold as explained in
Remark 2.1. By contrast, if yt is a linear process with infinite variance noise,
CVG will typically not hold. In this section, we show that a large class of
such processes can still be brought into the realm of the theory developed in
the preceding sections through application of an appropriate rescaling; cf. also
Section 5.1 below.

In the following we assume that the i.i.d. process et has an infinite second
moment and regularly varying tail probabilities. More specifically, we assume

P
(∣∣et∣∣ > x

) = x−αL �x� � 0 < α < 2�(4.2)

where L �x� is a slowly varying function at ∞� and

P �et > x� /P (∣∣et∣∣ > x
)→ ρ� 0 ≤ ρ ≤ 1� as x→ ∞�(4.3)

We note that (4.2) and (4.3) describe the fact that the distribution of et belongs
to the domain of attraction of a (non-normal) stable distribution [Feller (1966),
Theorems IX.8.1a and XVII.5.1a]. The coefficients ci are assumed to satisfy

0 <
∞∑
i=0

∣∣ci∣∣δ <∞ for some δ < α� δ ≤ 1�(4.4)

Under (4.2)–(4.4) almost sure convergence holds in (4.1); see Cline (1983).
Set λT = �T−1∑T

t=1 y
2
t �−1/2 if the r.h.s. is finite, and set λT = 1 otherwise.

Define the array yt�T�� 1 ≤ t ≤ T� via

yt �T� = λTyt�(4.5)

which amounts to a stochastic rescaling of the data. Making use of results in
Davis and Resnick (1985), we now show that this array satisfies CVGNi�p��
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Proposition 4.1. Under �4�1�–�4�4� the array yt�T� defined by �4�5� satis-
fies CVGNi�p� with γj =

∞∑
i=0

cici+j/
∞∑
i=0

c2i where the ci are as in �4�1�.

Proof. From Theorem 4.2(i) in Davis and Resnick (1985) and the remark
following that theorem, we can conclude that a−2

T

∑T
t=1 y

2
t converges in distri-

bution to a nonnegative stable random variable, where aT is defined in (2.1) of
Davis and Resnick (1985). Since the limiting distribution (being stable) cannot
have an atom at zero, the event �T−1∑T

t=1 y
2
t > 0� has probability approach-

ing one. Consequently, the continuous mapping theorem and Theorem 4.2(i)
of Davis and Resnick (1985) now establish CVGi�p��

To establish N1i�p� and N2i�p�, we first note that T−1/2aTλT converges in
distribution to the reciprocal of the square-root of the stable random variable
mentioned above. Now T−1/2aT → ∞, since the sequence aT is regularly vary-
ing of index 1/α [i.e., aT = T1/αL1�T�, where L1 is a slowly varying function]
with 0 < α < 2� Hence, λT converges to zero in probability. Then for any ε > 0
and 1 ≤ s ≤ T we have

P
(
T−1/2 ∣∣ys �T�∣∣ > ε

) = P
(
T−1/2 ∣∣ys∣∣λT > ε

)
≤ P

(
T−1/2 ∣∣ys∣∣ > ε

)+P �λT > 1�(4.6)

= P
(
T−1/2 ∣∣y1

∣∣ > ε
)+P �λT > 1� �

where we have made use of strict stationarity of yt� Clearly, the r.h.s. of (4.6)
converges to zero for T → ∞, thus establishing the in probability version of
the negligibility conditions. ✷

5. Some implications and extensions.

5.1. Implications. (i) In Sections 3 and 4 the property CVGN has been
established for regression residuals and infinite variance processes. Conse-
quently, any result in time series analysis that relies on this property as the
only assumption on the data (as is the case for many consistency results)
can now be applied to regression residuals and infinite variance processes. In
particular, in Pötscher (1987) a theory of (generalized) consistency results for
maximum likelihood and Whittle likelihood estimation of possibly misspeci-
fied ARMA models was given that only relies on property CVG as the only
assumption on the data. That paper considered time series, not arrays, hence
CVG coincides with CVGN; cf. Remark 2.1. It is easy to see that the results
in Pötscher (1987) continue to hold for arrays, if CVG is replaced by CVGN.
Hence, Theorem 3.1 and Proposition 4.1 show that the (generalized) consis-
tency results of Pötscher (1987) are applicable when ARMA models are fit
to regression residuals or linear processes with infinite variance noise using
maximum likelihood or Whittle likelihood estimation. The same is true for the
general invertible, short-memory models considered in Findley, Pötscher and
Wei (2000) with parameter estimators optimizing either likelihood or forecast
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performance criteria. (The results in both papers also cover the case where the
model being fit is misspecified in the sense that it is not capable of generating
the asymptotic autocovariance structure of the data.)

(ii) Sections 4 and 5 of Dahlhaus (1997) (cf. especially the proof of The-
orem 5.1) give assumptions and results sufficient for a proof that CVGNi�p�

holds for a broad class of locally stationary processes with mean zero. This
observation, combined with the preceding remark, shows that the (general-
ized) consistency results in Pötscher (1987) and Findley, Pötscher and Wei
(2000) apply when (misspecified) constant-parameter models are fit to locally
stationary processes.

5.2. Extensions. (i) In property CVG we assumed the limits γj to be non-
random for the sake of simplicity. The results of the paper extend quite
straightforwardly to the case where the limits γj are allowed to be random.
Such an extension is useful when considering non-ergodic processes, since such
processes − after suitable renormalization − sometimes satisfy such a more
general version of CVG.

(ii) In Section 1, we mentioned seasonal adjustment as a source of array
data. This is true in a limited sense when a time series of length T is input
to the linear X-11 seasonal adjustment procedure described in Findley et al.
(1998). Then seasonally adjusted values, say at�T��1 ≤ t ≤ T� depend on T
only for 1 ≤ t ≤ M and for T −M < t ≤ T for fixed finite M, and otherwise
are the output of a finite-length, time invariant convolution filter. In this case,
the adjusted series (after differencing) will automatically have the property
CVGN if the input series has the property CVG (after differencing). If, instead
of the X-11 procedure, the ARIMA model-based signal-extraction procedure
discussed in Burman (1980) is used (and if the model has a moving average
component), then all of the at�T� depend on T, and results establishing CVGN
for the differenced adjusted series in adequate generality have not yet been
obtained. (The Tunnicliffe-Wilson method described by Burman for calculating
the adjusted series can be used in a rather straightforward way to establish
CVGN for the very restricted situation wherein the input series follows an
ARMA model whose coefficients are known.)

(iii) The results of Section 2 (and their proofs) require only an appropriate
change of notation in order to cover the case of n-dimensional vector time
series with n > 1.

APPENDIX A:
PROOFS OF THEOREM 2.1 AND PROPOSITION 2.1

We shall make repeated use of the following elementary result.

Lemma A.1. Suppose that the sequence of nonnegative extended real-valued
random variables UT�T = 1�2� � � � � has the property that for every k ≥ 1 and
T ≥ 1�

UT ≤ ηkVT +Wk�T
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holds, where ηk are nonnegative real numbers, and VT and Wk�T are nonneg-
ative extended real-valued random variables, having the following properties�

(a) The sequence VT satisfies VT = O�1� a.s. [Op �1�
]
.

(b) For each k, the sequence Wk�T converges to 0 a.s. �i.p.� as T→ ∞.
(c) limk→∞ ηk = 0�

Then
UT → 0 a�s� �i�p���

Proof. Without loss of generality we may assume ηk > 0 for all k. The
convergence in probability assertion follows from the fact that for every δ > 0

P�UT ≥ δ� ≤ P

(
VT ≥ δ

2ηk

)
+P

(
Wk�T ≥ δ

2

)
�

Indeed, for every ε > 0, there exist a k = k�ε� and a Tε such that P�VT ≥ δ/
2ηk� < ε/2 for all T ≥ Tε, and there is a Tk ≥ Tε such that P

(
Wk�T ≥ δ/2

)
<

ε/2 for T ≥ Tk. Therefore P�UT ≥ δ� < ε for all T ≥ Tk. Hence, UT → 0 i.p.
The a.s. convergence assertion follows similarly. ✷

We note that Lemma A.1 and its proof remain valid even for non-measurable
UT� VT and Wk�T, if convergence and boundedness in probability are inter-
preted in terms of the induced outer probability.

Proof of Proposition 2.1. To obtain (2.2) and (2.3) for ẑt�α�T�, observe
that for s = 1+ j or s = T− j we have

supα∈A
� ẑs�α�T� �

T
1
2

≤ supα∈A
� zs�α�T� �

T
1
2

+ supα∈A
� ẑs�α�T� − zs�α�T� �

T
1
2

≤ supα∈A
� zs�α�T� �

T
1
2

+
{
supα∈A

1
T

T∑
t=1

�ẑt�α�T� − zt�α�T��2
} 1

2

�

with the first term of the final bound converging to zero a.s. [i.p.] by the
respective negligibility conditions for zt�α�T� assumed in the proposition. The
second term converges to zero a.s. [i.p.] by (2.4).

To establish (2.5), observe that for all j ≥ 0,∣∣∣∣∣ 1T
T−j∑
t=1

ẑt+j�α�T�ẑt�β�T� − 1
T

T−j∑
t=1

zt+j�α�T�zt�β�T�
∣∣∣∣∣

= 1
T

∣∣∣∣∣
T−j∑
t=1

�ẑt+j�α�T� − zt+j�α�T���ẑt�β�T� − zt�β�T��

+
T−j∑
t=1

�ẑt+j�α�T� − zt+j�α�T��zt�β�T�
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+
T−j∑
t=1

zt+j�α�T��ẑt�β�T� − zt�β�T��
∣∣∣∣∣

≤

√√√√ 1
T

T−j∑
t=1

�ẑt+j�α�T� − zt+j�α�T��2

×


√√√√ 1
T

T−j∑
t=1

�ẑt�β�T� − zt�β�T��2 +

√√√√ 1
T

T−j∑
t=1

z2t �β�T�



+

√√√√ 1
T

T−j∑
t=1

z2t+j�α�T��

√√√√ 1
T

T−j∑
t=1

�ẑt�β�T� − zt�β�T��2

≤
√√√√ 1
T

T∑
t=1

�ẑt�α�T� − zt�α�T��2

×


√√√√ 1
T

T∑
t=1

�ẑt�β�T� − zt�β�T��2 +
√√√√ 1
T

T∑
t=1

z2t �β�T�



+
√√√√ 1
T

T∑
t=1

z2t �α�T��
√√√√ 1
T

T∑
t=1

�ẑt�β�T� − zt�β�T��2 �

Consequently,

sup
α�β∈A

∣∣∣∣∣ 1T
T−j∑
t=1

ẑt+j�α�T�ẑt�β�T� − 1
T

T−j∑
t=1

zt+j�α�T�zt�β�T�
∣∣∣∣∣

≤
√√√√sup

α∈A

1
T

T∑
t=1

�ẑt�α�T� − zt�α�T��2(A.1)

×


√√√√sup

α∈A

1
T

T∑
t=1

�ẑt�α�T� − zt�α�T��2 + 2

√√√√sup
α∈A

1
T

T∑
t=1

z2t �α�T�

 �

The expression supα∈A
1
T

∑T
t=1 z

2
t �α�T� is bounded a.s. [i.p.] because (2.1) holds

for j = 0 and because γ0 �α� α� is assumed to be bounded on A. Therefore, the
final bound on the r.h.s. of (A.1) converges to zero a.s. [i.p.] in view of (2.4).
Now (A.1) and (2.1) yield (2.5). ✷

Proof of Theorem 2.1. We first prove part (b). To establish (2.10) con-
sider first the case j = 0 in (2.10). Note that, for any k ≥ 0, the supremum
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term in (2.10) with j = 0 is bounded by the sum of the expressions (A.2)–(A.4)
below, where we use the conventions that yt�T� = 0 when t ≤ 0 and #bi=a = 0
if a > b:

sup
φ�ψ∈�

∣∣∣∣∣∫ π

−π

(
k∑

j=0
φje

ijλ

)(
k∑

j=0
ψje

−ijλ
)
dG�λ�

−
∫ π

−π
φ�eijλ�ψ�e−ijλ�dG�λ�

∣∣∣∣∣�
(A.2)

sup
φ�ψ∈�

∣∣∣∣∣ 1T T∑
t=1

k∑
j=0

φjyt−j�T�
k∑

j=0
ψjyt−j�T�

−
∫ π

−π

(
k∑

j=0
φje

ijλ

)(
k∑

j=0
ψje

−ijλ
)
dG�λ�

∣∣∣∣∣ �
(A.3)

sup
φ�ψ∈�

∣∣∣∣∣ 1T T∑
t=1

k∑
j=0

φjyt−j�T�
k∑

j=0
ψjyt−j�T�

− 1
T

T∑
t=1

t−1∑
j=0

φjyt−j�T�
t−1∑
j=0

ψjyt−j�T�
∣∣∣∣∣ �

(A.4)

Clearly (A.2) is equal to

sup
φ�ψ∈�

∣∣∣∣∣∫ π

−π

(
k∑

j=0
φje

ijλ
∞∑

j=k+1
ψje

−ijλ +
∞∑
j=0

ψje
ijλ

∞∑
j=k+1

φje
−ijλ

)
dG�λ�

∣∣∣∣∣
≤ γ0 · sup

φ�ψ∈�

{ ∞∑
j=0

�φj�
∞∑

j=k+1
�ψj� +

∞∑
j=0

�ψj�
∞∑

j=k+1
�φj�

}
≤ 2γ0C0Ck+1�

(A.5)

Furthermore, (A.3) is bounded by

sup
φ�ψ∈�

k∑
i�j=0

�φi��ψj�
∣∣∣∣∣ 1T T∑

t=1
yt−i�T�yt−j�T� − γ|j−i|

∣∣∣∣∣
≤ C2

0 max
0≤i� j≤k

∣∣∣∣∣ 1T T∑
t=1

yt−i�T�yt−j�T� − γ|j−i|

∣∣∣∣∣
= C2

0 max
0≤i� j≤k

∣∣∣∣∣ 1T
T−max�i�j�∑

t=1
yt+|j−i|�T�yt�T� − γ|j−i|

∣∣∣∣∣ �
(A.6)

The expression inside the absolute value in (A.4) can be written as the sum of

D
�1�
k�T�φ�ψ� =

1
T

T∑
t=k+2

(
k∑
i=0

φiyt−i�T� −
t−1∑
i=0

φiyt−i�T�
)

k∑
j=0

ψjyt−j�T�



TIME SERIES ARRAYS 833

and

D
�2�
k�T�φ�ψ� =

1
T

T∑
t=k+2

t−1∑
i=0

φiyt−i�T�
(

k∑
j=0

ψjyt−j�T� −
t−1∑
j=0

ψjyt−j�T�
)
�

Observe that

sup
φ�ψ∈�

�D�1�
k�T�φ�ψ�� ≤ sup

φ�ψ∈�

1
T

T∑
t=k+2

t−1∑
i=k+1

k∑
j=0

�φi��ψj��yt−i�T���yt−j�T��

= sup
φ�ψ∈�

1
T

k∑
j=0

T−1∑
i=k+1

�φi��ψj�
T∑

t=i+1
�yt−i�T���yt−j�T��

≤ sup
φ�ψ∈�

k∑
j=0

T−1∑
i=k+1

�φi��ψj�
(
1
T

T∑
t=i+1

y2
t−i�T�

)1/2

×
(
1
T

T∑
t=i+1

y2
t−j�T�

)1/2

≤
(
1
T

T∑
t=1

y2
t �T�

)
C0Ck+1�

(A.7)

A similar argument shows that also

sup
φ�ψ∈�

� D�2�
k�T�φ�ψ� �≤

(
1
T

T∑
t=1

y2
t �T�

)
C0Ck+1�(A.8)

Thus, for the supremum term in (2.10), the bounds (A.5)–(A.8) yield

sup
φ�ψ∈�

∣∣∣∣∣ 1T T∑
t=1

zt�φ�T�zt�ψ�T� −
π∫

−π
φ
(
eiλ
)
ψ
(
e−iλ

)
dG �λ�

∣∣∣∣∣
≤ 2

(
γ0 +

1
T

T∑
t=1

y2
t �T�

)
C0Ck+1

+C2
0 max
0≤i�j≤k

∣∣∣∣∣ 1T
T−max�i�j�∑

t=1
yt+|j−i|�T�yt�T� − γ|j−i|

∣∣∣∣∣ �
Hence Lemma A.1 applies, because of (2.7), CVG and N2, to yield (2.10) with
j = 0. The validity of (2.10) for j > 0 is now established as follows: For each
φ= �φ0� φ1� � � � � ∈ � and each l > 0, define φ �l� = �0� � � � 0� φ0� φ1� � � � � (l lead-
ing zeroes). For zt�φ�T� given by (2.9) and for zt�φ �l� �T�=∑t−1

i=0φ �l�i yt−i�T�,
we have zt�φ �l� �T� = zt−l�φ�T� for l + 1 ≤ t ≤ T and zt�φ �l� �T� = 0 for
1 ≤ t ≤ l. Therefore, for each T = 1�2� � � � � we have

T−1
T−l∑
t=1

zt+l�φ�T�zt�ψ�T� = T−1
T∑
t=1

zt�φ�T�zt�ψ �l� �T��
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Now enlarge � to include all the filters φ �l� for some fixed l > 0, then the
enlarged set is still a relatively compact subset of l1 w.r.t. the norm topology,
because

sup
φ∈�

∞∑
i=k

∣∣φ �l�i
∣∣ = sup

φ∈�

∞∑
i=max�0�k−l�

∣∣φi

∣∣ ≤ Cmax�0�k−l��

by (2.6). Thus applying the already established relation (2.10) with j = 0
to this enlarged set gives (2.10) for the original set � and with j = l. This
completes the proof of (2.10). We next prove (2.3). Clearly, for any k ≥ 0 and
j ≥ 0∣∣zT−j �φ�T�∣∣

T
1
2

≤
∣∣∣∣∣T− 1

2

k∑
i=0

φiyT−j−i�T�
∣∣∣∣∣+

∣∣∣∣∣T− 1
2

T−j−1∑
i=k+1

φiyT−j−i�T�
∣∣∣∣∣

≤ T− 1
2

k∑
i=0

∣∣φi

∣∣ ∣∣yT−j−i�T�∣∣+ (
T−j−1∑
i=k+1

φ2
i

) 1
2
(
1
T

T−j−1∑
i=k+1

y2
T−j−i�T�

) 1
2

�

Hence,

sup
φ∈�

∣∣zT−j�φ�T�∣∣
T

1
2

≤ C0 max
0≤i≤k

∣∣yT−j−i�T�∣∣
T

1
2

+Ck+1

(
1
T

T∑
t=1

y2
t �T�

) 1
2

�

The first term on the r.h.s. goes to zero a.s. [i.p.] as T → ∞ by N2 and the
square root in the second term is O�1� a.s.

[
Op�1�

]
because of CVG. Since

Ck+1 → 0 as k → ∞ by (2.7), Lemma A.1 now establishes (2.3). The bound
(2.12) follows from

sup
φ�ψ∈�

∣∣γj �φ�ψ�∣∣ ≤ sup
φ∈�

π∫
−π

∣∣φ (eiλ)∣∣2 dG �λ� ≤ C2
0γ0 �

Continuity w.r.t. coordinatewise convergence on � follows easily from the ob-
servation that under �2�6� − �2�7� coordinatewise convergence of φN ∈ � to
φ ∈ � implies l1-norm convergence and hence uniform convergence on �−π�π�
of the sequence of functions φN

(
eiλ
)
to φ

(
eiλ
)
� This completes the proof of (b).

Part (a1), with its additional assertion that zt �φ�T�, has property (2.2) if N1
holds, follows from �2�6� − �2�7� and (2.9), since (2.6) implies supφ∈�

∣∣φj

∣∣ <∞
for j ≥ 0.

It remains to prove part (a2). By Theorem 2.1(a1) and Proposition 2.1 it suf-
fices to verify (2.4) for zt�φ�T� and ẑt�φ�T�, setting A = � and J = �0�1� � � ��
in the Proposition� Observe that (2.1) then reduces to (2.10) and that, by (2.12),
the integrals in (2.10) are bounded.

Set δφti = φti −φi�0 ≤ i ≤ t− 1. Then

ẑt�φ�T� − zt�φ�T� =
t−1∑
i=0

δ
φ
tiyt−i�T��
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To verify (2.4), we have therefore to show that

lim
T→∞

sup
φ∈�

1
T

T∑
t=1

(
t−1∑
i=0

δ
φ
tiyt−i�T�

)2

= 0 a.s. �i�p���(A.9)

For fixed k ≥ 1�

sup
φ∈�

1
T

T∑
t=1

(
t−1∑
i=0

δ
φ
tiyt−i�T�

)2

≤ sup
φ∈�

1
T

k∑
t=1

(
t−1∑
i=0

δ
φ
tiyt−i�T�

)2

+ sup
φ∈�

1
T

T∑
t=k+1

(
t−1∑
i=0

δ
φ
tiyt−i�T�

)2

≤ sup
1≤t≤k

� yt�T� �2
T

· sup
φ∈�

k∑
t=1

(
t−1∑
i=0

� δφti �
)2

+ sup
1≤t≤T

� yt�T� �2
T

· sup
φ∈�

T∑
t=k+1

(
t−1∑
i=0

� δφti �
)2

�

(A.10)

The first factor of the first term of this final bound converges to 0 by N1, and
its second factor is finite for fixed k, due to (2.6) and (2.14). For the second
term, it follows from

sup
1≤t≤T

� yt�T� �2
T

≤ 1
T

T∑
t=1

yt�T�2 → γ0 a.s. �i�p��(A.11)

that its first factor is a.s. [i.p.] bounded, whereas its second factor is bounded
by the supremum in (2.15) which converges to 0 as k→ ∞. Thus Lemma A.1
applies to (A.10) and yields (A.9). This completes the proof of Theorem 2.1. ✷

Remark A.1. The suprema of families of random variables in parts (a1)
and (b) of Theorem 2.1 (and its proof) are clearly measurable, since they are
of the form supφ�ψ∈� f�ω�φ�ψ�, where f�ω� �� �� is continuous and f��� φ�ψ�
is �-measurable, and since � is separable. The corresponding suprema in
part (a2) (and its proof) are all of the form supφ�ψ∈�

∣∣Y′F �φ�ψ�Y− h �φ�ψ�∣∣
or supφ∈�

∣∣f′ �φ�Y∣∣, where F �φ�ψ� is a T×T matrix valued function, f is a
T×1 vector valued function, and h is a real-valued function. TheT×1 vectorY
is given by �y1�T�� � � � � yT�T��′ � Define M = ��F �φ�ψ� � h �φ�ψ�� � φ�ψ ∈ ��
which is (isomorphic to) a subset of an Euclidean space of appropriate dimen-
sion. Consequently, M is separable. Let N ⊆ M be a countable dense subset.
Then

sup
φ�ψ∈�

∣∣Y′F �φ�ψ�Y− h �φ�ψ�∣∣ = sup
�C�d�∈M

∣∣Y′CY− d
∣∣ = sup

�C�d�∈N

∣∣Y′CY− d
∣∣ �
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the latter equality being true since �Y′CY − d� is continuous in �C�d� and
since N is dense in M. This establishes measurability of the supremum, since
N is countable. The argument for supφ∈� �f′�φ�Y� is analogous.

In Proposition 2.1 the analogous suprema need not be measurable in gen-
eral. In the case of non-measurability, convergence in probability is to be un-
derstood w.r.t. the induced outer probability.

APPENDIX B:
DERIVATIONS OF THEOREM 3.1 AND (3.13)

Proof of Theorem 3.1. It suffices to verify (3.7)a�s�. Let S�T� denote a
matrix of order dx such that S�T�′S�T� = �∑T

t=1XtX
′
t�+ and define c�t�T� =

S�T�Xt� 1 ≤ t ≤ T. Then

T∑
t=1

utX
′
t

(
T∑
t=1

XtX
′
t

)+
T∑
t=1

Xtut =
(

T∑
t=1

utc�t�T�
)′ (

T∑
t=1

utc�t�T�
)

=
dx∑
j=1

(
T∑
t=1

cj�t�T�ut
)2

�

(B.1)

where cj�t�T� is the jth coordinate of c�t�T�. Thus it suffices to verify

T− 1
2

(
T∑
t=1

cj�t�T�ut
)
→ 0 a.s.(B.2)

for each 1 ≤ j ≤ dx. By Lemma 2.1 and Theorem 1.2 of Lai and Wei (1983), a
time series ut that satisfies Assumption A is an Sr-system. That is, there is a
finite constant Cr such that

E

∣∣∣∣∣ T∑
t=1

cj�t�T�ut
∣∣∣∣∣
r

≤ Cr

(
T∑
t=1

c2j�t�T�
) r

2

�(B.3)

with r as in (3.9). Observe that

T∑
t=1

c2j�t�T� ≤
T∑
t=1

dx∑
j=1

c2j�t�T� =
T∑
t=1

c�t�T�′c�t�T� =
T∑
t=1

X′
tS�T�′S�T�Xt

= trace

{(
T∑
t=1

XtX
′
t

)(
T∑
t=1

XtX
′
t

)+}
≤ dx�

(B.4)

Applying (B.4) to (B.3), we obtain

E

∣∣∣∣∣ T∑
t=1

cj�t�T�ut
∣∣∣∣∣
r

≤ Crd
r
2
x �

Because r > 2, a simple application of the Borel-Cantelli lemma yields (B.2). ✷
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Proof of (3.13). Observe from (B.1) and (B.4) that

E

{
T∑
t=1

utX
′
t

(
T∑
t=1

XtX
′
t

)+
T∑
t=1

Xtut

}
=

dx∑
j=1

E

{
T∑
t=1

cj�t�T�ut
}2

=
dx∑
j=1

∫ π

−π

∣∣∣∣∣ T∑
t=1

cj�t�T�eitλ
∣∣∣∣∣
2

fu �λ�dλ

≤ 2πM
dx∑
j=1

T∑
t=1

c2j�t�T� ≤ 2πMdx�

an inequality equivalent to (3.13). ✷
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