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We develop a new generalized coupling approach to the study of stochas-
tic delay equations with Hölder continuous coefficients, for which analytical
PDE-based methods are not available. We prove that such equations possess
unique weak solutions, and establish weak ergodic rates for the corresponding
segment processes. We also prove, under additional smoothness assumptions
on the coefficients, stabilization rates for the sensitivities in the initial value
of the corresponding semigroups.

1. Introduction. In this paper, we introduce a new technique which makes it possible
to study stochastic equations whose coefficients are assumed to be only Hölder continuous,
and which does not rely on analytical results from the PDE theory. The analytic approach to
the study of diffusion processes dates back to Kolmogorov, and nowadays is a common tool
for the analysis of SDEs with low regularity of coefficients; for example, [26]. For stochastic
systems of more complicated structure, for example, those described by stochastic equa-
tions with delay, this approach is not realistic because of the necessity to study PDEs in
(infinite-dimensional) functional spaces. For such systems, the Itô–Lévy stochastic approach
is typically used which requires (one-sided local) Lipschitz continuity of the coefficients; for
example, [21] or [29]. The current paper shows that the range of application of the standard
stochastic analysis tools can be substantially extended, including delay equations with low
regularity of the coefficients.

Our approach is based on the concept of generalized coupling, which extends the classical
notion of coupling in the following way. By definition, a coupling is a probability measure
on a product space with prescribed marginal distributions. For a generalized coupling, the
marginals satisfy instead milder deviation bounds from the prescribed distributions. The class
of generalized couplings is much wider than of classical couplings, and it is typically much
easier to construct for a given system a generalized coupling with desired properties than a
true one; for more details, see Section 3 below. This makes generalized couplings quite an
efficient tool in the ergodic theory of Markov processes; see the recent paper [6] where they
were used as a key ingredient in the construction of contracting/nonexpanding distance-like
functions for complicated SPDE models.

In [6], generalized couplings were first constructed using stochastic control arguments, and
then used for the construction of true couplings; in this last step, the change of the marginal
laws caused by the control terms was in a sense reimbursed. We call this type of argument a
Control-and-Reimburse (C-n-R) strategy. The same general idea—to apply a stochastic con-
trol in order to improve the system, and then to take into account the impact of the control—is
scattered in the literature; for example, it is used in [17], Section 5.2, in a construction of of
contracting/nonexpanding distance-like function d(x, y) for delay equations, in [15] in an
approach to the study of weak ergodicity of SPDEs, in [1] in the proof of ergodicity in total
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variation for degenerate diffusions, and in [4] in the proof of ergodicity in total variation for
solutions to Lévy driven SDEs. Related ideas were used to establish the Harnack inequality
for SDEs and SFDEs [13, 30].

We further develop this general idea in the following two directions. First, we show that
the C-n-R trategy is well applicable under just Hölder continuity assumptions on the coeffi-
cients (actually, one-sided Hölder continuity for the drift). This makes it possible to establish
ergodic rates for delay equations with non-Lipschitz coefficients; moreover, essentially the
same generalized coupling construction allows one to prove well-posedness of the system,
that is, that the weak solution to the equation is uniquely defined and the corresponding seg-
ment process is a time-homogeneous Markov process with the Feller property. Second, we
establish stabilization rates for sensitivities for the model; that is, for the derivatives of the
semigroup rather than for the semigroup itself. The natural and commonly adopted way to get
such rates in a finite-dimensional setting is based on the Bismut–Elworthy–Li-type formulae
([3, 12]) which give integral representations of sensitivities based on the integration-by-parts
formulae. Such a regularization effect in an infinite-dimensional setting becomes much more
structure demanding, since the random noise (which is the source of the integration-by-parts
formula) needs to be nondegenerate in the entire space; for one result of such type and a de-
tailed discussion we refer to [8], where reaction-diffusion equations with a cylindrical noise
are considered. In the delay case, the noise is finite-dimensional, and thus is strongly degen-
erate; hence the Bismut–Elworthy–Li-type formula for the (Fréchet) derivatives of the semi-
group is hardly available. Nevertheless, employing the C-n-R strategy we are able to derive
a family of representation formulae for these derivatives, which can be understood as “poor
man’s Bismut–Elworthy–Li-type formulae”; see (2.21) and (6.27). Namely, these formulae
are not completely free from gradient terms like ∇f , but the weights in the corresponding
integral expressions can be forced to decay exponentially fast at an arbitrarily large rate. Us-
ing these representation formulae, we manage to establish stabilization rates for sensitivities
(derivatives) of arbitrary order; note that the (full) regularization effect now has no reason to
appear, and thus for these results we have to assume certain smoothness of the coefficients.

The structure of the paper is the following. In Section 2, the main results are formulated
and briefly discussed. To make the exposition transparent, we explain in a separate Section 3
the essence of the method used in all the proofs. The detailed proofs of the three main groups
of results are given in Section 4, Section 5 and Section 6, respectively.

2. Main results.

2.1. Weak solution: Existence and uniqueness. Let n ∈ N and r > 0. Denote by C =
C([−r,0],Rn) the space of continuous functions with the supremum norm ‖ · ‖. For a
stochastic process X = {X(t), t ≥ −r} in R

n define the corresponding segment process
X = {Xt , t ≥ 0} in C by

Xt = {
X(t + s), s ∈ [−r,0]} ∈ C, t ≥ 0.

Consider the stochastic delay differential equation (SDDE)

(2.1) dX(t) = a(Xt )dt + σ(Xt )dW(t), t ≥ 0,

with the initial condition X0 = x ∈ C. Here, W is a Brownian motion in R
m, m ≥ 1, and

a :C→R
n and σ :C →R

n×m are given functions. We will focus on weak solutions; that is,
processes X with continuous trajectories such that (2.1) holds true with some Wiener process
W .

Our main assumptions are listed below.
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H1. The function a is continuous, bounded on bounded subsets of C and satisfies the
following finite range one-sided Hölder condition with index α > 0: there exists C such that

(2.2)
(
a(x) − a(y), x(0) − y(0)

)≤ C‖x − y‖α+1, ‖x − y‖ ≤ 1.

Here and below, we denote the scalar product in R
n by (·, ·). We can and will assume without

loss of generality that α ≤ 1.
H2. The function σ satisfies the following finite range Hölder condition with index β >

1/2:

(2.3)
∣∣∣∣∣∣σ(x) − σ(y)

∣∣∣∣∣∣≤ C‖x − y‖β, ‖x − y‖ ≤ 1.

Here and below, ||| · ||| denotes the Frobenius norm of a matrix, |||M||| :=
√∑

M2
ij . We can and

will assume without loss of generality that β ≤ 1.
H3. For each x ∈ C, there exists a right inverse σ(x)−1 of the matrix σ(x), and

(2.4) sup
x∈C

∣∣∣∣∣∣σ(x)−1∣∣∣∣∣∣< ∞.

H4. The following one-sided linear growth bound for a holds:

(2.5)
(
a(x), x(0)

)≤ C
(
1 + ‖x‖2), x ∈C.

Note that a similar linear growth bound for σ holds true by (2.3):

(2.6)
∣∣∣∣∣∣σ(x)

∣∣∣∣∣∣≤ C
(
1 + ‖x‖), x ∈ C.

THEOREM 2.1. Assume H1–H4. Then the following statements hold:

1. For any x ∈ C, there exists a weak solution X to (2.1) with X0 = x.
2. The weak solution to (2.1) is unique in law; that is, any two such solutions with the

same initial segment x ∈ C have the same law in C([−r,∞),Rn).
3. The segment process X, which corresponds to the weak solution to (2.1), is a time-

homogeneous Markov process in C, which has the Feller property.

The main difficulty in this theorem is the uniqueness statement 2. We note that by a slight
modification of the proof one can get the same result assuming a being just continuous and
bounded on bounded subsets (i.e., allowing α = 0 in H1). This minor improvement however
does not apply to Theorem 2.2 below, and in order to keep the exposition reasonably short
we thoroughly explain the one generalized coupling construction which suites well for both
these results, and requires α > 0.

2.2. Ergodic rates for the segment process. Let d(·, ·) be a metric on C. The correspond-
ing coupling (or minimal) distance on the set P(C) of probability distributions on C is given
by

(2.7) d(μ, ν) = inf
λ∈C(μ,ν)

∫
C×C

d(x, y)λ(dx,dy), μ, ν ∈ P(C).

Here, C(μ, ν) denotes the set of all couplings between μ and ν, that is, probability measures
on C × C with marginals μ and ν. In what follows, we will consider d(·, ·) on C which
generates the same topology as the usual distance ‖ · − · ‖ and is bounded. In this case, the
corresponding coupling distance is a metric, and convergence in this metric is equivalent
to weak convergence in P(C). The famous Kantorovich–Rubinshtein theorem provides an
alternative expression for d(μ, ν): denote for f :C →R,

(2.8) ‖f ‖Lipd
= sup

x 	=y

|f (x) − f (y)|
d(x, y)

,
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then

(2.9) d(μ, ν) = sup
f :‖f ‖Lipd

=1

∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣.
In the literature, d(μ, ν) is frequently called the 1-Wasserstein distance, though the name
Kantorovich distance is historically more appropriate.

In this section, we will establish weak ergodic rates for the segment process Xt , t ≥ 0
with respect to a properly chosen coupling distance d(·, ·). That is, we will give sufficient
conditions for X to have a unique invariant probability measure (IPM) π and quantitative
bounds for the convergence

d
(
P t

x,π
)→ 0, t → ∞;

here and below we denote by

P t
x(A) = Px(Xt ∈ A), A ∈ B(C), x ∈ C, t ≥ 0

the transition probability for the segment process. We adopt the method introduced in [17]
and further developed in [5, 11, 19], Chapter 4. The method is based on a proper combination
of contraction, nonexpansion, and recurrence properties, which we briefly explain here. Fix
a time discretization step h > 0 and consider the skeleton chain Xh = {Xkh, k ∈ Z+} for the
segment process X. The distance d(x, y) is called contracting for Xh on a set B ⊂ C×C, if
there exists θ ∈ (0,1) such that

(2.10) d
(
P h

x ,P h
y

)≤ θd(x, y), (x, y) ∈ B.

The distance d(x, y) is called nonexpanding for Xh, if

(2.11) d
(
P h

x ,P h
y

)≤ d(x, y), x, y ∈C.

With a slight abuse of terminology, we will say that a set K ⊂ C is d-small for Xh if d is non-
expanding for Xh and is contracting on K × K (this definition differs from the original one
[17], Definition 4.4, but has essentially the same scope and is technically more convenient).

The crucial question in the entire approach is how to construct a nonexpanding metric d ,
which in addition is contracting on a sufficiently large class of sets. The following theorem,
which is the main result of this section, resolves this question for the SDDE (2.1). Denote for
x, y ∈ C,

dN,γ (x, y) = (
N‖x − y‖γ )∧ 1, N ≥ 1, γ ∈ (0,1].

Clearly, each dN,γ is a metric on C.

THEOREM 2.2. I. Assume H1–H4. Then for any h > r and γ < min(α,2β − 1) there
exists Nh,γ such that for any N ≥ Nh,γ any bounded set K ⊂ C is dN,γ -small for Xh.

II. Assume in addition that the following stronger version of H4 holds true:(
a(x), x(0)

)≤ C
(
1 + ∣∣x(0)

∣∣2), x ∈ C,(2.12) ∣∣∣∣∣∣σ(x)
∣∣∣∣∣∣≤ C

(
1 + ∣∣x(0)

∣∣), x ∈ C.(2.13)

Then for any h > r and positive γ < α∧(2β−1) there exists Nh,γ such that for any N ≥ Nh,γ

each set

Hc = {
x ∈ C : ∣∣x(0)

∣∣≤ c
}
, c ≥ 0

is dN,γ -small for Xh.
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REMARK 2.1. Conditions (2.12), (2.13) may seem strong because the quantities on the
left- hand side depend on the entire trajectory x, while the right-hand side bounds depend on
x(0), only. The typical situation where such conditions are satisfied is

a(x) = a0
(
x(0)

)+ a1(x), σ (x) = σ0
(
x(0)

)+ σ1(x),

where a1, σ1 are bounded and a0, σ0 satisfy linear growth conditions.

Once a proper nonexpanding metric d is constructed, the general theory can be applied
which allows one to obtain (weak) ergodic rates, taking into account recurrence properties
of the process and measuring how quickly the system visits a d-small set; for example, [19],
Section 4.5. Namely, we have the following statement. Denote

(2.14) dγ (x, y) = d1,γ (x, y) = ‖x − y‖γ ∧ 1,

and for a given measurable function φ :R+ →R
+ define the functions

�(v) =
∫ v

1

dw

φ(w)
, r(t) = φ

(
�−1(t)

)
.

THEOREM 2.3. Assume H1–H4. Assume also that, for some h > r , the following
Lyapunov-type condition holds:

(2.15) ExV (Xh) − V (x) ≤ −φ
(
V (x)

)+ CV , x ∈ C.

Here, V :C → [1,+∞) is a measurable Lyapunov function, CV is a constant, and the func-
tion φ :R+ →R

+ with φ(∞) = ∞ is concave and strictly increasing. Assume that either

(2.16) V (x) → ∞, ‖x‖ → ∞,

or

(2.17) V (x) → ∞,
∣∣x(0)

∣∣→ ∞
and in addition (2.12), (2.13) hold true.

Then there exists a unique IPM π for the segment process X, and for any γ ∈ (0,1], δ ∈
(0,1) there exist ζ,C > 0 such that

(2.18) dγ

(
P t

x,π
)≤ C

r(ζ t)δ
φ
(
V (x)

)δ
, x ∈ C.

REMARK 2.2. Theorem 2.3 gives a wide set of convergence rates, depending on the
function φ in the Lyapunov-type condition (2.15). The natural cases include:

(i) (exponential): if φ(v) = cv with c > 0, then �(v) = 1
c

logv, r(t) = cect ;
(ii) (subexponential): if φ(v) = c(v +b) log−ς (v +b) with c > 0, ς > 0, and b ≥ e1+ς −

1, then φ(v) is increasing and concave on [0,∞) and

�(v) = 1

c(1 + ς)

[
log1+ς (v + b) − log1+ς (1 + b)

]
,

�−1(t) = exp
[(

log1+ς (1 + b) + c(1 + ς)t
)1/(1+ς)]− b,

and for any c1 < c(1 + ς) there exists c0 > 0 such that

r(t) ≥ c0e
c1t

1/(1+ς);
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(iii) (polynomial): if φ(v) = ctς with c > 0, ς ∈ (0,1), then

�(v) = 1

c(1 − ς)

(
v1−ς − 1

)
, �−1(t) = (

1 + c(1 − ς)t
)1/(1−ς)

,

r(t) = c
(
1 + c(1 − ς)t

)ς/(1−ς)
.

REMARK 2.3. The bound (2.18) can be alternatively considered as a convergence rate
for the semigroup

Ptf (x) = Exf (Xt ), x ∈ C, t ≥ 0.

Namely, denote for γ ∈ (0,1]

‖f ‖Hγ = sup
0<‖x−y‖≤1

|f (x) − f (y)|
‖x − y‖γ

+ sup
‖x−y‖>1

∣∣f (x) − f (y)
∣∣,

which is just the Lipschitz constant of f w.r.t. dγ ; see (2.8) and (2.14). Let also Hγ denote the
class of functions f : C→R with ‖f ‖Hγ < ∞. Then by (2.9) inequality (2.18) is equivalent
to the following:

(2.19)
∣∣∣∣Ptf (x) −

∫
C

f dπ

∣∣∣∣≤ Cφ(V (x))δ

r(ζ t)δ
‖f ‖Hγ , x ∈ C, t ≥ 0, f ∈ Hγ .

In general, it is a separate nontrivial question how to verify the Lyapunov condition (2.15)
for delay equations. We do not address this question here, referring to [7] and references
therein. Note, however, that there are simple models, where this condition can be checked
essentially in the same way as in the (nondelayed) diffusion setting.

PROPOSITION 2.1. Let the coefficient σ(·) be bounded, and the coefficient a(·) satisfy(
a(x), x(0)

)≤ −Aκ

∣∣x(0)
∣∣κ+1

,
∣∣x(0)

∣∣≥ R

for some κ ≥ −1, Aκ > 0, and R > 0. Assume also H1–H3. Then:

(i) If κ ≥ 0, then there exist α > 0, c > 0 such that (2.15) holds true with

V (x) = eα|x(0)|, φ(v) = cv.

In this case, (2.18) holds true with r(t) = cect .
(ii) If κ ∈ (−1,0), then for any b > 0 there exist α > 0, c > 0 such that (2.15) holds true

with

V (x) = eα|x(0)|κ+1
, φ(v) = c(v + b) log2κ/(κ+1)(v + b).

In this case, (2.18) holds true with r(t) = c0e
c1t

(1−κ)/(1+κ)
for any c1 < c 1−κ

1+κ
and some c0 > 0.

(iii) If κ = −1 and in addition 2A−1 > � := supx |||σ(x)|||2, then for p > 2,

p < 2 + (2A−1 − �)
(
sup
x

∥∥σ(x)
∥∥2
)−1

there exists c > 0 such that condition (2.15) holds true with

V (x) = ∣∣x(0)
∣∣p, φ(v) = cv1−2/p.

In this case, (2.18) holds true with r(t) = c(1 + 2c
p

t)p/2−1.
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The proof is analogous to the one of [5], Theorem 3.3; see also [19], Proposition 4.6.1.
Finally, let us mention that, without assuming a Lyapunov function to exist, we still have

the following stabilization property: if H1–H4 hold and there exists some IPM π for the
segment process X, then this IPM is unique and P t

x → π weakly as t → ∞ for every x.
This follows from [17], Theorem 2.4, and a slightly rearranged argument from the proof of
Theorem 2.2; see Remark 5.2 below. Alternatively, one can refer to the approach developed
in [18] and [2], based on the notion of e-processes; it is easy to see that Remark 5.2 yields
the e-process property for Xt , t ≥ 0.

2.3. Sensitivities w.r.t. The initial condition: Integral representation and stabilization.
Denote by Ck(C) the class of k times Fréchet differentiable functions f : C → R with con-
tinuous derivatives. The kth derivative and directionwise derivatives for f ∈ Ck(C) will be
denoted by ∇kf and

∇k
z1,...,zk

f = 〈∇ . . . 〈∇f, z1〉, . . . zk

〉
, z1, . . . , zk ∈ C,

respectively. Similarly, the classes Ck(C,Rn) and Ck(C,Rn×m) of the functions valued in
R

n and R
n×m are defined, and the notation for the derivatives is the same. By Ck

b(C), we
denote the class of Ck(C) functions, bounded with their derivatives up to order k. For a fixed
k ≥ 1, assume the following.

ASSUMPTION C(k) . a ∈ Ck(C,Rn), σ ∈ Ck(C,Rn×m), and their derivatives of the or-
ders 1, . . . , k are bounded and uniformly continuous on C.

We first consider the case k = 1. Define for λ ≥ 0, z ∈ C the process Uλ,z as the solution
to the SDDE

(2.20) dUλ,z(t) = 〈∇a(Xt ),Uλ,z
t

〉
dt + 〈∇σ(Xt ),Uλ,z

t

〉
dW(t) − λUλ,z(t)dt

with the initial condition Uλ,z
0 = z.

THEOREM 2.4. Let C(1) and H3 hold true. Then for any f ∈ C1
b(C) the functions

Ptf, t ≥ 0 belong to C1
b(C). For any λ ≥ 0, z ∈ C, the following representation formula holds:

(2.21)
∇zExf (Xt ) = Ex

〈∇f (Xt ),Uλ,z
t

〉
+ λEx

(
f (Xt )

∫ t

0
σ(Xs)

−1Uλ,z(s)dW(s)

)
.

Combining the representation formula (2.21) and Theorem 2.3, we get the following stabi-
lization bound for ∇Ptf as t → ∞. In what follows, we assume that φ(0) > 1, which yields
r(t) > 1, t ≥ 0; this assumption does not restrict generality because one can simultaneously
increase φ and CV in (2.15) by 1.

THEOREM 2.5. Let C(1) and the assumptions of Theorem 2.3 hold true. Then for any
γ ∈ (0,1], δ ∈ (0,1) and Q > 0 there exists ζ > 0 such that the following holds: for any
Q > 0 there exists a constant C = CQ > 0 such that for any f ∈ C1

b(C) and x ∈ C, t ≥ 0,

(2.22)
∥∥∇Ptf (x)

∥∥≤ C(log r(ζ t) + φ(V (x)))δ

r(ζ t)δ
‖f ‖Hγ + Ce−Qt sup

y∈C
∥∥∇f (y)

∥∥.
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REMARK 2.4. The bound (2.22) looks similar to the well-known sufficient condition for
the asymptotic strong Feller property; see [16], Proposition 3.12. We do not have a special
interest in proving the asymptotic strong Feller property, since it is typically used as a tool
for proving unique ergodicity, and we have seen in Section 2.2 that Theorem 2.2 gives an
efficient alternative tool for such a proof and, moreover, for getting explicit ergodic rates. In
fact, the way Theorem 2.5 is used is quite different from that of [16], Proposition 3.12: instead
of using (2.22) to prove ergodicity, we use the ergodic rate (2.19) for the semigroup itself to
derive the rate (2.22) for its sensitivities. Our main motivation here comes from the diffusion
approximation/homogenization theory for fully coupled systems, where the sensitivity rates
appear naturally, for example, [23] for such a theory for diffusions. In [23], such rates were
derived using analytic PDE methods, which are not available in the current setting, that is, for
delay equations. In further research, we plan to use the sensitivity rates from Theorem 2.5 and
Theorem 2.6 below to study the diffusion approximation/homogenization for fully coupled
systems with delay.

REMARK 2.5. Note that the first term on the right-hand side of (2.22) coincides with
the bound (2.19) up to an extra logarithmic term, which does not affect the structure of the
estimate. The derivative ∇f is involved in the second term only, and this term is decaying
very rapidly: at exponential rate, and the index Q in this rate can be made arbitrarily large.

Next, let k > 1 be arbitrary. For f ∈ Ck(C) and j = 1, . . . .k, for any x ∈ C one can
naturally treat ∇jf (x) as a j -linear form on C. We endow the space of such forms by the
usual norm

‖L‖j = sup
‖z1‖=···=‖zj‖=1

∣∣L(z1, . . . , zj )
∣∣,

and denote for f ∈ Ck
b(C)

‖f ‖(k) = sup
x∈C

k∑
j=1

∥∥∇jf (x)
∥∥
j ;

note that ‖ · ‖(k) is actually a seminorm because the values of f itself are not involved in it.

THEOREM 2.6. Let C(k) hold for some k > 1 and let the assumptions of Theorem 2.3
hold true. Then for any γ ∈ (0,1], δ ∈ (0,1) there exists ζ > 0 such that the following holds:
for any Q > 0 there exists a constant C = CQ > 0 such that for any f ∈ Ck

b(C) and x ∈
C, t ≥ 0,

(2.23)
∥∥∇kPtf (x)

∥∥
k ≤ C(log r(ζ t) + φ(V (x)))δ

r(ζ t)δ
‖f ‖Hγ + Ce−Qt‖f ‖(k).

Note that the structure of the estimate for the higher order derivatives remains exactly the
same as for the first-order one: the first term essentially coincides with (2.19) and contains
the Hγ -seminorm of f , only, while the second term, which contains the ‖f ‖(k)-seminorm,
decays exponentially fast. We mention that there exists an integral representation for the
higher order derivatives, analogous to (2.21), see (6.27); actually, the proof of Theorem 2.6
is based on this representation. However, this representation is now less explicit and more
cumbersome; that is why we do not formulate it separately here.
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3. Outline of the method: Generalized couplings and the control-and-reimburse
strategy. Within the classical coupling approach to the study of ergodic properties of
Markov systems, one has to construct, on a common probability space, a pair of stochas-
tic processes with prescribed law, such that the distance between the components of the pair
obeys certain bounds. For instance, inequality (2.10) means that for any (x, y) ∈ B there
exists a pair of segment processes X,Y with Law(X) = Px,Law(Y) = Py such that

(3.1) Ed(Xh,Yh) ≤ θd(x, y),

with some θ < 1. The key question is how to construct a pair (X,Y) with such a contraction
property. One natural way is to take d(x, y) = ‖x − y‖ and to consider the coupling which
consists of two solutions to equation (2.1) with the same noise W and given initial conditions
x, y. This synchronous (or marching) coupling is often not a good choice. Namely, assume
for the moment that the coefficients a, σ are Lipschitz continuous, then such a pair is well
defined, but the contraction property (3.1) in general has no reason to hold true. Namely, to
get (3.1) by Itô’s formula one has to assume a much stronger version of (2.2):(

a(x) − a(y), x(0) − y(0)
)≤ −C‖x − y‖2

with a positive constant C sufficiently large when compared with the Lipschitz constant for
σ ; for example, [19], Section 4.2. Such a dissipativity assumption is used quite often for
infinite-dimensional SDEs, for example, [9], Chapter 11.5, and [24], Chapter 16.2. However,
this is a strong structural limitation which we aim to exclude from the list of assumptions.

Similar obstacles appear if one tries to apply the Itô stochastic calculus tools to get weak
uniqueness of solution to (2.1). A natural guess here is that the weak solution to (2.1) should
be identifiable as the weak limit as ε → 0 of the strong solutions to the equations

(3.2) dXε(t) = aε(Xε
t

)
dt + σε(Xε

t

)
dW(t), t ≥ 0,

where aε, σ ε, ε > 0 are the families of Lipschitz continuous functions approximating, in a
proper sense, the coefficients a,σ . However, for the synchronous coupling of X,Xε (i.e.,
the pair of solutions to (2.1), (3.2) with the same W ) the estimate for the ‖ · ‖-norm of the
difference can hardly be derived using Itô’s formula unless a,σ are Lipschitz continuous,
which is the another assumption we aim to avoid.

In order to overcome these difficulties, we propose a modification of the synchronous
coupling construction, which we now explain in detail. In what follows, let x ∈ C be given,
and X be a weak solution to (2.1) with X0 = x. Next, let y ∈ C and the process Y satisfies
the following equation: Y0 = y,

(3.3) dY(t) = ã(Yt )dt + σ̃ (Yt )dW(t) + λ
(
X(t) − Y(t)

)
1t≤τ dt, t ≥ 0,

where ã, σ̃ are some coefficients and the constant λ > 0 and the stopping time τ will be
determined later. Equation (3.3) should be understood as a controlled version of

(3.4) dỸ (t) = ã(Ỹt )dt + σ̃ (Ỹt )dW(t), t ≥ 0, Ỹ0 = y.

The pair X, Ỹ is the synchronous coupling discussed above. The main idea is that, while the
distance ‖Xt − Ỹt‖ can hardly be estimated for the synchronous coupling, such an estimate
is available for its controlled version under a proper choice of λ, τ in the “control term”
λ(X(t) − Y(t))1t≤τ . This estimate is the key point in the entire approach, thus we formulate
it here. Let K ⊂C be a closed set, and denote

θK = inf{t : Xt /∈ K},
�a,K = sup

z∈K

∣∣a(z) − ã(z)
∣∣, �σ,K = sup

z∈K

∣∣∣∣∣∣σ(z) − σ̃ (z)
∣∣∣∣∣∣,(3.5)

υx,y,K = max
(‖x − y‖,�1/α

a,K,�
1/β
σ,K

) ∈ [0,∞].
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Fix a positive γ < min(α,2β − 1) and define

λx,y,K = υ
γ−1
x,y,K, τx,y,K = inf

{
t : ∣∣X(t) − Y(t)

∣∣> 2υx,y,K

}
,

with the convention ∞γ−1 = 0,0γ−1 = 1.
The following proposition gives a deviation bound between the processes X,Y given by

(2.1), (3.3); to make the overall presentation more transparent we postpone its proof to Ap-
pendix C.

PROPOSITION 3.1. Let the coefficients a,σ and ã, σ̃ satisfy H1, H2. Then for every
T > 0 there exist χ > 0, υ0 > 0, C1,C2 > 0, depending only on T ,γ and the constants in
conditions H1, H2, such that, for an arbitrary closed set K ⊂ C and x ∈ K,y ∈ C such
that υx,y,K ∈ (0, υ0], for any pair of processes X,Y which satisfy (2.1) and (3.3) with λ =
λx,y,K, τ = τx,y,K ,

P

(
sup

t≤θK∧T

(∣∣X(t) − Y(t)
∣∣2 − e

−υ
γ−1
x,y,K t‖x − y‖2)≥ υ

2+χ
x,y,K

)
≤ C1e

−C2υ
−2χ
x,y,K .

(3.6)

We will use Proposition 3.1 in two ways: with y = x, ã = aε, σ̃ = σε to prove weak
uniqueness (Theorem 2.1) and ã = a, σ̃ = σ to prove the contraction property of the met-
ric dN,γ (statement I of Theorem 2.2). Roughly speaking, by adding a control term to the
second component of a coupling we become able either to apply the (sort of) Gronwall in-
equality without the Lipschitz continuity or to guarantee a contraction property without the
dissipativity condition.

Clearly, the pair X,Y is not a (true) coupling: since equation (3.3) contains an extra control
term, the law of Y has no reason to coincide with that of Y. However, there is still a link
between these laws, which is the reason for us to call the pair X,Y a generalized coupling. In
what follows, we denote by dTV the total variation distance between the probability measures,
defined by

dTV(μ, ν) = sup
A

∣∣μ(A) − ν(A)
∣∣.

PROPOSITION 3.2. Assume that, in addition to the conditions of Proposition 3.1, the
coefficients ã, σ̃ are Lipschitz continuous and the nondegeneracy assumption H3 for the co-
efficient σ̃ holds. Then for any T there exists a constant C, depending only on the constant
from the nondegeneracy assumption H3, such that

(3.7) dTV
(
Law(Y |[0,T ]),Law(Ỹ |[0,T ])

)≤ CT 1/2υ
γ
x,y,K.

PROOF. We can and will assume that υx,y,K < ∞. Equation (3.3) can be written in the
form (3.4) with dW(t) changed to

dW̃ (t) = dW(t) + η(t)dt, η(t) = σ̃ (Yt )
−1λx,y,K

(
X(t) − Y(t)

)
1t≤τx,y,K∧T dt.

Note that, by the choice of τ and H3,

E

∫ ∞
0

∣∣η(t)
∣∣2 dt ≤ CT υ

2γ
x,y,K.

Then the law of W̃ on C([0,∞),Rm) is absolutely continuous w.r.t. the law of W and, more-
over, the following bound for the total variation distance holds (see Theorem A.1 and (A.1)):

dTV
(
Law(W̃ |[0,T ]),Law(W |[0,T ])

)≤ C1/2T 1/2υ
γ
x,y,K.
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Since the coefficients ã, σ̃ are Lipschitz continuous, Y, Ỹ are the strong solutions to (3.3),
(3.4), respectively, and thus can be understood as images of W̃ ,W under a measurable map-
ping �, which gives

dTV
(
Law(Y |[0,T ]),Law(Ỹ |[0,T ])

)≤ dTV
(
Law(W̃ |[0,T ]),Law(W |[0,T ])

)
,

and completes the proof. �

Proposition 3.2 shows that the change of the law of the solution, caused by the additional
stochastic control term, becomes smaller for smaller deviations ‖x − y‖,�a,K,�σ,K . This
observation enables us to construct a new (true) coupling from the generalized one X,Y with
the required properties; see [6], Theorem 2.4, and Proposition 5.1 below.

Let us summarize: because the direct construction of a coupling with the required prop-
erties may be difficult, we first construct a generalized one. At this stage, using additional
control-type terms, the properties of the system can be improved, for example, a contraction-
type bound (3.1) can be provided for a nondissipative system. Then we, in a sense, reimburse
the changes to the marginal laws, generated by the control-type terms using, for example, the
bound (3.7) and constructing a true coupling from the generalized one. This is the essence of
the two-stage C-n-R strategy mentioned in the Introduction.

The C-n-R strategy appears to be quite flexible; now we explain how it can be applied
to the study of sensitivities. Under the condition C(1) the solution to (2.1) is Lp-Fréchet
differentiable w.r.t. x ∈ C; see Section 6.1 for the corresponding definition and proofs. The
respective derivative in the direction z ∈ C equals just U0,z, which clearly yields (2.21) with
λ = 0. However, in order for the latter identity to provide the stabilization of the sensitivity
as t → ∞, it is required that U0,z

t → 0, t → ∞. This can be guaranteed under an additional
confluence assumption, which is an analogue of the dissipativity assumption for the gradient
process; see [22] for a systematic treatment of confluent SDEs. Using generalized couplings,
we avoid using this strong additional assumption. Namely, together with the true derivative
U0,z

t in the direction z, we construct a family of controlled derivatives Uλ,z
t , which are the

limits of

Yλ,x+εz
t − Xx

t

ε
,

where Yλ,x+εz is defined by a modification of (3.3) with slightly changed control term and
the initial value x + εz. We have for λ > 0 large enough Uλ,z

t → 0, t → ∞ exponentially
fast; that is, using the control-type argument we actually transform a nonconfluent system
to a (sort of) confluent one. The “reimbursement” for such a control is represented by the
additional integral term on the right-hand side of (2.21), which appears due to the Girsanov
formula.

4. Proof of Theorem 2.1.

4.1. Existence of a weak solution. Existence of a weak solution can be established in
a quite standard way, based on a compactness argument. Both for this purpose and for the
subsequent proof of weak uniqueness, we fix families {aε}, {σε} such that:

(i) aε → a,σ ε → σ, ε → 0 uniformly on each compact subset of C;
(ii) conditions H1–H4 hold true for aε, σ ε uniformly in ε; that is, with constants which

do not depend on ε.
(iii) the functions aε, σ ε are Lipschitz continuous on each bounded subset of C.
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Note that such a family is easy to construct. Namely, one can consider a family P ε of finite-
dimensional projectors in C which strongly converge to the identity and such that P εx(0) =
x(0), x ∈ C. Then ãε(x) = a(P εx), σ̃ ε(x) = σ(P εx) satisfy (i), (ii) and now ãε, σ̃ ε are
essentially finite-dimensional. Taking convolutions with finite-dimensional approximate δ-
functions one obtains the required families {aε}, {σε}.

By property (iii) and (2.5), (2.6) equation (3.2) with the initial condition Xε
0 = x has a

unique strong solution. By Itô’s formula and (2.5), (2.6), for any p ≥ 2 there exists some Cp

such that

d
∣∣Xε(t)

∣∣p = ξε,p(t)dt + ηε,p(t)dW(t)

with

ξε,p(t) ≤ Cp

(
1 + ∥∥Xε

t

∥∥p)
,

∣∣ηε,p(t)
∣∣≤ Cp

(
1 + ∥∥Xε

t

∥∥p)
.

We have ∣∣Xε(t)
∣∣p ≤ ∣∣x(0)

∣∣p +
∫ t

0

(
ξε,p(s)

)
+ ds +

∫ t

0
ηε,p(s)dW(s),

and thus

sup
τ∈[0,t]

∣∣Xε(τ)
∣∣p ≤ ∣∣x(0)

∣∣p +
∫ t

0

(
ξε,p(s)

)
+ ds + sup

τ∈[0,t]

∣∣∣∣∫ τ

0
ηε,p(s)dW(s)

∣∣∣∣.
Then by Cauchy’s inequality and Doob’s inequality,

E sup
τ∈[0,t]

∣∣Xε(τ)
∣∣2p ≤ 3

∣∣x(0)
∣∣2p + 3C2

pE

(
t +

∫ t

0

∥∥Xε
s

∥∥p ds

)2

+ 12C2
pE

(
t +

∫ t

0

∥∥Xε
s

∥∥2p ds

)
.

Note that ∥∥Xε
s

∥∥≤ sup
τ∈[0,s]

∣∣Xε(τ)
∣∣+ ‖x‖.

Hence, by the Gronwall inequality, we get the bound

(4.1) sup
t≤T ,ε>0

E sup
τ∈[0,t]

∣∣Xε(t)
∣∣2p

< ∞, T > 0,p ≥ 2.

Denote

τ ε
R = inf

{
t : ∣∣Xε(t)

∣∣≥ R
}
,

then it follows from (4.1) that for any T ,

sup
ε

P
(
τ ε
R < T

)→ 0, R → ∞.

Recall that the coefficients aε, σ ε are bounded (uniformly in ε) on each bounded subset in C.
Then it is a standard routine based on the Kolmogorov continuity theorem to show that, for
any ν < 1/2, q > 0, and T there exists Q such that

sup
ε

P
(
Xε|[0,T ] /∈ BQ

ν (0, T )
)≤ q,

where, for −r ≤ u ≤ v < ∞,

BQ
ν (u, v) = {

z : ∣∣z(t)∣∣≤ Q,
∣∣z(t) − z(s)

∣∣≤ Q|t − s|ν, s, t ∈ [u, v]}
is a ball in the space of ν-Hölder continuous functions on [u, v]. This yields that the family
of laws of Xε, ε > 0 in C(R+,Rn) is weakly compact. Since aε → a,σ ε → σ uniformly on
compacts in C and a,σ are continuous, any weak limit point for Xε, ε → 0 is a weak solution
to (2.1); this argument is again quite standard, and thus we omit the details. This completes
the proof of statement 1 of Theorem 2.1.
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4.2. Weak uniqueness. We will specify the law of an arbitrary weak solution X to (2.1)
with X0 = x0 ∈ C as the weak limit of the laws of solutions to (3.2). For future reference, we
will show that the corresponding weak convergence is uniform w.r.t. x0 taken from a compact
set K0 ⊂ C. We take Q > 0 (a free parameter, whose value will be specified later) and denote
by KQ the set of x ∈ C such that, for some s ∈ [0, r] and x0 ∈ K0,

x(t) = x0(t), t ∈ [−r,−r + s], x|[−r+s,0] ∈ B
Q
1/3(−r + s,0).

Then KQ is a compact subset of C, and the calculation from the previous section yields that
for any T > 0,

(4.2) P
(
Xt ∈ KQ, t ∈ [0, T ])→ 1, Q → ∞

uniformly w.r.t. the set of weak solutions to (2.1) with x0 ∈ K0.
For the given weak solution X with X0 = x0 ∈ C, let W be the corresponding Wiener

process on a filtered probability space (�,F, {Ft},P). Let aε, σ ε be the approximating se-
quence for the coefficients a,σ defined in the previous section. We define Y ε as the solution
to (3.3) with y = x, ã = aε, σ̃ = σε . Then, for any Q > 0, we have

υε
Q := max

(
sup

x∈KQ

∣∣a(x) − aε(x)
∣∣1/α

, sup
x∈KQ

∣∣σ(x) − σε(x)
∣∣1/β

)
→ 0, ε → 0.

The case υε
Q = 0 is exceptional, and we have then X(t) = Xε(t), t ≤ θKQ

because aε, σ ε are
Lipschitz continuous and coincide with a,σ on KQ. When υε

Q > 0, we can apply Proposi-

tion 3.1 with y = x = x0, ã = aε, σ̃ = σε , and since υx,y,KQ
= υε

Q → 0 get that for every
κ > 0,

(4.3) P

(
sup

t≤θKQ
∧T

∣∣X(t) − Y ε(t)
∣∣> κ

)
→ 0, ε → 0.

Moreover, this convergence is uniform w.r.t. any family of weak solutions X to (2.1) with
X0 = x0 ∈ K0.

Now we can complete the proof. Denote by Xε the solution to (3.4) with ã = aε, σ̃ = σε ,
and y = x0. Let T > 0 be fixed and F be a bounded continuous function on C([0, T ],Rn).
By Proposition 3.2, we have

dTV
(
Law

(
Y ε|[0,T ]

)
,Law

(
Xε|[0,T ]

))→ 0, ε → 0.

Since F is bounded, this gives

EF
(
Y ε|[0,T ]

)−EF
(
Xε|[0,T ]

)→ 0, ε → 0.

On the other hand, it follows from (4.3) that, on the set {θQ ≥ T },
Y ε|[0,T ] → X|[0,T ], ε → 0

in probability in C([0, T ],Rn). Then

lim sup
ε→0

∣∣EF
(
Y ε|[0,T ]

)−EF(X|[0,T ])
∣∣≤ 2 sup

x

∣∣F(x)
∣∣P(θQ ≥ T ).

Combining these two inequalities, we get

(4.4) lim sup
ε→0

∣∣EF
(
Xε|[0,T ]

)−EF(X|[0,T ])
∣∣≤ 2 sup

x

∣∣F(x)
∣∣P(θQ ≥ T ).

Recall that the choice of Q determines further details in the construction of the generalized
coupling, such as the choice of υx,y,KQ

and subsequent choice of λ, τ . However, (4.4) does
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not involve Y ε , and Q > 0 therein is just a free parameter. Taking Q → ∞ and using (4.2),
we finally deduce that

(4.5) EF
(
Xε|[0,T ]

)→ EF(X|[0,T ]), ε → 0.

This completes the proof of weak uniqueness, since an arbitrary weak solution Xε to (2.1) is
now uniquely specified on any finite time interval [0, T ] as the weak limit of the solutions to
(3.2). We remark also that the convergence (4.5) is uniform w.r.t. the family of weak solutions
X to (2.1) with X0 = x0 ∈ K0.

4.3. Continuity and the Markov property. Denote by Pt,x, t ≥ 0, x ∈ C the law of Xt ,
where X is the (unique in law) solution to (2.1) with X0 = x. Denote by {P ε

t,x} the corre-
sponding laws for the approximating sequence Xε defined by (3.2), and consider the respec-
tive families of integral operators

Ttf (x) =
∫
C

f (y)Pt,x(dy), T ε
t f (x) =

∫
C

f (y)P ε
t,x(dy), f ∈ Cb(C).

We have just proved (see (4.5)) that, for a given f ∈ Cb(C),

T ε
t f (x) → Ttf (x), ε → 0

uniformly on each compact subset K0 of C. Then the functions Ttf, t ≥ 0, f ∈ Cb(C) are
continuous and bounded.

Now the Markov property for X is obtained from the same property for Xε by the usual
approximation argument: for arbitrary t > s > s1, . . . sk , f ∈ Cb(C) and G ∈ Cb(C

k+1), we
have

Ef (Xt )G(Xs, . . . ,Xsk ) = lim
ε→0

Ef
(
Xε

t

)
G
(
Xε

s , . . . ,Xε
sk

)
= lim

ε→0
ET ε

t−sf
(
Xε

s

)
G
(
Xε

s , . . . ,Xε
sk

)
= ETt−sf (Xs)G(Xs, . . . ,Xsk );

in the last identity we use that Xε → X weakly and T ε
t−sf → Tt−sf uniformly on com-

pacts. This proves that X is a time-homogeneous Markov process with the transition func-
tion {Pt,x(dy)}. The Feller property has already been proved: for f ∈ Cb(C), the functions
Ttf, t ≥ 0 also belong to Cb(C).

5. Proofs of Theorem 2.2 and Theorem 2.3. Let us give a short outline. We will prove
Theorem 2.2 in two steps. First, we will show that for N large enough, dN,γ is contracting
for Xh on the set

(5.1) DN,γ = {
(x, y) : dN,γ (x, y) < 1

}
.

Since dN,γ (x, y) ≤ 1 everywhere, this will immediately yield that dN,γ is nonexpanding.
Then we will prove the following support-type statement: for any given δ > 0 and h > r :

(5.2) inf
x∈K

Px

(‖Xh‖ ≤ δ
)
> 0,

where either K is a bounded closed set, or K = Hc and (2.12), (2.13) hold true. For con-
venience of the reader, we prove these two principal statements separately in Sections 5.1
and 5.2 below. It follows immediately from (5.2) that dN,γ is contracting for Xh on the set
(K × K) \ DN,γ . Indeed, for any (x, y) /∈ DN,γ , we have dN,γ (x, y) = 1; on the other hand,
taking the independent coupling of X,Y with X0 = x,Y0 = y, we get by (5.2),

dN,γ

(
P h

x ,P h
y

)≤ EdN,γ (Xh,Yh)

≤ 1 − 1

2

(
inf
z∈K

Pz

(
‖Xh‖ ≤ 1

21+1/γ N1/γ

))2
< 1, x, y ∈ K.
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That is, we can get the statement of Theorem 2.2 by combining the contraction property of
dN,γ on the set DN,γ and the support-type statement (5.2). In Section 5.3, we prove Theo-
rem 2.3 as a corollary of Theorem 2.2 and the general theory.

5.1. Contraction property of dN,γ on DN,γ . The proof is based on the generalized cou-
pling construction, introduced in Section 4.2. One technical difficulty here is that the co-
efficients of (2.1) are not Lipschitz continuous. To overcome this minor difficulty, we will
systematically use the following trick: first, we make the construction for Lipschitz continu-
ous coefficients; then we provide estimates for the generalized coupling, which involve the
constants from the conditions H1–H4 only; finally, we remove the additional assumption for
the coefficients to be Lipschitz continuous by an approximation argument. With this plan in
mind, we assume first a,σ to be Lipschitz continuous and consider the solution X to (2.1) to-
gether with the solution Y to (3.3) with same W , coefficients ã = a, σ̃ = σ , and some y ∈ C.
We take K = C, so that θK = +∞. On the other hand, since ã, σ̃ coincide with a,σ , we have

�a,K = �σ,K = 0, υx,y,K = ‖x − y‖,
see the notation prior to Proposition 3.1. Then by Proposition 3.1 and Proposition 3.2, for any
T > 0 there exist C1,C2,C3 > 0 and χ > 0, υ0 > 0 such that, for x 	= y,

P

(
sup

t∈[0,T ]
(∣∣X(t) − Y(t)

∣∣2 − e−‖x−y‖γ−1t‖x − y‖2)≥ ‖x − y‖2+χ
)

≤ C1e
−C2‖x−y‖−2χ

, ‖x − y‖ ∈ (0, υ0],
(5.3)

and

(5.4) dTV
(
Law(Y |[0,T ]),Law(Ỹ |[0,T ])

)≤ C3‖x − y‖γ , x 	= y,

where Ỹ denotes the solution to (2.1) with Ỹ0 = y.
Now, let h > r be fixed. The inequality

sup
t≤h

(∣∣Y(t) − X(t)
∣∣2 − e−‖x−y‖γ−1t‖x − y‖2)≤ ‖x − y‖2+χ

yields the bound

‖Xh − Yh‖ ≤ (
e−‖x−y‖γ−1(h−r) + ‖x − y‖χ )1/2‖x − y‖.

Clearly,

e−υγ−1(h−r) + υχ → 0, υ → 0,

and from (5.3) we finally obtain that there exists υ1 > 0 such that

(5.5) P

(
‖Xh − Yh‖ ≥ 1

2
‖x − y‖

)
≤ C1 exp

(−C2‖x − y‖−2χ ), ‖x − y‖ ≤ υ1.

In addition, it follows from (5.4) that

(5.6) dTV
(
Law(Yh),P

h
y

)≤ C3‖x − y‖γ , x 	= y.

Now it is easy to perform the “reimbursement” step; that is, to derive the required bound
for EdN,γ (Xh, Ŷh), where X, Ŷ is a properly constructed (true) coupling. For the reader’s
convenience, we formulate this step in a separate proposition, which is a modification of
statement (i) of [6], Theorem 2.4.

PROPOSITION 5.1. Let, for a family {μx, x ∈ C} ⊂ P(C), the families of C-valued ran-
dom elements {ξx,y, x, y ∈ C}, {ηx,y, x, y ∈ C} be given such that:
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(i) Law(ξx,y) = μx, x, y ∈ C, and for some γ ∈ (0,1], υ > 0,C > 0,

dTV
(
Law

(
ηx,y),μy)≤ C‖x − y‖γ , ‖x − y‖ ∈ (0, υ];

(ii) for some θ ∈ (0,1), and a function p(s) = o(sγ ), s → 0, p(s) ≤ 1,

P
(∥∥ξx,y − ηx,y

∥∥> θ‖x − y‖)≤ p
(‖x − y‖), ‖x − y‖ ∈ (0, υ].

Then for any θ1 ∈ (θγ ,1) there exists N0 = N0(γ,υ,C, θ, θ1,p(·)) such that for N ≥ N0

dN,γ

(
μx,μy)≤ θ1dN,γ (x, y)

on the set {(x, y) : dN,γ (x, y) < 1}.

PROOF. Since

dN,γ

(
μx,μx)= dN,γ (x, x) = 0,

the required bound is trivial for x = y. Take N1 = υ−γ , then for N ≥ N1

dN,γ (x, y) < 1 ⇔ N‖x − y‖γ < 1 ⇒ ‖x − y‖ < υ.

In what follows, we take N ≥ N1 and x 	= y such that dN,γ (x, y) < 1; then (i) and (ii) hold
true.

The following useful fact is well known ([10], Problem 11.8.8, see also [19], Lemma 4.3.2):
if (ξ, η) and (ξ ′, η′) are two pairs of random elements valued in a Borel measurable space,
such that η and ξ ′ have the same distribution, then on a properly chosen probability space
there exists a triple of random elements ζ1, ζ2, ζ3 such that the law of (ζ1, ζ2) coincides
with the law of (ξ, η) and the law of (ζ2, ζ3) coincides with the law of (ξ ′, η′). On the other
hand, by the assumption (i) and the Coupling lemma (e.g., [27], Section 1.4, or [19], The-
orem 2.2.2), on a properly chosen probability space there exists a pair of random elements
ξ ′, η′ such that Law(ξ ′) = Law(ηx,y), Law(η′) = μy , and

P
(
ξ ′ 	= η′)= dTV

(
Law

(
ηx,y),μy)≤ C‖x − y‖γ .

Take ξ = ξx,y, η = ηx,y and consider the corresponding triple ζ1, ζ2, ζ3. Then ζ1, ζ3 is a (true)
coupling for μx,μy , and

P
(‖ζ1 − ζ2‖ ≥ θ‖x − y‖)≤ p

(‖x − y‖), P(ζ2 	= ζ3) ≤ C‖x − y‖γ .

Recall that dN,γ ≤ 1, hence

EdN,γ (ζ1, ζ3) ≤ EdN,γ (ζ1, ζ2) + P(ζ2 	= ζ3)

≤ EdN,γ (ζ1, ζ2)1‖ζ1−ζ2‖≤θ‖x−y‖
+ P

(‖ζ1 − ζ2‖ ≥ θ‖x − y‖)+ P(ζ2 	= ζ3).

Recall that dN,γ (x, y) < 1, hence

EdN,γ (ζ1, ζ2)1‖ζ1−ζ2‖≤θ‖x−y‖ ≤ Nθγ ‖x − y‖γ ,

and

N‖x − y‖γ = dN,γ (x, y).

Then

dN,γ

(
μx,μy)≤ EdN,γ (ζ1, ζ3) ≤ Nθγ ‖x − y‖γ + p

(‖x − y‖)+ C‖x − y‖γ

≤
(
θγ + 1

N
‖x − y‖−γ p

(‖x − y‖)+ C

N

)
dN,γ (x, y).
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Since p(s) ≤ 1 and s−γ p(s) → 0, s → 0, we have that

Cp := sup
s>0

s−γ p(s) < ∞.

Define N2 by the identity

Cp + C

N2
= θ1 − θγ .

Then the required statement holds true for N0 = max(N1,N2). �

Now, we can complete the proof of the contraction property of dN,γ for Xh on DN,γ . Let
γ,χ,υ0,C1,C2,C3 be the same as in (5.5) and (5.6). We apply Proposition 5.1 with υ = υ0,
C = C3, p(s) = (C1 exp(−C2s

−2χ)) ∧ 1, θ = 2−1, θ1 = 2−1(1 + 2−γ ), and obtain that there
exists N0 such that

(5.7) dN,γ

(
P h

x ,P h
y

)≤ (
2−1 + 2−1−γ )dN,γ (x, y), (x, y) ∈ DN,γ ,N ≥ N0,

which provides the required contraction property under the additional assumption that a,σ

are Lipschitz continuous.
The last step in the proof is to remove this limitation; for that, we use an approximation

procedure. The choice of the index γ and the constant N0 in (5.7) is determined only by the
assumptions H1–H3. Let a family of processes {Xε} be defined by (3.2) with aε, σ ε same as
in Section 4.1, then the corresponding transition probabilities satisfy a uniform analogue of
(5.7): for all N ≥ N0, ε > 0,

(5.8) dN,γ

(
P h,ε

x ,P h,ε
y

)≤ (
2−1 + 2−1−γ )dN,γ (x, y), (x, y) ∈ DN,γ .

We have already proved in Section 4.2 that P h,ε
x → P h

x weakly as ε → 0. Note that dN,γ (x, y)

is a bounded metric on C, and the convergence in this metric is the same as in the standard
one. Hence weak convergence in P(C) is equivalent to convergence w.r.t. the coupling dis-
tance dN,γ . In particular,

dN,γ

(
P h,ε

x ,P h,ε
y

)→ dN,γ

(
P h

x ,P h
y

)
, ε → 0,

and thus (5.7) follows from (5.8).

REMARK 5.1. The generalized coupling construction used in the proof above can be
also used for a study of the continuous time family P t

x, t ≥ 0. Namely, using (3.6) in a similar
way as in the proof of Proposition 5.1, we get that there exists a constant Ch such that

(5.9) dγ,N

(
P t

x,P
t
y

)≤ Chdγ,N(x, y), x, y ∈ C, t ∈ [0, h].
REMARK 5.2. There is another possibility, not used in the previous proof: instead of

making the “reimbursement step” at the time segment [0, h], one can iterate the “control” step
on the segments [h,2h], [2h,3h], . . . . By (5.5), the corresponding pair of processes Xt ,Yt ≥
0 will satisfy then

(5.10) P

(
‖Xlh − Ylh‖ ≥ 1

2l
‖x − y‖

)
≤ C1 exp

(−C222κl‖x − y‖−2κ)
for all ‖x − y‖ ≤ υ1, l ≥ 1. This bound combined with the Markov property and (5.6) will
give for ‖x − y‖ ≤ υ1,

(5.11)

dTV
(
Law(Y),Py

)≤ C3‖x − y‖γ

+
∞∑
l=1

(
C32−γ l‖x − y‖γ + C1 exp

(−C222κl‖x − y‖−2κ)),
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where Py denotes the law of Xt , t ≥ 0 with X0 = y in the path space C([0,∞),C), and
Law(Y) is understood in the same sense. That is, essentially the same construction as in the
above proof gives a generalized coupling for the entire path of the segment process. Making
now the “reimbursement step” similar to (and simpler than) Proposition 5.1, one can construct
a (true) coupling Xt ,Yt , t ≥ 0 for Px,Py such that

P
(‖Xt − Yt‖ 	→ 0, t → ∞)≤ C4‖x − y‖γ .

5.2. Proof of (5.2). We prove the support-type assertion (5.2) using a stochastic control
argument, which is similar to, and simpler than, the one from Section 4.2 and Section 5.1.
We consider a family of processes Xλ,x, λ > 0 defined by

(5.12) dXλ,x(t) = a
(
Xλ,x

t

)
dt + σ

(
Xλ,x

t

)
dW(t) − λXλ,x(t)dt, Xλ,x

0 = x.

Since we need these processes to be well defined, we assume for a while that a,σ are Lips-
chitz continuous. We state the following.

PROPOSITION 5.2. Let δ > 0 and either K be a bounded set, or K = Hc and (2.12),
(2.13) hold true. Then there exists λ large enough such that

(5.13) inf
x∈K

P
(∥∥Xλ,x

h

∥∥≤ δ
)≥ 1

2
.

Moreover, the choice of λ depends only on δ, the set K , and the constants in conditions (2.5),
(2.6) or (2.12), (2.13).

The proof of Proposition 5.2 is similar to that of Proposition 3.1; we give both of them in
Appendix C.

In addition, by the usual argument based on the Itô formula, the Burkholder–Davis–Gundy
inequality and the Gronwall inequality, one has

(5.14) C1(λ) := sup
x∈B

E sup
t∈[0,h]

∣∣Xλ,x(t)
∣∣2 < ∞.

With these preliminaries, we can proceed with the proof of (5.2). Note that Xλ,x solves (2.1)
with dW(t) changed to

dWλ,x(t) = dW(t) − λσ
(
Xλ,x

t

)−1
Xλ,x(t)dt.

Since we have assumed a,σ to be Lipschitz continuous, for each x ∈ C there exists a mea-
surable mapping �x : C([0, h],Rm) → C([0, h],Rm) which resolves (2.1) with the initial
condition X0 = x up to the time moment h; that is,

X|[0,h] = �x(W |[0,h]).

At the same time, we have

Xλ,x |[0,h] = �x

(
Wλ,x |[0,h]

)
.

By Theorem A.1 and (5.14),

(5.15) sup
x∈B

DKL
(
LawWλ,x |[0,h]‖LawW |[0,h]

)≤ λh

2
C1(λ) sup

y∈C
∣∣∣∣∣∣σ(x)−1∣∣∣∣∣∣=: C2.

Now we apply (A.2) with μ = LawWλ,x |[0,h], ν = LawW |[0,h], and

A =
{
w ∈ C

([0, h],Rm) : sup
t∈[h−r,h]

∣∣�x(w)(t)
∣∣≤ δ

}
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to get for any N > 1,

inf
x∈B

Px

(‖Xh‖ ≤ δ
)≥ 1

N
inf
x∈B

P
(∥∥Xλ,x

h

∥∥≤ δ
)− C2 + log 2

N logN

≥ 1

2N
− C2 + log 2

N logN
.

Taking N = N1 = exp(4C2 + 4 log 2), we get

(5.16) inf
x∈K

Px

(‖Xh‖ ≤ δ
)≥ 1

4N1
.

In the above construction λ,C1,C2,N1 depend only on the constants from the assumptions
H3,H4 and inequalities (2.5), (2.6), the set K , and the time step h. That is, using the same
approximation argument as in the previous section, we can get rid of the additional assump-
tion that a,σ are Lipschitz continuous. This gives (5.16) without any extra assumptions, and
completes the proof of (5.2).

5.3. Proof of Theorem 2.3. Since dN,γ (x, y) decreases as a function of γ , without loss
of generality we further assume that γ satisfies the assumption γ < min(α,2β − 1) from
Theorem 2.2. Fix � such that

φ(1 + �) > 2CV ,

where φ,CV are respectively the function and the constant from the Lyapunov condition
(2.15). Take KV,� = {x : V (x) ≤ �}, this set is either bounded under (2.16), or is contained in
Hc for c large enough if (2.17) holds. Hence by Theorem 2.2 there exists N such that KV,�

is a dN,γ -small set; that is, the condition I of [19], Theorem 4.5.2, holds true for

d = dN,γ , B = KV,� × KV,�.

On the other hand, by [19], Theorem 2.8.6, the recurrence condition R (i), (ii) of [19], Theo-
rem 4.5.2, holds true with W(x,y) = V (x) + V (y), and λ(t) = �−1(t). We define

Ŵ (x, y) = φ(V (x)) + φ(V (y))

φ(1)
, λ̂(t) = φ(�−1(t))

φ(1)
= r(t)

φ(1)

and observe that the recurrence condition R (i), (ii) of [19], Theorem 4.5.2, with these func-
tions and the same B holds true, as well; see the proof of [19], Theorem 2.8.8. In addition,
by [19], Proposition 2.8.5, applied to U = V,V = φ(V ), we have that

(5.17)
1

n
Ex

n∑
k=1

Ŵ (x,Xkh) ≤ φ
(
V (x)

)+ CV + 1

n
V (x), n ≥ 1.

Now we can obtain the required statement as a direct corollary of [19], Theorem 4.5.2.
Namely, take q = δ−1, p = (1 − δ)−1, and denote

dN,γ,p(x, y) = dN,γ (x, y)1/p.

This function is bounded by 1, hence (5.17) implies the additional assumption (4.5.8) in [19],
Theorem 4.5.2:

1

n
Ex

n∑
k=1

dN,γ,p(x,Xkh)Ŵ (x,Xkh)
1/q ≤

(
1

n
Ex

n∑
k=1

Ŵ (x,Xkh)

)1/q

≤
(
φ
(
V (x)

)+ CV + 1

n
V (x)

)1/q

.

(5.18)
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Then [19], Theorem 4.5.2, yields that there exists unique IPM for X and for some c,C > 0,

(5.19) dN,γ,p

(
P nh

x ,π
)≤ C

r(cnh)1/q
Û(x), x ∈ C, n ≥ 1

with

Û (x) =
∫
C

dN,γ,p(x, y)Ŵ (x, y)1/qπ(dy).

By Fatou’s lemma and (5.18),

Û (x) ≤ (
φ
(
V (x)

)+ CV

)δ ≤ φ
(
V (x)

)δ + Cδ
V ≤ Cφ

(
V (x)

)δ
,

in the last inequality we have used that infx φ(V (x)) > 0. By the Markov property and (5.9),
we have

dN,γ,p

(
P t+nh

x ,π
)≤ C

1/p
h dN,γ,p

(
P nh

x ,π
)
,

hence (5.19) implies

(5.20) dN,γ,p

(
P t

x,π
)≤ C

r(ζ t)δ
φ
(
V (x)

)δ
, x ∈ C, t ≥ 0.

Since

dγ (x, y) ≤ dN,γ,p(x, y),

this completes the proof of (2.18).

6. Proofs of Theorems 2.4–2.6. The proofs of all these three theorems will be based on
the following auxiliary construction. Denote

ψ(v) = arctan
(|v|) v

|v| , v ∈ R
n.

Let x ∈ C be arbitrary but fixed. Denote by Xx the (strong) solution to the SDDE (2.1) with
Xx

0 = x, and consider a family of processes Yλ,y , λ ≥ 0, y ∈ C defined as the solutions to

(6.1) dYλ,y(t) = a
(
Yλ,y

t

)
dt + σ

(
Yλ,y

t

)
dW(t) − λψ

(
Yλ,y(t) − Xx(t)

)
dt, Yλ,y

0 = y.

Note that each Yλ,y depends also on x, but we do not indicate this explicitly in order to keep
the notation easy to read. Denote

βλ,y(t) = λσ
(
Yλ,y

t

)−1
ψ
(
Yλ,y(t) − Xx(t)

)
,

and observe that |βλ,y(t)| ≤ C (C may depend on λ). Then the classical Girsanov theorem
applies; for example, [20], Chapter 7. Namely, the family

Eλ,y(t) = exp
(∫ t

0
βλ,y(s)dWs − 1

2

∫ t

0

∣∣βλ,y(s)
∣∣2 ds

)
, y ∈C

satisfies EEλ,y(t) = 1, and the process

Wλ,y(τ ) = W(τ) −
∫ τ

0
βλ,y(s)ds, τ ∈ [0, t]

is a Wiener process on [0, t] w.r.t. the probability measure Eλ,y(t)dP. Equation (6.1) is just
(2.1) with dW changed to dWλ,y ; thus for any bounded measurable f

(6.2) Ef
(
Yλ,y

t

)
Eλ,y(t) = Ef

(
Xy

t

)
.

In addition, since βλ,y is bounded by a constant, we have for each p ≥ 1, t > 0,

(6.3) sup
y

E
(
Eλ,y

t

)p
< ∞, sup

y
E
(
Eλ,y

t

)−p
< ∞.
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6.1. Proof of Theorem 2.4. Let B be a separable Banach space. We will say that a family
of B-valued processes Zy(t), t ∈ [0, T ], y ∈ C is Lp-Fréchet differentiable at a given point
y ∈ C, if for any z ∈ C there exists a family ∇zZ

y(t) ∈ B, t ∈ [0, T ], z ∈ C such that

(6.4) sup
t∈[0,T ],‖z‖≤1

E

∥∥∥∥Zy+εz(t) − Zy(t)

ε
− ∇zZ

y(t)

∥∥∥∥p

B

→ 0, ε → 0,

the mappings

(6.5) C � z �→ ∇zZ
y(t) ∈ Lp(�,P,B), t ∈ [0, T ]

are linear, and

(6.6) sup
t∈[0,T ]

sup
‖z‖≤1

E
∥∥∇zZ

y(t)
∥∥p
B

< ∞.

We have the following.

LEMMA 6.1. Let C(1) hold true. Then for any λ ≥ 0, T > 0,p ≥ 1 the families{
Yλ,y(t), t ∈ [0, T ], y ∈ C

}
,

{
Yλ,y

t , t ∈ [0, T ], y ∈ C
}

of processes taking values in R
n and C respectively are Lp-Fréchet differentiable at any

y ∈ C. Moreover, the processes Uλ,y,z(t) = ∇zY
λ,y(t), t ∈ [0, T ], z ∈ C, satisfy

(6.7)
dUλ,y,z(t) = 〈∇a

(
Yλ,y

t

)
,Uλ,y,z

t

〉
dt + 〈∇σ

(
Yλ,y

t

)
,Uλ,y,z

t

〉
dW(t)

− λ
〈∇ψ

(
Yλ,y(t) − Xx(t)

)
,Uλ,y,z(t)

〉
dt, Uλ,y,z

0 = z,

and

(6.8) ∇zYλ,y
t = Uλ,y,z

t , t ∈ [0, T ].

PROOF. The scheme of the proof actually repeats the one from the classical proof of
L2-differentiability w.r.t. to a parameter of a solution to an SDE; see [14], Section 2.7. Thus
we just briefly outline the usual steps, and focus on particular (minor) difficulties which arise
because the state space C for the solution to (6.1) is infinite dimensional.

Step 1. By assumption C(1), a,σ are (globally) Lipschitz continuous. Thus, applying first
Itô’s formula, then the Burkholder–Davis–Gundy inequality, and finally the Gronwall lemma,
one gets the bound

(6.9) sup
‖z‖≤1

E sup
t∈[0,T ]

∣∣Yλ,y+εz(t) − Yλ,y(t)
∣∣p ≤ Cεp

for each fixed p ≥ 1, λ ≥ 0. The argument here is the same as in Section 4.1, thus we omit
the details.

Step 2. Denote Dλ,y,εz(t) = Yλ,y+εz(t) − Yλ,y(t), t ≥ 0, and let Dλ,y,εz
t , t ≥ 0 be the cor-

responding segment process. Since a,σ are Fréchet differentiable and have bounded and
uniformly continuous derivatives, it follows from (6.9) that

a
(
Yλ,y+εz

t

)− a
(
Yλ,y

t

)= 〈∇a
(
Yλ,y

t

)
,Dλ,y,εz

t

〉+ Rλ,y,εz
a (t),

σ
(
Yλ,y+εz

t

)− σ
(
Yλ,y

t

)= 〈∇σ
(
Yλ,y

t

)
,Dλ,y,εz

t

〉+ Rλ,y,εz
σ (t)

with

(6.10)
1

εp
sup

t∈[0,T ],‖z‖≤1

(
E
∣∣Rλ,y,εz

a (t)
∣∣p +E

∣∣Rλ,y,εz
σ (t)

∣∣p)→ 0, ε → 0.
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Step 3. Using (6.10), we apply to the pair ε−1Dλ,y,εz, Uλ,y,z the argument from Step 1,
and obtain that

(6.11) sup
‖z‖≤1

E sup
t∈[0,T ]

∣∣ε−1Dλ,y,εz(t) − Uλ,y,z(t)
∣∣p → 0, ε → 0.

This is just the relation (6.4) for Zy(t) = Yλ,y(t) with ∇yZ
y(t) = Uλ,y,z(t). The linearity of

the mapping (6.5) and the bound (6.6) can be verified straightforwardly, since Uλ,y,z solves
the linear equation (6.7) and ∇a,∇σ,∇ψ , are bounded. This completes the proof of the
required differentiability for the R

d -valued family {Yλ,y(t)}.
Step 4. We have already proved (6.4) for Zy(t) = Yλ,y(t) with ∇yZ

y(t) = Uλ,y,z(t). These
processes are given by (6.1), (6.7), thus using Doob’s maximal inequality we can improve this
relation and get

sup
‖z‖≤1

E sup
t∈[0,T ]

∥∥∥∥Zy+εz(t) − Zy(t)

ε
− ∇zZ

y(t)

∥∥∥∥p

Rd
→ 0, ε → 0.

This yields (6.4) for the C-valued processes Z̃y(t) = Yλ,y
t with ∇zZ̃

y(t) = Uλ,y,z
t . The linear-

ity of (6.5) for ∇zZ̃
y(t) follows trivially from the same property for ∇zZ̃

y(t), and the bound
(6.6) for ∇zZ̃

y(t) follows from the same bound for ∇zZ
y(t) and Doob’s maximal inequality.

This completes the proof of the required differentiability for the C-valued family {Yλ,y
t } and

identity (6.8). �

LEMMA 6.2. Let C(1) hold true. Then for any λ ≥ 0, T > 0,p ≥ 1 the following hold:

1. The family βλ,y(t), t ∈ [0, T ], y ∈ C is Lp-Fréchet differentiable w.r.t. y, and

�λ,y,z(t) := ∇zβ
λ,y(t) = λ

(∇σ−1)(Yλ,y
t

)
Uλ,y,z

t ψ
(
Yλ,y(t) − Xx(t)

)
+ λσ

(
Yλ,y

t

)−1〈∇ψ
(
Yλ,y(t) − Xx(t)

)
,Uλ,y,z(t)

〉
.

2. The family �λ,y(t) = logEλ,y(t), t ∈ [0, T ], y ∈ C is Lp-Fréchet differentiable w.r.t. y,
and

�λ,y,z(t) := ∇z�
λ,y(t) =

∫ t

0
�λ,y,z(s)dWs −

∫ t

0
βλ,y(s) · �λ,y,z(s)ds.

3. The family Eλ,y(t), t ∈ [0, T ], y ∈ C is Lp-Fréchet differentiable w.r.t. y, and

∇zEλ,y(t) = Eλ,y(t)�λ,y,z(t).

PROOF. Statement 1 follows from Lemma 6.1 by the chain rule, and straightforwardly
implies statement 2. To prove statement 3, we first observe that by statement 2,

(6.12)
Eλ,y+εz(t) − Eλ,y(t)

ε
→ Eλ,y(t)�λ,y,z(t), ε → 0

in probability uniformly in t ∈ [0, T ]. In addition, by the elementary inequality∣∣ea − 1
∣∣≤ C|a|(1 + ea), a ∈ R,

we have∣∣∣∣Eλ,y+εz(t) − Eλ,y(t)

ε

∣∣∣∣≤ C

∣∣∣∣ logEλ,y+εz(t) − logEλ,y(t)

ε

∣∣∣∣(Eλ,y+εz(t) + Eλ,y(t)
)
.

By (6.4) for the family logEλ,y(t), t ∈ [0, T ], y ∈ C and (6.3), this yields that the left-hand
side term in (6.12) has uniformly bounded Lp-norm for every p, and thus is uniformly Lp′-
integrable for any p′ < p. This yields that (6.12) holds true in Lp for any p. This proves (6.4)
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for the family Eλ,y(t), t ∈ [0, T ], y ∈ C; the proofs of linearity for (6.5) and of the bound (6.6)
are easy and omitted. �

Now it is easy to complete the proof of Theorem 2.4. By (6.2), Lemma 6.1, and statements
2,3 of Lemma 6.2 applied at the point y = x, we get

1

ε

(
Ex+εzf (Xt ) −Exf (Xt )

)
= 1

ε

(
Ef

(
Yλ,x+εz

t

)
Eλ,x+εz(t) −Ef

(
Yλ,x

t

)
Eλ,x(t)

)
→ E

〈∇f
(
Yλ,x

t

)
,Uλ,x,z

t

〉
Eλ,x(t)

+Ef
(
Yλ,x

t

)
Eλ,x(t)

(∫ t

0
�λ,x,z(s)dWs +

∫ t

0
βλ,x(s) · �λ,x,z(s)ds

)
as ε → 0 uniformly in t ∈ [0, T ],‖z‖ ≤ 1. Note that Yλ,x = Xx , and thus βλ,x(t) ≡ 0,
Eλ,x(t) ≡ 1. In addition, ψ(0) = 0,∇ψ(0) = IRn, and thus

�λ,x,z(t) = λσ
(
Xx

t

)−1
Uλ,x,z(t).

Finally, since ∇ψ(0) = IRn equation (6.7) for Uλ,x,z coincides with equation (2.20). That is,
Uλ,x,z = Uλ,z, which completes the proof of Theorem 2.4.

6.2. Proof of Theorem 2.5. First, we fix h > r such that (2.15) holds true; it is an as-
sumption of Theorem 2.3 (and thus of Theorem 2.5) that such h exists. In what follows, the
constants may depend on h but we do not indicate this in the notation.

Next, we note that, for any p ≥ 1 and Q > 0, one can fix λ large enough such that

(6.13) Ex

∥∥Uλ,z
t

∥∥p ≤ Ce−pQt‖z‖p, t ≥ 0.

This follows by Itô’s formula and Lemma B.2 applied to the family of processes V λ,v(t) =
|Uλ,z(t)|2, λ > 0, v = |z|2 ∈ C

+
real. In the sequel, we use this inequality for the particular value

p = (1 − δ)−1 and a fixed Q. Note that by (6.13) we have

(6.14)
∣∣Ex

〈∇f (Xt ),Uλ,z
t

〉∣∣≤ Ce−Qt sup
y∈C

∥∥∇f (y)
∥∥‖z‖.

Next, we note that by (6.13), H3, and the Burkholder–Davis–Gundy inequality, for any
t1 ≤ t2

(6.15) Ex

∣∣∣∣∫ t2

t1

σ(Xs)
−1Uλ,z(s)dW(s)

∣∣∣∣p ≤ Ce−pQt1‖z‖p.

For t0 ∈ [0, t], we have

Ex

(
f (Xt )

∫ t

t0

σ(Xs)
−1Uλ,z(s)dW(s)

)

= Ex

((
f (Xt ) − f (0)

) ∫ t

t0

σ(Xs)
−1Uλ,z(s)dW(s)

)
,

hence using that

(6.16) sup
x

∥∥f (x) − f (0)
∥∥≤ ‖f ‖Hγ ,

we get

(6.17)
∣∣∣∣λEx

(
f (Xt )

∫ t

t0

σ(Xs)
−1Uλ,z(s)dW(s)

)∣∣∣∣≤ Ce−Qt0‖f ‖Hγ ‖z‖.
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On the other hand, by the Markov property,

Ex

(
f (Xt )

∫ t0

0
σ(Xs)

−1Uλ,z(s)dW(s)

)
= Ex

(
Pt−t0f (Xt0)

∫ t0

0
σ(Xs)

−1Uλ,z(s)dW(s)

)
.

Denote

f =
∫
C

f (y)π(dy).

By (2.9) and (2.18),

∣∣Psf (x) − f
∣∣≤ C

1

r(c0s)δ
φ
(
V (x)

)δ‖f ‖Hγ

for some c0 > 0. Clearly,

Ex

(
f

∫ t0

0
σ(Xs)

−1Uλ,z(s)dW(s)

)
= 0,

hence by (6.15) with t1 = 0, t2 = t0 and Hölder’s inequality applied to p = (1 − δ)−1, q =
δ−1, we have ∣∣∣∣Ex

(
f (Xt )

∫ t0

0
σ(Xs)

−1Uλ,z(s)dW(s)

)∣∣∣∣
≤ C

1

r(c0(t − t0))δ

(
Exφ

(
V (Xt0)

))δ‖f ‖Hγ ‖z‖.
(6.18)

By Jensen’s inequality, Exφ(V (Xt0)) ≤ φ(ExV (Xt0)). On the other hand, if t0 = kh, k ∈
N∪ {0}, then it follows from (2.15) that

ExV (Xt0) ≤ V (x) + kCV .

Since φ is concave and nonnegative, we have

(6.19) φ(u + v) ≤ φ(u) + φ(v) − φ(0) ≤ φ(u) + φ(v).

Hence

(6.20)
(
Exφ

(
V (Xt0)

))δ ≤ C
(
t0 + φ

(
V (x)

))δ
, t0 ∈ hN∪ {0}.

Now we can complete the proof. Without loss of generality, we can assume Q ≥ 1. Since
the function φ(v) is sublinear (see (6.19)), the function r(t) is subexponential. In particular,
we can fix c ∈ (0, c0/2) small enough and t∗ > 0 such that

log r(ζ t) ≤ Qt

2
, t ≥ t∗,Q ≥ 1;

recall also that we have assumed φ(v) > 1, and thus log r(t) > 0, t ≥ 0. Take for t ≥ t∗

t0 = h
⌊
h−1Q−1 log r(ζ t)

⌋ ∈ hN∪ {0},
then t0 ≤ Q−1 log r(ζ t), t − t0 ≥ t/2. In addition,

r
(
c0(t − t0)

)≥ r(ζ t)



GENERALIZED COUPLING APPROACH FOR STOCHASTIC DELAY EQUATIONS 3065

because r(·) is increasing and c < c0/2. Combining the representation (2.21) with (6.14),
(6.17), (6.18) and (6.20), we get for Q ≥ 1,∣∣∇zExf (Xt )

∣∣≤ Ce−Qt sup
y∈C

∥∥∇f (y)
∥∥‖z‖ + C

r(ζ t)
‖f ‖Hγ ‖z‖

+ C

r(ζ t)δ

(
Q−1 log r(ζ t) + φ

(
V (x)

))δ‖f ‖Hγ ‖z‖, x, y ∈ C,

which after a simple rearrangement gives (2.22) for t ≥ t∗. The proof of (2.22) for t ≤ t∗ is
easy and omitted.

6.3. Proof of Theorem 2.6. For k > 1, the argument remains principally the same as the
one developed for k = 1 in the two previous sections, with just technical complications which
makes the proof more cumbersome. Thus we just outline the main steps of the proof, paying
particular attention to one new circumstance; see Step 5 below. Everywhere below we assume
C(k) to hold for some k > 1.

Step 1. By iteration of the argument in the proof of Lemma 6.1, we obtain that the family
Yλ,y(t), t ∈ [0, T ], y ∈ C is k times Lp-Fréchet differentiable w.r.t. y, and the corresponding
direction-wise derivatives Uλ,y,z1,...,zk (t) = ∇z1 . . .∇zk

Y λ,y(t) satisfy SDDEs of the form

(6.21)

dUλ,y,z1,...,zk (t) = 〈∇a
(
Yλ,y

t

)
,Uλ,y,z1,...,zk

t

〉
dt + 〈∇σ

(
Yλ,y

t

)
,Uλ,y,z1,...,zk

t

〉
dW(t)

− λ
〈∇ψ

(
Yλ,y(t) − Xx(t)

)
,Uλ,y,z1,...,zk (t)

〉
dt

+ Dλ,y,z1,...,zk (t)dt + Sλ,y,z1,...,zk (t)dW(t), Uλ,y,z1,...,zk

0 = 0.

The terms Dλ,y,z1,...,zk (t), Sλ,y,z1,...,zk (t) can be represented as sums of various l-linear
forms, which are expressed in terms of ∇ ia(Yλ,y

t ), ∇ iσ (Yλ,y
t ), ∇ iψ(Y λ,y(t) − Xx(t)), i =

1, . . . , k (and thus are bounded). The arguments in each of those l-linear forms have the
generic form

U
λ,y,zI1
t , . . . ,U

λ,y,zIl
t ,

where I1, . . . , Il is a disjoint partition of {1, . . . , k}, and we use the notation

Uλ,y,zI
t = U

λ,y,zi1 ,...,zij

t , I = {i1, . . . , ij }.
Step 2. We have for λ large enough

(6.22) E
∥∥Uλ,x,z1,...,zk

t

∥∥p ≤ Ce−pQt‖z1‖p . . .‖zk‖p, t ≥ 0.

To see this, first recall that Yλ,x = Xx , ∇ψ(0) = IRn . Then (6.21) for y = x transforms to

(6.23)

dUλ,x,z1,...,zk (t)

= 〈∇a
(
Xx

t

)
,Uλ,x,z1,...,zk

t

〉
dt + 〈∇σ

(
Xx

t

)
,Uλ,x,z1,...,zk

t

〉
dW(t)

− λUλ,x,z1,...,zk (t)dt + Dλ,x,z1,...,zk (t)dt + Sλ,x,z1,...,zk (t)dW(t),

Uλ,y,z1,...,zk

0 = 0.

Now the proof can be made inductively: assuming (6.22) holds true for 1, . . . , k − 1, we have

E
∣∣Dλ,x,z1,...,zk (t)

∣∣p +E
∣∣Sλ,x,z1,...,zk (t)

∣∣p ≤ Ce−pQt‖z1‖p . . .‖zk‖p, t ≥ 0,

which yields (6.22) for k by Lemma B.3.
Step 3. Similar to the proof of Lemma 6.2 we get that the following families are k times

Lp-Fréchet differentiable w.r.t. y:
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• βλ,y(t), t ∈ [0, T ], y ∈ C;
• �λ,y(t) := logEλ,y(t), t ∈ [0, T ], y ∈ C;
• Eλ,y(t1; t2) = Eλ,y(t1)

−1Eλ,y(t2), t1, t2 ∈ [0, T ], y ∈ C.

The corresponding direction-wise derivatives will be defined by

�λ,y,z1,...,zk (t) = ∇z1 . . .∇zk
βλ,y(t), �λ,y,z1,...,zk (t) = ∇z1 . . .∇zk

�λ,y(t),

Eλ,y,z1,...,zk (t1; t2) = ∇z1 . . .∇zk
Ey,λ(t1; t2).

We have straightforwardly

�λ,y,z1,...,zk (t) =
∫ t

0
�λ,y,z1,...,zk (s)dWs

+ ∑
i=1,...,k

∫ t

0
�λ,y,zj (s) · �λ,y,z1,...,zj−1,zj+1,...zk (s)ds.

Step 4. The derivative �λ,x,z1,...,zk (t) can be expressed as a sum of bounded l-linear forms
(l = 1, . . . , k) applied to

U
λ,x,z′

1,...,z
′
j

t , j = 1, . . . , k, z′
1, . . . , z

′
j ∈ {z1, . . . , zk}.

Then by (6.22) we have that for λ large enough

(6.24) E
∣∣�λ,x,z1,...,zk (t)

∣∣p ≤ Ce−pQt‖z1‖p . . .‖zk‖p, t ≥ 0.

This implies

(6.25) E
∣∣�λ,x,z1,...,zk (t2) − �λ,x,z1,...,zk (t1)

∣∣p ≤ Ce−pQt1‖z1‖p . . .‖zk‖p, t2 ≥ t1 ≥ 0.

Recall that Eλ,x(t1; t2) = 1, hence the derivative Eλ,y,z1,...,zk (t1; t2) is a polynomial of

�
λ,x,z′

1,...,z
′
j (t2) − �

λ,x,z′
1,...,z

′
j (t1), j = 1, . . . , k, z′

1, . . . , z
′
j ∈ {z1, . . . , zk}.

Therefore, for λ large enough

(6.26) E
∣∣Eλ,x,z1,...,zk (t1; t2)

∣∣p ≤ Ce−pQt1‖z1‖p . . .‖zk‖p, t2 ≥ t1 ≥ 0.

Step 5. By (6.2), we have

(6.27)

∇z1 . . .∇zk
Exf (Xt ) = E∇z1 . . .∇zk

(
f
(
Yλ,y

t

)
Eλ,y(t)

)∣∣
y=x

= ∑
I∪J={1,...,k},I∩J=∅

E∇I
zI

(
f
(
Yλ,y

t

))∣∣
y=xE

λ,x,zJ (t)

= ∑
I∪J={1,...,k},I∩J=∅,I 	=∅

E∇I
zI

(
f
(
Yλ,y

t

))∣∣
y=xE

λ,x,zJ (t)

+Ef
(
Xx

t

)
Eλ,x,z1,...,zk (t),

where the following notation is used:

• for I = {i1, . . . , im},
∇I

zI
= ∇zi1

. . .∇zim
;

• for J = {j1, . . . , jr},
Eλ,x,zJ (t) = Eλ,x,zJ (0, t), Eλ,x,zJ (t1, t2) = Eλ,x,zj1 ,...,zjr (t1, t2).
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By (6.22) and (6.26) with t2 = t, t1 = 0, we have∣∣∣∣ ∑
I∪J={1,...,k},I∩J=∅,I 	=∅

E∇I
zI

(
f
(
Yλ,y

t

))∣∣
y=xE

λ,x,zJ (t)

∣∣∣∣
≤ C‖f ‖(k)e

−Qt‖z1‖ . . .‖zk‖.
(6.28)

That is, the first term (the sum) on the right-hand side of (6.27) admits an estimate completely
analogous to (6.14).

The second term on the right-hand side of (6.27) is analogous to the second term in (2.21).
A slight new difficulty which appears in the case k > 1 is that now this term cannot be simply
written by means of a stochastic integral: Eλ,x,z1,...,zk (t) is actually a mixture of various mul-
tiple stochastic integrals. This difficulty can be avoided by the following trick, which makes
it possible to estimate this term without a study of its inner structure. We have for arbitrary
t0 ≤ t ,

Eλ,x,z1,...,zk (t) = ∇z1 . . .∇zk

(
Eλ,y(0; t0)Eλ,y(t0; t))∣∣y=x

= ∑
I∪J={1,...,k},I∩J=∅

Eλ,x,zI (0; t0)Eλ,x,zJ (t0; t).(6.29)

By (6.16) and (6.26),∣∣∣∣Ef
(
Xx

t

) ∑
I∪J={1,...,k},I∩J=∅,J 	=∅

Eλ,x,zI (0; t0)Eλ,x,zJ (t0; t)
∣∣∣∣

≤ C‖f ‖Hγ e−Qt0‖z1‖ . . .‖zk‖,
(6.30)

which is a straightforward analogue to (6.17). The term with J =∅ equals

Ef
(
Xx

t

)
Eλ,x,z1,...,zk (t0) = EPt−t0f (Xt0)Eλ,x,z1,...,zk (t0).

Note that

EEλ,x,z1,...,zk (t0) = ∇z1 . . .∇zk
EEλ,y(t0)|y=x = ∇z1 . . .∇zk

1 = 0.

Repeating literally the calculations used in the proof of (6.18) and using (6.20), we get

(6.31)
∣∣Ef

(
Xx

t

)
Eλ,x,z1,...,zk (t0)

∣∣≤ C
1

r(c0(t − t0))δ

(
t0 + φ

(
V (x)

))δ‖f ‖Hγ ‖z‖

for some c0 > 0. Using (6.28), (6.30), (6.31) and repeating the optimization in t0 procedure
from the last part of the proof of Theorem 2.5, we complete the proof of the theorem.

APPENDIX A: THE KULLBACK–LEIBLER DIVERGENCE AND RELATED BOUNDS

For a pair of probability measures μ � ν on a measurable space (X,X ) the Kullback–
Leibler (KL–) divergence of μ from ν is defined by

DKL(μ‖ν) :=
∫
X

log
dμ

dν
dμ =

∫
X

dμ

dν
log

(
dμ

dν

)
dν.

The KL–divergence is known to be a stronger measure of difference between probability
distributions than the total variation distance; in particular, the following Pinsker inequality
holds true, for example, [28], Lemma 2.5(i):

(A.1) dTV(μ, ν) ≤
√

1

2
DKL(μ‖ν).
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In addition, the KL-divergence yields the following lower bound; see [6], Lemma A.1: for
any N > 1 and any set A ∈ X ,

(A.2) ν(A) ≥ 1

N
μ(A) − DKL(μ‖ν) + log 2

N logN
.

Next, let ξ be an m-dimensional Itô process with ξ0 = 0 and

(A.3) dξt = βt dt + dWt, t ≥ 0,

where W is a Wiener process in R
m, and (βt )t≥0 is a progressively measurable process.

The following bound is available for the KL–divergence of the law μξ of the process ξ on
C([0,∞),Rm) w.r.t. of the law μW of W (the Wiener measure).

THEOREM A.1. [6], Theorem A.2,

DKL(μξ‖μW) ≤ 1

2
E

∫ ∞
0

|βt |2 dt.

APPENDIX B: AUXILIARY TAIL- AND Lp-ESTIMATES

The following lemma was suggested by R. Schilling.

LEMMA B.1. Let V (t) ≥ 0 be an Itô process with

dV (t) = η(t)dt + dM(t),

where M is a continuous local martingale with quadratic variation

〈M〉(t) =
∫ t

0
m(s)ds, t ≥ 0.

Let for some constants A ≥ 0,B > 0, λ > 0 and a random variable ς ≥ 0

η(t) ≤ −λV (t) + A, m(t) ≤ B, t ≤ ς.

Assume also that ς ≤ T for some constant T > 0.
Then for every δ ∈ (0,1/2) there exist C1, C2 > 0, which depend only on δ and T , such

that

P

(
sup
t≤ς

(
V (t) − e−λtV (0)

)≥ Aλ−1 + B1/2λ−δR
)

≤ C1e
−C2R

2
, R ≥ 0.

PROOF. We have

(B.1) V (t) = e−λtV (0) +
∫ t

0
e−λ(t−s)ξ(s)ds +

∫ t

0
e−λ(t−s) dM(s),

where

ξ(t) = η(t) + λV (t) ≤ A, t ≤ ς.

Clearly, ∫ t

0
e−λ(t−s)ξ(s)ds ≤ Aλ−1(1 − e−λt ), t ≤ ς,

and we have to study the third term in (B.1), only. Without loss of generality, we can assume
that M(0) = 0. By the Dambis–Dubins–Schwarz theorem (see, e.g., [25], Theorem 5.1.6),
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extending the probability space, if necessary, we can find a standard Brownian motion W̃

such that ∫ t

0
eλs dM(s) = B1/2W̃

(∫ t

0
e2λs m(s)

B
ds

)
, t ≥ 0.

Therefore,

sup
0≤t≤ς

∫ t

0
e−λ(t−s) dM(s) = B1/2 sup

0≤t≤ς

{
e−λt W̃

(∫ t

0
e2λs m(s)

B
ds

)}

≤ B1/2 sup
0≤t≤ς

{
e−λt sup

0≤u≤t

W̃

(∫ u

0
e2λs m(s)

B
ds

)}

≤ B1/2 sup
0≤t≤ς

{
e−λt sup

0≤u≤t

W̃

(∫ u

0
e2λs ds

)}
.

Next, M̃(t) = W̃ (
∫ t

0 e2λs ds) is a Gaussian martingale with characteristic 〈M̃〉(t) = ∫ t
0 e2λs ds,

hence

Ŵ (t) =
∫ t

0
e−λs dM̃(s)

is a standard Brownian motion such that

W̃

(∫ t

0
e2λs ds

)
=
∫ t

0
eλs dŴ (s), t ≥ 0.

Using that t �→ e−λt is decreasing, we get finally

sup
0≤t≤ς

∫ t

0
e−λ(t−s) dM(s) ≤ B1/2 sup

0≤t≤ς

{
e−λt sup

0≤u≤t

∫ u

0
eλs dŴ (s)

}

≤ B1/2 sup
0≤t≤ς

{
sup

0≤u≤t

e−λu
∫ u

0
eλs dŴ (s)

}

= B1/2 sup
0≤t≤ς

∫ t

0
e−λ(t−s) dŴ (s).

For N > 0 and δ < 1/2, denote

D
δ,T
N = {∣∣Ŵ (t) − Ŵ (s)

∣∣≤ N |t − s|δ; s, t ≤ T
}
,

and observe that, by Fernique’s theorem,

(B.2) P
(
� \ D

δ,T
N

)≤ c1e
−c2N

2
, N > 0

with constants c1, c2 which depend only on δ and T . Observe that∫ t

0
e−λ(t−s) dŴ (s) =

∫ t

0

(
Ŵ (t) − Ŵ (s)

)
λe−λ(t−s) ds + e−λt Ŵ (t).

Therefore, on the set set D
δ,T
N , we obtain for t ≤ ς ≤ T∫ t

0
e−λ(t−s) dM(s) ≤ NB1/2

∫ t

0
(t − s)δλe−λ(t−s) ds + NB1/2e−λt tδ

≤ NB1/2λ−δ
(
�(δ) + sup

x>0
xδe−x

)
,
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where �(δ) denotes the Euler Gamma-function. Taking

N =
(
�(δ) + sup

x>0
xδe−x

)
R

and using (B.2), the proof is complete. �

Denote C
+
real the set of nonnegative functions in C([−r,0],R).

LEMMA B.2. For each λ > 0, v ∈ C
+
real, let V λ,v(t) ≥ 0, t ≥ −r be an adapted process

with continuous paths such that

dV λ,v(t) = ηλ,v(t)dt + dMλ,v(t), t ≥ 0, Vλ,v
0 = v ∈ C

+
real,

where Mλ,v is a continuous local martingale and for some constant K ≥ 0,

ηλ,v(t) ≤ K
∥∥Vλ,v

t

∥∥− λV λ,v(t),
d〈Mλ,v〉(t)

dt
≤ K2∥∥Vλ,v

t

∥∥2
.

Then for each p ≥ 1 and Q > 0 there exist λp,Q,K > 0 and a constant Cp,Q,K such that for
λ ≥ λp,Q,K,

E
∥∥Vλ,v

t

∥∥p ≤ Cp,Q,Ke−Qt‖v‖p, t ≥ 0, v ∈ C
+
real.

PROOF. First, we note that by the Gronwall lemma and the Burkholder–Davis–Gundy
inequality for each T > 0,p ≥ 1 there exists a constant Cp,T ,K such that

(B.3) E sup
t≤T

V λ,v(t)p ≤ Cp,T ,K‖v‖p;

the argument here is the same as in Section 4.1. That is, to prove the required statement it is
enough to find for given p,Q some T = Tp,Q,K > 0 and λp,Q,K > 0 such that

(B.4) E
∥∥Vλ,v

t

∥∥p ≤ Cp,Q,Ke−QT ‖v‖p, λ ≥ λp,Q,K, v ∈ C
+
real.

We fix T = 2r and put

τλ,v = inf
{
t : ∣∣V λ,v(t)

∣∣≥ 2‖v‖}∧ T .

Then the assumption of Lemma B.1 holds true for V = V λ,v, τ = τλ,v with A = 2K‖v‖,
B = 4K2‖v‖2. Note that this lemma yields

V λ,v(t) ≤ e−λtv(0) + A

λ
+ B1/2

λδ
�λ,v(t), t ≤ τλ,v

with a fixed δ < 1/2 and ∥∥∥sup
t≤T

�λ,v(t)
∥∥∥
Lp

≤ C′
p,T .

We will take λp,Q,K ≥ 4K , then for λ ≥ λp,Q,K ,

V λ,v(t)1t≤τλ,v ≤
(
e−λt + 2K

λ
+ 2K

λδ
�λ,v(t)

)
‖v‖ ≤

(
3

2
+ 2K

λδ
�λ,v(t)

)
‖v‖,

which yields

P
(
τλ,v < T

)≤ P

(
�λ,v(τλ,v)≥ λδ

4K

)
≤ C′

p,T (4K)pλ−δp.
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Then by (B.3) and the Cauchy inequality

E sup
t∈[0,T ]

V λ,v(t)p1τλ,v<T ≤
(
E sup

t≤T

V λ,v(t)2p
)1/2(

P
(
τλ,v < T

))1/2

≤ (C2p,T C′
p,T (4K)p)1/2

λpδ/2 ‖v‖p.

Combining these calculations, we get

V λ,v(t) ≤
(
e−λt + 2K

λ
+
(

2K

λδ/2 ∨
√

2K

λδ/2

)
�λ,v,K

)
‖v‖, t ∈ [0, T ]

with ∥∥�λ,v,K
∥∥
Lp

≤ C′
p,T .

In particular,

∥∥Vλ,v
T

∥∥≤
(
e−λT/2 + 2K

λ
+ 2K

λδ/2 �λ,v,K

)
‖v‖,

which easily yields (B.4) for λ ≥ λp,Q,K and λp,Q,K large enough. �

The following lemma can be proved by essentially the same argument; we leave the details
for the reader.

LEMMA B.3. Let k > 1, and for each λ > 0, v1, . . . , vk ∈ C
+
real let V λ,v1,...,vk (t) ≥ 0,

t ≥ −r be an adapted process with continuous paths such that

dV λ,v1,...,vk (t) = ηλ,v1,...,vk (t)dt + dMλ,v1,...,vk (t), t ≥ 0, Vλ,v1,...,vk

0 = 0,

where Mλ,v1,...,vk is a continuous local martingale and, for some constant K ≥ 0,

ηλ,v1,...,vk (t) ≤ K
∥∥Vλ,v1,...,vk

t

∥∥− λV λ,v1,...,vk (t) + Lλ,v1,...,vk (t),

d〈Mλ,v1,...,vk 〉(t)
dt

≤ K2∥∥Vλ,v1,...,vk
t

∥∥2 + Nλ,v1,...,vk (t).

Fix p ≥ 1 and assume that the nonnegative adapted processes Lλ,v1,...,vk (t), Nλ,v1,...,vk (t),

t ≥ 0 are such that for each Q > 0 there exist λ0
p,Q > 0 and a constant C0

p,Q such that

E
∥∥Lλ,v1,...,vk

t

∥∥p ≤ C0
p,Qe−Qt‖v1‖p . . .‖vk‖p,

E
∥∥Nλ,v1,...,vk

t

∥∥2p ≤ C0
p,Qe−Qt‖v1‖p . . .‖vk‖p, t ≥ 0

for any λ ≥ λ0
p,Q and v1, . . . , vk ∈ C

+
real.

Then for each Q > 0 there exist λp,Q,K > 0 and a constant Cp,Q,K such that for λ ≥
λp,Q,K

E
∥∥Vλ,v1,...,vk

t

∥∥p ≤ Cp,Q,Ke−Qt‖v1‖p . . .‖vk‖p, t ≥ 0, v1, . . . , vk ∈ C
+
real.
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APPENDIX C: DEVIATION BOUNDS FOR THE CONTROLLED PROCESSES

In this section, we prove Proposition 3.1 and Proposition 5.2.

PROOF OF PROPOSITION 3.1. To shorten the notation, we will write υ instead of υx,y,K ;
recall that υ is assumed to be positive. We have by Itô’s formula

(C.1)
∣∣X(t) − Y(t)

∣∣2 = ∣∣x(0) − y(0)
∣∣+ ∫ t

0
A(s)ds +

∫ t

0
�(s)dW(s), t ≥ 0,

where

A(s) = 2
(
a(Xs) − ã(Ys),X(s) − Y(s)

)+ ∣∣∣∣∣∣σ(Xs) − σ̃ (Ys)
∣∣∣∣∣∣2

− 2υγ−1∣∣X(s) − Y(s)
∣∣21s≤τ ,

�(s) = 2
(
X(s) − Y(s)

)�(
σ(Xs) − σ̃ (Ys)

)
.

We have ∣∣∣∣∣∣σ(Xs) − σ̃ (Ys)
∣∣∣∣∣∣2 ≤ 2

∣∣∣∣∣∣σ̃ (Xs) − σ(Xs)
∣∣∣∣∣∣2 + 2

∣∣∣∣∣∣σ̃ (Xs) − σ̃ (Ys)
∣∣∣∣∣∣2,

and thus A(s) ≤ A(1)(s) + A(2)(s) with

A(1)(s) = 2
(
a(Xs) − ã(Xs),X(s) − Y(s)

)+ 2
∣∣∣∣∣∣σ(Xs) − σ̃ (Xs)

∣∣∣∣∣∣2,
A(2)(s) = 2

(
ã(Xs) − ã(Ys),X(s) − Y(s)

)+ 2
∣∣∣∣∣∣σ̃ (Xs) − σ̃ (Ys)

∣∣∣∣∣∣2
− 2υγ−1∣∣X(s) − Y(s)

∣∣21s≤τ .

Denote θ = τ ∧ θK , then for t ≤ θ we have

(C.2) Xt ∈ K,
∣∣X(t) − Y(t)

∣∣≤ 2υ,

which simply gives

(C.3)
∣∣A(1)(s)

∣∣≤ 2
(
2�a,Kυ + �2

σ,K

)≤ 4
(
υα+1 + υ2β), s ≤ θ,

see (3.5) for the definition of υ = υx,y,K . The second inequality in (C.2) clearly yields

‖Xt − Yt‖ ≤ 2υ, t ≤ θ.

Then by the conditions H1,H2 for ã, σ̃

(C.4) A(2)(s) ≤ Caυ
α
∣∣X(s) − Y(s)

∣∣− 2υγ−1∣∣Y(s) − X(s)
∣∣2 + Cσυ2β, s ≤ θ.

By the Young’s inequality,

Caυ
α
∣∣X(s) − Y(s)

∣∣≤ Ca

2

(
υα+1 + υα−1∣∣X(s) − Y(s)

∣∣2).
On the other hand, since γ < α, we can choose υ0 > 0 such that

Ca

2
υα−1 − 2υγ−1 ≤ −υγ−1, υ ∈ (0, υ0].

In what follows, we consider υ ∈ (0, υ0] only. For such υ , we get by (C.3), (C.4)

(C.5) A(s) ≤ −υγ−1∣∣X(s) − Y(s)
∣∣2 + C

(
υα+1 + υ2β), s ≤ θ.

Further, we have

(C.6)
∣∣�(s)

∣∣≤ Cυ1+β, s ≤ θ.
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Now we apply Lemma B.1 with a fixed T > 0 and

V (t) = ∣∣X(t) − Y(t)
∣∣2, ς = θ ∧ T .

By (C.5), (C.6) the assumptions of Lemma B.1 hold with

λ = υγ−1, A = C
(
υα+1 + υ2β), B = Cυ2+2β.

Recall that γ < α and γ < 2β − 1, hence there exists χ > 0 such that

(C.7) Aλ−1 = C
(
υα+2−γ + υ2β+1−γ )≤ 1

2
υ2+χ , υ ∈ (0, υ0]

for υ0 > 0 small enough. Next, we have

B1/2λ−δ = Cυ1+β+δ(1−γ ),

and

1 + β + 1

2
(1 − γ ) = 2 + 2β − 1 − γ

2
> 2.

That is, we can fix δ ∈ (0,1/2 close enough to 1/2 and then choose χ > 0 small enough such
that, in addition to (C.7),

B1/2λ−δ ≤ 1

2
υ2+2χ , υ ∈ [0, υ0]

for υ0 > 0 small enough. With A,B specified above and R = υ−χ , denote

�υ =
{
ω : sup

t≤θ∧T

(∣∣X(t) − Y(t)
∣∣2 − e−λt

∣∣X(0) − Y(0)
∣∣2)≤ Aλ−1 + B1/2λ−δR

}
.

Then, by Lemma B.1, we have

(C.8) P(� \ �υ) ≤ C1e
−C2υ

−2χ

.

On the other hand, taking υ0 ≤ 1 we have for υ ∈ (0, υ0]
υχ ≤ 1.

Then, on the set �υ , we have (for υ ∈ (0, υ0] and υ0 small enough)∣∣X(t) − Y(t)
∣∣2 ≤ e−λt

∣∣X(0) − Y(0)
∣∣2 + 1

2
υ2+χ + 1

2
υ2+2χυ−χ , t ≤ θ ∧ T .

Recall that |X(0) − Y(0)|2 ≤ υ2 and τ = inf{s : |X(s) − Y(s)|2 > 2υ}. Since

e−λt
∣∣X(0) − Y(0)

∣∣2 + 1

2
υ2+χ + 1

2
υ2+2χυ−χ ≤ υ2(1 + υχ )< 4υ2

and Xt,Yt have continuous trajectories, this means that on �υ we have τ > θ ∧ T and,
therefore,

θ ∧ T = θK ∧ T .

Thus {
sup

t≤θK∧T

(∣∣X(t) − Y(t)
∣∣2 − e−υγ−1t‖x − y‖2)≥ υ2+χ

}
⊂ � \ �υ,

which together with (C.8) yields the required bound. �

PROOF OF PROPOSITION 5.2. By Itô’s formula,

(C.9)
∣∣Xλ,x(t)

∣∣2 = |x|2 +
∫ t

0
A(s)ds +

∫ t

0
�(s)dW(s), t ≥ 0,
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with

A(s) = 2
(
a
(
Xλ,x

s

)
,Xλ,x(s)

)+ ∣∣∣∣∣∣σ (Xλ,x
s

)∣∣∣∣∣∣2 − 2λ
∣∣Xλ,x(s)

∣∣2,
�(s) = 2

(
Xλ,x(s)

)�
σ
(
Xλ,x

s

)
.

Consider first the case when set K is bounded; then by (2.5), (2.6),

(C.10) A(s) ≤ C + C
∥∥Xλ,x

s

∥∥2 − 2λ
∣∣Xλ,x(s)

∣∣2, �(s) ≤ C + C
∥∥Xλ,x

s

∥∥2
.

Define SK = supx∈K ‖x‖ and take ς = inf{s : |Xλ,x(s)| ≥ 2SK}. Then

A(s) ≤ C + 4CS2
K − 2λ

∣∣Xλ,x(s)
∣∣2, �(s) ≤ C + 4CS2

K, s ≤ ς.

Denote C + 4S2
K = CK , then by Lemma B.1 with δ = 1

4 ,R = λ1/8, T = h we get

P

(
sup

t≤ς∧h

(∣∣Xλ,x(t)
∣∣2 − e−2λt

∣∣x(0)
∣∣2)≥ CK(2λ)−1 + C

1/2
K (2λ)−1/8

)
≤ C1e

−C2λ
1/4

, λ > 0.

Taking λ > 0 large enough, we can guarantee that

CK(2λ)−1 + C
1/2
K (2λ)−1/8 ≤ S2

K,

which, similar to the previous proof, yields that ς ≥ h on the set{
sup

t≤ς∧h

(∣∣Xλ,x(t)
∣∣2 − e−2λt

∣∣x(0)
∣∣2)< CK(2λ)−1 + C

1/2
K (2λ)−1/8

}
,

and thus

P
(∥∥Xλ,x

h

∥∥2 ≥ e−2λ(h−r)S2
K + CK(2λ)−1 + C

1/2
K (2λ)−1/8)

≤ C1e
−C2λ

1/4
, λ > 0, x ∈ K.

Taking λ > 0 large enough, we get the required inequality (5.13).
In the second case K = Hc, the proof is similar and actually simpler, because instead of

(C.10) we have by (2.12), (2.13) the inequalities

A(s) ≤ C + C
∣∣Xλ,x(s)

∣∣2 − 2λ
∣∣Xλ,x(s)

∣∣2, �(s) ≤ C + C
∣∣Xλ,x(s)

∣∣2,
which do not involve the segment process Xλ,x . Taking SK = supx∈K |x(0)| and repeating
the above estimates literally, we get the required statement in the second case K = Hc. �
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