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We introduce a method for the comparison of some extremal eigenvalue
statistics of random matrices. For example, it allows one to compare the max-
imal eigenvalue gap in the bulk of two generalized Wigner ensembles, pro-
vided that the first four moments of their matrix entries match. As an applica-
tion, we extend results of Ben Arous–Bourgade and Feng–Wei that identify
the limit of the maximal eigenvalue gap in the bulk of the GUE to all complex
Hermitian generalized Wigner matrices.

There has been significant progress in understanding local eigenvalue statistics of random
matrices over the past decade. A fundamental example is the proof of bulk universality for
Wigner matrices established in the series of works [9, 11, 12, 14, 16, 19]. It states that in the
high dimensional limit, the local eigenvalue fluctuations are universal and depend only on the
symmetry class of the random matrix ensemble. Parallel results were established in certain
cases in [33, 34], including a “four moment theorem,” which shows that the local statistics
are determined by the first four moments of the entries. By local eigenvalue statistics, we
refer to the fluctuations of the eigenvalues in the bulk (the interior of the spectrum) on the
interparticle scale N−1.

The generalized Wigner ensembles constitute a fundamental class of random matrix en-
sembles. These are self-adjoint N × N random matrices whose entries above the diagonal
are independent centered random variables. The variances of the entries are taken to be or-
der N−1, with the constraint that the variances of each row sum to 1. Examples include the
Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble (GOE/GUE), whose entries
are real and complex Gaussians, respectively. In these cases, arguments based on orthogonal
polynomials show that the asymptotic local statistics are described by explicit formulas. Uni-
versality implies that these formulas describe the asymptotic local statistics all generalized
Wigner ensembles.

Examples of local statistics typically studied are the distribution of a single gap between
consecutive eigenvalues, the local correlation functions at an energy E ∈ (−2,2) in the bulk,
and averaged versions of these quantities. In this work, we consider certain extremal eigen-
value statistics. In particular, we study the maximal gap between consecutive eigenvalues in
the bulk. To place our main technical contribution in context, we briefly review the steps for
proving bulk universality for generalized Wigner matrices. We refer to [15, 17] for a compre-
hensive review and bibliography.

The first step is dynamical and originates in the work of Erdős, Schlein and Yau [14].
It is based around analyzing the local time to equilibrium of the matrix eigenvalues under
a stochastic matrix dynamics known as Dyson Brownian motion (DBM). The equilibrium
measure of this dynamics is the GOE or GUE, depending on the symmetry class under con-
sideration. It is now known that local observables reach their equilibrium distribution under
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the DBM flow after only a short time. At the level of matrices, this result proves that the
local statistics of matrix ensembles with small Gaussian perturbations coincide with those of
the Gaussian ensembles. It therefore establishes that bulk universality holds for the former
matrices, which are known as Gaussian divisible ensembles.

The second step, extending universality from Gaussian divisible ensembles to all gener-
alized Wigner matrices, is a density argument. One approach is the four moment method
of Tao and Vu [33, 34]. Their work implies that the local eigenvalue statistics of two ma-
trix ensembles with four matching moments coincide as N → ∞, which yields universality
for ensembles whose moments match those of the GOE or GUE. In general, it is possible
to construct Gaussian divisible ensembles matching four moments of a given generalized
Wigner ensemble. Combining this fact and the four moment method with the first step, we
obtain universality for all generalized Wigner matrices. Other approaches to this step include
the Green’s function comparison theorem [18], the matrix continuity estimate of [5] and the
reverse heat flow of [12].

We refer to the two steps of this approach as the dynamical step and the comparison step,
and now consider how they may be applied to prove universality of the maximal eigenvalue
gap. For the dynamical part, the works [4, 27] employ a coupling of Dyson Brownian motion
to an auxiliary process which is already at equilibrium. They show that the ith eigenvalue
gap of the DBM is the same as the ith gap of the equilibrium process, down to the scale
N−1−c. The work [27] proved further that this estimate holds with a probability large enough
to permit a union bound over all N eigenvalues. This is sufficient to obtain universality of the
maximal gap distribution for Gaussian divisible ensembles. We remark that the polynomial
error rate c > 0 obtained in this work is not optimal, and in particular, it is not sufficient to
treat the minimal eigenvalue gap.

For the comparison step, the reverse heat flow provides strong estimates, but requires that
the matrix entry distributions are smooth, an assumption we would like to avoid. The other ap-
proaches are based on the Lindeberg moment matching strategy and apply either to individual
eigenvalues or resolvent entries. They are local in that they work only near a spectral energy
E or for functions of a few eigenvalues. However, the maximal gap is a statistic involving
a macroscopic number of eigenvalues distributed throughout the spectrum. Therefore, a new
approach is needed in order to handle the maximal gap and other extremal spectral statistics
for ensembles with discrete distributions.

Our contribution is to provide comparison theorems for the maximal gap between consec-
utive eigenvalues in the bulk (and certain other extremal statistics). These theorems extend
universality for the largest eigenvalue gaps from the Gaussian divisible ensembles to general
matrices. As a consequence, we show that the results of Ben Arous–Bourgade [1] and Feng–
Wei [21] on the distribution of the maximal gaps of the GUE in fact hold for all Hermitian
generalized Wigner matrices; we describe these more below. Our results can also be viewed
as providing a four-moment theorem for extremal spectral statistics in the spirit of Tao and
Vu [33, 34].

At a technical level, we construct a regularization of the maximal eigenvalue gap that is
amenable to comparison. The four-moment approach is based around the Lindeberg moment
matching strategy, which requires estimates on the derivatives of the regularization with re-
spect to the matrix entries. The application of the Lindeberg strategy to random matrices
originates in the work of Chatterjee [6]. Our derivative estimates also allow us to extend the
matrix continuity approach of [5] to maximal eigenvalue gaps.

The regularization we use for the maximum is

(0.1) max
i

xi ∼ 1

β
log

(∑
i

eβxi

)
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for appropriately chosen β → ∞ as N → ∞. This regularization was used previously in
random matrix theory in conjunction with the Lindeberg strategy by Korada and Montanari
[26] to show universality of the minima of loss functions associated to certain statistical
algorithms; this is otherwise unrelated to our work. Our inspiration for this regularization
comes from statistical mechanics, where it represents the “zero temperature limit” of a Gibbs
measure. (In our notation, β is the inverse temperature.) This interpretation plays a key role
in many areas of mathematics inspired by statistical mechanics, for example, in the study of
random constraint satisfaction problems through the theory of mean field spin glasses.

We do not apply the regularization (0.1) directly to the eigenvalue gaps. Derivatives of
eigenvalues with respect to matrix entries are singular as they involve in the denominator
the differences of nearby eigenvalues. Instead, we first construct a regularized version of the
eigenvalues using the matrix resolvent in combination with the Helffer–Sjöstrand formula.
Part of this construction is essentially implicit in the work of Knowles and Yin [25]. Our use
of the Helffer–Sjöstrand formula simplifies many of the estimates, and we feel there is value
in isolating the relevant arguments and presenting the construction as its own lemma. More-
over, we give a precise estimate on the relation between the accuracy of the regularization
and the growth of its derivatives with respect to matrix entries. Roughly, if the regularization
is chosen so that the error between it and the eigenvalue is less than N−1−δ , then the kth
derivative is no larger than N−1+(k−1)δ . Tracking this dependence may be useful for future
works probing the eigenvalue behavior below the interparticle scale N−1.

We now turn to related results in the literature. The problem of determining the distribution
of the largest gap between eigenvalues was raised for random unitary matrices by Diaconis
[8]. As motivation, he gives a striking conjecture relating the distribution of the largest gaps
between the unitary eigenvalues to extremal gaps between zeros of the Riemann zeta function
[32]. For more on this connection, we refer to the reader to [1], Section 1.3.

A heuristic approach to studying the maximal gap of random unitary matrices was given
by Vinson, who obtained the correct order of magnitude [35]. In [1], Ben Arous and Bour-
gade proved for both unitary matrices and the GUE that the maximal gap, normalized by√

log(N)/N , converges to an explicit constant (which depends on the ensemble). (For the
GUE, they restrict to gaps in the bulk of the spectrum.) Feng and Wei [21] found that, up
to a deterministic recentering, the maximal gap of both ensembles fluctuates on the scale
(N

√
log(N))−1 around its limit and identified the limiting distributions. We determine the

maximal gap down to the scale N−1−c for some c > 0, and so our work extends the GUE
results to all Hermitian generalized Wigner ensembles. In another direction, we note Figalli
and Guionnet extended the results of [1] to β-ensembles with β = 2 [23].

Our paper is related to recent work of Bourgade [3]. He gives a new approach to the
analysis of Dyson Brownian motion and obtains strong estimates enabling access not only to
the maximal gap, but also the minimal gap, a much more singular quantity which is beyond
the methods of our work. The work [3] relies on the reverse heat flow for the comparison step.
Our works are therefore complementary, as we focus on proving comparison theorems and
do not study the dynamical side. In particular, our comparison theorems apply to ensembles
whose matrix entries are discrete random variables, which are outside the scope of the reverse
heat flow technique.

We note that other previous works have also studied the minimal eigenvalue gap. Vinson
obtained the limit of the smallest eigenvalue gap for both the Circular Unitary Ensemble and
GUE in his Ph.D. thesis [35]; multiple smallest gaps of these ensembles were then considered
in [1]. Feng, Tian and Wei have established the behavior of the smallest gaps of the Gaussian
Orthogonal Ensemble; this work builds on earlier work of Feng and Wei on the circular β-
ensembles [20, 22]. Other works have studied Wigner [13, 31] and sparse [29, 30] matrices,
obtaining tail bounds for the size of the gap. Showing universality for the minimal gap of
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Hermitian generalized Wigner matrices without imposing a smoothness assumption on the
entries remains an intriguing open problem.

Another interesting problem is to compute the normalized limit of the maximal bulk eigen-
value gap for the GOE. Unfortunately, the argument of [1] for the GUE relies on its deter-
minantal structure, which is not present for the GOE. If the normalized limit of the maximal
bulk gap could be established for the GOE, our arguments would immediately show it is
the same for all real symmetric generalized Wigner matrices. One could also ask analogous
questions about extremal gaps for β-ensembles with arbitrary β and potential.

The remainder of the paper is organized as follows. In Section 1, we define the eigenvalue
statistics we consider and state our main comparison results and universality corollaries. In
Section 2, we prove some of our comparison theorems. Section 3 contains an eigenvalue reg-
ularization lemma based on the method of Knowles and Yin [25]. In Section 4, we prove the
remainder of our comparison theorems. Section 5 and the Appendix are devoted to deducing
the universality corollaries from existing results in the literature and our comparison results.

1. Main result.

1.1. Definition of model. We begin by defining generalized Wigner matrices.

DEFINITION 1.1. A generalized Wigner matrix HN is a real symmetric or complex Her-
mitian N ×N matrix whose upper triangular elements {hij }i≤j are independent random vari-
ables with mean zero and variances σ 2

ij = E(|hij |2) that satisfy

(1.1)
N∑

i=1

σ 2
ij = 1 for all j ∈ �1,N �

and

(1.2)
c

N
≤ σ 2

ij ≤ C

N
for all i, j ∈ �1,N �

for some constants c,C > 0.
When HN is Hermitian, we further assume

(1.3) c Var Rehij ≤ Var Imhij ≤ C Var Rehij , i �= j

and that Rehij and Imhij are independent.
Finally, we suppose that the normalized entries have finite moments, uniformly in N , i,

and j , in the sense that for all p ∈ N there exists a constant μp such that

(1.4) E

∣∣∣∣hij

σij

∣∣∣∣p ≤ μp

for all N , i and j .

Throughout this work, we suppress the dependence of various constants in our results
on the constants in this definition. This dependence does not affect our arguments in any
substantial way.

We remark that the moment condition on the entries is technical and used only to get
convergence of the largest gaps in the topology of Lp for every p in (1.12) below. If one
desires only convergence in some Lp for fixed p, then the requirement can be relaxed to
requiring that the matrix entries have a certain large moment.

We also use the following notion of overwhelming probability.
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DEFINITION 1.2. We say that a set of events {A(u)}u∈U(N) , where U(N) is a parameter
set which may depend on N , holds with overwhelming probability if, for any D > 0, there
exists N(D,U(N)) such that for N ≥ N(D,U(N)),

(1.5) inf
u∈U(N)

P
(
A(u)

)≥ 1 − N−D.

1.2. Comparison results. We first present a theorem on the comparison of the largest
eigenvalue gaps of generalized Wigner matrices with matching moments.

We denote eigenvalues of matrices λ1 ≤ · · · ≤ λN and use λ to denote the vector of N

eigenvalues. The statistics we consider involve the maxima of eigenvalue gaps away from the
spectral edges. Taking such a maximum requires the specification of which eigenvalues we
take the maximum over. We do this in two different ways. The first statistic, which we denote
by T�,J , considers gaps λi+1 − λi with i ∈ J where J is a fixed index set. The second, which
we denote by T̂�,I , considers gaps with λi ∈ I where I is an interval. We first consider T
before considering T̂ later. These statistics are closely related, but dealing with T̂ is more
difficult than T due to the fact that the eigenvalue fluctuations naturally cause the set of
indices over which the maximum is taken to itself be random.

For any index set J ⊆ �1,N − 1� we denote by T�,J (λ) the �th largest eigenvalue gap in
the index set J , formally defined by

sup
j∈J

{λj+1 − λj : ∃j1 �= · · · �= jl−1 ∈ J and λj1+1 − λj1 ≥ · · · ≥ λjl−1+1 − λjl−1 ≥ λj+1 − λj }.

The proofs of the next two theorems appear in Section 2.

THEOREM 1.3. Let H(v) and H(w) be two generalized Wigner matrices with matrix
elements denoted by vij and wij respectively. Suppose that there exists a constant c > 0 such
that

(1.6)
∣∣E[va

ij v̄
b
ij

]−E
[
wa

ij w̄
b
ij

]∣∣≤ N−2−c

for all nonnegative integers a, b such that a + b ≤ 4. Fix α ∈ (0,1/2) and choose some
index set J ⊂ �αN, (1 − α)N �. Let S ∈ C∞(R) be a test function, and let ν = N/

√
log(N).

Suppose � = �(N) satisfies � = NaN for some sequence aN ≥ 0. Then there exists constants
c1 = c1(c) > 0 and C = C(c,α) > 0 such that if aN ≤ c1, then1

(1.7)
∣∣EH(v)S

(
νT�,J (λ)

)−EH(w)S
(
νT�,J (λ)

)∣∣≤ C
(

sup
0≤d≤5

∥∥S(d)
∥∥∞

)
N−c1 .

The following interpolation, called Dyson Brownian motion, is often used in random
matrix theory. We define for any real symmetric generalized Wigner matrix X the matrix
Ornstein–Uhlenbeck process Xt = {xij (t)}Ni,j=1 given by

(1.8) dxij (t) = dBij (t)√
N

− 1

2Nsij
xij (t) dt,

where the initial data are the entries {xij } of X and sij = E[x2
ij ]. We let λ(t) denote the vector

of eigenvalues of Xt .
For a Hermitian generalized Wigner matrix, we define Dyson Brownian motion by apply-

ing (1.8) separately to its real and imaginary parts, with corresponding rescaling parameters
sRij = E[(Rexij )

2] and sCij = E[(Imxij )
2] for the dt terms.

1We did not work out the optimal dependence of c1 on c, but as indicated in the proof below, it suffices to take
c1 ≤ c/100.
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THEOREM 1.4. Consider the SDE (1.8) for a matrix Xt with initial data given by
some generalized Wigner matrix X. Suppose t ∈ (N−1+δ,N−1/2−δ) for some δ > 0. Fix
α ∈ (0,1/2) and choose some index set J ⊂ �αN, (1 − α)N �. Let S ∈ C∞(R) and set
ν = N/

√
logN . Suppose � = �(N) satisfies � = NaN for some sequence aN ≥ 0. Then there

exist constants c = c(δ) > 0 and C = C(δ,α) > 0 such that if aN < c, then

(1.9)
∣∣E[S(νT�,J

(
λ(t)

))]−E
[
S
(
νT�,J

(
λ(0)

))]∣∣≤ C
(

sup
0≤d≤3

∥∥S(d)
∥∥∞

)
N−c.

With more work, we can extend the above comparison theorems to the following related
extremal statistic. Let I ⊆ (−2 + κ,2 − κ) be an interval with κ > 0. For v1 ≤ v2 · · · ≤ vN

with v ∈ R
N , let

(1.10) T̂1,I (v) = max
i:vi∈I

(vi+1 − vi),

and define similarly T̂�,I (v) to be the �th largest gap vi+1 −vi such that vi ∈ I . Then we have
the following analog of the above theorems. Its proof is deferred until Section 4.

THEOREM 1.5. First, suppose that H(v) and H(w) are two generalized Wigner matrices
such that the first four moments of the matrix entries match in the sense of (1.6). Then the
estimate (1.7) holds for some constants C,c1 > 0 with T̂�,I in place of T�,J (which depend
only on c from (1.6) and κ).

Second, let X be a generalized Wigner matrix and Xt be the process in (1.8). Let t ∈
(N−1+δ,N1/2−δ) for some δ > 0. Then the estimate (1.9) holds with T̂�,I in place of T�,J for
some constants C,c > 0 (which depend only on δ and κ).

In particular, for a fixed κ , these constants are uniform in the choice of I ⊆ (−2+κ,2−κ).

We remark that the method we introduce is fairly robust and can handle a variety of ex-
tremal spectral statistics. For example, in light of the result [1], Theorem 1.7, one may wish
to scale each gap by the semicircle density near λi , in addition to the factor ν. Our proof
applies without change to the maxima over quantities such as {ναi(λi+1 − λi)}i for deter-
ministic positive αi satisfying αi ≤ Nc for a sufficiently small c > 0. Additionally, one may
also consider the deviations {ναi(λi − βi)}i for similar αi and arbitrary constants βi (or their
absolute values).

In certain cases, it may be necessary to use the four-moment approach instead of the ma-
trix continuity estimate, if one can prove universality only for Gaussian divisible ensembles
with somewhat larger Gaussian components. This means using Theorem 1.3 instead of The-
orem 1.4 (or the first claim of Theorem 1.5 instead of the second); compare the restriction
t  N−1/2 with the weaker (1.6).

1.3. Corollaries for the universality of extremal gaps. The following is a corollary of
Theorem 1.4 and the homogenization result [27], Theorem 3.1.

COROLLARY 1.6. Let H be a generalized Wigner matrix and G the GOE or GUE matrix
of the same symmetry class. There are constants C,c > 0 such that∣∣EH

[
S
(
νT�,J (λ)

)]−EG

[
S(νT�,J (λ)

]∣∣≤ CN−c sup
0≤d≤3

∥∥S(d)
∥∥∞.(1.11)

A similar estimate holds for T̂�,I .

Together with the results of Ben Arous–Bourgade ([1], Theorem 1.7) and Feng–Wei ([21],
Theorem 2), it implies the following corollary.
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COROLLARY 1.7. Suppose H is a Hermitian generalized Wigner matrix. Let I ⊂
(−2,2) be a compact interval, and set M = M(I) = infI

√
4 − x2.

1. Let �N = NkN be a sequence of positive integers with limN→∞ kN = 0. Then for any
p > 0,

(1.12)
MN√

32 logN
T̂�N ,I

Lp−→ 1.

2. Fix an index k. Let

(1.13) τ ∗
k = 1

4

(
2 log(N)

) 1
2
(
MN T̂k,I −

√
32 log(N)

)+ 5

8
log

(
2 log(N)

)
.

Then for any bounded interval I1 ⊆ R+ we have

(1.14) P
(
τ ∗
k ∈ I1

)→
∫
I1

ek(c2−x)

(k − 1)!e
−ec2−x

dx,

where c2 is an explicit constant depending on the interval. It is the same as in [21], Theorem 2.

The proofs of these corollaries appear in Section 5.

1.4. Preliminaries. In this section, we recall some standard facts about generalized
Wigner matrices. The Stieltjes transform of H is defined by

mN(z) = 1

N

∑
i

1

λi − z
(1.15)

and the semicircle law and corresponding Stieltjes transform are

ρsc(E) =
√

(4 − E2)+
2π

, msc(z) =
∫

ρsc(x) dx

x − z
.(1.16)

The Green’s function of H is

(1.17) G(z) = 1

H − z
,

and its matrix elements are denoted Gij (z).
We also define the spectral domain

(1.18) D =
{
z = E + iη ∈ C : |E| ≤ 10,

Nδ

N
≤ η ≤ 10

}
.

We have the following from [10].

THEOREM 1.8 ([10], Theorem 2.3). Fix ε > 0 and δ > 0. Then, with overwhelming prob-
ability, we have

sup
z∈D

∣∣mN(z) − msc(z)
∣∣≤ Nε

Nη
.(1.19)

For the individual Green’s function elements, with overwhelming probability we have

(1.20) sup
z∈D

∣∣Gij (z) − δijmsc(z)
∣∣≤ Nε

(√
Immsc(z)

Nη
+ 1

Nη

)
.
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The classical eigenvalue locations of the semicircle law are denoted by γi and defined by

(1.21)
i

N
=
∫ γi

−2
ρsc(x) dx.

We next state eigenvalue rigidity and complete eigenvector delocalization estimates. The for-
mer is [10], Theorem 7.6, while the latter follows by a standard argument from the Green’s
function estimates in Theorem 1.8 (see, e.g., the proof of [2], Theorem 2.10).

THEOREM 1.9 ([10], Theorem 7.6). The following estimates hold for a generalized
Wigner matrix H , simultaneously for all i ∈ �1,N �, with overwhelming probability. For any
ε > 0,

(1.22) |λi − γi | ≤ Nε

N2/3(min{i1/3, (N − i + 1)1/3}) ,

and for the eigenvector ui of H corresponding to λi ,

(1.23) ‖ui‖∞ ≤ Nε

√
N

.

2. Maximal gap over a set of indices. In this section, we prove the comparison results,
Theorems 1.3 and 1.4. Both are based on defining a suitable regularization of the kth largest
gaps and proving estimates on the partial derivatives of this regularization with respect to
matrix entries. Theorem 1.3 is then based on the Lindeberg strategy, while Theorem 1.4 is
based on the matrix continuity estimate of [5], Lemma A.1. The real symmetric and complex
Hermitian cases are nearly identical, and we give full details in only the symmetric case as it
is notationally simpler.

Throughout this section, we fix an α ∈ (0,1/2) and only consider index sets J ⊂ �αN, (1−
α)N �. We first begin by introducing our regularization of the L∞ norm. Given a vector v ∈
R

N , define the associated largest bulk gap by

(2.1) T1 = T1,J (v) = sup
i : i∈J

vi+1 − vi.

For general �, we recall that T�,J (v) is defined as the �th largest gap vi+1 − vi in consecutive
elements of v with i ∈ J (or zero if � is greater than the number of i with i ∈ J ). It is
convenient to write this quantity as

(2.2) T�(v) = T�,J (v) = sup
i1<···<i� : ik∈J

�∑
k=1

(vik+1 − vik ) − sup
i1<···<i�−1 : ik∈J

�−1∑
k=1

(vik+1 − vik ).

Set ν = N/
√

logN , which represents the scale of the largest gap. For β > 0, we introduce

(2.3)

Z = Z�,β,J (v) = ∑
i1<···<i� : ik∈J

exp

(
βν

�∑
k=1

vik+1 − vik

)
,

G = G�,β,J (v) = 1

β
logZ,

where we use the convention G0,β,J (v) = 0. We also set

(2.4) F�,β,J (v) = G�,β,J (v) − G�−1,β,J (v).

The quantity F�,β,J (v) is our regularization of the �th largest gap of the vector v. The follow-
ing lemma is elementary and its proof is omitted.
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LEMMA 2.1. For any v ∈R
n and index set J , we have

(2.5)
∣∣νT�(v) − F�,β(v)

∣∣< 2� logN

β
.

Instead of directly taking v to be the eigenvalues of a random matrix, we are going to
work with a regularized version, which we denote by the vector λ̃ = (λ̃i). The construction
of this regularization is somewhat involved, but we will see that λ̃i is primarily an integral
of the empirical Stieltjes transform mN(z) over a certain domain in the complex plane. We
state the following lemma which asserts the existence of λ̃ and gives the key estimates on its
derivatives that are used in the present section; its proof is deferred until Section 3.

Given a matrix H , 0 ≤ θ ≤ 1, and indices c, d , we denote by θcdH the matrix with entries

(2.6)
(
θcdH

)
ij =

{
θHij if (i, j) = (c, d) or (j, i) = (c, d),

Hij otherwise.

This object naturally appears as the error in Taylor expansions with respect to matrix entries.

LEMMA 2.2. Fix δ, ε > 0. There are smooth functions λ̃i(X) (depending on ε, δ) on
the space of N × N symmetric matrices with the following properties. Suppose that H is a
real symmetric generalized Wigner matrix. With overwhelming probability, uniformly for all
i ∈ �αN, (1 − α)N �, all integers 1 ≤ k ≤ 5, and all choices of indices 1 ≤ a, b, c, d ≤ N , we
have

(2.7)
∣∣λ̃i(H) − λi(H)

∣∣≤ C
Nε

N1+δ
, sup

0≤θ≤1

∣∣∂k
abλ̃i

(
θcdH

)∣∣≤ C
Nε+(k−1)δ

N
,

where ∂ab = ∂Xab
denotes the partial derivative with respect to the matrix entry with index

(a, b) and C = C(ε, δ) > 0 is a constant. The matrix θcdH is defined in (2.6).
Further, we have

(2.8) sup
0≤θ≤1

∣∣∂k
abλ̃i

(
θcdH

)∣∣≤ CNCk

almost surely for all integers 1 ≤ k ≤ 5.
In the complex Hermitian case, the same estimates hold where instead ∂k

ab is replaced by
∂i

Re[Xab]∂
j
Im[Xab] for i + j = k, and H is a complex Hermitian generalized matrix.

The following is the main technical proposition of this work. It provides a regularization of
the largest eigenvalue gaps and estimates on the derivatives of this regularization with respect
to the matrix entries.

PROPOSITION 2.3. Let X be a real symmetric generalized Wigner matrix, and let J ⊆
�αN, (1 − α)N �. Let β = Nγ and suppose that � ≤ Na for some γ,a > 0. Let λ̃i and F�,β,J

be as above, and fix δ, ε > 0. Then the following statements hold for all choices of indices
1 ≤ a, b ≤ N . First, with overwhelming probability,

(2.9)
∣∣νT�,J (λ) − F�,β,J (λ̃)

∣∣≤ Cν
Nε

N1+δ
+ 2

Na log(N)

Nγ
.

Second, with overwhelming probability for all 1 ≤ k ≤ 5,

(2.10) sup
θ

∣∣∂k
ijF�,β,J

[
λ̃(θabH)

]∣∣≤ CNkδ

β

(
1 + Nk(ε+γ+a−δ)).
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Third, we have almost surely

(2.11) sup
θ

∣∣∂k
ijF�,β,J

[
λ̃(θabH)

]∣∣≤ CNCk.

Here, C = C(δ, ε, γ,a, α) > 0 is a constant. The statements in the complex Hermitian case
are adjusted as indicated in Lemma 2.2.

Before proving the above proposition, we derive the following elementary estimate.

LEMMA 2.4. The partial derivatives of F�,β(v) with respect to the entries of the vector
v satisfy

(2.12)
∑
j

∣∣∣∣ ∂dF (v)

∂j1 · · · ∂jd

∣∣∣∣≤ Cdβd−1νd�d,

where the sum runs over all multiindices j = (j1, . . . , jd) with values in J d , and ∂j = ∂vj
.

PROOF. We have

(2.13) ∂jZ(v) = βν
∑
i

εi(j) exp

(
βν

�∑
k=1

vik+1 − vik

)
,

where εi(j) is defined as

(2.14) εi(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j = ik and ik = ik−1 + 1 for some k ∈ �1, ��,

−1 if j = ik for some k ∈ �1, ��, but ik �= ik−1 + 1,

1 if j = ik + 1 for some k ∈ �1, ��, but ik+1 �= ik + 1,

0 otherwise.

Higher derivatives are similar, yielding

(2.15)
∂dZ(v)

∂j1 · · · ∂jd

= (βν)d
∑
i

εi(j) exp

(
βν

�∑
k=1

vik+1 − vik

)
,

with εi(j) ∈ {−1,0,1} satisfying εi(j) = 0 if j �⊂ i ∪ i + 1 (where we abuse notation and
consider these tuples as sets). Hence, for all d ,

(2.16)

∑
j

∣∣∣∣ ∂dZ(v)

∂j1 · · · ∂jd

∣∣∣∣≤ (βν)d
∑
i

exp

(
βν

�∑
k=1

vik+1 − vik

)∑
j

∣∣εi(j)
∣∣

≤ (βν)dZ(v)(2�)d .

By the chain rule and the definition of F�,β,J (v) in terms of log(Z), we then find

(2.17)
∑
j

∣∣∣∣ ∂dF (v)

∂j1 · · · ∂jd

∣∣∣∣≤ 1

β
Cd�d(βν)d

for some combinatorial factor Cd . �

We are now prepared to prove Proposition 2.3, Theorem 1.3 and Theorem 1.4.

PROOF OF PROPOSITION 2.3. The estimate (2.9) follows from the first estimate of (2.7)
and Lemma 2.1. For the second estimate, fix integers 1 ≤ d ≤ k ≤ 5 and let {si}di=1 be positive
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integers such that s1 + s2 + · · · sd ≤ k. We estimate the following function evaluated at the
matrix θabH :

(2.18)

∣∣∣∣ ∑
j1,...jd

∂dF

∂j1 · · · ∂jd

(λ̃)
∂s1 λ̃j1

∂
s1
ij

· · · ∂sd λ̃jd

∂
sd
ij

∣∣∣∣
≤ ∑

j1,...jd

∣∣∣∣ ∂dF

∂j1 · · · ∂jd

(λ̃)

∣∣∣∣Ndε+kδ−dδ 1

Nd

≤ CkN
kδ

β

(
Nε+a+γ ν

N1+δ

)d

≤ CkN
kδ

β
Nd(ε+γ+a−δ).

In the final inequality, we used ν ≤ N . The first inequality is by Lemma 2.2 and the second
inequality is Lemma 2.4. By the chain rule, the kth partial derivative of F with respect to the
(i, j) matrix element is a linear combination of such terms, and the claim follows. The third
estimate is similar, using instead the last estimate of Lemma 2.2. �

PROOF OF THEOREM 1.3. By Proposition 2.3, it is enough to prove Theorem 1.3 for
the function S(F (λ̃)) instead of νT (λ), assuming the parameters δ, ε, γ , a are chosen such
that γ > a and δ > ε. The comparison for S(F (λ̃)) is a standard application of the Lindeberg
four-moment matching method, which we now briefly recall. In this approach, one replaces
the upper triangular matrix entries of H(v) by those of H(w) one by one. The difference (1.7)
is then a telescoping sum with O(N2) terms, each being the difference of S(F (λ̃)) evaluated
at two generalized Wigner matrices differing in only in the (a, b) and (a, b) entries. One
then Taylor expands each term around Xab = 0 to 5th order. The first four orders cancel to
O(N−2−c′

) thanks to the hypothesis (1.6), and the 5th order remainder term is O(N−2−c′
)

due (2.10) and (2.11). As there are O(N2) terms in the telescoping sum, the total error is
O(N−c′

), for some c′ > 0, and we deduce the result. For a detailed exposition of this method,
we refer to Chapter 16 of [17].

For clarity, and to explain the origin of the restrictions on the constants, we compute the
4th order error term. Specifically, we fix a matrix entry (a, b) and bound the error that arises
when replacing vab in the (a, b) and (b, a) entry with wab (assuming the remaining entries
are some collection of vij and wij entries). Write F = F(λ̃) and S = S(F (λ̃)), let Sx denote
S evaluated with the (a, b) entry equal to x, and denote ∂ = ∂ab. Then Taylor expanding
about 0 in the (a, b) entry gives that the 4th order error term for Svab

− S0 is

(2.19)
v4
ab

4!
(
S(4)(∂F )4 + 6S(3)(∂F )2∂2F + S(2)(3(∂2F

)2 + 4
(
∂3F

)
∂F

)+ S(1)∂(4)F
)
,

where this expression is evaluated with the (a, b) entry set to zero. Taking expectation in
(2.19) and subtracting the analogous expression for Swab

−S0, we see the w4
ab and v4

ab factors
are independent of the terms in the parentheses, and we make take the difference of their
expectations to obtain a factor that is O(N−2−c) by (1.6), for some given c depending on
the matrix ensembles H(v) and H(w). It then suffices to show that the sum of the terms in
parentheses in (2.19) is O(Nb) for some b< c.

We consider just the S(1)∂(4)F term, since the others are similar.2 Because S(1) is bounded
by ‖S(1)‖∞, it suffices to bound ∂(4)F in expectation. If we first work on the set of the
overwhelming probability where (2.10) holds, then it suffices to choose δ, ε, γ , a such that
γ = 2a, δ = 2ε, and c/100 > δ, ε, γ,a, for example.3 On the set where this estimate does not

2The essential point is that the orders of the derivatives on F in each term sum to 4.
3This ensures that γ > a and δ > ε, as was required by the application of Proposition 2.3 in the beginning of

this proof.
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hold, we use (2.11). We may then take c1 = c/100 in the statement of Theorem 1.3, and this
completes the proof. �

PROOF OF THEOREM 1.4. Theorem 1.4 is a consequence of Lemma A.1 of [5] and
Proposition 2.3. �

3. Eigenvalue regularization. This section is devoted to the proof of Lemma 2.2. We
only treat the real symmetric case in detail, as the complex Hermitian case is analogous. We
remark that the choice of λ̃i is the same in both cases, as it is just a function of the empirical
Stieltjes transform tr(X − z)−1. The proof of the derivative estimates is similar in both cases,
with real symmetric being notationally simpler.

In the first subsection, we construct the regularized eigenvalues λ̃i and at the same time
prove the first estimate of (2.7). In the remaining subsections we estimate derivatives.

3.1. Construction of regularized eigenvalues. Let {λi}Ni=1 be the eigenvalues of a gener-
alized Wigner matrix H and let α ∈ (0,1/2) be fixed. Fix i ∈ �αN, (1 − α)N � in the bulk.
Let ε1 > 0 be a parameter. Let j and k be indices such that

(3.1) i − 2Nε1 ≤ j ≤ i − Nε1, i + Nε1 ≤ k ≤ i + 2Nε1,

and set

(3.2) I = [γj , γk].
Let N(E) = |{j : λj < E}| be the eigenvalue counting function for X.

Using rigidity for generalized Wigner matrices, we have with overwhelming probability
that

(3.3) λi − γj =
∫ λi

γj

dE =
∫
I
1{λi≤E} dE =

∫
I
1{N(E)≥i} dE.

Let now r : R → [0,1] be a smooth function such that r(x) = 1 for x ≥ i and r(x) = 0 for
x ≤ i − 1/2. We take |r ′| + |r ′′| + |r ′′′| ≤ C. Then since N(E) is integer valued,

(3.4)
∫
I
1{N(E)≥i} dE =

∫
I
r
(
N(E)

)
dE.

Let δ1 > 0 be a parameter and set

(3.5) η1 = N−1−δ1 .

For each E ∈ I , we define the smoothed out eigenvalue counting function fE(x) on the scale
η1 as follows. We define fE(x) = 1 for −10 ≤ x ≤ E and fE(x) = 0 for x ≥ E + η1 and
x ≤ −11. We take |f (k)

E | ≤ Ckη
−k
1 for k = 1,2,3 and E ≤ x ≤ E + η1, and |f (k)

E (x)| ≤ C for
k = 1,2,3 and −11 ≤ E ≤ −10. Now, we have

(3.6)
∣∣N(E) − tr(fE)

∣∣≤ ∣∣{a : λa ∈ [E,E + η1]}∣∣,
and so by rigidity we have with overwhelming probability∣∣∣∣∫

I
r
(
N(E)

)
dE −

∫
I
r
(
tr(fE)

)
dE

∣∣∣∣≤ C

∫
I

∣∣N(E) − tr(fE)
∣∣dE

≤ C

∫
I

∣∣{a : λa ∈ [E,E + η1]}∣∣dE

= C
∑
a

∫
I
1{λa∈[E,E+η1]} dE(3.7)

≤ Cη1
∣∣{a : λa ∈ I + [0, η1]}∣∣

≤ Cη1N
ε1 = C

Nε1−δ1

N
.
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Let η2 = N−δ2/N for a parameter δ2 ∈ (0,1), and let χ be a smooth, symmetric cut-off func-
tion with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| > 2. By the Helffer–Sjöstrand formula
[17], we have

(3.8)

tr(fE) = N

2π

∫
R2

(
ifE(e)χ ′(σ ) − σf ′

E(e)χ ′(σ )
)
mN(e + iσ ) de dσ

− N

2π

∫
|σ |>η2

∫
R

f ′′
E(e)σχ(σ) Im

[
mN(e + iσ)

]
de dσ

− N

π

∫ η2

0

∫
R

f ′′
E(e)σ Im

[
mN(e + iσ )

]
de dσ.

Since m(z) is holomorphic, we have the Cauchy–Riemann equation ∂x Imm(x + iy) =
−∂y Rem(x + iy). Using this, we integrate the second term by parts twice (first in e and
then in σ ) to obtain

tr(fE) = N

2π

∫
R2

(
ifE(e)χ ′(σ ) − σf ′

E(e)χ ′(σ )
)
mN(e + iσ ) de dσ

+ N

2π

∫
|σ |>η2

∫
R

f ′
E(e)∂σ

(
σχ(σ)

)
Re
[
mN(e + iσ )

]
de dσ

− N

π

∫ η2

0

∫
R

f ′′
E(e)σ Im

[
mN(e + iσ )

]
de dσ

− N

π

∫
R

f ′
E(e)η2 Re

[
mN(e + iη2)

]
de.

(3.9)

Define

(3.10)

FE = N

2π

∫
R2

(
ifE(e)χ ′(σ ) − σf ′

E(e)χ ′(σ )
)
mN(e + iσ ) de dσ

+ N

2π

∫
|σ |>η2

∫
R

f ′
E(e)∂σ

(
σχ(σ)

)
Re
[
mN(e + iσ )

]
de dσ.

We estimate, using the definition of fE ,∣∣∣∣∫
I
r(trfE)dE −

∫
I
r(FE)dE

∣∣∣∣
≤ C

∫
I

∫
R

∫ η2

0
Nσ

∣∣f ′′
E(e)

∣∣ Im[
mN(e + iσ )

]
dσ de dE

(3.11)

+ C

∫
I

∫
R

Nη2
∣∣f ′

E(e)
∣∣∣∣mN(e + iη2)

∣∣de dE

≤ C

η2
1

∫
I

∫ η1

0

∫ η2

0
Nσ Im

[
mN(E + e + iσ )

]
dσ de dE

+ C
η2

η1

∫
I

∫ η1

0
N
∣∣mN(E + e + iη2)

∣∣de dE

+ CNε1η2

= C

η2
1

∫ η2

0

∫ η1

0

[∫
I
Nσ Im

[
mN(E + e + iσ )

]
dE

]
de dσ(3.12)

+ C
η2

η1

∫ η1

0

[∫
I
N
∣∣mN(E + e + iη2)

∣∣dE

]
de(3.13)

+ CNε1η2.
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In the preceding equations, we used rigidity to bound the contributions for e ∈ [−11,−10].
We now estimate the inner integral of (3.12). Define E′ = E + e. We have

(3.14)

∫
I
σN Im

[
mN

(
E′ + iσ

)]
dE ≤ ∑

a:|i−a|≤3Nε1

η2

∫
I

σ

(E′ − λa)2 + σ 2 dE

+ ∑
a:|i−a|>3Nε1

η2

∫
I

σ

(E′ − λa)2 + σ 2 dE.

We estimate the first term by

(3.15)

∑
a:|i−a|≤3Nε1

η2

∫
I

σ

(E′ − λa)2 + σ 2 dE

≤ ∑
a:|i−a|≤3Nε1

η2

∫
R

σ

(E′ − λa)2 + σ 2 dE ≤ Cη2N
ε1 .

For the second term, we have with overwhelming probability for a with |i − a| > 3Nε1

that |E′ − λa| ≥ cNε1/N and so

(3.16)

∑
a:|i−a|>3Nε1

η2

∫
I

σ

(E′ − λa)2 + σ 2 dE

≤ Cη2
Nσ

Nε1
|I |N sup

E′

[
ImmN

(
E′ + iNε1/N

)]
≤ Cση2N ≤ η2N

−δ2 ≤ η2N
ε1 .

In the last inequality, we used (1.19) to bound ImmN . The term (3.12) is therefore bounded
by CN−1+ε1+δ1−2δ2 .

For the term (3.13), we again write∫
I
N
∣∣mN

(
E′ + iη2

)∣∣dE ≤ ∑
a:|i−a|≤3Nε1

∫
I

1

|(E′ − λa) + iη2| dE(3.17)

+ ∑
a:|i−a|>3Nε1

∫
I

1

|(E′ − λa) + iη2| dE.(3.18)

The integral in the first term can be bounded directly and we obtain for that sum the bound

(3.19) CNε1
∣∣log(η2)

∣∣≤ CNε1 log(N).

For the second term, we have the bound CNε1 log(N) by rigidity (1.22), with overwhelming
probability. Using these bounds, we conclude that (3.13) satisfies the bound

(3.20) C
η2

η1

∫ η1

0

[∫
I
N
∣∣mN(E + e + iη2)

∣∣dE

]
de ≤ CN−1+ε1−δ2 log(N).

Hence, recalling (3.11),

(3.21)
∣∣∣∣∫

I
r(trfE)dE −

∫
I
r(FE)dE

∣∣∣∣≤ C
Nε1+δ1−2δ2

N
+ CN−1+ε1−δ2 log(N).

Using (3.7), we have therefore proven that, with overwhelming probability,

(3.22)
∣∣∣∣(λi − γj ) −

∫
I
r(FE)dE

∣∣∣∣≤ CNε1
(Nδ1−2δ2 + N−δ1 + N−δ2)

N
log(N).



2908 B. LANDON, P. LOPATTO AND J. MARCINEK

We define λ̃i by

(3.23) λ̃i =
∫
I
r(FE)dE + γj .

We now fix parameters δ1 = δ2 = δ and ε1 = ε/2 and observe the first estimate of (2.7) holds
for the λ̃i we have constructed.

3.2. Derivative bounds. In this subsection, we obtain estimates on derivatives of the λ̃i

defined in the previous subsection with respect to the matrix entries. We first need some
estimates on the Green’s function. Since in the proof of Theorem 1.3 we need to bound
remainder terms in Taylor expansions involving the matrices θabH as defined above, we
make the following definition.

DEFINITION 3.1. We say that rigidity and delocalization hold for a matrix X with pa-
rameters α and ε if

(3.24) sup
i∈�αN,(1−α)N �

∣∣λi(X) − γi

∣∣≤ Nε/10

N
,

and for its eigenvectors ui we have

(3.25) sup
i

‖ui‖∞ ≤ Nε/10
√

N
.

3.2.1. Green’s function bounds. In this section, we consider self-adjoint matrices X with
a Green’s function we denote by Gab. We have the following two a priori estimates. The first
is immediate from [2], Lemma 10.2, and the spectral decomposition [2], (2.1).

LEMMA 3.2 ([2], Lemma 10.2). Fix α ∈ (0,1) and ε > 0. Let E ∈ [γαN/2, γ(1−α/2)N ]
and η > 0. If rigidity and delocalization hold for X, then

(3.26)
∣∣Gab(E + iη)

∣∣≤ Nε

(
1

Nη
+ 1

)
.

We also have a better bound if we are integrating in E.

LEMMA 3.3. Fix α ∈ (0,1) and ε, ε1 ∈ (0,1/2) with ε < ε1/2. Let I ⊆ [γαN/2,

γ(1−α/2)N ] be an interval such that |I | ≤ Nε1/N . There exists a constant C = C(ε,α) > 0
such that if rigidity and delocalization hold for X with parameters ε and α, then for any
η > 0,

(3.27)
∫
I

∣∣Gab(E + iη)
∣∣dE ≤ C

Nε+ε1

N

(
1 + ∣∣log(η)

∣∣).
PROOF. By the spectral theorem and eigenvector delocalization,

(3.28)
∣∣Gab(z)

∣∣= ∣∣∣∣∑
n

un(a)un(b)

λn − z

∣∣∣∣≤ Nε/5

N

∑
n

1

|λn − z| .

We write

(3.29)

∫
I

∣∣Gab(E + iη)
∣∣dE ≤ Nε/5

N

∑
n:|n−i|≤log(N)Nε

∫
I

1

|λi − z| dE

+ Nε/5

N

∑
n:|n−i|>log(N)Nε

∫
I

1

|λi − z| dE,
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where i is an index such that γi ∈ I . The first sum is bounded by

(3.30)
Nε/5

N

∑
n:|n−i|<log(N)Nε

∫
I

1

|λi − z| dE ≤ C
Nε+ε1

N

(∣∣1 + log(η)
∣∣).

The second sum can be estimated using rigidity, and we obtain

(3.31)
Nε/5

N

∑
n:|n−i|>log(N)Nε1

∫
I

1

|λi − z| dE ≤ CNε/5 log(N)|I | ≤ C
Nε+ε1

N
.

Combining (3.30) and (3.31) completes the proof. �

From the previous two lemmas, we quickly deduce the following.

LEMMA 3.4. Let I , α, ε, and C be as in the previous lemma. If rigidity and delocaliza-
tion hold for X with parameters ε and α, then

(3.32)
∫
I

∣∣Ga1b1(z)
∣∣ · · · ∣∣Gakbk

(z)
∣∣dE ≤ C

Nkε+ε1

N

(
1 + ∣∣log(η)

∣∣)( 1

Nη
+ 1

)k−1
.

3.2.2. Differentiation. We have seen that the quantity

(3.33)
∫
I
r(FE)dE

is a good approximation for the fluctuations of the eigenvalue λi . We now estimate derivatives
of this quantity with respect to matrix elements. We use the shorthand ∂bc = ∂Xbc

for such
derivatives. Let us rewrite

FE = N

π

∫
R2

(
ifE(e)χ ′(σ ) − σf ′

E(e)χ ′(σ )
)
mN(e + iσ ) de dσ

+ 2iN

π

∫
|σ |>η2

∫
R

f ′
E(e)∂σ

(
σχ(σ)

)
Re
[
mN(e + iσ )

]
de dσ = AE + BE.

We have the following estimate for these two quantities.

LEMMA 3.5. Fix α ∈ (0,1) and ε, ε1 ∈ (0,1/2) with ε < ε1/2. Suppose that I is an
interval such that I ⊆ [γαN/2, γ(1−α/2)N ] and |I | ≤ Nε1/N . Suppose rigidity and delocal-
ization hold for the matrix X with parameters α and ε, and 1 ≤ k ≤ 5. Then for E ∈ I we
have

(3.34)
∣∣∂k

bcAE

∣∣≤ CNkε,
∣∣∂k

bcBE

∣∣≤ CNkε+kδ,

and for the integral over I we have

(3.35)
∫
I

∣∣∂k
bcAE

∣∣≤ CNkε|I |,
∫
I

∣∣∂k
bcBE

∣∣≤ C
Nkε+ε1+(k−1)δ

N
,

where C = C(α, ε, ε1) > 0 is a constant.

PROOF. We recall the Green’s function differentiation formula4

(3.36)
∂Gij (z)

∂Hkl

= −Gik(z)Glj (z) − Gil(z)Gkj (z).

4This is a straightforward consequence of the resolvent expansion to first order. See [2], (2.3).
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Using it, we find

(3.37)

∣∣∂bcNm(e + iσ )
∣∣≤ C

∑
a

|GabGca| ≤ C
∑
a

|Gab|2 + |Gca|2

≤ C

σ

(∣∣Gbb(z)
∣∣+ ∣∣Gcc(z)

∣∣),
where in the last line we used the Ward identity [2], (3.16).

From this and (3.26), we see that

(3.38) |∂bcAE| ≤ CNε.

Similarly, we obtain

(3.39)
∣∣∂k

bcNm(z)
∣∣≤ C

σ

(∣∣Gbb(z)
∣∣+ ∣∣Gcc(z)

∣∣+ ∣∣Gbc(z)
∣∣)k,

and so

(3.40)
∣∣∂k

bcAE

∣∣≤ CNkε

for any 1 ≤ k ≤ 5. This proves the first bound in (3.34), and the first bound in (3.35) follows
immediately.

Now we consider BE . We have the bound

(3.41)

∣∣∂k
bcBE

∣∣≤ C

∫ E+η1

E

∫
σ>η2

1

η1

C

σ

(∣∣Gbb(z)
∣∣+ ∣∣Gcc(z)

∣∣+ ∣∣Gbc(z)
∣∣)k de dσ

+ C

∫ −10

−11

∫
σ>η2

C

σ
(|Gbb(z)| + Gcc(z)| + Gbc(z)|)k de dσ.

From this and (3.26), we see that

(3.42)
∣∣∂k

bcBE

∣∣≤ Nkε+kδ2 .

From (3.41) and Lemma 3.4, we have

(3.43)
∫
I

∣∣∂k
bcBE

∣∣≤ Nε+ε1

N

∫
σ>η2

χ(σ)
1

σ(Nσ)k−1 dσ ≤ N2ε+ε1+(k−1)δ

N
.

This completes the proof. �

PROOF OF LEMMA 2.2. The smoothed eigenvalues λ̃i were constructed in Section 3.1,
and the first estimate in (2.7) was already derived as (3.23).

To control the derivatives of λ̃i , it suffices to control the derivatives of (3.33) using
Lemma 3.5. We start with k = 1, and recall that by Theorem 1.9, delocalization and rigidity
hold with overwhelming probability for the generalized Wigner matrix H . We have∣∣∣∣∂bc

∫
I
r(FE)dE

∣∣∣∣≤ C

∫
I
|∂bcAE| + |∂bcBE|dE ≤ Nε1+ε

N
.(3.44)

Now for k = 2 we have∣∣∣∣∂2
bc

∫
I
r(FE)dE

∣∣∣∣≤ C

∫
I

∣∣∂2
bcAE

∣∣+ ∣∣∂2
bcBE

∣∣+ (|∂bcBE| + |∂bcAE|)2 dE.(3.45)

The first term is bounded by

(3.46)
∫
I

∣∣∂2
bcAE

∣∣dE ≤ C
Nε1+2ε

N
.
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For the second term, we use (3.35) to bound

(3.47)
∫
E

∣∣∂2
bcBE

∣∣dE ≤ C
Nε1+2ε+δ2

N
.

For the last term, we estimate

(3.48)
∫
I

(|∂bcBE| + |∂bcAE|)2 dE ≤ Nε+δ2

∫
I
|∂bcBE| + |∂bcAE|dE ≤ C

Nε1+2ε+δ2

N
.

Hence we have with overwhelming probability,

(3.49)
∣∣∣∣∂bc

∫
I
r(FE)dE

∣∣∣∣≤ Nε+2ε1+δ

N

for any ε > 0. In general, the kth derivative of the quantity (3.33) is bounded by

(3.50)
∣∣∣∣∂k

bc

∫
I
r(FE)dE

∣∣∣∣≤ C
∑
ME

∫
I
ME dE,

where each ME is a monomial in the terms |∂n
bcBE| and |∂m

bcAE|. There are finitely many
monomials in the sum. If a monomial has l ≤ k terms and if we denote the order of the
derivative in the ith term in the monomial by ni then n1 + n2 + · · · + nl = k. We have

(3.51)
∫
I
ME dE ≤ Nε+(k−n1)δ2

∫
I

∣∣∂n1XE

∣∣dE,

where XE is either AE or BE . We see that

(3.52)
∫
I

∣∣∂n1XE

∣∣dE ≤ Nε+ε1+(n1−1)δ2

N
.

Hence,

(3.53)
∫
I
ME dE ≤ CN2ε+ε1+(k−1)δ2N.

This proves eigenvalue derivative bounds for H . We now extend them to the perturbations
θabH .

Fix κ > 0 and consider η ≥ N−1+κ . From Theorem 1.8 and a resolvent expansion to high
order,5 it is straightforward to prove that

(3.54) sup
0≤θ≤1

∣∣∣∣ 1

N
tr

1

H − z
− 1

N
tr

1

θabH − z

∣∣∣∣≤ Nε

Nη

and

(3.55) sup
0≤θ≤1

∣∣∣∣( 1

H − z

)
ij

−
(

1

θabH − z

)
ij

∣∣∣∣≤ Nε

√
N

for any ε > 0, with overwhelming probability. Hence, by standard arguments,6 rigidity and
delocalization hold simultaneously for θabH for all choices of θ , and we can apply the above
calculations, which give the second estimate of (2.10).

Finally, the almost sure bounds in (2.8) follow from using the trivial bound |G(z)|ij ≤ η−1

in the above calculations. �

5See [2], (2.3).
6See [2], Theorem 2.10 and [2], Section 9.
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4. Extension to maximal gap over an interval. In this section, we extend the method
of the previous subsection to cover statistics of the form

(4.1) max
λi∈I

λi+1 − λi,

where I = [a, b] is compact subinterval of (−2,2), which proves Theorem 1.5. The main
issue is that the indicator function 1{λi∈I } is not differentiable. We pass to a smoothed object
with the help of the following Wegner-type estimate.

LEMMA 4.1. Let H by a generalized Wigner matrix and E ∈ (−2 + κ,2 − κ) for fixed
κ > 0. For every ε > 0, there is δ = δ(ε) > 0 such that

(4.2) P
[∃i : |λi − E| ≤ 2N−1−ε]≤ N−δ.

PROOF. This is a corollary of fixed energy universality for generalized Wigner ensembles
with an effective polynomial rate of convergence. This was proved in [27]. Alternatively, this
estimate was proved for Gaussian divisible ensembles in Section 7 of [28]. The estimate can
then be transferred to all ensembles using the four moment approach of [33, 34] or the matrix
continuity estimate of [5]. �

Fix a small εw > 0 with corresponding δw as in the statement of the lemma. Let ρ be a
smooth test function such that ρ(x) = 1 for |x| ≤ 1

2 and ρ(x) = 0 for |x| ≥ 1. Let r(x) :
R≥0 → R≥0 be a smooth function that is 1 for x ≤ 1

2 and 0 for x ≥ 1. Let i0 and j0 be the
indices of the closest classical eigenvalues to a and b. Fix a small εr > 0 and consider the
index set Jr = �i0 − Nεr , j0 + Nεr �. Consider the function

(4.3) f1(λ) = r

(∑
i∈Jr

ρ
(
N1+εw(λi − a)

))
,

define f2(λ) similarly but with b instead of a. Note that on the event that no eigenvalue is
within distance N−1−εw of a and b we have that f1(x) = f2(x) = 1. Moreover, if there is an
eigenvalue with distance N−1−εw/2 of a, then f1 is zero, and similarly for b and f2.

Let χ(x) be a smoothed out step function with χ(x) = 1 for x ≤ −1
2 and χ(x) = 0 for

x ≥ 1
2 . Consider the two functions

(4.4) g1(x) = χ
(
10N1+εw(a − x)

)
, g2(x) = χ

(
10N1+εw(x − b)

)
.

The important observation is that if |λi − b| > N−1−εw , then g2(λi) = 1{x<b}, and moreover,

that if g
(k)
2 (λi) �= 0 for any k ≥ 1, then f2 and all of its derivatives are 0. There is a similar

consideration with g1 and f1.
We now fix β = Nγ and consider

(4.5) F̂ (λ) = f1(λ)f2(λ)
1

β
log Ẑ,

where

Ẑ(λ) = ∑
i∈Jr

g1(λi)g2(λi) exp
[
νβ(λi+1 − λi)

]
.(4.6)

LEMMA 4.2. Let I = [a, b] ⊂ (−2,2). Let εw , εr , and δw be as above. Let f1, f2 and
g2 and g1 be as above. Let H be a generalized Wigner matrix with eigenvalues λi . Let λ̃i be
the regularized eigenvalues from Lemma 2.2, with ε and δ given. Choose these parameters to
satisfy

(4.7) εw < δ − ε, ε < εr/2.
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Then with probability at least 1 − CN−δw , we have the estimate

(4.8)
∣∣∣max
i:λi∈I

ν(λi+1 − λi) − F̂ (λ̃)
∣∣∣≤ Cν

Nε

N1+δ
+ log(N)

Nγ
.

PROOF. By Lemma 4.1, there is an event with probability at least 1 − 2N−δw on which
there is no eigenvalue λi within distance 2N−1−εw of the interval endpoints a or b. Further,
rigidity (1.22) holds for a sufficiently small ε < εr/2 with overwhelming probability, as does
the first estimate of (2.7). In the latter, we choose α sufficiently small so that the classical
eigenvalues corresponding to indices in �αN, (1−α)N � contain an interval which contains I .

When these three events hold, λi ∈ I if and only if λ̃i ∈ I , i ∈ Jr = �i0 − Nεr , j0 + Nεr �,
and no λ̃i is within distance N−1−εw of the interval endpoints a or b (recall (4.7)). From this
discussion, we see first that

(4.9)
∣∣∣max
i:λi∈I

ν(λi+1 − λi) − max
i∈Jr :λ̃i∈I,

ν(λ̃i+1 − λ̃i)
∣∣∣≤ Cν

Nε

N1+δ

when these events hold.
Second, we see that on the event in question that f1(λ̃i) = f2(λ̃i) = 1, and for i ∈ Jr that

g1(λ̃i)g2(λ̃i) = 1{λ̃i∈I }. Hence, similar to Lemma 2.1, we see that

(4.10)
∣∣∣max
i:λ̃i∈I

ν(λ̃i+1 − λ̃i) − F̂ (λ̃)
∣∣∣≤ log(N)

β
.

This yields the claim. �

We now extend Lemma 2.4 to F̂ . Consider F̂ as a function on R
N , F̂ (v), for v ∈R

N . The
key observation is that if ∂

(k)
vj (f1f2) �= 0 for some k ≥ 1, then there is no vi within distance

N−1−εw/2 of a or b. If the latter holds, then ∂vi
(g1g2) = 0 by construction. This allows the

estimation of derivatives of log(Ẑ) without worrying about quantities like g′
1/g1 growing

large.

LEMMA 4.3. Let εw , εr , F̂ , Ẑ be as above. Let A ⊆ R
N be defined as

(4.11) A= {
v ∈ R

N : 2|vi − a| ≥ N−1−εw and 2|vi − b| ≥ N−1−εw ,∀i ∈ Jr

}
.

For every d ≥ 1, we have

(4.12)

∑
j1,...jd

∣∣∂j1 · · · ∂jd

(
f1(v)f2(v)

)∣∣
≤ CdNdεw+d(∣∣{i ∈ Jr : |vi − a| ≤ N−1−εr

}∣∣+ ∣∣{i ∈ Jr : |vi − b| ≤ N−1−εr
}∣∣)d1A

and

(4.13) |f1f2| ≤ 1A.

We have also

1A
∑

j1,...jd

|∂j1 · · · ∂jd
log Ẑ| ≤ Cd(βν)d .(4.14)

PROOF. The first two estimates follow from the fact that f1f2 is the constant function
0 on the set Ac, and that ρ(k)(x) is supported on the set |x| ≤ 1. For the proof of the final
estimate, we observe that by the above discussion that if v ∈A we have ∂

(k)
vj g1(vj )g2(vj ) = 0



2914 B. LANDON, P. LOPATTO AND J. MARCINEK

and g1(vj )g2(vj ) = 1{vj∈I }. With this in mind, the calculations in Lemma 2.4 go through
without change, and we find the final estimate. �

With these preparations, we are ready to prove Theorem 1.5.

PROOF OF THEOREM 1.5. Rigidity implies that with overwhelming probability,

(4.15)
∣∣{i ∈ Jr : |vi − a| ≤ N−1−εr

}∣∣+ ∣∣{i ∈ Jr : |vi − b| ≤ N−1−εr
}∣∣≤ Nε

for any ε > 0. From Lemma 4.3 and Lemma 2.2, we find the analog of the estimate (2.10),

(4.16) sup
θ

∣∣∂d
ij F̂ (θabH)

∣∣≤ CdNdδ

β

(
1 + Nd(γ+ε−δ) + N2ε+dεw

)
,

which holds with overwhelming probability. We also find the same almost sure estimate
(2.11). In the case � = 1, the theorem is proven using these estimates, similar to how The-
orems 1.3 and 1.4 are deduced from Proposition 2.3. The extension to � > 1 requires only
replacing Ẑ by quantities like

(4.17)
∑

i1,...i�

(∏
j

g1(λ̃ij )g2(λ̃ij )

)
exp

[
βν

�∑
k=1

λ̃ik+1 − λ̃ik

]

and proceeding as before. �

5. Universality corollaries. We consider the two processes

(5.1) dxi =
√

2

Nβ
dBi + 1

N

∑
j �=i

1

xi − xj

dt

and

(5.2) dyi =
√

2

Nβ
dBi + 1

N

∑
j �=i

1

yi − yj

dt.

For the initial data, we take xi(0) = λi(H) for all i ∈ �1,N �, where H is a generalized Wigner
matrix, and yi(0) = λi(G), where G is the Gaussian ensemble of the same symmetry class.
The parameter is β = 1 in the real case and β = 2 in the complex case. Then the proof of
[27], Theorem 3.1, implies the following result. We comment on adapting the argument there
to the simpler setting here in the Appendix. The lemma may also be directly cited from [3],
Corollary 3.2, which appeared after this paper was written.

PROPOSITION 5.1. Let t = Nω/N , and let α ∈ (0,1/2). Assume that 0 < ω < 1/2. Then
for all i ∈ �αN, (1 − α)N � and all ε > 0, we have with overwhelming probability

(5.3)
∣∣xi+1(t) − xi(t) − (

yi+1(t) − yi(t)
)∣∣≤ Nε

N1+c

for some constant c = c(α,ω) > 0 (independent of ε).

REMARK. The above flow is not quite the same as (1.8). However, since t  1, Propo-
sition 5.1 holds also for the flow (1.8), as explained in [24], Section 2.3. We use this fact
without comment in what follows.
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PROOF OF COROLLARY 1.6. We first consider the statement for T�,J . By the results
of [17], Section 16.2, there exists a Gaussian divisible ensemble Xt matching H to four
moments, in the sense of (1.6), with t satisfying the hypotheses of Proposition 5.1. By this
proposition, the largest gap among {λi+1 −λi : i ∈ J } for Xt is the same as the corresponding
quantity for the GOE or GUE up to an error of size o(N−1). We deduce that the conclusion
of Corollary 1.6 holds for Xt . Then by Theorem 1.3, it holds for H , too.

For the quantity T̂�,I , there is a small issue, which is that even if (5.3) holds, it may not be
true that xi(t) ∈ I if and only if yi(t) ∈ I . However, by Lemma 4.1 we know that for every
εw > 0 there is a δw > 0 such that the event that there is no yi(t) within distance N−1−εw of
the endpoints of I holds with probability at least 1 − N−δw . If we take εw small enough so
that N−1−εw is larger than the error on the right-hand side of (5.3), then we see that on this
event, xi(t) ∈ I if and only if yi(t) ∈ I . Therefore, with probability at least 1 − CN−δw , for
some δw > 0, the statistics T̂�,I of Ht match those of the corresponding Gaussian ensemble.
The remainder of the argument is similar to T�,J and we conclude using Theorem 1.5. �

REMARK. We are thankful to the referee for pointing out the following simpler proof
of Corollary 1.6 for T̂�,I , which has the advantage of avoiding the need to first prove Theo-
rem 1.5. If I = [a, b] ⊂ (−2,2), then by the rigidity estimate (1.22) the random set of indices
J (I) = {i : λi ∈ I } satisfies

(5.4) �γa + Nε,γb − Nε � ⊂ J ⊂ �γa − Nε,γb + Nε �

with overwhelming probability, where γa and γb are the classical eigenvalue locations closest
to a and b, respectively, and ε > 0 is arbitrary. We may clearly neglect the exceptional set
where this does not occur, using the trivial bound |S| ≤ ‖S‖∞.

Using Corollary 1.6 for TJ , and observing that this estimate is uniform in J as in the
statement of Theorem 1.4, we obtain

(5.5) sup
J

∣∣EHS
(
νT�,J (λ)

)−EGS
(
νT�,J (λ)

)∣∣≤ C
(

sup
0≤d≤5

∥∥S(d)
∥∥∞

)
N−c,

where the supremum is taken over all J satisfying (5.4). It then suffices to show

(5.6) sup
J

∣∣EGS
(
νT�,J (λ)

)−EGS
(
νT�,I (λ)

)∣∣≤ C
(

sup
0≤d≤5

∥∥S(d)
∥∥∞

)
N−c,

for some c > 0 (possibly smaller than the constant in (5.5)). In turn it suffices to show that
there exists c > 0 such that, with probability at least 1 − N−c, the maximal gap over such J

does not correspond to eigenvalues with indices in

(5.7) �γa − Nε,γa + Nε � ∪ �γb − Nε,γb + Nε �.

By the treatment of the display before (3.5) in [1], there exists a constant c′ > 0 such that the
maximum gap over I , and hence over the indices �γa +Nε,γb −Nε �, is at least c′√logN/N

with probability at least 1 − N−c′
. On the other hand, we see using [1], Lemma 3.2, [1],

Lemma 3.5, and a union bound that the maximal gap among the indices in (5.7) is greater
than c′√logN/N with probability at most N−c′′

, for some constant c′′(c′, ε) > 0, where
we have chosen ε small enough. This proves (5.6), and hence the corollary, after bounding S

using the trivial bound |S| ≤ ‖S‖∞ on the exceptional set where the maximal gap corresponds
to indices in (5.7).

PROOF OF COROLLARY 1.7. The first result of Corollary 1.7 will follow from applying
Corollary 1.6 with S a polynomial, and the corresponding convergence of the largest gaps
for the GUE given by [1], Theorem 1.7. For notational convenience, set T = MN√

32 logN
T̂�N ,I .
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We recall H is the generalized Wigner matrix under consideration, and let G be the Gaussian
ensemble corresponding to the symmetry class of X.

Note that Corollary 1.6 may be applied nontrivially for any test function S satisfy-
ing sup0≤d≤3 ‖S(d)(x)‖∞  Nc, where c is as in Corollary 1.6. We let S be an Nε-
smoothed regularization of the Lp norm, with S(x) = |x − 1|p when |x| < 4Nε and
sup0≤d≤3 ‖S(d)(x)‖∞ ≤ CN3pε .

By Theorem 1.9, the event A on which |λi − γi | < N−1+ε/2 for all i such that γi ∈ (a −
ε, b+ε) holds with overwhelming probability. We now claim that, for any D > 0, there exists
a C(D,p, ε) > 0 such that

EH

[|T − 1|p]≤ EH

[|T − 1|p1A
]+EH

[|T − 1|p1Ac

]
(5.8)

≤ EG

[|T − 1|p]+ (
EH

[
S(T )

]−EG

[
S(T )

])+ CN2p−D.(5.9)

In the last inequality, we used the fact that S(T ) = |T − 1|p on the event A to split the first
term in (5.8). For the second term in (5.8), we used Cauchy–Schwarz and the fact that A
holds with overwhelming probability to write

(5.10) EH

[|T − 1|p1Ac

]≤
√
EH

[|T − 1|2p
]
EH [1Ac ] = N−D

√
EH

[|T − 1|2p
]
,

for N large enough, and bounded EH [|T − 1|2p] as follows. Observe that T is is bounded
by N times the sum of the absolute values of the largest and smallest eigenvalues. The latter
quantity can be bounded by (a constant times) the Frobenius norm of H , ‖H‖F , and we
quickly see that

(5.11) E‖H‖F ≤
√
E‖H‖2

F ≤ C
√

N

from the moment growth and independence assumptions on the matrix entries made in Defi-
nition 1.1.

Then in (5.9), the first term is o(1) by [1], Theorem 1.7, the second term is CN3pε−c by
Corollary 1.6, and the third term is O(N−1) when D is chosen large enough. Therefore, it
converges to zero.

The proof of the second result is similar. It follows from choosing S to be smooth functions
bracketing indicator functions, after a shift and rescaling by some powers of log(N), which
do not affect the polynomial error rate. For instance, take S(x) such that S(x) = 1 for x ∈
I1 = [a1, b1], S(x) = 0 for x /∈ (a1 − N−ε, b1 + N−ε), and

(5.12) sup
x∈(a1−N−ε,a1)∪(b1,b1+N−ε)

∣∣S(d)(x)
∣∣≤ CNdε

for 0 ≤ d ≤ 3. �

APPENDIX: EIGENVALUE COUPLING

The purpose of this Appendix is to indicate how Proposition 5.1 may be deduced from
the existing literature. It is essentially a consequence of [27], Theorem 3.1. However, this
theorem was proved in a more general context and so there are some assumptions that may
seem out of place. We fix the parameter α > 0 and restrict our considerations to indices i ∈
�αN, (1 − α)N �. We also fix ω ∈ (0,1/2) and set t = N−1+ω. The constants below depend
on these choices, but we omit this in the notation for this section. (The dependencies are
written explicitly in Proposition 5.1.)

In [27], the behavior of xi(t) was considered for more general initial data xi(0) than just the
generalized Wigner setting. One of the key differences is that the empirical eigenvalue density
was no longer a semicircle, but given by a different density coming from free probability,
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called the free convolution. In that work, it is denoted by ρfc,t . The regularity of this density
is controlled by the parameter t , and so in [27], the particles were allowed to evolve until a
fixed time t0 before the coupling between xi and yi was introduced. This allowed the density
ρfc,t to have some regularity before being manipulated.

In the present setting, both xi(t) and yi(t) are described by the semicircle density, but
supported on the interval

√
1 + t[−2,2]. The semicircle density is smooth in the bulk, so

allowing the particles to evolve until t0 is unnecessary in the present setting. Errors on the
right-hand side of the main estimate of Theorem 3.1 of [27] can then be replaced by setting
ω0 = 1.7

The result of [27] studies the behavior of xi(t) near a particle index i0. In the set-up of [27],
it is possible that i0 was very close to 1 or N , for instance i0 = o(N). To account for this,
the coupling between xi and yi was such that xi0 and yN/2 shared the same Brownian motion
terms; otherwise, it could be possible that yi0 did not share the bulk GOE/GUE statistics, as
it could have been close to the edge, and the argument of [27] would have failed. Aside from
being macroscopically separated from the edge, the index N/2 was chosen for notational
convenience. Moreover, the process xi was scaled and shifted so that the particle xi0 was
close to yN/2 (which is close to 0), and so that the local particle density near this point was
the same as the coupled Gaussian ensemble, this being given by ρsc(0). This is reflected in
the assumption about ρfc,t and the location of the classical eigenvalue of index i0 stated in
Theorem 3.1 of [27]. In the present setting, we are only interested in indices separated from
the edge by a macroscopic distance, and the densities of xi(t) and yi(t) match, as they are
both given by the semicircle. We can therefore ignore this assumption in our application of
Theorem 3.1, as the proof would go through in the present setting.8

Finally, [27], Theorem 3.1, implies that

(A.1) xi(t) − yi(t) = ∑
|j−i|≤tN1+δ

ξt

(
i − j

N

)(
xj (0) − yj (0)

)+ O
(
N−1−c1

)
for any δ > 0 and an appropriate constant c1 = c1(δ) > 0, with overwhelming probability.
Here, ξt (x) is a smooth function obeying estimates as given in Proposition 3.2 of [27]. We
claim that applying (A.1) to i and i + 1 yields∣∣xi(t) − yi(t) − (

xi+1(t) − yi+1(t)
)∣∣(A.2)

≤
∣∣∣∣ ∑
|j−i|≤tN1+δ

ξt

(
i − j

N

)(
xj (0) − yj (0)

)

− ∑
|j−(i+1)|≤tN1+δ

ξt

(
i + 1 − j

N

)(
xj (0) − yj (0)

)∣∣∣∣
(A.3)

≤ Nε

N1+c2
(A.4)

7Alternatively, we could have allowed the particles to evolve up a fixed time t0 in the present setting, before
allowing the coupling between xi and yi , but we would not gain anything by doing so.

8An alternative route to the application of Theorem 3.1 is the following. Instead of applying it directly to xi

and yi , one can construct a third process zi(t), also coming from a Gaussian ensemble, so that zN/2(t) is coupled
to xi0 and yi0 of the original processes. The processes xi0 and yi0 can then be shifted and rescaled by the same
constants so that xi0 and yi0 are close to zN/2 and the densities match the semicircle there. Then Theorem 3.1
can be applied twice, once to xi and zi , and the separately to yi and zi . Taking the differences between these
differences, the zi dependence drops out and after undoing the scalings, one arrives at an appropriate estimate for
xi and yi .
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for some constant c2 > 0 with overwhelming probability. This implies the estimate we need
for (5.3).

The essential point is that taking differences of gaps weighted by the ξt kernel produces a
cancellation that improves upon the naive bound of Nε−1 obtained by applying the rigidity
estimate (1.22) to each gap separately. To show this precisely, we write the differences of the
ξt terms as an integral of ∂xξt and use the derivative estimate [27], (3.12).9 We have

(A.5)

ξt

(
i − j

N

)(
xj (0) − yj (0)

)− ξt

(
i + 1 − j

N

)(
xj (0) − yj (0)

)
= (

xj (0) − yj (0)
) ∫ (i−j+1)/N

(i−j)/N
∂xξt (x) dx.

We now use rigidity and the estimate10 ∂xξt (x) ≤ CN−1(x2 + t2)−1 to obtain

(A.6) (A.3) ≤ Nε

N

1

N

∫ tN1+δ

−tN1+δ

1

x2 + t2 dx ≤ C
Nε

N2t
,

as desired.
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[16] ERDŐS, L. and YAU, H.-T. (2015). Gap universality of generalized Wigner and β-ensembles. J. Eur. Math.
Soc. (JEMS) 17 1927–2036. MR3372074 https://doi.org/10.4171/JEMS/548
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