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We derive a covariance formula for the class of ‘topological events’ of
smooth Gaussian fields on manifolds; these are events that depend only on
the topology of the level sets of the field, for example, (i) crossing events
for level or excursion sets, (ii) events measurable with respect to the number
of connected components of level or excursion sets of a given diffeomor-
phism class and (iii) persistence events. As an application of the covariance
formula, we derive strong mixing bounds for topological events, as well as
lower concentration inequalities for additive topological functionals (e.g., the
number of connected components) of the level sets that satisfy a law of large
numbers. The covariance formula also gives an alternate justification of the
Harris criterion, which conjecturally describes the boundary of the percola-
tion university class for level sets of stationary Gaussian fields. Our work is
inspired by (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 1679–1711),
in which a correlation inequality was derived for certain topological events
on the plane, as well as by (Asymptotic Methods in the Theory of Gaussian
Processes and Fields (1996) Amer. Math. Soc.), in which a similar covariance
formula was established for finite-dimensional Gaussian vectors.

1. Introduction. In recent years, there has been much progress in the study of the topol-
ogy of level sets of smooth Gaussian fields. Techniques have been developed to estimate their
homology (see [37, 38], and also [10, 14, 21, 31, 47]), and also their large scale connectivity
properties (see [1, 6], and also [9, 35, 36, 45]) using ideas from Bernoulli percolation. When
studying the topology of level sets, one often has to estimate quantities such as

Cov(A1,A2) := P[A1 ∩ A2] − P[A1]P[A2],
where A1 and A2 are events of topological nature. Since the events A1 and A2 in general
do not admit explicit integral representations, the quantity Cov(A1,A2) is often estimated
indirectly, leading to inequalities of varying precision. In the present work, we prove an exact
formula for Cov(A1,A2), where A1 and A2 belong to a large class of ‘topological events’.

Let us illustrate our formula with a simple example. Let f be an a.s. C2 centred Gaussian
field on R

2, with covariance K(x,y) := Cov(f (x), f (y)), such that, for each distinct x, y ∈
R

2, (f (x),∇f (x), f (y),∇f (y)) is a nondegenerate Gaussian vector. Let B1 and B2 be two
boxes on the plane R

2, not necessarily disjoint, each with two opposite sides distinguished
(we call these ‘left’ and ‘right’, with the remaining sides being ‘top’ and ‘bottom’). For each
i ∈ {1,2}, consider the event Ai that there exists a continuous path in Bi ∩ {f ≥ 0} joining
the ‘left’ and ‘right’ sides. This is known as a ‘crossing event’ for the excursion set {f ≥ 0},
and is of fundamental importance in the study of the connectivity of the level sets [6]. As
a corollary of our general covariance formula, we establish the following exact formula for
Cov(A1,A2):
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COROLLARY 1.1. The quantity Cov(A1,A2) is equal to∑
j1,j2=0,1,2,3,4

∫
F 1

j1
×F 2

j2

K(x1, x2)

×
∫ 1

0
γt;x1,x2(0)Et;x1,x2

[ ∏
i=1,2

∣∣det
(
Hji

xi
f i

t

)∣∣1Pivt,i
xi

(Ai)

]
dt dvF 1

j1
dvF 2

j2
,

where:

• For each i ∈ {1,2}, F i
0 := B̊i denotes the interior of Bi , equipped with its two-

dimensional Lebesgue measure dvF i
0
, and (F i

j )j=1,2,3,4 denote the sides of Bi , equipped with

their natural length measure dvF i
j
; the F i

j are therefore disjoint.

• For each t ∈ [0,1], ft = (f 1
t , f 2

t ) = (f 1, tf 1 +√
1 − t2f 2) denotes a Gaussian field on

R
2 ×R

2 that interpolates between (f 1, f 1) and (f 1, f 2), where f 1 and f 2 are independent
copies of f . For each distinct x1 ∈ B1 and x2 ∈ B2, γt;x1,x2(0) denotes the density at 0 of the
Gaussian vector

(1)
(
f 1

t (x1),∇f 1
t

∣∣
F 1

j1
(x1), f

2
t (x2),∇f 2

t

∣∣
F 2

j2
(x2)

) ∈R× Tx1F
1
j1

×R× Tx2F
2
j2

,

where F i
ji

denotes the unique face/interior that contains xi ; moreover, Et;x1,x2[·] denotes

expectation conditional on the vector (1) vanishing, and H
ji
xi f

i
t = ∇2f i

t |Fji
(xi) denotes the

Hessian at the point xi of f i
t restricted to the face F i

ji
.

• For each i ∈ {1,2}, t ∈ [0,1] and x ∈ Bi , Pivt,i
x (Ai) denotes the event that there exists

a continuous path in Bi ∩ {f i
t ≥ 0} joining the ‘left’ and ‘right’ sides, and a continuous

path in Bi ∩ {f i
t ≤ 0} joining the ‘top’ and ‘bottom’ sides, both of which pass through x

(see Figure 1; central panels). This is a natural analogue of a ‘pivotal event’ in Bernoulli
percolation (see [12, 24]).

FIG. 1. An illustration of the crossing events Ai and the pivotal events Pivx(Ai) that appear in the covariance
formula in Corollary 1.1. Left panels: Two realisations of a field f which exhibit the left-right crossing event for
{f > 0} in the rectangle B (shown in grey). Right panels: After a small perturbation of f (compared to the left
panel), the left-right crossing event no longer occurs. Central panels: The ‘pivotal event’ at which the crossing
event first fails in this perturbation; this event can be of two possible types, either involving a level-0 critical point
x of f in the interior of B (top figure), or involving a level-0 critical point x of f restricted to the top side of B

(bottom figure).
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Let us make three observations concerning the formula in Corollary 1.1:

• If K is nonnegative, then so is the integrand in the formula, and we deduce that

P[A1 ∩ A2] ≥ P[A1]P[A2].
This is the analogue of the Fortuyn–Kasteleyn–Ginibre (FKG) inequality (see [12, 24]), orig-
inally proven in the Gaussian setting by Pitt [41].

• Assume that f is stationary, let κ(x) = K(0, x) and denote κ(r) = sup|x|≥r |κ(x)|. Since

f is Gaussian, the Hessians H
ji
xi f

i
t have finite moments and so, by stationarity, the conditional

expectation in the formula is bounded. Thus, if B1 and B2 have sides of length O(R) and are
at distance of order at least R, we deduce a ‘strong mixing’ bound for crossing events, namely
that

(2)
∣∣P[A1 ∩ A2] − P[A1]P[A2]

∣∣ = O
(
R4κ(R)

)
.

In particular, as long as κ(R) = o(R−4), the crossing events A1 and A2 are asymptotically
independent, recovering the recent result of Rivera and Vanneuville [44].

• Setting B1 = B2 (and so A1 = A2), Corollary 1.1 also yields a formula for the variance
of (the indicator function of) the crossing event Ai .

The main result of this paper (see Theorem 2.14) consists of a vast generalisation of Corol-
lary 1.1 to the class of topological events of smooth Gaussian fields on manifolds of any
dimension. In particular, this permits a generalisation of the mixing bound (2) to arbitrary
topological events on manifolds (see Corollary 1.2 for the Euclidean case and Theorem 2.15
for the general case). Since the statement of Theorem 2.14 requires several preliminary defi-
nitions, in this Introduction we instead focus on applications of this formula, including (i) the
aforementioned strong mixing bounds, and (ii) lower concentration inequalities for additive
topological functionals of the level sets, such as such as the number of connected components
contained in a given domain.

Our work was largely inspired by [44] in which the mixing bound (2) was first estab-
lished, improving similar bounds that had previously appeared in [6, 8]. Here, we extend the
techniques and results in [44] to arbitrary topological events and to higher dimensions; the
key difference in our approach is that we work directly in the continuum, rather than with
discretisations of the field as in [6, 8, 44].

1.1. Topological events. We begin by describing the class of topological events to which
our results apply. Broadly speaking, we study events that depend only on the topology of the
level sets {f = �} (or excursion sets {f > �}) of a Gaussian field f restricted to reasonable
bounded domains B ⊂ R

d . One might think that it would therefore be enough to study home-
omorphism classes of pairs ({f > �}∩B,B), however, this would in fact not identify crossing
events, which distinguish marked sides of the reference domain B . Moreover, as in the case
of a product of homeomorphic sets, one might wish to distinguish between factors. For these
reasons, we work instead with equivalence classes induced by isotopies that preserve certain
subsets of B , using the formalism of stratifications.

An affine stratified set in R
d is a compact subset B ⊂ R

d equipped with a finite partition
B = ⊔

F∈F F into open connected subsets of affine subspaces of R
d , such that for each

F,F ′ ∈ F , F ∩ F ′ 
= ∅ ⇒ F ⊂ F ′. The partition F is called a stratification of B . When
there is no risk of ambiguity, we will often refer to B itself as an affine stratified set. For
example, a closed cube in R

d , equipped with the collection of the interiors of its faces of all
dimensions, is an affine stratified set.

Given an affine stratified set (B,F) of Rd and a continuous map H : B × [0,1] → B , we
say that H is a stratified isotopy if for each t ∈ [0,1], H(·, t) is a homeomorphism such that



2848 D. BELIAEV, S. MUIRHEAD AND A. RIVERA

for each F ∈ F , H(F × {t}) = F . The stratified isotopy class of a subset E ⊂ B , denoted
by [E]B , is the set of H(E × {1}) where H : B × [0,1] → B ranges over the set of strati-
fied isotopies of B with H(·,0) = idB . We consider the stratified isotopy class [{f > 0}]B
of the excursion set {f > 0}, which captures what we mean by the ‘topology’ of the level
set {f = 0} restricted to B . As we verify in Corollary 5.8, under mild conditions on f the
stratified istotopy class [{f > 0}]B is measurable with respect to f .

A topological event in B is an event measurable with respect to [{f > 0}]B . Important
examples include:

• As in Corollary 1.1, crossing events for level or excursion sets inside a box B , for
example, the event that a connected component of {f = 0} ∩ B or {f > 0} ∩ B intersects
opposite (d − 1)-dimensional faces of B (Corollary 1.1 concerned the case d = 2).

• Events that depend on the number of the connected components of a level or excur-
sion set inside a polytope B , or more generally the number of such components of a given
diffeomorphism class (see, e.g., [14, 21, 37, 38, 47]).

• The ‘persistence’ event that {f |B > 0} (see, e.g., [2, 16, 20, 43]).

We write σtop(B) to denote the σ -algebra of topological events on B .

1.2. Strong mixing in the Euclidean setting. The strong mixing of a random field is de-
fined via the decay, for domains B1 and B2 that are well separated in space, of the α-mixing
coefficient

(3) α(B1,B2) = sup
A1∈σ(B1),A2∈σ(B2)

∣∣P[A1 ∩ A2] − P[A1]P[A2]
∣∣,

where σ(B) denotes the sub-σ -algebra generated by the restriction of f to the domain B .
Strong mixing is a classical notion in probability theory with important connections to laws
of large numbers, central limit theorems, and extreme value theory (see, e.g., [17, 32, 33, 46])
among other topics. While for general continuous processes there is a rich literature on strong
mixing (see [13] for a review), in the study of smooth random fields the concept of strong
mixing is often far too restrictive. For example, if the spectral density of a stationary Gaussian
process decays exponentially (which implies the real analyticity of the covariance kernel and
the corresponding sample paths), then by [28] there is no strong mixing regardless of how
rapidly correlations decay, unless one restricts the class of events that are controlled by the
α-mixing coefficient. As a first application of our covariance formula, we derive conditions
that guarantee the strong mixing of the class of topological events.

Let f be an a.s. C2 stationary Gaussian field on R
d with covariance κ(x) = Cov(f (0),

f (x)), and suppose that, for each distinct x, y ∈ R
d , (f (x),∇f (x), f (y),∇f (y)) is a nonde-

generate Gaussian vector. These conditions ensure that κ is C4, and that the level set {f = 0}
is a C2-smooth hypersurface. For each pair of affine stratified sets B1,B2 ⊂ R

d , define the
‘topological’ α-mixing coefficient

αtop(B1,B2) = sup
A1∈σtop(B1),A2∈σtop(B2)

∣∣P[A1 ∩ A2] − P[A1]P[A2]
∣∣.

COROLLARY 1.2 (Strong mixing for topological events). There exist c1, c2 > 0 such
that, for every pair of affine stratified sets (B1,F1) and (B2,F2) in R

d satisfying

max
α∈Nd :|α|≤2

sup
x1∈B1,x2∈B2

∣∣∂ακ(x1 − x2)
∣∣ < c1,

it holds that

αtop(B1,B2) ≤ c2|F1||F2| max
F1∈F1,F2∈F2

∫
F1×F2

∣∣κ(x1 − x2)
∣∣dvF1(x1)dvF2(x2).
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In particular, recalling that κ̄(s) = sup|x|≥s |κ(x)|, if

(4) lim|x|→∞
∣∣∂ακ(x)

∣∣ = 0 for all α ∈ N
d such that |α| ≤ 2,

then for every pair of disjoint affine stratified sets B1,B2 ⊂ R
d there exist c3, c4 > 0 such that

(5) αtop(sB1, sB2) ≤ c3s
2d κ̄(c4s) for all s ≥ 1.

Corollary 1.2 demonstrates that topological events on well-separated boxes B1,B2 ⊂ R
d

are independent up to an additive error that depends (up to a constant) solely on the double
integral of the absolute value of the covariance kernel on the boxes; we expect this result to
have many applications. Later we present a generalisation of Corollary 1.2 to Gaussian fields
on general manifolds (see Theorem 2.15). The proof of Corollary 1.2 is given in Section 6.

REMARK 1.3. The constant c1 in Corollary 1.2 can be chosen in a way that depends
only on the dimension d , on κ(0), and on the Hessian of κ at 0, whereas the constant c2 can
be chosen in a way that depends, in addition to these, also on maxj (∂

4κ(0)/∂x4
j ).

REMARK 1.4. We do not assume that the field f is centred. Since adding a constant does
not change the covariance kernel, Corollary 1.2 also bounds the strong mixing of topological
events that are defined in terms of nonzero levels. Notably, neither c1 nor c2 depends on the
mean value of the field.

REMARK 1.5. As explained above, the mixing bound in Corollary 1.2 was already
known in two dimensions, at least in the case of crossing events [44] (see also (2)); our
results extends this mixing bound to arbitrary dimensions and arbitrary topological events.
Note also that an analogue of (5) was recently established [36] for a version of the α-mixing
coefficient that controls all events (not necessarily topological) that depend monotonically
on f (this includes, for instance, crossing events for {f > 0}); in this case the factor s2d can
be improved to sd .

1.3. Application to lower concentration for topological counts. We next present a simple
application of Corollary 1.2 to give a taste of the utility of mixing bounds. A topological count
is a set of integer-valued random variables N = N(B), indexed by affine stratified sets B ⊂
R

d , each of which is measurable with respect to the corresponding σ -algebra σtop(B). We
call a topological count super-additive if, for every affine stratified set B and every collection
of disjoint affine stratified sets (Bi)i≤k contained in B ,

(6) N(B) ≥ ∑
i≤k

N(Bi).

Examples of super-additive topological counts include the number of connected components
of level or excursion sets that are fully contained in a set [38], or more generally the number of
connected components of these sets that have a certain diffeomorphism class [14, 21, 47]. In
one dimension, topological counts reduce to the number of solutions to {f = 0} in intervals,
a quantity studied extensively since the works of Kac and Rice in the 1940s [26, 42]. We say
that a topological count N satisfies a law of large numbers if there exists a cN > 0 such that,
for every affine stratified set B ⊂ R

d , as s → ∞,

(7)
N(sB)

sd Vol(B)
→ cN in probability.

Nazarov–Sodin have shown [37, 38] (see also [7, 31]) that if f is ergodic (and under certain
mild extra conditions) the number of connected components of level or excursion sets satisfies



2850 D. BELIAEV, S. MUIRHEAD AND A. RIVERA

a law of large numbers, and in fact, (7) converges a.s. and in mean; the same result was later
shown to be true also for the number of connected components of a given diffeomorphism
type [10, 14, 47] (in the one-dimensional case this follows immediately from the ergodic
theorem). As was shown in [44], quantitative mixing bounds can be used to deduce the lower
concentration of super-additive topological counts.

COROLLARY 1.6 (Lower concentration for topological counts). Let N denote a super-
additive topological count that satisfies a law of large numbers (7) with limiting constant
cN > 0. Assume that (4) holds. Then for every affine stratified set B ⊂ R

d and constants
ε,C > 0, there exist c1, cB > 0 such that, for every s ≥ 1,

(8) P

[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c1 inf

r∈[1,s]
(
e−C(s/r)d + ecB(s/r)d (rs)d κ̄(r)

)
,

where the constant cB > 0 depends only on the stratified set B . In particular, if there exist
c2, α > 0 such that κ(x) ≤ c2|x|−α for every |x| ≥ 1, then for every ε, δ > 0 we can set
r = c3s/(log s)1/d for a sufficiently large choice of c3 > 0 (depending on cB,α and δ) and
apply (8) for C > 0 sufficiently large (depending on c3 and δ) to deduce the existence of a
c4 > 0 such that, for every s ≥ 1,

P

[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c4s

2d−α+δ.

Similarly, if there exist c2, α,β > 0 such that κ(x) ≤ c2e
−β|x|α for every |x| ≥ 1, then setting

r = c3s
d/(d+α) for a sufficiently large choice of c3 > 0 and then choosing C sufficiently large

we deduce that for every γ > 0 there is c4 > 0 such that, for every s ≥ 1,

P

[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c4 exp

(−γ sdα/(d+α)).
REMARK 1.7. As for Corollary 1.2, Corollary 1.6 was also already known in two di-

mensions (at least in the case of the number of connected components of level sets [44]) but
not in higher dimensions. A stronger version of Corollary 1.6 was also recently established
in the one dimensional case (i.e., for the number of zeros of a one-dimensional stationary
Gaussian process [4]), and also for the number of connected components of the zero level
set of random spherical harmonics (RSHs) [37]; the results in [4, 37] are proven using very
different techniques to ours, and in the latter case relies heavily on the specific structure of
the RSHs.

2. A covariance formula for topological events. In this section, we present our covari-
ance formula in the general setting of smooth Gaussian fields on smooth manifolds. We also
discuss further applications of the formula beyond those we gave in Section 1, and give a
sketch of its proof.

2.1. The covariance formula. We begin by fixing definitions, starting with the ‘stratified
sets’ on which we work; our main reference is [23]. Let (M,g) be a smooth Riemannian
manifold of dimension d .

DEFINITION 2.1 (Stratified set). Let B ⊂ M be a compact subset. Assume there is a
partition of B into a finite collection F of smooth locally closed submanifolds, called strata,
satisfying the following additional properties:

• The strata cover B , that is, B = ∐
F∈F F .
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FIG. 2. Left: An example of a tame stratification F = {F1,F2} of a compact set B . Here, the generalised
tangent bundle TxF2|F1 is well-defined since, as the points xk converge to x ∈ F1, the respective tangent planes
also converge. Right: A rough depiction of the ‘rapid spiral sheet’, which is an example of a set that cannot be
tamely stratified (see Example 2.6); here tangent planes do not converge, and so the generalised tangent bundle is
not well-defined.

• Any two strata F1 and F2 satisfy F1 ∩ F2 
= ∅ ⇔ F1 ⊂ F2. This allows us to equip F
with the partial order < defined such that, for any two strata F1 and F2,

F1 ∩ F2 
= ∅ ⇔ F1 = F2 or F1 < F2.

• For each F1 < F2 the following is true. Consider any embedding of M in Euclidean
space, and let (xk)k∈N and (yk)k∈N be sequences of points satisfying (i) for each k ∈ N,
xk ∈ F2 and yk ∈ F1, (ii) xk and yk converge to a common point y ∈ F1, (iii) the tangent
planes Txk

F2 converge to a limit τ , and (iv) the lines λk generated by the vectors xk − yk

converge to a limit λ. Then it holds that λ ⊂ τ . Equivalently, it is enough that this condition
be fulfilled for one fixed embedding of M in Euclidean space. Limits τ of this kind are called
generalised tangent spaces at y.

• For each F1,F2 ∈ F such that F1 < F2, there exists a smooth sub-bundle T F2|F1 of
T M|F2 , whose rank is the dimension of F2, that contains T F1 as a sub-bundle, and such
that (i) the map y �→ TyF2, with values in the adequate Grassmannian bundle defined on F2,
extends by continuity to F1 together with all of its derivatives, and (ii) for each sequence of
points xk ∈ F2 converging to a limit x ∈ F1, limk→+∞ Tx1F2 = TxF2|F1 . We call T F2|F1 the
generalised tangent bundle of F2 over F1 (see Figure 2).

The collection F is called a tame stratification of B . A stratified set of M is a pair (B,F)

consisting of a compact subset B ⊂ M and a tame stratification F of B . When there is no
risk of ambiguity, we will often write that B ⊂ M is a stratified set without explicit mention
of its tame stratification F .

REMARK 2.2. A partition F of a compact subset B satisfying the first three properties
required in Definition 2.1 is called a Whitney stratification (see, for instance, Part I, Sec-
tion 1.2 of [23]); indeed, the third property is known as ‘Whitney’s condition (b)’. While
Whitney stratifications have many interesting properties, sometimes the structure of a stratifi-
cation can force functions on it to have degenerate stratified critical points (see Example 2.6).
To avoid such pathologies, we add the additional fourth condition which is satisfied in most
natural examples. In fact, this additional ‘tameness’ property is only used at a single place in
the proof of the covariance formula, namely, to prove Claim 4.6.

Let us present several important examples (and one nonexample) of stratified sets, begin-
ning with the trivial stratification.
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EXAMPLE 2.3 (Trivial stratification). Let M be a compact manifold without boundary.
Then F = {M} is a tame stratification of M . Moreover, let  ⊂ M be a compact subset with
smooth boundary ∂. Then F = {̊, ∂} is a tame stratification of .

In the case that M = R
d , by gluing boxes and other polytopes together one obtains sets

equipped with a natural stratification that will, in most case, be tame. Our definition of ‘affine
stratified set’, introduced in Section 1, covers all such examples.

EXAMPLE 2.4 (Affine stratified sets). The affine stratified sets introduced in Section 1
are stratified sets of M = R

d .

One can also consider individual ‘polytopes’, such as the boxes in Corollary 1.1, to be
stratified sets of M = R

d :

EXAMPLE 2.5 (Polytopes). A polytope in R
d is naturally equipped with a stratification

whose strata are the faces of the polytope of all dimensions. Though to our knowledge there
is no consensus on the definition of a polytope in R

d , it is easy to check whether or not a
specific example satisfies Definition 2.1.

We also present one nonexample, in the form of the ‘rapid spiral’:

EXAMPLE 2.6 (Rapid spiral). The rapid spiral B = {r = e−θ2} (see Figure 2) admits
a natural partition that satisfies all the conditions of a tame stratification except the last;
in particular, this partition is a Whitney stratification. The rapid spiral B exhibits certain
pathologies that result from the lack of tameness, for instance, there are no stratified Morse
functions on B (see [23], Part I, Example 2.2.2).

We next extend the definition of topological events given in Section 1 to the general set-
ting of stratified sets. Let f be a continuous Gaussian field on M , defined on a probability
space . Let μ : M →R and K : M × M →R denote respectively the mean and covariance
kernel of f . Assume that f satisfies the following condition (generalising the conditions in
Section 1).

CONDITION 2.7. The field f is a.s. C2. Moreover, for each distinct x, y ∈ M , the Gaus-
sian vector (

f (x), dxf,f (y), dyf
) ∈ R× T ∗

x M ×R× T ∗
y M

is nondegenerate.

This condition ensures that μ is C2 and that K is of class C2,2. Let us now define the class
of topological events on a stratified set B .

DEFINITION 2.8 (Topological events). Let (B,F) be a stratified set of M . A strat-
ified homeomorphism of B is a homeomorphism h : B → B such that for each F ∈ F ,
h(F ) = F . A stratified isotopy of B is a continuous map H : B × [0,1] → B such that
for each t ∈ [0,1], H(·, t) : B → B is a stratified homeomorphism of B . We say that two
stratified homeomorphisms h0, h1 : B → B are F -isotopic if there exists a stratified isotopy
H such that H(·,0) = h0 and H(·,1) = h1.

Let D denote the excursion set {f > 0}. The stratified isotopy class of D in B , denoted
[D]B , is the set of h(D ∩ B) where h ranges over all stratified homeomorphisms of B that
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are F -isotopic to the identity. As we establish in Corollary 5.8, under Condition 2.7 there
are a countable number of stratified isotopy classes, and we equip the set of classes with
its maximal σ -algebra. We will also verify in Corollary 5.8 that the map [D]B from the
probability space  into the set of stratified isotopy classes is measurable. A topological
event on B is an event A ⊂  measurable with respect to the random variable [D]B .

Henceforth, we fix two stratified sets (B1,F1) and (B2,F2) of M (not necessarily disjoint).
Our main formula expresses the covariance between topological events on B1 and B2 in terms
of an integral over the ‘pivotal measure’ of the events. This measure is defined in terms of
(i) ‘pivotal points’, and (ii) a certain interpolation between f and an independent copy of
itself; we introduce these concepts now. Our definition of ‘pivotal points’ is related to the
notion of ‘pivotal sites’ in percolation theory (see [24], Section 2.4), whereas the interpolation
is based on the classical interpolation argument of Piterbarg [40].

DEFINITION 2.9 (Pivotal points). Fix Â ⊂ C1(M). For every u ∈ C1(M), we say that
x ∈ M is pivotal for u (with respect to Â) if, for any open neighbourhood W of x in M , there
exists a function h ∈ C2

c (W) such that for every sufficiently small δ > 0, u + δh ∈ Â and
u− δh /∈ Â. Such a function u is described as having a pivotal point at x ∈ M , and we denote
by Pivx(Â) ⊂ C1(M) the set of all such u’s. If h can be chosen so that h ≥ 0, we say that x is
positively pivotal for u, and we denote by Piv+

x (Â) ⊂ C1(M) the set of such u’s. Similarly, x

is negatively pivotal for u if h can be chosen so that h ≤ 0, and we denote Piv−
x (Â) ⊂ C1(M)

the set of such u’s.

DEFINITION 2.10 (Interpolation). Let f̃ be an independent copy of f . For each t ∈
[0,1], define the Gaussian field on M × M

(9) ft (x) = (
f 1

t (x), f 2
t (x)

) := (
f (x), t

(
f (x) − μ(x)

) +
√

1 − t2
(
f̃ (x) − μ(x)

) + μ(x)
)
.

Observe that f 1
t and f 2

t have the same law as f , and Cov(f 1
t (x1), f

2
t (x2)) = tK(x1, x2); in

particular, f 1
0 and f 2

0 are independent, while f 1
1 = f 2

1 . Also, observe that f 1
t and f 2

t both
satisfy Condition 2.7. For each x1 ∈ F1 ∈ F1 and x2 ∈ F2 ∈ F2, denote by γt;x1,x2(0) the
density at zero of the Gaussian vector

(10)
(
f 1

t (x1), dx1f
1
t |F1, f

2
t (x2), dx2f

2
t |F2

)
in orthonormal coordinates of R× T ∗

x1
F1 ×R× T ∗

x2
F2, and denote by Et;x1,x2[·] expectation

conditional on the vector (10) vanishing; this conditional expectation is well-defined and
described by the usual Gaussian regression formula ([3], Proposition 1.2) since the vector
(10) is nondegenerate. Note that, since x1 and x2 correspond to unique strata F1 and F2, to
ease notation we have dropped the explicit dependence of γt;x1,x2(0) and Et;x1,x2[·] on F1
and F2.

We are now ready to define the pivotal measure, or more precisely, two ‘signed’ piv-
otal measures. Fix topological events A1 and A2 on B1 and B2, respectively. Denote by
Ã1, Ã2 the measurable sets of stratified isotopy classes in B1 and B2, respectively, that define
these topological events, and let Â1 (resp., Â2) be the set of functions u ∈ C1(M) such that
[{u > 0}]B1 ∈ Ã1 (resp., [{u > 0}]B2 ∈ Ã2).

Denote by dvg the Riemannian volume measure on M . Similarly, for each stratum F ∈
F1 ∪ F2, denote by dvF the Riemannian volume measure induced by gF , the restriction of
g to F . If u ∈ C2(M) and x is a critical point of u, we denote by Hxu the Hessian of u at
x (which is well-defined since x is a critical point of u; see, for instance, [39], Chapter 1).
More generally, if F ⊂ M is a smooth sub-manifold of M and dxu|F = 0, then let HF

x u be
the Hessian of u|F at x.
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DEFINITION 2.11 (Pivotal measures). For each t ∈ [0,1] and σ ∈ {−,+}, define the
signed pivotal intensity function I σ

t (x1, x2) on B1 × B2 to be

(11)

∑
σ1,σ2∈{−,+},

σ1σ2=σ

γt;x1,x2(0)

×Et;x1,x2

[∣∣det
(
HF1

x1
f 1

t

)
det

(
HF2

x2
f 2

t

)∣∣;f 1
t ∈ Pivσ1

x1
(Â1), f

2
t ∈ Pivσ2

x2
(Â2)

]
,

where F1 and F2 denote the (unique) strata in F1 and F2 that contain x1 and x2, respectively,
and the determinants are taken with respect to orthonormal bases of Txi

Fi . The signed pivotal
measures dπσ (x1, x2) on B1 × B2 are defined, for σ ∈ {−,+}, as

dπσ (x1, x2) =
(∫ 1

0
Iσ
t (x1, x2)dt

)
dvF1(x1)dvF2(x2).

We emphasise that, although the ‘pivotal measures’ depend on both (i) the stratified sets Bi ,
and (ii) the topological events Ai , to ease notation we have left these dependencies implicit.
Observe also that dπσ is a sum of measures of different dimensions that are supported on
pairs of strata (F1,F2) ∈ F1 × F2. On each such pair, the measures dπ± are singular with
respect to each other and mutually continuous with respect to the product of Riemannian
volume measures.

REMARK 2.12. By definition, the Hessian on 0-dimensional strata is always equal to
zero. This implies that, when at least one of xi belongs to a 0-dimensional stratum, the cor-
responding term is zero independently of how we interpret dvF for 0-dimensional F . Hence
in (11), as well as in all subsequent formulae of similar type, we can discard the contribution
from 0-dimensional strata.

REMARK 2.13. If A1 and A2 are both increasing events (meaning that, for i ∈ {1,2}, if
u ∈ Âi and h is a nonnegative function, then u + h ∈ Âi ), then the negative pivotal measure
dπ− is identically zero since Piv−

xi
(Âi) is empty by definition. The same is true if A1 and A2

are both decreasing events, since then Piv+
xi

(Âi) is empty. Similarly, if A1 is increasing and
A2 is decreasing, then dπ+ is identically zero.

We are now ready to present our covariance formula in full generality.

THEOREM 2.14 (Covariance formula for topological events). Let (B1,F1) and (B2,F2)

be stratified sets of M . Let f be a Gaussian field on M satisfying Condition 2.7. Then the
covariance of topological events A1 and A2 on B1 and B2, respectively, can be expressed as

P[A1 ∩ A2] − P[A1]P[A2] =
∫
B1×B2

K(x,y)
(
dπ+(x, y) − dπ−(x, y)

)
,

where dπ+ and dπ− denote the pivotal measures introduced in Definition 2.11.

Let us offer some intuition behind the covariance formula in Theorem 2.14. The starting
point of our analysis is the observation that

P[A1 ∩ A2] = P[f1 ∈ Â1 × Â2] and P[A1]P[A2] = P[f0 ∈ Â1 × Â2],
and hence

P[A1 ∩ A2] − P[A1]P[A2] =
∫ 1

0

d

dt
P[ft ∈ Â1 × Â2]dt.



A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS OF GAUSSIAN FIELDS 2855

As we explain in Section 2.3, the structure of the Gaussian measure allows us to express

d

dt
P[ft ∈ Â1 × Â2]

as an integral, over pairs of strata (F1,F2) ∈ F1 ×F2, of the (signed) two-point intensity func-
tions Iσ

t of critical points that are ‘pivotal’ for the events A1 and A2, respectively, weighted
by a term that is the inner product of the outward normal vectors at the boundary of the events
A1 and A2; by the properties of the Gaussian measure (in particular, the reproducing prop-
erty of the covariance kernel), this inner product is just (a normalisation of) the covariance
kernel K .

To understand the form of the intensity functions Iσ
t , notice that pivotal points are neces-

sarily critical points at the zero level. Hence we can understand Iσ
t as a restriction to pivotal

points of the standard two-point intensity function for critical points of ft on (F1,F2) at the
zero level, which by the well-known Kac–Rice formula (see [3], Chapter 6) is given by

γt;x1,x2(0)Et;x1,x2

[∣∣det
(
HF1

x1
f 1

t

)
det

(
HF2

x2
f 2

t

)∣∣].
Note that our intensity functions are signed; this is because we must distinguish pairs of
pivotal points that are pivotal ‘in the same direction’, in the sense that a local increase in f

causes the events A1 and A2 to both occur or to both not occur, from those that are pivotal
‘in opposite directions’.

It is possible that some variant of Theorem 2.14 remains true for a wider class of smooth
random fields. The Kac–Rice formula applies far beyond the Gaussian setting, and in prin-
ciple one can also express the intensity of pivotal points for non-Gaussian fields. As for the
initial interpolation step, by formulating it using the Ornstein–Uhlenbeck semigroup (as in,
say, [15] or as suggested in [48]) the setting could perhaps be extended to measures related
to other Markov semigroups. We leave this for future investigation.

2.2. Applications. We next present applications of the covariance formula in Theo-
rem 2.14; some of these have already been discussed (see Corollaries 1.2 and 1.6), but here we
give extensions to more general settings. The proofs will be deferred to Section 6. Throughout
this section, we assume that f satisfies Condition 2.7.

2.2.1. Strong mixing for topological events. Our first application generalises the strong
mixing statement in Corollary 1.2 to the set-up in Section 2.1. For a stratified set B ⊂ M , let
σtop(B) denote the σ -algebra consisting of topological events in B , and for a pair of stratified
sets B1,B2 ⊂ M , define the corresponding ‘topological’ α-mixing coefficient

(12) αtop(B1,B2) = sup
A1∈σtop(B1),A2∈σtop(B2)

∣∣P[A1 ∩ A2] − P[A1]P[A2]
∣∣.

THEOREM 2.15 (Strong mixing for topological events). There exists a constant cd > 0,
depending only on the dimension of the manifold M , such that for every pair of stratified sets
(B1,F1) and (B2,F2) of M ,

αtop(B1,B2) ≤ cd

∑
F1∈F1,F2∈F2

cF1,F2

∫
F1×F2

∣∣K(x1, x2)
∣∣dvF1(x1)dvF2(x2),

where cF1,F2 is equal to the maximum, over i, j, k ∈ {1,2}, of

sup
x1∈F1,x2∈F2

(E[‖HFi
xi f ‖2

op | dxi
f |Fi

= 0])di

√
det(�(x1, x2))

max
{

1,

(
K(xj , xj )det(dxk

⊗ dxk
K|Fi×Fi

)√
det(�(x1, x2))

)2di
}
,



2856 D. BELIAEV, S. MUIRHEAD AND A. RIVERA

and where ‖ · ‖op denotes the (L2-)operator norm, di = dim(Fi), and �(x1, x2) is the covari-
ance matrix, in orthonormal coordinates, of the (nondegenerate) Gaussian vector(

f (x1), dx1f |F1, f (x2), dx2f |F2

)
.

REMARK 2.16. All the terms in the definition of cF1,F2 can be written as a quotient of
powers of polynomials of partial derivatives of K of order at most (2,2). This means that
(i) cF1,F2 depends continuously on the C2,2 norm of K , and (ii) cF1,F2 is homogeneous in
K (the degree of homogeneity is easily seen to be −1, which compensates the presence of
K(x1, x2) in the integral).

2.2.2. Sequences of fields: The Kostlan ensemble. In Corollary 1.2, we stated a quantita-
tive mixing bound for rescaled (affine) stratified sets sB1 and sB2 as s → ∞. In the setting
of compact manifolds M , it is often more appropriate to work with a sequence of Gaussian
fields on M that converge to a local limit, and consider the topological mixing between fixed
disjoint stratified sets B1,B2 ⊂ M (in fact, this includes the setting in Corollary 1.2 as a
special case, by rescaling the field rather than the sets).

Rather than work in full generality, here we work only with the Kostlan ensemble, which
is the sequence (fn)n∈N of smooth centred isotropic Gaussian fields on S

d with covariance
kernels,

K(x,y) = cosn(dSd (x, y)
) = 〈x, y〉n,

where dSd (·, ·) denotes the spherical distance; it is easy to check that each fn satisfies Condi-
tion 2.7. The sequence fn converges to a local limit on the scale sn = 1/

√
n, in the sense that

for any x0 ∈ S
d the rescaled field

(13) f
(
expx0

(x/
√

n)
)
, x ∈ R

d

converges on compact sets to the smooth stationary Gaussian field on R
d with covariance

κ(x) = e−‖x−y‖2/2; here, expx0
: Rd → S

d denotes the exponential map based at x0. The
Kostlan ensemble is a natural model for random homogeneous polynomials (see [29, 30]),
and its level sets have been the focus of recent study [9]. Its local limit is known as the
Bargmann–Fock field.

COROLLARY 2.17 (Strong mixing for the Kostlan ensemble). For each pair of disjoint
stratified sets B1,B2 ⊂ S

d that are contained in an open hemisphere, there exist c1, c2 > 0
such that, for each n ≥ 1,

αn;top(B1,B2) ≤ c1e
−c2n,

where αn;top denotes the ‘topological’ mixing coefficient (12) for the field fn.

REMARK 2.18. Since fn are homogeneous polynomials, they are naturally defined on
the real projective space rather than the sphere, which makes it natural to restrict B1 and B2
to be contained in an open hemisphere. Indeed, fn is degenerate at antipodal points.

The lower concentration result in Corollary 1.6 can also be generalised to the setting of
sequences of Gaussian fields on manifolds; again we focus just on the Kostlan ensemble
(fn)n∈N on S

d . We define a topological count N = Nn(B) for fn analogously to in Section 1,
after substituting affine stratified sets B ⊂ R

d with general stratified sets B ⊂ S
d ; these counts

are now indexed by B ⊂ S
d and n ∈ N. A topological count N is called super-additive if (6)
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holds for each Nn. We say that a topological count N satisfies a law of large numbers if there
exists a cN > 0 such that, for every stratified set B ⊂ S

d , as n → ∞,

(14)
Nn(B)

nd/2 Vol(B)
→ cN in probability;

the scale nd/2 can be understood as the natural volume scaling induced by the rate sn = 1/
√

n

at which the Kostlan ensemble converges to a local limit in (13).

COROLLARY 2.19 (Lower concentration for topological counts of the Kostlan ensemble).
Let N denote a super-additive topological count that satisfies a law of large numbers (14)
with limiting constant cN > 0. Then for every stratified set B ⊂ S

d and every ε > 0, there
exist c1, c2 > 0 such that, for every n ≥ 1,

(15) P

[
Nn(B)

nd/2 Vol(B)
≤ cN − ε

]
≤ c1e

−c2n
d/(d+2)

.

In particular, taking B = S
d with its trivial stratification F = {Sd}, the conclusion of Corol-

lary 2.19 is true for Nn the number of connected components of {fn > 0} or {fn = 0} on the
sphere S

d (see [38] for a proof of the law of large numbers for Nn).

2.2.3. Decorrelation for topological counts. In the classical theory of strong mixing, a
major application of mixing bounds is to prove central limit theorems (CLTs) (see, e.g., [17,
32, 46]). Although establishing CLTs for topological counts is beyond the scope of this work,
we illustrate here how mixing bounds can be used to deduce the ‘decorrelation’ of topological
counts, a key intermediate step in proving a CLT.

For simplicity, we return to the Euclidean setting of Section 1. We say that a topological
count N has a finite two-plus-delta moment on an affine stratified set B ⊂ R

d if there exist
δ, c > 0 such that

(16) E
[
N(B)2+δ] < c < ∞.

Although the finiteness of two-plus-delta moments is not known for the topological counts
discussed in Section 1 (except in the one-dimensional case), in principle one can bound (16)
by the purely local quantity

E
[
(# of critical points of f in B)2+δ],

which we suspect is finite in great generality.

COROLLARY 2.20 (Decorrelation for topological counts). Fix affine stratified sets
B1,B2 ⊂ R

d and suppose that N1 and N2 are topological counts that have finite two-plus-
delta moments (16) on B1 and B2 with constants δ, c > 0. Then

(17) Cov
(
N1(B1),N2(B2)

) ≤ 8c2/(2+δ)αtop(B1,B2)
δ/(2+δ).

We expect that standard methods (i.e. [19, 46]) should allow one to deduce, from Corol-
lary 2.20, a CLT for rescaled topological counts that satisfy a law of large numbers whenever
strong enough two-plus-delta moment bounds can be established, at least as long as κ(x)

decays at a high enough polynomial rate (with the polynomial exponent depending on δ).
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2.2.4. Positive association for increasing topological events. Recall that a random vector
is said to be ‘positively associated’ if increasing events (or equivalently decreasing events)
are positively correlated. To state an analogous property for continuous random fields some
care must be taken to specify an appropriate class of increasing events, and here we restrict
the discussion to topological events. An important example of topological events that are
increasing are crossing events for the excursion set {f > 0} (but not crossing events for the
level set {f = 0}), and the fact that crossing events are positively correlated is crucial in the
analysis of level set percolation [6, 9, 36, 45].

In the setting of Gaussian fields, it is known that the class of increasing topological events
on a stratified set are positively correlated if and only if the covariance kernel K is positive.
The standard approach is to invoke a classical result that (finite-dimensional) Gaussian vec-
tors are positively associated if and only if they are positively correlated [41], and then to
apply an approximation argument (see [44]). Here, we deduce, directly from our exact for-
mula, a quantitative version of this result, whose proof is immediate from Theorem 2.14 and
the observation in Remark 2.13.

COROLLARY 2.21 (Positive associations). Let A1 and A2 be topological events on strat-
ified sets B1 and B2, and suppose that A1 and A2 are both increasing. Then

(18) P[A1 ∩ A2] − P[A1]P[A2] =
∫
B1×B2

K(x,y)dπ+(x, y),

where dπ+ is the measure defined in Definition 2.11. In particular, A1 and A2 are positively
correlated if K|B1×B2 ≥ 0.

The fact that positive associations fails in general if a Gaussian field is not positively
correlated is a serious limitation to many applications; for example, the current theory of
level set percolation for Gaussian fields fails more or less completely unless K ≥ 0 (see
however [5] for recent progress in this direction). One advantage of (18) is that the failure of
positive associations can be quantified, which gives hope that the errors that arise might be
controllable.

2.2.5. The Harris criterion. Lastly, we present an informal discussion of the ‘Harris cri-
terion’ (HC), demonstrating in particular that Theorem 2.14 can be used to give an alternative
derivation of this criterion.

In its original formulation (see, e.g., [49]), the HC was a heuristic to determine whether
long-range correlations influence the large-scale connectivity of discrete critical percolation
models. Translated to the setting of Gaussian fields on R

d (see [11]), the HC claims that the
connectivity of the level set of smooth centred Gaussian fields will, at the critical level �c ≤ 0
(known to be zero if d = 2, but believed to be strictly negative if d ≥ 3), be well described on
large scales by critical (Bernoulli) percolation (the ‘percolation hypothesis’) if and only if

(19) s2/ν−2d
∫
Bs×Bs

κ(x − y)dx dy → 0 as s → ∞,

where Bs denotes the ball of radius s centred at the origin, and ν is the correlation length
exponent of critical percolation, widely believed to be universal and satisfy

ν =

⎧⎪⎪⎨⎪⎪⎩
4/3, d = 2,

∈ (1/2,1), d = 3,4,5,

1/2, d ≥ 6.
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In the positively-correlated case κ ≥ 0, (19) is roughly equivalent to demanding that κ has
polynomial decay with exponent at least 2/ν. The original argument of Harris (as translated
to our setting in [11]) goes as follows. Define

ms = 1

|Bs |
∫
Bs

f (x) dx

to be the average value of f on the ball Bs . The fluctuations of ms are of order

(20)
√
E
[
m2

s

] = 1

|Bs |
(∫

Bs×Bs

κ(x − y)dx dy

)1/2
.

Recall now that the behaviour of critical (and near-critical) percolation follows a set of
power-laws with certain universal exponents, one of which is the correlation length expo-
nent ν. Roughly speaking, this claims that the connectivity of percolation with probability
p ∈ [0,1] closely approximates the connectivity of critical percolation on the ball Bs as long
as |p − pc| � s−1/ν , where pc is the critical probability. Under the assumption that f can
be replaced by ms + f on Bs , the ‘percolation hypothesis’ therefore generates a contradic-
tion unless ms � s−1/ν , and combining with (20) gives (19). Note that the HC should really
be understood as a necessary condition for the ‘percolation hypothesis’, since the argument
assumes the ‘percolation hypothesis’ and derives a contradiction.

We now demonstrate that Theorem 2.14 yields an alternative criterion, more or less equiv-
alent to (19), that we claim is also a necessary condition for the ‘percolation hypothesis’. Fix
a pair of disjoint boxes B1,B2 ⊂ R

d and, for each s ≥ 1 and i ∈ {1,2}, let As
i denote the

crossing events for the critical level set in sBi . Note that pivotal points for crossing events
roughly correspond to four-arm saddles at distance s, that is, saddle points x such that all four
arms of the level set {f = f (x)} hit the ball of radius s around x. Putting this approximation
into Theorem 2.14, we deduce that

P
[
As

1 ∩ As
2
] − P

[
As

1
]
P
[
As

2
] ≈ cκ

∫
sB1×sB2

κ(x − y)Is(x, y) dx dy

≈ cκIs(0)2
∫
sB1×sB2

κ(x − y)dx dy,

where Is denotes the intensity of four-arm saddles at distance s, and where in the last step we
used stationarity and an (unjustified) factorisation of this intensity. Consider now the universal
exponent ζ4 that is believed to describe the decay of the probability of critical ‘four-arm’
events for all percolation models. If the ‘percolation hypothesis’ is true, then Is(0) ≈ s−ζ4 ,
and since under the ‘percolation hypothesis’ the events As

1 and As
2 decorrelate, we end up

with the following criterion for this hypothesis:

(21) s−2ζ4

∫
sB1×sB2

κ(x − y)dx dy → 0 as s → ∞.

To compare to (19), recall that by the ‘Kesten scaling relations’ [27] ζ4 = d − 1/ν, and so the
exponents 2/ν − 2d and −2ζ4 in (19) and (21) match. The only difference is the domain of
integration, but as s → ∞ this difference is negligible under mild assumptions on the decay
of covariance.

2.3. Proof sketch. Theorem 2.14 can be considered as a generalisation to topological
events of a simple formula, essentially due to Piterbarg [40], that gives a covariance formula
for finite-dimensional Gaussian vectors. This lemma is both the inspiration for Theorem 2.14,
and also one of the key ingredients in the proof. We state Piterbarg’s formula in the simplest
case of standard Gaussian vectors, since this is all that we need, but a similar statement
exists for general nondegenerate Gaussian vectors; for completeness, we give the proof in
Appendix B.
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LEMMA 2.22 (Piterbarg’s formula; see [40], Theorem 1.4). For each t ∈ [0,1], let Xt

and Yt be jointly Gaussian vectors in R
m, not necessarily centred, whose covariance matrix

is (
I tI

tI I

)
;

that is, Cov(Xt,i,Xt,j ) = Cov(Yt,i , Yt,j ) = δi,j and Cov(Xt,i, Yt,j ) = tδi,j . Let γt (x, y) de-
note the density of Zt = (Xt , Yt ) ∈ R

2m. Let A and B be domains in R
m whose boundaries

are piecewise smooth, and which have surface areas, inside the ball of radius R, that grow
at most polynomially in R. Denote by νA and νB the outward unit normal vectors on the
boundaries of A and B , respectively. Then P[Zt ∈ A × B] is differentiable in t ∈ (0,1), and

d

dt
P[Zt ∈ A × B] =

∫
∂A×∂B

〈
νA(x), νB(y)

〉
γt (x, y)dx dy,

where by
∫

dx dy we understand integration with respect to the natural m − 1 dimensional
measures on ∂A and ∂B , respectively.

In particular, if X denotes an arbitrary translation of a standard Gaussian vector in R
m,

then

P[X ∈ A ∩ B] − P[X ∈ A]P[X ∈ B] =
∫ 1

0

∫
∂A×∂B

〈
νA(x), νB(y)

〉
γt (x, y)dx dy dt;

the integral converges since the integral
∫ s

0 dt on the right-hand side exists for all s < 1, and
converges as s → 1 to the left-hand side.

Let us now give a brief sketch of the proof of Theorem 2.14, showing how Piterbarg’s
formula plays an essential role. We begin by considering the case of finite-dimensional Gaus-
sian fields, that is, the case in which f is a Gaussian vector in a finite-dimensional space of
continuous functions V (see Proposition 3.9). More precisely, we fix 〈·, ·〉 a scalar product
on V and take f to be a translation of the standard Gaussian vector in V . The scalar product
also induces a volume measure du on V , and allows us to identify V with Rdim(V ) up to
isometries. Hence, we can apply Piterbarg’s formula in V and deduce that

(22)
d

dt
P[ft ∈ Â1 × Â2] =

∫
∂Â1×∂Â2

〈
νA1(u1), νA2(u2)

〉
γt (u1, u2)du1 du2,

where ft = (f 1
t , f 2

t ) has covariance
(

I tI
tI I

)
in orthonormal coordinates of V × V equipped

with the product scalar product (this coincides with the definition of ft in (9)).
The next step is to analyse the boundaries of Âi . The path (f i

t )t∈[0,1] is a generic defor-
mation of f . By standard arguments in Morse theory, along this deformation the topology
of the set {f i

t ≥ 0} changes only when f i
t passes through a nondegenerate critical point at

level 0 (which can cause f i
t to either enter or exit Âi ); if such a change in topology occurs

we say that this critical point is pivotal for the event Âi and the function f i
t . We will see (in

Lemma 3.10) that, if we exclude a subset E ⊂ ∂Âi of positive codimension containing the
functions with multiple stratified critical points at level 0, we can define a surjection

� : ∂Âi \ E � Bi,

that induces submersions on each stratum of Bi , by associating to each ui ∈ ∂Âi \E its unique
critical point at level 0. The fibre �−1(xi) is an open subset of the subspace of functions for
which xi is a stratified critical point at level 0. We will see that it is equal to Pivxi

(Âi) up to
a negligible set.
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Using the map �, the coarea formula allows us to switch from an integral over ∂Â1 ×
∂Â2 ⊂ V to a sum of integrals over pairs of faces of B1 and B2. We obtain that (22) is equal
to ∑
F1∈F1,F2∈F2

∫
F1×F2

(∫
�−1(x1)×�−1(x2)

〈ν
∂Â1

(u1), ν∂Â2
(u2)〉

Jac⊥
F1

(u1) Jac⊥
F2

(u2)
γt (u1, u2) du1 du2

)
dvF1(x1)dvF2(x2),

where, in the inner integral, the measures dui are the natural volume measures on the fibres
of �−1(xi) and the terms Jac⊥

Fi
(ui) are the normal Jacobians of � at ui .

We then turn our attention to the unit normal vectors in the integrand (see Lemma 3.12).
Consider ui ∈ ∂Âi \ E such that �(ui) = xi . Since xi is the only place at which the topology
of {ui ≥ 0} can change by infinitesimal perturbations, Tui

∂Âi is the subspace of functions
v ∈ V such that v(xi) = 0. Since K is the reproducing kernel of V , K(xi, ·) is orthogonal to
Tui

∂Âi . Thus,

〈
ν
∂Â1

(u1), ν∂Â2
(u2)

〉 = ± K(x1, x2)√
K(x1, x1)K(x2, x2)

,

where the sign depends on whether a small positive perturbation of ui at xi makes ui enter or
exit Âi .

Finally, in Lemmas 3.11 and 3.14 we (i) compute the Jacobian of � at ui ∈ �−1(xi) and
(ii) reinterpret the integral over �(x1)

−1 × �−1(x2) as an expectation in ft = (f 1
t , f 2

t ) con-
ditioned on the fact that for i = 1,2, xi is a critical point of f i

t at level 0, containing the
indicators that the xi are pivotal for f i

t . This process involves some standard computations
of Jacobians of evaluation maps and a careful study of the relations between the different
metrics on the spaces V ×V and F1 ×F2. As a result, we get exactly the term which appears
in the definition of the pivotal intensity functions (see (11)), namely

〈ν
∂Â1

(u1), ν∂Â2
(u2)〉

Jac⊥
F1

(u1) Jac⊥
F2

(u2)
= ±K(x1, x2)

∏
i=1,2

∣∣det
(
HFi

xi
ui

)∣∣,
which completes the proof in the finite-dimensional case.

To extend Theorem 2.14 to the general case, it remains only to argue that f can always be
approximated by finite-dimensional fields and that we can successfully pass to the limit in the
covariance formula. This latter step is mainly technical, and requires us to show, among other
things, that the boundary of �−1(xi) = Pivxi

(Âi) is a null set for the field f conditioned on
the existence of critical points at x1 and x2.

3. Heart of the proof: The finite-dimensional case. In this section, we state and prove a
reinterpretation of our covariance formula in the case where the space V is finite-dimensional
(see Proposition 3.9). As discussed in the proof sketch above, we prove this proposition by
applying Piterbarg’s formula (Lemma 2.22) and then obtaining a rather explicit description
of boundaries of topological events (see Lemma 3.10).

Throughout this section, and indeed for the remainder of the paper, (B,F) denotes an
arbitrary stratified set of M .

3.1. Restating the formula in terms of the discriminant. In this subsection, we state the
finite-dimensional version of the formula (Proposition 3.9). For this, we introduce an alterna-
tive notion of ‘pivotal sets’ defined in terms of the ‘discriminant’.1

1In fact, in the cases that matter to us, this alternative notion of ‘pivotal sets’ coincides with that of Definition 2.9
up to null sets. See Remark 5.3.
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DEFINITION 3.1 (Critical points). Let u ∈ C1(M). A stratified critical point of u in B is
a point x ∈ B such that dxu|F = 0, where F ∈ F is the (unique) stratum containing x. When
there is no ambiguity, we will refer to stratified critical points as critical points for brevity.
The level of a critical point refers to its critical value.

Assume now that u ∈ C2(M). A stratified critical point x of u is said to be a nondegenerate
if (i) HF

x u is nondegenerate, and (ii) for each F ′ ∈ F such that F ′ > F , dxu does not vanish
on TxF

′|F (see Definition 2.1). Roughly speaking, (ii) means that dxu vanishes on TxF but
not on tangent spaces to higher dimensional strata. Note that we define nondegeneracy in
terms of the generalised tangent bundle TxF

′|F ; this is since all strata are open and disjoint,
so TxF

′ is not defined.

In the following definitions, V ⊂ C2(M) denotes an arbitrary linear subspace (i.e., not
necessarily finite-dimensional). To define the discriminant, it will be convenient to introduce
the following subsets of V .

NOTATION 3.2. For each x ∈ M , Vx ⊂ V denotes the linear subspace of u ∈ V such that
u(x) = 0. Moreover, V ′

x denotes the linear subspace of Vx such that also dxu|F = 0, where F

is the (unique) stratum containing x; in other words, V ′
x contains the functions that possess a

stratified critical point at x ∈ B at level 0. Similarly, for each F ∈ F , V ′
F = ⋃

x∈F V ′
x denotes

the functions that possess a stratified critical point on F at level 0.

DEFINITION 3.3 (Discriminant). The discriminant associated to B in V is the set
DB(V ) = ⋃

F∈F V ′
F , that is, the set of functions that possess a stratified critical point in B at

level 0. For each u ∈ V \ DB(V ), the B-discriminant class of u (in V ), written as [u](B,V )

is the connected component of V \ DB(V ) containing u. By Lemma C.1, the discriminant
is closed; since C1(M) is separable, the number of classes is therefore at most countable.
We will denote by σ̃discr(B,V ) the complete σ -algebra of all collections of B-discriminant
classes.

Before defining the alternate notion of ‘pivotal sets’ in terms of the discriminant, we in-
troduce further subsets of V ′

x and V ′
F defined above; as we verify later (see Proposition 4.1),

these subsets are of full measure.

NOTATION 3.4. For each x ∈ M , Ṽ ′
x ⊂ V ′

x denotes the set of u ∈ V such that x is a non-
degenerate stratified critical point at level 0 and there are no other stratified critical points in
B at this level. Similarly, for each F ∈ F , Ṽ ′

F = ⋃
x∈F Ṽ ′

x denotes the subset of V ′
F consisting

of functions that have a nondegenerate stratified critical point on stratum F at level 0, and no
other stratified critical points in B at this level.

DEFINITION 3.5 (‘Pivotal sets’ in terms of the discriminant). Let Ã be an element of
σ̃discr(B,V ). We denote by Â ⊂ V the set of functions whose B-discriminant class is in Ã,
and by σ̂discr(B,V ) the σ -algebra of all possible sets Â of this type. For Â ∈ σ̂discr(B,V ),
we define the ‘pivotal sets’ P̃ivx(Â) = ∂Â ∩ Ṽ ′

x and P̃ivF (Â) = ∂Â ∩ Ṽ ′
F ; note that these

are subsets of the discriminant DB(V ). For each σ ∈ {+,−}, let P̃iv
σ
x (Â) be the set of u ∈

P̃ivx(Â) such that there exists h ∈ V with h(x) > 0 such that, for all small enough values of
η > 0, u + σηh ∈ Â.

Finally, we introduce the key conditions on the space V .
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CONDITION 3.6. For each distinct x, y ∈ M , let V ′
x,y ⊂ V denotes the set of u ∈ V such

that (u(x), dxu,u(y), dyu) vanishes. Then the following map is surjective:

V ′
x,y → Sym2(T ∗

y M
)

u �→ Hyu.

CONDITION 3.7. For each distinct x, y ∈ M , the following map is surjective:

V →R× T ∗
x M ×R× T ∗

y M

u �→ (
u(x), dxu,u(y), dyu

)
.

REMARK 3.8. For every smooth M , there exists a finite-dimensional subspace V ⊂
C∞(M) satisfying Conditions 3.6 and 3.7. Indeed, given a smooth mapping G : M →R

N for
some N ∈ N, the coordinates of G generate an N -dimensional subspace of C∞(M) which
we denote by V G. For any distinct x, y ∈ M , the set of G such that V G does not satisfy
Conditions 3.6 and 3.7 at x and y has codimension arbitrarily large as N → ∞. Therefore,
by the multi-jet transversality theorem (see Theorem 4.13, Chapter II of [22]), applied to the
multi-jet (x, y) �→ (j1G(x), j2G(y)), the set of G such that V G satisfies Conditions 3.6 and
3.7 is a residual subset of C∞(M,RN) for sufficiently large N . In particular, such spaces
exist.

We are now ready to present our finite-dimensional restatement of the covariance formula.

PROPOSITION 3.9. Recall the notation introduced in Section 2.1. Let V be a finite-
dimensional subspace of C2(M) that satisfies Conditions 3.6 and 3.7, and assume that the
support of f is exactly V , so that f is a nondegenerate Gaussian vector in V . Let (B1,F1)

and (B2,F2) be stratified sets of M . For each i ∈ {1,2}, let Âi ∈ σ̂discr(Bi,V ) and let Ai be
the event {f ∈ Âi}. Then, for each t ∈ [0,1),

d

dt
P[ft ∈ Â1 × Â2]

= ∑
σ1,σ2∈{−,+}

∑
F1∈F1,F2∈F2

∫
F1×F2

K(x1, x2) × γt;x1,x2(0)σ1σ2

×Et;x1,x2

[
1P̃ivσ1

x1
(Â1)×P̃ivσ2

x2
(Â2)

(
f 1

t , f 2
t

)∣∣det
(
HF1

x1
f 1

t

)∣∣∣∣det
(
HF2

x2
f 2

t

)∣∣]dvF1(x1)dvF2(x2).

3.2. Proof of Proposition 3.9. Throughout this section, we assume that V , f and Âi

are as in the statement of Proposition 3.9, in particular V is finite-dimensional and satisfies
Conditions 3.6 and 3.7 (although all the notation that is introduced applies equally to arbitrary
linear subspaces V of C2(M)). We continue to use (B,F) to denote an arbitrary stratified
set of M , and we also define an arbitrary Â ∈ σ̂discr(B,V ). We rely on four technical lemmas
(namely Lemmas 3.10–3.12 and 3.14), whose proofs are deferred to Section 4.

The starting point of the proof is to apply Piterbarg’s formula to the events Â1 and Â2; for
this we need to study the regularity of their boundaries. The structure of ∂Âi is described by
the following lemma.

LEMMA 3.10. For each F ∈ F , the set P̃ivF(Â) (from Definition 3.5) is a smooth (im-
mersed) conical hypersurface of V . If x is the unique level-0 stratified critical point of
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some u ∈ P̃ivF(Â), then TuP̃ivF(Â) = Vx (see Notation 3.4). Moreover, there exists a sub-
set E ⊂ ∂Â of zero N − 1 dimensional Hausdorff measure such that

∂Â = E ∪ ⊔
F∈F

P̃ivF(Â).

By Lemma 3.10, the boundaries of the sets Â1 and Â2 are smooth up to null sets, which
implies that their N − 1 dimensional volume inside any finite ball is finite. Since they are
conical, the volume of the boundary inside a ball of radius R is of order RN−1, ensuring that
Piterbarg’s formula applies to these sets.

Now, consider a coordinate system orthonormal with respect to the scalar product 〈·, ·〉
induced by f . We typically denote u = (u1, . . . , uN) to be the set of coordinates of an element
of V . For each t ∈ [0,1), let γt : RN × R

N → R be the density of the Gaussian vector with
covariance (

IN tIN

tIN IN

)
and mean (μ,μ), where μ ∈ R

N is such that E[f ] = ∑
μiu

i . This density gives the distribu-
tion of ft as defined in (9). Piterbarg’s formula (Lemma 2.22) implies that

(23)
d

dt
P[ft ∈ Â1 × Â2] =

∫
∂Â1×∂Â2

〈
ν
Â1

(u1), νÂ2
(u2)

〉
γt (v1, v2) dHN−1(u1) dHN−1(u2),

where the integral is taken on the product of the smooth part of the boundaries of Â1 and Â2,
which are seen as subsets of RN through the coordinate system fixed above, and where ν

Â1

(resp., ν
Â2

) is the outward unit normal vector to Â1 (resp., Â2) defined on the smooth part of

its boundary. Applying the expression for the smooth part of the boundary of Â1 and Â2 in
Lemma 3.10, we have

(24)

d

dt
P[ft ∈ Â1 × Â2]

= ∑
F1∈F1,F2∈F2

∫
P̃ivF1 (Â1)×P̃ivF2 (Â2)

〈
ν
Â1

(u1), νÂ2
(u2)

〉
γt (u1, u2) dHN−1(u1)HN−1(u2).

The next step is to to apply the coarea formula to the integrals in (24). For each F ∈F , let
�F denote the function Ṽ ′

F → F which maps u ∈ Ṽ ′
F to the unique x ∈ F such that u has a

stratified critical point on F at level 0. We note that

P̃ivx(Â) = (�F )−1(x) ∩ P̃ivF(Â),

which means that we can parametrise Ṽ ′
F by pairs (x, u) where x ∈ F and u ∈ P̃ivx(Â). The

next lemma shows that �F is a submersion and gives an expression for its normal Jacobian.

LEMMA 3.11. For each F ∈ F , the map �F is a submersion. Moreover, for each u ∈
P̃ivF(Â), if x := �F (u) then the normal Jacobian of �F at u is

JF (u) := Jac⊥[�F ](u) = Jac⊥(Lx)

|det(HF
x u)| ,

where Lx : Vx → T ∗
x F denotes the linear operator u �→ dxu|F , and where the determinant is

taken in orthonormal coordinates of TxF .
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Using Lemma 3.11, we can apply the coarea formula to the integrals in (24), converting
them from integrals over part of the boundary of the events to integrals over the faces of the
stratified sets. As a result, each integral in (24) can be written as

(25)
∫
F1×F2

�(t;x1, x2)dvF1(x1)dvF2(x2),

where, for each x1 ∈ F1, x2 ∈ F2 and t ∈ [0,1),

(26) �(t;x1, x2) =
∫

P̃ivx1 (Â1)×P̃ivx2 (Â2)

〈ν
Â1

(u1), νÂ2
(u2)〉γt (u1, u2)

JF1(u1)JF2(u2)
dvV ′

x1
(u1)dvV ′

x2
(u2),

and where P̃ivx1(Â1) × P̃ivx2(Â2) is viewed as an open subset of V ′
x1

× V ′
x2

. Here, we have
identified the spaces V ′

xi
with their images in R

N in the coordinate system fixed previously.
The measures dvV ′

xi
are defined as the canonical N − dim(Fi) − 1 dimensional volume mea-

sures on the affine spaces V ′
xi

of RN .
We next interpret the normal vectors in (26) in more tractable terms (using the sets from

Definition 3.5).

LEMMA 3.12. The fibre P̃ivx(Â) is the disjoint union of the two subsets P̃iv
+
x (Â) and

P̃iv
−
x (Â). Moreover, for each σ ∈ {+,−} and each u ∈ P̃iv

σ
x (Â), the outward unit normal

vector of Â at u is

ν
Â
(u) = −σ

K(x, ·)
‖K(x, ·)‖ = −σ

K(x, ·)√
K(x,x)

.

REMARK 3.13. Since K is the reproducing kernel in V , the evaluation map Evx defined
by v �→ v(x) is equal to the map v �→ 〈v,K(x, ·)〉. Hence K(x, ·) is orthogonal to Vx , and
so ‖K(x, ·)‖ can also be interpreted as Jac⊥(Evx), the normal Jacobian of the evaluation
operator.

Since K is the reproducing kernel in V , it satisfies 〈K(x1, ·),K(x2, ·)〉 = K(x1, x2). Hence

(27)

〈
ν
Â1

(u1), νÂ2
(u2)

〉 = σ(u1, u2)
K(x1, x2)

‖K(x1, ·)‖‖K(x2, ·)‖
= σ(u1, u2)

K(x1, x2)√
K(x1, x1)K(x2, x2)

,

where σ(u1, u2) = + if either (u1, u2) ∈ P̃iv
+
x1

(Â1) × P̃iv
+
x2

(Â2) or (u1, u2) ∈ P̃iv
−
x1

(Â1) ×
P̃iv

−
x2

(Â2), and σ(u1, u2) = − otherwise. Thus, by Lemma 3.11 and (27),

(28) �(t;x1, x2) =
∫

P̃ivx1 (Â1)×P̃ivx2 (Â2)
ϒx1,x2(u1, u2)γt (u1, u2)dvV ′

x1
(u1)dvV ′

x2
(u1),

where

(29) ϒx1,x2(u1, u2) = σ(u1, u2)K(x1, x2)√
K(x1, x1)K(x2, x2)

× |det(HF1
x1 u1)||det(HF2

x2 u2)|
Jac⊥(Lx1) Jac⊥(Lx2)

,

and where Lxi
: Vx → T ∗

xi
Fi denotes the linear operator u �→ dxi

u|Fi
. The integral in the

definition of � can be interpreted as a conditional expectation.
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LEMMA 3.14. For each t ∈ [0,1) and each distinct x1 ∈ F1 and x2 ∈ F2,

�(t;x1, x2) = K(x1, x2)γt;x1,x2(0)

×Et;x1,x2

[
σ
(
f 1

t , f 2
t

)
1P̃ivx1 (Â1)×P̃ivx2 (Â2)

(
f 1

t , f 2
t

)∣∣det
(
HF1

x1
f 1

t

)∣∣∣∣det
(
HF2

x2
f 2

t

)∣∣].
Combining (24), (25) and Lemma 3.14 yields the formula in Proposition 3.9.

4. Proof of the auxiliary lemmas. In this subsection, we prove the auxiliary lemmas
from Section 3, namely Lemmas 3.10–3.12, and Lemma 3.14. While we make use of the
notation from Section 3, we do not rely on results from that section.

4.1. Differential topology in the space of functions: Proof of Lemmas 3.10–3.12. Through-
out this section, V denotes a linear subspace of C2(M); moreover, with the exception of the
statement of Proposition 4.1, we will assume that V is finite-dimensional and satisfies Con-
ditions 3.6 and 3.7. Again we fix an arbitrary stratified set (B,F) in M and Â ∈ σ̂discr(B,V ).

We begin with a couple of definitions; for the time being, we work independently of the
choice of Â. Let F ∈ F , and recall from Section 3 the subsets Ṽ ′

F ⊂ V ′
F ⊂ V and the map

�F (u) which sends u ∈ Ṽ ′
F to its unique nondegenerate stratified critical point at level 0. Let

IF be the set of pairs (u, x) ∈ V × F such that x is a stratified critical point of u at level 0
(so that in fact u ∈ V ′

F), and let ĨF be the set of pairs (u, x) ∈ IF such that x is the unique
nondegenerate stratified critical point of u at level 0 (so that u ∈ Ṽ ′

F ). By Condition 3.7, the
map (u, x) �→ (u(x), dxu) is a submersion on V × F , and so IF is a smooth submanifold of
V × F whose codimension is one plus the dimension of F . Moreover, for each (u, x) ∈ IF ,

(30) T(u,x)IF = {
(v, τ ) ∈ V × TxF : v(x) = 0, dxv|F + HF

x u(τ, ·) = 0
}
.

Let pr1
F : IF → V and pr2

F : IF → F be the projections onto the first and second coordinates.
Note that V ′

F = pr1
F (IF ) and Ṽ ′

F = pr1
F (ĨF ), and observe also that the map �F (u) completes

the following commutative diagram:

(31) ĨF

pr1
F

����
��

��
�� pr2

F

���
��

��
��

�

Ṽ ′
F

�F

�� F

Lemmas 3.10 and 3.11 both pertain to elements of this diagram: for Lemma 3.11 this is
explicitly so, whereas for Lemma 3.10 it is since, as we shall see, P̃ivF(Â) is an open subset
of Ṽ ′

F . In the proof of Lemmas 3.10 and 3.11, we use the following proposition (whose proof
is postponed until the very end of the subsection).

PROPOSITION 4.1. Let F ∈ F . Then the set ĨF is open in IF and the set Ṽ ′
F is open

in DB . Moreover, if V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7, then

HN−1(V ′
F \ Ṽ ′

F

) = 0.

REMARK 4.2. Although we only apply Proposition 4.1 to finite-dimensional V , we state
it in full generality so as to clarify which tools are used to prove each point.

REMARK 4.3. Roughly speaking, Proposition 4.1 ensures that if the field f is condi-
tioned to have a stratified critical point at level 0, then a.s. this critical point is nondegenerate,
and there are no other stratified critical points at level 0.
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PROOF OF LEMMA 3.10. To show that P̃ivF(Â) is a smooth (immersed) conical hyper-
surface of V , we first show that Ṽ ′

F is a smooth immersed (although maybe not embedded)
hypersurface of V . By Proposition 4.1, ĨF is a smooth submanifold of V × F with the same
tangent space as IF at each point. The mapping pr1

F : ĨF → V is one-to-one, and we claim
that it has constant rank. To see this, let us take (u, x) ∈ ĨF and check that

d(u,x) pr1
F (T(u,x)IF ) = Vx.

The inclusion ⊂ is clear by (30). For the reverse inclusion, let v ∈ Vx and define λ =
−dxv|F . Since (u, x) ∈ ĨF , HF

x u is nondegenerate, and so there exists τ ∈ TxF such that
HF

x u(τ, ·) = λ. Therefore, (v, τ ) ∈ T(u,x)IF and d(u,x) pr1
F (v, τ ) = v, which proves the re-

verse inclusion. To sum up, pr1
F is a mapping of corank one on ĨF , and so its image Ṽ ′

F is a
smooth immersed (although maybe not embedded) hypersurface of V with the tangent space

(32) TuṼ
′
F = d(u,x) pr1

F (T(u,x)IF ) = Vx.

Next, we show that P̃ivF(Â) is open in Ṽ ′
F . Indeed, by Proposition 4.1, Ṽ ′

F is open in
DB . Moreover, Ṽ ′

F is a smooth submanifold of V , which implies that, for each u ∈ Ṽ ′
F , there

exists U ⊂ V containing u such that (u,U ∩ Ṽ ′
F,U) � (0,RN−1 × {0},RN) and such that

U ∩DB = U ∩ Ṽ ′
F . Hence there exist exactly two B-discriminant classes C1, C2 that intersect

U and

(33) C1 ∩ Ṽ ′
F ∩ U = C2 ∩ Ṽ ′

F ∩ U = Ṽ ′
F ∩ U

as illustrated in Figure 3. In particular, if u ∈ P̃ivF(Â) then Ṽ ′
F ∩ U ⊂ P̃ivF(Â), and so

P̃ivF(Â) is an open subset of Ṽ ′
F .

To sum up, since P̃ivF(Â) is open in Ṽ ′
F and since Ṽ ′

F is a smooth (immersed) hypersurface

of V , P̃ivF(Â) is also a smooth (immersed) hypersurface of V . Noting also that Â is conical

FIG. 3. Outside of a null set, the boundary of Â is a hyper-surface Ṽ ′
F which is covered by the disjoint union over

x ∈ F of the Ṽ ′
x . Left (functional view): A small neighbourhood U of u in V is split by Ṽ ′

F into two parts, C1 and

C2, which are inside two different topological classes (one of them belongs to Â and one does not). Right (spatial
view): When u changes continuously within U ∩ Ṽ ′

F , the corresponding level-0 stratified critical point x changes

continuously within F . Central panels shows three functions in Ṽ ′
F and their critical points. Small perturbations

of these functions all belong to the same topological class, for perturbations positive near the critical point they
belong to C1 (right panels) and for negative perturbations to C2 (left panels).
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hence so is ∂Â, and observing moreover that, by (32), TuP̃ivF(Â) = Vx for every (u, x) ∈ ĨF ,
we complete the proof of the first two statements of the lemma.

For the third statement of the lemma, we define

E = ∂Â \
( ⊔

F∈F
Ṽ ′

F

)
.

By the definition of P̃ivF(Â) = ∂Â ∩ Ṽ ′
F , we have

(34) ∂Â = E ∪ ⊔
F∈F

P̃ivF(Â).

Moreover, we claim that HN−1(E) = 0. To see this, observe that ∂Â ⊂ DB := ⋃
F∈F V ′

F .
Indeed, since the discriminant DB is closed (see Lemma C.1), the B-discriminant class of any
u ∈ V \ DB forms a neighbourhood of u; in particular, u /∈ ∂Â. Hence we have an alternate
expression for E:

E = ⊔
F∈F

∂Â ∩ (
V ′

F \ Ṽ ′
F

)
.

Since by Proposition 4.1 the N − 1 dimensional Hausdorff measure of each term of the union
on the right-hand side vanishes, it follows that HN−1(E) = 0. �

PROOF OF LEMMA 3.11. We first show that �F is a submersion. Let (u, v) ∈ T Ṽ ′
F , so

that there exist x ∈ F and τ ∈ TxF such that ((u, x), (v, τ )) ∈ T ĨF . In particular, by (30) we
have dxv|F + HF

x u(τ, ·) = 0. Since HF
x u is nondegenerate, τ is uniquely determined by v.

More precisely, let Ȟ F
x u be the image of HF

x u by the canonical isomorphism (T ∗F)⊗2 �
Hom(T ∗F,T F). Then τ = −(Ȟ F

x u)−1(dxv|F ). Since the diagram (31) commutes, we have
proven that

du�F (v) = −(
ȞF

x u
)−1

(dxv).

By Condition 3.7, the map v �→ dxv is surjective when restricted to Vx . Hence �F is a sub-
mersion, which proves the first statement of the lemma.

Let us now show that the Jacobian of �F is as claimed in the lemma. Let g−1
F be the metric

induced on T ∗F by the metric gF on T F . Since (Ȟ F
x u)−1 is an isomorphism (T ∗

x F, g−1
F,x) →

(TxF,gF,x), the normal Jacobian of �F is the product of the Jacobian of (Ȟ F
x u)−1 and of

the normal Jacobian of the map Lx : (Vx, 〈·, ·〉) → (T ∗
x F, g−1

F,x), defined in the statement of
the lemma to be Lx(v) = dxv. Since the first Jacobian is the absolute value of the inverse of
det(HF

x u), i.e. the determinant of the matrix of the bilinear form HF
x u in a g−1

F,x -orthonormal
basis of TxF , the proof is complete. �

REMARK 4.4. Although for our purposes we do not need to compute Jac⊥(Lx) explicitly
(since it eventually cancels out in the main formula), for completeness we have

Jac⊥(Lx) =
√

det
(
LxL∗

x

) =
√

det(dx ⊗ dxKx |F,F ),

where Kx(y1, y2) = K(y1, y2) − K(x, y2)K(y1, x)/K(x, x) is the covariance kernel of f

conditioned on f (x) = 0 or, equivalently, of the orthogonal projection of f onto Vx ; this
follows from the same routine computation as in Remark 3.13. More generally, if L : V →R

k

is a linear operator, the orthogonal Jacobian of Lf is the square root of the determinant of the
covariance of Lf .
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Let us now complete the proof of Lemma 3.12; for this we rely on elements from the proof
of Lemma (3.10).

PROOF OF LEMMA 3.12. Let u ∈ P̃ivF (Â), x = �F (u), and take U , C1 and C2 as in
(33). By Lemma 3.10, we have TuP̃ivF (Â) = Vx . In particular, for any such v, 〈K(x, ·), v〉 =
v(x) = 0, so K(x, ·) is orthogonal to Tx P̃ivF (Â). Moreover, 〈K(x, ·),K(x, ·)〉 = K(x,x),
which must be positive (otherwise all functions in V vanish at x which contradicts Condition
3.7). Therefore, the outward unit normal vector ν

Â
(u) to A at u is plus or minus

(35) vx := K(x, ·)√
K(x,x)

.

The sign of this vector depends on which of the Ci belongs to Â. More precisely, a perturba-
tion u + ηh (with η � 1) enters Â whenever 〈vx,h〉 = h(x) has the right sign. In particular,
this shows that the sets P̃iv

+
x (Â) and P̃iv

−
x (Â) form a partition of P̃ivx(Â) and that, for each

σ ∈ {+,−} and each u ∈ P̃iv
σ
x (Â), ν

Â
(u) = −σ K(x,·)√

K(x,x)
. �

Finally, we prove Proposition 4.1. For this, we use the following standard fact which we
state without proof.

LEMMA 4.5. Let h : M → M ′ be a Lipschitz map and let S ⊂ M be a k-dimensional
submanifold of M . Then the Hausdorff dimension of h(S) is at most k. In particular,
Hd(h(S)) = 0 for every d > k.

PROOF OF PROPOSITION 4.1. Let us first give some intuition. The set DB \ Ṽ ′
F consists

of functions which, in addition to having a level-0 critical point on F , are degenerate in some
way. We express the five different cases of degeneracy as the vanishing of five explicit smooth
functionals of pairs (u, x) ∈ V ×F or triplets (u, x, y) ∈ V ×F ×F2 for some F2 ∈ F . From
this, we deduce both that ĨF is open in IF and that its complement has positive codimension.
We then conclude by projecting the vanishing loci onto V .

Recall that V ⊂ C2(M) is a linear space. Let d1 denote the dimension of F , and let
F2,F3 ∈ F be strata of dimensions d2 and d3, respectively. We consider the following five
subsets:

1. If F < F2, let I1
F,F2

be the set of pairs (u, x) ∈ IF such that dxu ∈ T ∗
F2

M|x .

2. Let I2
F be the set of pairs (u, x) ∈ IF such that Hxu is singular.

3. If F2 < F3, let I3
F,F2,F3

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are
distinct, y is also a stratified critical point of u and dyu ∈ T ∗

F3
M|y .

4. Let I4
F,F2

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are distinct, y is

also a stratified critical point of u and H
F2
y u is singular.

5. Let I5
F,F2

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are distinct and y

is also a stratified critical point of u with critical value 0.

CLAIM 4.6. Each of the five subsets defined above is a closed subset of V × F (resp.,
V ×F ×F2, as appropriate). Moreover, if we assume in addition that V has finite dimension
N ∈ N and satisfies Conditions 3.6 and 3.7, then each of these subsets is a finite union of
submanifolds of codimension at least N + d1 + 1 (resp., N + d1 + d2 + 1).

REMARK 4.7. The proof of Claim 4.6 is the only place in the paper where we use the
fact that F is a tame stratification of B , rather than merely a Whitney stratification.
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PROOF. We begin with a couple of definitions. For each F ∈ F , let T ∗
F M be the conormal

bundle to F , that is, for each x ∈ F , T ∗
F M|x is the set of ξ ∈ T ∗

x M such that ξ |TxF = 0. This
is a smooth vector bundle whose rank is exactly the codimension of F in M . In particular,
T ∗

F M has codimension d in T ∗M . Recall from the definition of a tame stratification that,
given F1,F2 ∈ F such that F1 < F2, the set of limit points of T F2 with basepoints on F1
defines a vector bundle over F1, denoted by T F2|F1 , which we call the generalised tangent
bundle of F2 over F1. This allows us to extend the definition of conormal bundle as follows:
the conormal bundle to F2 over F1, denoted T ∗

F2
M|F1 , is the set of (x, ξ) ∈ T ∗M|F1 such

that ξ vanishes on T ∗F2|x . This defines a smooth vector bundle over F1 whose rank is the
codimension of F2 in M . Thus, a point x ∈ F1 is a nondegenerate stratified critical point of
some u ∈ C2(M) if and only if it is a nondegenerate critical point of u|F1 and for each F2 ∈ F
such that F1 < F2, (x, dxu) /∈ T ∗

F2
M|F1 .

Now, assume first that V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7.
Since the proofs all follow the same structure, we cover in detail only the case of I1

F,F2
, and

then indicate what changes need to be made in the other cases.
Consider the map �1 : IF → T ∗M|F defined by (u, x) �→ dxu, and recall the expression

of the tangent spaces of IF given in (30). By Condition 3.7, the map �1 is a submersion.
Moreover, the set T ∗

F2
M|F is a smooth submanifold of T ∗M|F of codimension 1 + d2 that

is also a closed subset and, therefore, I1
F,F2

= �−1
1 (T ∗

F2
M|F ) is a smooth submanifold of IF

of codimension d1 as well as a closed subset of this space. We have thus covered the case of
I1

F,F2
.

For I2
F , we consider the map �2 : IF → Sym2(T ∗F) defined by (u, x) �→ HF

x u, which is
a submersion by Condition 3.6. Instead of T ∗

F2
M|F , we consider the zero set of the determi-

nant map det : Sym2(T ∗F) →R induced by some auxiliary metric. Its zero set WF is closed
and can be partitioned into the spaces of matrices of fixed rank in {0, . . . , d1 − 1} so it is a
finite union of smooth submanifolds of positive codimension. Since I2

F = �−1
2 (WF ), we are

done.
The cases I3

F,F2,F3
and I4

F,F2
are analogous to the first two cases. The maps �1 and �2

should be replaced by maps �3 and �4 defined on IF,F2 = {(u, x, y) ∈ V × F × F2 : u(x) =
0, dxu|F = 0, dyu|F2 = 0} which is a smooth submanifold of IF × F2 of codimension d2 and
whose tangent space at (u, x, y) is{
(v, τ1, τ2) ∈ V ×TxF ×TyF2 : v(x) = 0, dxv|F +Hxu(τ1, ·) = 0, dyv|F2 +Hyu(τ2, ·) = 0

}
.

They should be defined as follows: �3 : (u, x, y) �→ (u(x), dxu, dyu) and �4(u, x, y) �→
Hyu. As for I2

F , Condition 3.7 should be replaced by Condition 3.6 in the case of I4
F,F2

.

Finally, for I5
F,F2

we can consider the map �5 : IF,F2 → R that maps each triple (u, x, y)

to u(y). This map is a submersion by Condition 3.7. The conclusion follows accordingly.
This completes the proof of the finite-dimensional part of the claim. Consider now the

general case. Observe that we still have I1
F,F2

= �−1
1 (T ∗

F2
M|F ), which is the preimage of a

closed subset by a continuous map; in particular it is also closed. Since the same argument
works with the four other cases, we also deduce the infinite-dimensional case of the claim.

�

Let us now use Claim 4.6 to prove that ĨF is open in IF . Consider (uk, xk) ∈ (IF \ ĨF )N

that converges in IF ; we claim its limit (u, x) belongs to IF \ ĨF . Observe that IF \ ĨF is
the union of the following sets:

1. The union over the {F2 ∈ F : F < F2} of the sets I1
F,F2

.

(i) The set I2
F .

2. The union over {F2,F3 ∈ F : F2 < F3} of the images of the projections I3
F,F2,F3

→ IF .
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3. The union over F2 ∈ F of the images of the projections I4
F,F2

→ IF .

4. The union over F2 ∈ F of the images of the projections I5
F,F2

→ IF .

Since the above union is over a finite set, one of them contains an infinite number of terms of
the sequence (uk, xk)k∈N. We can and will thus assume, up to extraction, that the sequence
(uk, xk) belongs to one of the sets just described. We now describe what happens in each
case:

1. By Claim 4.6, I1
F,F2

is closed in IF , so (u, x) ∈ I1
F,F2

⊂ IF \ ĨF .
2. We reason likewise.
3. By construction, for each k ∈ N, (uk, xk) is the projection of a triplet in I3

F,F2,F3
. By

compactness of B , we can extract a subsequence for which the third coordinate of the triplet
converges in F2. Since the subsequence must have the same limit in the projection as the
full sequence, we just denote it by (uk, xk, yk)k∈N ∈ (I3

F,F2,F3
)N so that the third coordinate

converges to some y ∈ F2. If y ∈ F2, then (u, x, y) ∈ IF × F2. Then by Claim 4.6, I3
F,F2,F3

is closed in IF × F2 so (u, x, y) ∈ I3
F2,F3

, which implies that (u, x) belongs to its projection
onto IF . If, on the other hand, y /∈ F2, (by Definition 2.1), y must belong to some F4 such
that F4 ∈ F such that F4 < F2. Then dyu ∈ T ∗

F2
M|y (actually we even have dyu ∈ T ∗

F3
M|y).

If y 
= x, we must then have (u, x, y) ∈ I3
F,F4,F2

so (u, x) belongs to its projection onto IF .

Otherwise, if y = x, then (u, x) = (u, y) ∈ I1
F,F4

.
4. We reason as in the third case. As before, up to extraction, we can find (yk)k∈N ∈ F2

converging to some y ∈ F2 such that for each k ∈N, (uk, xk, yk) ∈ I4
F,F2

. Again, as before, if

y belongs to some face F3 < F2, we have dyu ∈ T ∗
F2

M|y so (u, x, y) ∈ I4
F,F3

. Otherwise, if

y ∈ F2, using Claim 4.6 we deduce that (u, x, y) ∈ I4
F,F2

.
5. We reason as in the fourth case.

We have therefore proven that IF \ ĨF is closed in IF .
Next, we show that Ṽ ′

F is open in DB . By construction, DB is the union of the projections

onto the first coordinates of the sets IF1 for F1 
= F and of the sets I1
F , I2

F , I3
F,F2,F3

, I4
F,F2

and I5
F,F2

defined above, taken over all the adequate F2 and F3. As before, we take (uk)k∈N ∈
(DB \ Ṽ ′

F)N converging to some u ∈ V ′
F and, up to extraction, there exist two strata F1 ≤ F2

and a sequence (xk)k∈N ∈ FN
2 and x ∈ F1 such that for each k ∈ N, (uk, xk) ∈ IF \ ĨF2 and

limk→∞(uk, xk) = (u, x). By Lemma C.1, x is a stratified critical point of u. Let us prove
that u ∈ DB \ Ṽ ′

F . From now on, the reasoning is analogous to that used for IF \ ĨF .

1. If F1 
= F , then (u, x) ∈ IF1 so u /∈ Ṽ ′
F .

2. If F2 > F1 = F , then, as before dxu ∈ T ∗|F2M|x and so (u, x) ∈ I1
F,F2

and u /∈ Ṽ ′
F .

3. If F2 = F1 = F , then for each k ∈ N, (uk, xk) belongs to IF \ ĨF which is closed in IF

so that (u, x) /∈ ĨF and so u /∈ Ṽ ′
F .

This proves that DB \ Ṽ ′
F is closed in DB as announced.

To finish, assume that V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7.
By (the finite-dimensional case of) Claim 4.6, V ′

F \ Ṽ ′
F is a finite union of projections of

submanifolds of V × F and V × F × F2 for F2 ∈ F of codimensions at least dim(F ) + 2
and dim(F )+dim(F2)+2, respectively. By Lemma 4.5, we must therefore have HN−1(V ′

F \
Ṽ ′

F) = 0. �

4.2. Conditional expectation computation: Proof of Lemma 3.14. In this section, we
prove Lemma 3.14, that is, we rewrite the function � defined by (26) (see also (28)) in terms
of a conditional expectation.



2872 D. BELIAEV, S. MUIRHEAD AND A. RIVERA

Fix t ∈ [0,1) and distinct x1 ∈ F1 and x2 ∈ F2. In the first part of the proof, the exact
expression of ϒx1,x2 , defined by (29), will not play any role except through the fact that
it is bounded by a polynomial in u1, u2. Let Px1,x2 be the orthogonal projector in V × V

(equipped with the product metric) onto the subspace V ′
x1

× V ′
x2

, and let P ⊥
x1,x2

= I − Px1,x2

be the complementary orthogonal operator onto the orthogonal complement, which we de-
note by (V ′

x1
× V ′

x2
)⊥. We write (u1, u2) = w + w⊥ where w = Px1,x2(u1, u2) and w⊥ =

P ⊥
x1,x2

(u1, u2). Let us define

jx1,x2 : V × V →R× T ∗
x1

F1 ×R× T ∗
x2

F2

by

jx1,x2(u1, u2) = (
u1(x1), dx1u1|F1, u2(x2), dx2u2|F2

)
.

Note that the space V ′
x1

× V ′
x2

is exactly the kernel of jx1,x2 , hence jx1,x2 is a linear isomor-
phism from (V ′

x1
× V ′

x2
)⊥ onto R × T ∗

x1
F1 × R × T ∗

x2
F2. With this notation, we can rewrite

the integral in (28) as

(36) �(t;x1, x2) =
∫
V ′

x1
×V ′

x2

1P̃ivx1 (Â1)×P̃ivx2 (Â2)
(w)ϒx1,x2(w)γt (w)dw,

where dw = dvV ′
x1

dvV ′
x2

. In the same spirit, we write gt = Px1,x2ft and g⊥
t = P ⊥

x1,x2
ft so that

ft = gt + g⊥
t . The density of ft , conditioned on g⊥

t = 0, at w = (u1, u2) ∈ V ′
x1

×V ′
x2

is given
by

γft |g⊥
t =0(w) = γt (u1, u2)

γg⊥
t
(0)

,

where γg⊥
t
(0) is the density of g⊥

t evaluated at 0. Notice that for ft , conditioning on g⊥
t = 0

is the same as conditioning on (f 1
t (x1), dx1f

1
t |F1, f

2
t (x2), dx2f

2
t |F2) = 0. Since by definition

(u1, u2) = w on V ′
x1

× V ′
x2

, (36) becomes

�(t;x1, x2) = γg⊥
t
(0)

∫
V ′

x1
×V ′

x2

1P̃ivx1 (Â1)×P̃ivx2 (Â2)
(w)ϒx1,x2(w)γft |g⊥

t =0(w)dw

= γg⊥
t
(0)Et;x1,x2

[
1P̃ivx1 (Â1)×P̃ivx2 (Â2)

(ft )ϒx1,x2

(
f 1

t , f 2
t

)]
.

(37)

In the above expression, the density γg⊥
t
(0) is with respect to the orthogonal coordinates

in (V ′
x1

× V ′
x2

)⊥, and we need to express it in terms of K . Let Q̃t;x1,x2 be the covariance
matrix of g⊥

t in some orthonormal system of coordinates in (V ′
x1

×V ′
x2

)⊥. Let Qt;x1,x2 be the
covariance of (

f 1
t (x1), dx1f

1
t

∣∣
F1

, f 2
t (x2), dx2f

2
t

∣∣
F2

) = jx1,x2(ft ) = jx1,x2(gt )

in any orthonormal coordinate system of R× T ∗
x1

F1 ×R× T ∗
x2

F2 equipped with the product
metric. Treating jx1,x2 as an isomorphism from (V ′

x1
× V ′

x2
)⊥ onto R × T ∗

x1
F1 × R × T ∗

x2
F2

we see that the covariances Q̃t;x1,x2 and Qt;x1,x2 are linked by the following relation:

Q̃t;x1,x2 = (
j∗
x1,x2

)−1
Qt;x1,x2j

−1
x1,x2

.

In particular, det(Q̃t;x1,x2) = det(Qt;x1,x2)/det(jx1,x2j
∗
x1,x2

)−1. Recalling that γt;x1,x2(0) is
the density of jx1,x2(ft ) at 0, we have

γg⊥
t
(0) = γt;x1,x2(0)

√
det

(
jx1,x2j

∗
x1,x2

)
.
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It remains to compute
√

det(jx1,x2j
∗
x1,x2

). Notice first that jx1,x2 factors as the direct product of

the two linear maps jxi
: V ′⊥

xi
→R× T ∗

xi
Fi for i ∈ {1,2} defined as jxi

(u) = (u(xi), dxi
u|Fi

),

(38) det
(
jx1,x2j

∗
x1,x2

) = det
(
jx1j

∗
x1

)
det

(
jx2j

∗
x2

)
.

To compute det(jxi
j∗
xi

) note that, since jxi
is 0 on V ′

xi
, this determinant does not depend on

whether jxi
acts on V ′⊥

xi
or the entire V ; we treat it as an operator on V . Next, we write

V as orthogonal sum of Vxi
which is the space of functions such that v(xi) = 0 and its

orthogonal complement which is spanned by K(xi, ·) (see the discussion preceding (35)).
Let us choose orthonormal coordinates in V that are adopted to this decomposition, that
is, K(xi, ·)/‖K(xi, ·)‖ must be one of the basis vectors. In this, coordinates jxi

factors as
u �→ u(xi) acting on the span of K(xi, ·) (this is the operator Evxi

from Remark 3.13) and
u �→ dxi

u |Fi
on Vx (which is the operator Lxi

). The factorisation implies that√
det

(
jxi

j∗
xi

) =
√

det
(
Evxi

Ev∗
xi

)
det

(
Lxi

L∗
xi

) = Jac⊥(Evxi
) Jac⊥(Lxi

).

Plugging this computation into (37), we see that � is equal to

γt (x1, x2)
√

K(x1, x1)K(x2, x2) Jac⊥(Lx1) Jac⊥(Lx2)

×Et;x1,x2

[
1P̃ivx1 (Â1)×P̃ivx2 (Â2)

(w)ϒx1,x2

(
f 1

t , f 2
t

)]
.

Recalling the definition of ϒx1,x2(u1, u2), and in particular pulling the terms
√

K(xi, xi) and
Jac⊥(Lxi

) from this definition out of the expectation (since they do not depend on ui) so that
they cancel with those already present, we deduce the result.

REMARK 4.8. The cancellations in the above derivation are not so mysterious, since the
relevant terms are Jacobians of evaluations of f and its differential and they appear, first,
when we switch from space coordinates to functional coordinates, and then once again when
we move back.

5. Proof of the main theorem: From the finite to the infinite-dimensional case. In
this section, we complete the proof of the covariance formula in Theorem 2.14. The basic
idea is to (i) reinterpret topological events in terms of the discriminant, (ii) approximate the
field f by a sequence of fields fk taking values in a finite-dimensional spaces Vk , and then
(iii) pass to the limit in the formula of Proposition 3.9.

In Section 5.1, we show that the boundary of pivotal events is well behaved, which will
allow us to take limits of the expectations in the right-hand side of Proposition 3.9. In Sec-
tion 5.2, we verify that topological events are encoded by the discriminant. Next, in Sec-
tion 5.3 we construct the finite-dimensional approximation and state an abstract continuity
lemma for expectations that we use in the proof. Finally, in Section 5.4 we assemble these
elements into a proof of Theorem 2.14.

At the end of the section, we also verify that Corollary 1.1 is indeed a special case of
Theorem 2.14, as claimed in Section 1.

5.1. On the boundary of pivotal events. In this section, we compare pivotal events in dif-
ferent subspaces of C2(M), link the two distinct notions of pivotal events we have introduced,
and study the boundary of pivotal events.

Recall that (B,F) denotes an arbitrary stratified set of M . Fix a linear subspace V ⊂
C2(M), not necessarily finite-dimensional. Also fix Ã ∈ σ̃discr(B,C2(M)), and let Â ∈
σ̂discr(B,C2(M)) be the set of u ∈ C2(M) whose discriminant class (in C2(M)) belongs
to Ã. Observe that the set ÂV = Â ∩ V belongs to σ̂discr(B,V ), that is, it is encoded by the
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V -discriminant. Indeed, it is the set of functions u ∈ V whose discriminant class in C2(M)

belongs to Ã. Recall also the definition, for x ∈ B and Â ∈ σ̂discr(B,V ), of the sets P̃ivx(Â)

and P̃iv
σ
x (Â) from Definition 3.1.

The main result of this section is the following.

LEMMA 5.1 (On pivotal events). Suppose that V contains the constant functions on M .
Then

1. P̃ivx(ÂV ) = P̃ivx(Â) ∩ V and, for each σ ∈ {+,−}, P̃iv
σ
x (ÂV ) = P̃iv

σ
x (Â) ∩ V .

Moreover, let f be a Gaussian field on M satisfying Condition 2.7. Then, conditionally on x

being a stratified critical point of f with f (x) = 0, a.s.

(2) f ∈ P̃ivx(Â) if and only if (i) f ∈ Pivx(Â) and (ii) HF
x f is a nondegenerate bilinear

form. Moreover, for each σ ∈ {+,−}, the same is true if we replace P̃ivx(Â) by P̃iv
σ
x (Â) and

Pivx(Â) by Pivσ
x (Â).

(3) If x is a nondegenerate critical point then f /∈ ∂P̃ivx(Â), where P̃ivx(Â) is seen as a
subset of the space V ′

x .

REMARK 5.2. Note that we only apply Lemma 5.1 to approximations of the field f

(as opposed to f itself), so it is irrelevant that the constant functions will not belong to the
Cameron–Martin space of f in general.

REMARK 5.3. If we had been willing to impose a nondegeneracy condition on the Hes-
sian of f , we could have concluded from Lemma 5.1 that, conditionally on x being a level-0
stratified critical point of f , a.s. f ∈ P̃ivx(Â) if and only if f ∈ Pivx(Â), and this is the sense
in which we think of P̃ivx(Â) and Pivx(Â) as equal up to null sets. Since nondegeneracy of
the Hessian is unnecessary for the result to hold, we do not do this.

In order to prove Lemma 5.1, we use the following result.

LEMMA 5.4. Let u ∈ C2(M) be such that u has a unique nondegenerate stratified criti-
cal point x at level 0 (c.f. the set

⋃
F∈F Ṽ ′

F). Then:

1. For ε > 0 small enough, neither u + ε nor u − ε have a stratified critical point at
level 0. Moreover, let C1 = C1(u) and C2 = C2(u) be the connected components in C2(M) \
DB(C2(M)) of u+ ε and u− ε, respectively. Then C1 ∪C2 (resp., C1, C2) is a neighbourhood
of u in C2(M) (resp., in the set of functions u′ ∈ C2(M) such that u(x) ≥ 0, in the set of
functions u′ ∈ C2(M) such that u(x) ≤ 0).

2. Let U ⊂ M be a neighbourhood of x. Then there is a neighbourhood U of u in the
discriminant DB(C2(M)) such that, for each u′ ∈ U , u′ has exactly one stratified critical
point at level 0, which is nondegenerate and belongs to U . Moreover, we have C1(u

′) = C1(u)

and C2(u
′) = C2(u) (defined as in (1)).

REMARK 5.5. If we were working in a finite-dimensional space, we could think of u as
belonging to the smooth part of the discriminant. Since this discriminant is a hyper-surface,
this would mean that in a small neighbourhood of u the discriminant would be diffeomorphic
to a hyperplane, separating the ambient space into two connected components C1 and C2, and
moreover small perturbations of u would yield the same C1 and C2. Lemma 5.4 encodes (part
of) this intuition.
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REMARK 5.6. The first point of Lemma 5.4 implies that the definition of P̃iv
σ
x (Â) does

not change if one takes, in the definition of this set, h ∈ C2(M) instead of merely h ∈ V .
Similarly, the definition does not change if one requires h to be a positive constant (which
assists in showing a function does not belong to P̃iv

σ
x (Â)).

PROOF OF LEMMA 5.4. We start by showing that the property that u has a stratified
critical point near x is stable under C2 perturbations; this involves isolating x as a critical
point in a uniform way. Fix a neighbourhood U of x. Since x is a nondegenerate critical
point, it is isolated in the set of critical points of u (see Lemma C.2), which is compact by
Lemma C.1. Thus, the critical value u(x) is isolated in the set of critical values of u. In
particular, for each ε > 0, both u + ε and u − ε belong to C2(M) \ DB(C2(M)), which
justifies the existence of C1 and C2. Let us show that C1 ∪ C2 is a neighbourhood of u in
C2(M). Let F ∈ F be the stratum containing x. For each r > 0, let Br be the Riemmanian
ball of radius r > 0 in F centred at x. Since x is a nondegenerate critical point at x, the
section du, which is C1, vanishes transversally at x on the stratum F and stays bounded
from below on the higher strata near x. Therefore, there exist r = r(u) > 0 and η = η(u) > 0
such that for each w ∈ C2(M) such that ‖w‖C2(B) ≤ η, the following holds:

• the ball Br is included in U ;
• the section d(u + w)|F vanishes exactly once on Br ;
• for any F ′ 
= F , d(u + w)|F ′ does not vanish on Br ;
• u + w has no stratified critical points with critical value in [−10η,10η] outside of Br ;
• if moreover ‖w‖C2(B) ≤ η/8, then |u + w| ≤ η/4 on Br .

In particular, for each s ∈ (0, η], u± s does not belong to the discriminant. Let w ∈ C2(M) be
such that ‖w‖C2(B) ≤ η/8. Let us show that u+w ∈ C1 ∪C2, and that if u+w ∈DB(C2(M))

then u + w has a unique stratified critical point at level 0 which belongs to Br . To this end,
we will first consider a path (vt )t from u to u + w where w is a small perturbation. Along
this path, we will find further perturbations vt,s = vt + s of vt , for suitable choices of s, that
do not belong to the discriminant and that belong to the two connected components C1 and
C2.

More precisely, for each t ∈ [0,1] and each s ∈ [−η/2, η/2], let vt,s = u + tw + s. Then,
for each t ∈ [0,1] and each s ∈ [−η/2, η/2], ‖vt,s −u‖C2(B) ≤ η and ‖vt,0 −u‖C2(M) ≤ η/8.
In particular, vt,s has a unique stratified critical point in Br , which we call yt (since it
does not depend on s) and no other stratified critical points with critical value in [−9η,9η].
Moreover, supBr

|vt,0| ≤ η/4 so that minBr vt,η/2 ≥ η/4 and maxBr vt,−η/2 ≤ −η/4. In par-
ticular, for each t ∈ [0,1], vt,±η/2 /∈ DB(C2(M)). Thus, v1,±η/2 ∈ C1 ∪ C2. Now, for each
s ∈ [−η/2, η/2], v1,s = u + w + s. In particular, if u(y1) + w(y1) ≥ 0, v1,s does not be-
long to the discriminant for s ∈ (0, η/2] and converges to u + w as s → 0. If on the other
hand, u(y1) + w(y1) ≤ 0, the same approximation holds by taking s ∈ [−η/2,0) and s → 0.
In any case, by construction of this approximation v1,s ∈ C1 ∪ C2 as long as s 
= 0 so that
u + w ∈ C1 ∪ C2 = C1 ∪ C2. This shows that C1 ∪ C2 is a neighbourhood of u in C2(M) and
that for each v ∈ (C1 ∪ C2) ∩ DB(C2(M)), v has a unique stratified critical point at level 0,
which is in Br ⊂ U .

Next, notice that u + w is in the same connected component of the complement of the
discriminant as u+ s for s � 1 if w(x) < 0, and is in the same connected component as u− s

for s � 1 if w(x) > 0, which proves that C1 (resp., C2) is a neighbourhood of u in the set of
functions taking nonnegative (resp., nonpositive) values at x. Finally, if u(yt ) + tw(yt ) = 0,
by construction u + w + ε (resp., u + w − ε) is in the same connected component as u + ε

(resp., u − w) for ε > 0 small enough. In other words, Ci (u) = Ci (u + w) for i ∈ {1,2}. This
completes the proof of the lemma. �
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PROOF OF LEMMA 5.1. We prove the three statements in the lemma sequentially:
(1). In order to prove that P̃ivx(ÂV ) = P̃ivx(Â) ∩ V and P̃iv

σ
x (ÂV ) = P̃iv

σ
x (Â) ∩ V , it

is enough that ∂ÂV = ∂Â ∩ V , where ∂ÂV is the boundary of ÂV in V . Clearly, ∂ÂV ⊂
∂Â ∩ V . On the other hand, let u ∈ ∂Â ∩ V . Then, by Lemma 5.4, there exist C1 and C2 two
connected components of C2(M)\DB(C2(M)) such that for ε > 0 small enough, u+ε ∈ C1,
u − ε ∈ C2 and C1 ∪ C2 is a neighbourhood of u in C2(M). Let us assume that C1 ⊂ Â

and C2 ⊂ C2(M) \ Â since u ∈ ∂Â, and the case C2 ⊂ Â and C1 ⊂ C2(M) \ Â follows by
exchanging Â and its complement. Since u ∈ V and the constant functions belong to V ,

u ± ε ∈ V . In particular, letting ε → 0, we deduce that u ∈ Â ∩ V ∩ V \ Â = ∂ÂV , from
which it follows that ∂ÂV = ∂Â ∩ V as announced.

(2). Let fx denote the field f conditioned on f (x) = 0 and on x being a stratified critical
point of f . Then fx is a.s. C2. Assume now that fx ∈ Piv+

x (Â). Then there exists a (random)

h ∈ C2(M) satisfying h ≥ 0 such that, for small enough values of δ > 0, fx + δh ∈ Â and
fx − δh /∈ Â. In particular, fx ∈ ∂Â. Moreover, since f satisfies Condition 2.7, by the regres-
sion formula (fx(y), dyfx) is nondegenerate for y 
= x, and so by Bulinskaya’s lemma ([3],
Proposition 1.20) a.s. fx has no other stratified critical points at level 0. If we also assume
that HF

x fx is nondegenerate, then by Remark 5.6 fx ∈ P̃iv
+
x (Â). Thus, we have shown that if

fx ∈ Piv+
x (Â) and HF

x fx is nondegenerate then a.s. fx ∈ P̃iv
+
x (Â).

Conversely, assume that fx ∈ P̃iv
+
x (Â) and let U ⊂ M be a neighbourhood of x in M . Then

HF
x fx is non-degenerate. Since f satisfies Condition 2.7, as before by Bulinskaya’s lemma

a.s. fx has no other critical points at level 0. We may thus apply Lemma 5.4 to fx , which
implies that there exists a neighbourhood U of fx in C2(M), two connected components C1
and C2 of C2(M) \ DB(C2(M)), and a geodesic ball Br ⊂ U of radius r > 0 centred at x,
such that the following holds:

• For all small enough δ > 0, fx + δ ∈ C1 and fx − δ ∈ C2.
• The union C1 ∪ C2 covers U .
• Each v ∈ U ∩ DB(C2(M)) has a unique stratified critical point in Br and no stratified

critical points at level 0 outside of Br .

Since fx ∈ P̃iv
+
x (Â), we have C1 ⊂ Â and C2 ⊂ Âc. Let h ∈ C2

c (W) be equal to 1 on Br .
Then, for all small enough δ > 0, fx ± h ∈ U , so fx has no stratified critical points at level
0 outside of Br . Inside Br it coincides with fx up to a constant ±δ. In particular, if δ 
= 0,
fx ±h ∈ C1 ∪C2. Moreover, by considering the path (fx ±(δh+s(1−h)))s∈[0,δ], we conclude
that fx + h ∈ C1 ⊂ Â and fx − h ∈ C2 ⊂ Âc. But h is supported arbitrarily close to x. Thus,
fx ∈ Piv+

x (Â). Reasoning symmetrically, we get the same statement with the + exponent

replaced by −, and combining the two results we get the same property for Pivσ
x (Â) replaced

by Pivx(Â).
(3). Assume that x is a nondegenerate critical point of fx . Then Lemma 5.4 applies so that

there are two discriminant classes C1 and C2 such that C1 ∪ C2 is a neighbourhood of fx in
C2(M) and there is a neighbourhood W of fx in the discriminant such that for each v ∈ W ,
and each small enough ε > 0, v + ε ∈ C1 and v − ε ∈ C2. If fx ∈ P̃ivx(Â) then exactly one of
the two classes belongs to Â, and hence the elements of W will all belong to the boundary
of Â. Therefore, fx belongs to the interior of P̃ivx(Â) in the space V ′

x of functions in C2(M)

with a stratified critical point at x at level 0. Similarly, if fx /∈ P̃ivx(Â) then either both C1

and C2 are subsets of Â or neither of them are. So then, as before, the elements of W cannot
belong to the boundary of Â so that fx is in the interior of V ′

x \ P̃ivx(Â). In both cases,

fx /∈ ∂P̃ivx(Â), which proves the last part of the proposition. �
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5.2. The topological class is encoded by the discriminant. In this subsection, we verify
that topological events are encoded by the discriminant, making explicit the link between the
events that appear in Theorem 2.14 and the events that appear in Proposition 3.9; in passing,
we also prove the measurability of the stratified isotopy classes.

In this section, (B,F) again denotes an arbitrary stratified set of M ; nevertheless, here we
prefer to view F as a general Whitney stratification (see Remark 2.2) since we make use of
the standard theory of Whitney stratifications. Recall the definition of B-discriminant classes
from Definition 3.3, as well as the definition of the stratified isotopy class from Definition 2.8.

LEMMA 5.7 (Topological class is encoded by the discriminant). Suppose that u, v ∈
C2(M) have the same B-discriminant class in C2(M). Then their excursion sets {u > 0} and
{v > 0} have the same stratified isotopy class, that is, [{u > 0}]B = [{v > 0}]B .

Since the discriminant classes are C1-open (see Lemma C.1), there are at most countably
many of them. This immediately implies the following.

COROLLARY 5.8. There are at most countably many stratified isotopy classes of subsets
of B . Moreover, the map [D]B from the probability space  into the set of stratified isotopy
classes is measurable.

Before proving Lemma 5.7, let us recall some standard facts about Whitney stratifications;
they can all be easily checked from the definitions of the objects they involve:

• If I ⊂R is an open interval, then the collection FI = (F × I )F∈F is a Whitney stratifi-
cation of B × I .

• For each open subset, W ⊂ M , FW = (F ∩W)F∈F is a Whitney stratification of B ∩W .
• Consider f : M → N a smooth map between two Riemannian manifolds. Assume that

f |B is proper and that for each F ∈ F , f |F : F → N is a submersion. Then, for each y ∈ N ,
the preimage f −1(y)∩B is naturally equipped with a Whitney stratification Fy whose strata
are the intersections F ∩ f −1(y) where F ∈ F (see Definition 1.3.1 of Part I of [23]).

The proof of Lemma 5.7 is a standard application of Thom’s first isotopy lemma (see
(8.1) of [34]) and the isotopy extension theorem (see [18]). In fact, the only place we use C2

regularity in this proof is when we apply Thom’s first isotopy lemma.

PROOF OF LEMMA 5.7. Let u ∈ C2(M)\DB(C2(M)), that is, u has no stratified critical
points in B at level 0. Recall that, by Lemma C.1 and since B is compact, the set of critical
points of u is compact. In particular, this set is at positive distance from the zero set of
u and there exists a bounded open neighbourhood W ⊂ M of u−1(0) in M and a convex
neighbourhood U of u in C1(M) such that for each v ∈ U and each face F ∈ F , dv|F 
= 0 in
W and v 
= 0 on B \W . We will prove that for each v ∈ U ∩C2(M), [{v > 0}]B = [{u > 0}]B .
To do so, notice that since U is open and convex, there exists I an open interval containing
[0,1] such that for each t ∈ I , ut = tv + (1 − t)u ∈ U ∩ C2(M). The family FW,I = ((F ∩
W) × I )F∈F defines a Whitney stratification of (B ∩ W) × I in W × I . Moreover, since for
each t ∈ I , ut has no critical points on any face of F inside W , the map

(W ∩ B) × I →R× I, U : (x, t) �→ (
ut(x), t

)
is a submersion when restricted to any face of FW,I . It is proper since B is compact and
idI : I → I is proper. In particular, by Thom’s first isotopy lemma, since U is C2 there exists
a stratified homeomorphism h : W × I → (W × I ) ∩ U−1(0) × R × I (where U−1(0) ∩ B

is equipped with the preimage Whitney stratification that exists since F is transverse to {0}



2878 D. BELIAEV, S. MUIRHEAD AND A. RIVERA

in R × I ) such that U ◦ h−1 is the projection on the last two factors. Note that U−1(0) =
{(x, t) ∈ M × I : (ut (x), t) = (0,0)} = u−1

0 (0) × {0}. In particular, the map(
B ∩ u−1

0 (0)
) × I → B × I, (z, t) �→ (

ft (x), t
) := h−1((x,0),0, t

)
defines an isotopy of u−1

0 (0) in B such that for each t ∈ I , ft (u
−1
0 (0) ∩ B) =

u−1
t (0)∩B . Since it is constructed from h it extends to an isotopy of a tubular neighbourhood

of u−1
0 (0) in B that preserves strata of F . By Corollary 1.4 of [18] (and its extension provided

in Section 7 of the same article), there exists a continuous isotopy B × I → B × I (x, t) →
(�t(x), t) such that for each t ∈ I , �t is a stratified homeomorphism of B and �t ◦ f0 = ft .
In particular, �t(u

−1
0 (0) ∩ B) = u−1

t (0) ∩ B for each t ∈ I . Since �0 = id , and �t is contin-
uous in t , we also have �1({u0 > 0} ∩ B) = {u1 > 0} ∩ B and so [{u > 0}]B = [{v > 0}]B .
Given that this is true for all v ∈ U ∩ C2(M), we have shown that equivalence classes for the
equivalence relation generated by the map u �→ [{u > 0}]B are C2(M)-open. In particular,
since DB(C1(M)) is C1-closed (by Lemma C.1 or just C2-closed by the present argument)
each topological class in C2(M) \DB(C2(M)) must be a union of connected components of
C2(M) \DB(C2(M)) and the proof is over. �

5.3. Approximation results. To deduce Theorem 2.14 from Proposition 3.9, we approxi-
mate the field f by a sequence of fields (fk)k∈N taking values in finite-dimensional subspaces
(Vk)k∈N of C2(M). Then we integrate the result of Proposition 3.9 and pass to the limit.

In this subsection, we first show the existence of an approximating sequence in a general
setting (see Lemma 5.9), and then state the abstract continuity lemma for expectations (see
Lemma 5.10) which we use to show the convergence of the terms in Proposition 3.9.

LEMMA 5.9 (Existence of finite-dimensional approximations). Fix l ∈ N and let f be an
a.s. Cl Gaussian field on a smooth manifold M of dimension d . Let V ⊂ Cl(M) be a linear
subspace of Cl(M) such that f belongs a.s. to V . Then the following holds:

1. There exists a sequence (Vk)k∈N of finite-dimensional linear subspaces of V and a
sequence of Gaussian fields (fk)k∈N, all defined in the same probability space as f , that
converges in probability to f in the topology of uniform Cl convergence on compact subsets
of M , and such that for each k ∈ N, fk ∈ Vk a.s. and fk defines a nondegenerate Gaussian
vector in Vk . If f is centred, then the fk can also be chosen to be centred.

2. Moreover, let W ⊂ V be a finite-dimensional subspace. Then we may find sequences
(Vk)k∈N and (fk)k∈N as in (1) such that W ⊂ Vk .

PROOF. Consider a countable atlas (Uj ,φj )j∈N of M . Let J ⊂ N, let η > 0 be a pa-
rameter to be fixed later, and let I ⊂ M be a locally finite set such that, for each j ∈ J and
z ∈ φj (Uj ), there exists x ∈ φj (I ∩ Uj) for which |z − x| ≤ η. Let ε > 0, fix j ∈ J and let
B ⊂ Uj be a compact subset. Let us prove that there exists η0 = η0(j,B, ε) > 0 such that for
all η ≤ η0, the field fI := E[f |fI ] satisfies

(39) P
[∥∥f ◦ φ−1

j − fI ◦ φ−1
j

∥∥
Cl(B) > ε

]
< ε.

Since the seminorms ‖ · ‖Cl(B), where j ∈ N and B ⊂ Uj ranges over the compact subsets
of Uj , generate the topology of Cl(M), repeating the above construction for a sequence
(εk)k∈N → 0 yields a sequence (fk)k∈N of fields satisfying (39) for ε = εk which proves the
first point of the lemma.

To prove (39), fix α ∈ N
d and let g = ∂α(f ◦ φ−1

j ) and gI = ∂α(fI ◦ φ−1
j ). Also, let

N = N(d, l) ∈ N be the number of multi-indices α ∈ N
d such that |α| ≤ l. Observe that, for

each z ∈ φj (B), there exists z ∈ φj (Uj ∩ I ) such that |x − z| < η so that∣∣g(z)−gI (z)
∣∣ ≤ ∣∣g(z)−g(x)

∣∣+E
[∣∣g(x)−E

[
g(z)|f |I ]∣∣] ≤ ∣∣g(z)−g(x)

∣∣+E
[∣∣g(z)−g(x)

∣∣].
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In particular,

E

[
sup
z∈B

∣∣g(z) − gI (z)
∣∣] ≤ 2E

[
sup

x,y∈B,|x−y|≤η

∣∣g(x) − g(y)
∣∣] =: 2E[Xη].

Now, since g is a continuous Gaussian field on B (which is compact), it is a.s. bounded and
the family (Xη)η>0 is uniformly L1 (see, for instance, [3], Theorem 2.9). Moreover, since
g is continuous, Xη converges a.s. to 0 as η → 0. In particular, limη→0 E[Xη] = 0. Thus,
there exists ηα = ηα(ε, d, l) > 0 such that for each η ≤ ηα , P[supz∈B |g(z) − gI (z)| > ε] ≤
ε/C. The estimate (39) follows by taking a union bound of the probability of the events
supz∈B |g(z) − gI (z)| where α ∈ N

d ranges over all the multi-indices such that |α| ≤ l, and
will be valid for η ≤ η0 = min|α|≤l ηα .

Consider now a sequence (ηk)k∈N of positive real numbers converging to 0 and (Ik)k∈N an
increasing sequence of finite subsets of M , such that for each k ∈ N and j ≤ k, φj (Ik ∩ Uj)

is an ηk-net of φj (Uj ). For each k ∈ N, let fk = fIk
defined as above (with J = [0, k]). Then,

for each j ∈ N and each compact subset B ⊂, by (39), limk→∞ ‖f ◦φ−1
j −fk ◦φ−1

j ‖Cl(B) = 0
in probability so (fk)k∈N converges to f in probability.

We claim that each fk belongs to a finite-dimensional subspace Vk . Indeed, let K be the
covariance of f . By the regression formula (Proposition 1.2 of [3]), for each k ∈ N, fk is a
random linear combination of the functions K(·, x) for x ∈ Ik and of E[f ] the mean of f .
Hence it belongs to the finite-dimensional subspace Vk generated by these functions. More-
over, since fk is the mean of a random variable with values in V , we have Vk ⊂ V and if f is
centred, by construction, fk is centred. This concludes the proof of the first statement.

For the second statement, take (fk)k∈N as above, let (h1, . . . , hm) be a basis of W , and let
ξ1, . . . , ξm be independent standard normals. Then, clearly, 1

k
(ξ1h1 + · · · + ξmhm) converges

to 0 in probability in Cl(M), so that replacing fk by

fk + 1

k
(ξ1h1 + · · · + ξmhm)

yields the required result. �

Next, we state without proof an abstract continuity lemma for expectations; this can be
considered a simple variant of the standard Portemanteau lemma.

LEMMA 5.10. Let (X,Y ) and (Xk,Yk)k∈N be random variables with values in R × E,
where E is a Polish space. Assume that the sequence (Xk,Yk)k∈N converges in law towards
(X,Y ), and that the sequence (Xk)k∈N is uniformly integrable. Let A ⊂ E and assume P[X 
=
0, Y ∈ ∂A] = 0. Then

lim
k→∞E[Xk1[Yk∈A]] = E[X1[Y∈A]].

5.4. Completing the proof of Theorem 2.14. To complete the proof of Theorem 2.14, we
assemble the previous elements together, namely we:

• Approximate f by a sequence of finite-dimensional fields (fk)k∈N with nice regularity
and nondegeneracy properties constructed using Lemma 5.9.

• Use Lemma 5.7 to encode the topological events A1 and A2 via the discriminant.
• Apply Proposition 3.9 to the fields fk and the events encoded by the discriminant.
• Pass to the limit in each term of the formula given by Proposition 3.9, using Lemmas

5.1 and 5.10.
• Show that the two definitions of pivotal events coincide using Lemma 5.1.
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PROOF OF THEOREM 2.14. Recall that (B1,F1) and (B2,F2) are stratified sets of M ,
and A1 and A2 are topological events on B1 and B2, respectively. By Lemma 5.7, for each
i ∈ {1,2} there exists Âi ∈ σ̂discr(Bi,C

2(M)) such that P[f ∈ Âi�Ai] = 0, and so it will be
sufficient to work with the events Âi ∈ σ̂discr(Bi,C

2(M)).
Let us first define the approximating sequence of fields. By Remark 3.8, there exists a

finite-dimensional subspace W ⊂ C2(M) satisfying Conditions 3.6 and 3.7 that contains the
constant functions. Hence we may define a sequence of Gaussian fields (fk)k∈N, taking values
in a sequence of finite-dimensional linear subspaces W ⊂ Vk ⊂ C2(M), that satisfy all the
properties guaranteed by Lemma 5.9 (setting � = 2, and so in particular the fk converge in
probability in the topology of uniform C2 on compact sets). Since W satisfies Conditions 3.6
and 3.7 so does each Vk , and so Proposition 3.9 applies to the sets Âi,k = Âi ∩V for i ∈ {1,2}
and the field fk .

Next, recall that f 1 and f 2 denote independent copies of f , and let (f 1
k )k∈N and (f 2

k )k∈N
be independent copies of (fk)k∈N, with f 1

k converging to f1 and f 2
k converging to f2 (i.e., in

C2). Similarly, recall that ft denotes the interpolation (f 1
t , f 2

t ) = (f 1, t (f 1−μ)+√
1 − t2 ×

(f 2 − μ) + μ), and define for each k ∈ N the interpolation ft,k = (f 1
t,k, f

2
t,k) analogously.

Applying Proposition 3.9 we have, for each k ∈ N and t ∈ [0,1),

(40)

P[ft,k ∈ Â1,k × Â2,k] − P[f0,k ∈ Â1,k × Â2,k]

= ∑
F1∈F1,F2∈F2

∫ t

0

∫
F1×F2

Kk(x1, x2) × �k(s;x1, x2)γs,k;x1,x2(0)dvF1(x1)dvF2(x2)ds,

where �k(s;x1, x2) equals

(41)
Es;x1,x2

[
σ
(
f 1

s,k, f
2
s,k

)
1P̃ivx1 (Â1,k)×P̃ivx2 (Â2,k)

(
f 1

s,k, f
2
s,k

)
× ∣∣det

(
Hx1f

1
s,k|F1

)∣∣∣∣det
(
Hx2f

2
s,k|F2

)∣∣],
and where Kk is the covariance of fk , and γs,k;x1,x2 is the density of(

f 1
s,k(x1), dx1f

1
s,k|F1, f

2
s,k(x2), dx2f

2
s,k|F2

)
in orthonormal coordinates (recall that the subscript s;x1, x2 in the expectation denotes con-
ditioning on this vector vanishing).

Let us compute the limits of both sides of (40) as k → ∞, beginning with the left-hand
side. Notice that for each t ∈ [0,1) and k ∈ N, f t

k ∈ Â1,k × Â2,k if and only if f t
k ∈ Â1 × Â2.

Since ∂(Â1 × Â2) ⊂ DB(C2(M)) × C2(M) ∪ C2(M) × DB(C2(M)), and since f satisfies
Condition 2.7, by Bulinskaya’s lemma (Proposition 1.20 of [3])

P
[(

f 1
t , f 2

t

) ∈ ∂(Â1 × Â2)
] = 0.

Thus, by Lemma 5.10 (setting X = 1, Y = (f 1
t , f 2

t ), E = C2(M) × C2(M) and A = Â1 ×
Â2), we have

(42) lim
k→∞P[ft,k ∈ Â1,k × Â2,k] = P[ft ∈ Â2 × Â2].

We turn now to the right-hand side of (40); we begin by computing the pointwise limit
of the integrand, and then apply the dominated convergence theorem. Fix F1 ∈ F1, F2 ∈
F2, x1 ∈ F1, x2 ∈ F2 and s ∈ [0, t] (so that s < 1). Since the Hessians restricted to zero-
dimensional faces have vanishing determinants, we may assume that dim(F1),dim(F2) > 0.
This allows us to assume that x1 
= x2 by removing a set of measure zero from the integral in
(x1, x2). Now, since f s

k converges in probability to f s as k → ∞, it also converges in law.
In particular, Kk(x1, x2) converges to K(x1, x2) and γs,k;x1,x2(0) converges to γs;x1,x2(0). To
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deal with �k(s;x1, x2), we note that fs,k converges in law to fs in C2(M) as k → ∞ so
that Kk converges to K in C2(M × M). Now, since the vector (f 1

s (x1), dx1f
1
s |F1, f

2
s (x2),

dx2f
2
s |F2) is nondegenerate, by the regression formula (Proposition 1.2 of [3]), the law of f

conditioned on this vector vanishing is well-defined and depends continuously in K . Since
the covariance of a field determines its law, we deduce that the sequence of fields (fs,k)k∈N
conditioned on (f 1

s,k(x1), dx1f
1
s,k|F1, f

2
s,k(x2), dx2f

2
s,k|F2) = 0 converges in law to f with the

above conditioning. We denote the conditional law of these fields by Ps;x1,x2[. . . ]. By the first
statement of Lemma 5.1,

Ps;x1,x2

[
ft,k ∈ P̃ivx1(Â1,k) × P̃ivx2(Â2,k)�P̃ivx1(Â1) × P̃ivx2(Â2)

] = 0

so, if we temporarily set

A = P̃ivx1(Â1) × P̃ivx2(Â2), Xs = Xs(x1, x2) = σ(fs)
∣∣det

(
HF1

x1
f 1

s

)∣∣∣∣det
(
HF2

x2
f 2

s

)∣∣
and

Xs,k = Xs,k(x1, x2) = σ(fs,k)
∣∣det

(
HF1

x1
f 1

s,k

)∣∣∣∣det
(
HF2

x2
f 2

s,k

)∣∣,
we have

�k(s;x1, x2) = Es;x1,x2

[
1A(fs,k)Xs,k(x1, x2)

]
.

Since under the conditioning fk converges in law to f , and since these are Gaussian fields,
the sequence (Xs,k(x1, x2))k∈N is uniformly integrable (though the bound may depend on s,
x1 and x2). On the other hand, the random variables fs,k and fs take values in the Polish
space C2(M). By the third point of Lemma 5.1, a.s. either the Hessian of one of the f i

s ’s is
degenerate, which implies that either Xs = 0 or ft /∈ ∂A. Moreover, the pair (Xs,k, fs,k) con-
verges in probability to the pair (Xs, fs). By Lemma 5.10, we have limk→∞ �k(s;x1, x2) =
�(s;x1, x2) which is equal to

(43) Es;x1,x2

[
σ
(
f 1

s , f 2
s

)
1P̃ivx1 (Â1)×P̃ivx2 (Â2)

(
f 1

s , f 2
s

)∣∣det
(
HF1

x1
f 1

s

)∣∣∣∣det
(
HF2

x2
f 2

s

)∣∣].
In summary, the integrand of the right-hand side of (40) converges pointwise to the same
quantity with fs,k replaced by fs everywhere.

To apply the dominated convergence theorem to the right-hand side of (40), we must find a
uniform L1 bound on the integrand. To bound �k(s;x1, x2)×γs,k;x1,x2(0) we use Lemma A.4
with Xi

s,k = Hxi
f i

s,k , Ys,k = Ys,k(x1, x2) = (f 1
s,k(x1), dx1f

1
s,k|Tx1F1, f

2
s,k(x2), dx2f

2
s,k|Tx2F2)

for each i ∈ {1,2} and k ∈ N. For any finite-dimensional Gaussian vector X in a space
equipped with a scalar product, let DC(X) be the determinant of the covariance of X in or-
thonormal coordinates. The covariances of the coordinates of the Xi

s,k are bounded in terms of
derivatives up to order two in each variable of the covariances Kk ; since these are uniformly
bounded, there exists a constant C < ∞ for which, for each k ∈ N,

∣∣�k(s;x1, x2)γs,k;x1,x2(0)
∣∣ ≤ C√

DC(Ys,k)
.

Next, for i, j ∈ {1,2} let Y
ij
k (xj ) = (f i

k (xj ), dxj
f i

k |Txj
Fj

) so that, for any j1, j2 ∈ {1,2}, Y
1j1
k

is independent from Y
2j2
k and

Ys,k = (
Y 11

k , s
(
Y 12

k −E
[
Y 12

k

]) +
√

1 − s2
(
Y 22

k −E
[
Y 22

k

] +E
[
Y 12

k

]))
.
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Then, by Lemma A.3, for each s ∈ [0, t],
DC(Ys,k) = DC

(
Y 11

k , sY 12
k +

√
1 − s2Y 22

k

)
≥ DC

(
Y 11

k , sY 12
k

) + DC
(
Y 11

k

)
DC

(√
1 − s2Y 22

k

)
≥ (

1 − s2)dim(F2)+1 DC
(
Y 11

k

)
DC

(
Y 22

k

)
= (

1 − t2)n+1 DC
(
fk(x1), dx1fk|Tx1F1

)
DC

(
fk(x2), dx2fk|Tx2F2

)
.

Since (fk)k∈N converges in law to f , and since (f (x), dxf ) is nondegenerate for each x ∈ M

(and since B is compact), there exist k0 ∈ N and a constant c > 0 such that for each t ∈ [0,1),
s ∈ [0, t], x1 ∈ F1 and x2 ∈ F2, as long as k ≥ k0,

DC(Ys,k) ≥ (
1 − t2)n+1

c.

In particular, |�k(s;x1, x2)γs,k;x1,x2(0)| ≤ Cc−1/2(1 − t2)−(n+1)/2. Hence the integrand in
the right-hand side of (40) is uniformly integrable, so the dominated convergence theorem
applies.

All in all, letting k → ∞ in both sides of (40) yields

(44)

P[ft ∈ Â1 × Â2] − P[f0 ∈ Â1 × Â2]

= ∑
F1∈F1,F2∈F2

∫ t

0

∫
F1×F2

K(x1, x2) × �(s;x1, x2)γs;x1,x2(0)dvF1(x1)dvF2(x2)ds,

where � is defined in (43).
Let us now complete the proof. Fix F1 ∈ F1 and F2 ∈ F2. By the second point of Lem-

ma 5.1, for each i ∈ {1,2}, each s ∈ [0, t] and each xi ∈ Fi , a.s. (under the conditioning
present in �)

det
(
HFi

xi
f i

s

)
1P̃ivxi

(Âi )

(
f i

s

) = det
(
HFi

xi
f i

s

)
1Pivxi

(Âi )

(
f i

s

)
since the only place at which the two pivotal events do not coincide is where the determinant
of the Hessian vanishes. Moreover, Pivxi

(Âi) splits as the disjoint union of Piv+
xi

(Âi) and

Piv−
xi

(Âi). All in all, a.s. under the conditioning used in �,

σ
(
f 1

s , f 2
s

)
1Pivx1 (Â1)×Pivx2 (Â2)

(
f 1

s , f 2
s

)
= (

1Piv+
x1

(Â1)×Piv+
x2

(Â2)

(
f 1

s , f 2
s

) + 1Piv−
x1

(Â1)×Piv−
x2

(Â2)

(
f 1

s , f 2
s

))
− (

1Piv+
x1

(Â1)×Piv−
x2

(Â2)

(
f 1

s , f 2
s

) + 1Piv−
x1

(Â1)×Piv+
x2

(Â2)

(
f 1

s , f 2
s

))
.

In particular,

�(s;x1, x2)γs;x1,x2(0) = I+
s (x1, x2) − I−

s (x1, x2),

where I±
s are the signed pivotal intensity functions from Definition 2.11. Thus, (44) yields

P[f1 ∈ Â1 × Â2] − P[f0 ∈ Â1 × Â2]

= ∑
F1∈F1,F2∈F2

∫
F1×F2

K(x1, x2) ×
∫ t

0

(
I+
s (x1, x2) − I−

s (x1, x2)
)

ds dvF1(x1)dvF2(x2).

By the definition of Â1 and Â2 as well as (ft )t∈[0,1],

P[f1 ∈ Â1 × Â2] − P[f0 ∈ Â1 × Â2] = P[A1 ∩ A2] − P[A1]P[A2],
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so letting t → 1 yields

P[A1 ∩ A2] − P[A1]P[A2] =
∫
B1×B2

K(x1, x2)
(
dπ+(x1, x2) − dπ−(x1, x2)

)
,

where dπσ (x1, x2), for σ ∈ {+,−}, are the signed pivotal measures from Definition 2.11.
�

To complete the section, we verify that Corollary 1.1 is indeed a special case of Theo-
rem 2.14.

PROOF OF COROLLARY 1.1. Recall that B1 and B2 are closed boxes, F 1
0 and F 2

0 are
their interiors, and F i

j , for j ∈ {1,2,3,4} and i ∈ {1,2}, are their four sides. Together with

the corners of the boxes, which we denote F i
j for j ∈ {5,6,7,8} and i ∈ {1,2}, the set of

F i
j form a tame (and affine) stratification of B1. Moreover, the events A1 and A2 are indeed

topological events since stratified isotopies preserve crossings, and so Theorem 2.14 applies
to these events, yielding an exact formula for Cov[A1,A2].

Let us next analyse the terms in this formula. By Remark 2.12, the corners do not contribute
to the sum over strata. Further, by Remark 2.13, since Ai are both increasing events, the sets
Piv−

xi
(Ai) are empty and so the pivotal measure only contains positively pivotal events. Fi-

nally, notice that, for each i = 1,2, t ∈ (0,1) and (x1, x2) ∈ (B1,B2), under the conditioning
that x1 and x2 are stratified critical points at level 0 of f 1

t and f 2
t , respectively, the fields

f 1
t and f 2

t have a.s. no other critical points at level 0 (by the nondegeneracy assumption).
Moreover, if the Hessians of f i

t at xi do not degenerate, the xi are nondegenerate stratified
critical points of f i

t . The pivotal event for Ai is then equivalent to the existence of a path in
{f i

t ≥ 0} joining ‘left’ to ‘right’ and a path in {f i
t ≤ 0} joining ‘top’ to ‘bottom’, both passing

through xi . �

6. Proofs of the applications. In this section, we give proofs for the applications that
are discussed in Sections 1 and 2, in particular Theorem 2.15 and Corollaries 1.2, 1.6, 2.17
and 2.19.

6.1. Strong mixing for topological events. PROOF OF THEOREM 2.15. Let c denote
a constant, that can change line-to-line, that depends only on d . By Theorem 2.14 and the
definition of αtop, after replacing K with its absolute value, and dropping the condition that
f 1

t and f 2
t lie in the pivotal sets, it suffices to show that, for all t ∈ [0,1],

(45) γt (x1, x2)Et;x1,x2

[∣∣det
(
HF1

x1
f 1

t

)
det

(
HF2

x2
f 2

t

)∣∣]
is bounded above by the maximum, over i, j, k ∈ {1,2}, of

c
E[‖HFi

xi f ‖2
op | dxi

f |Fi
= 0]di

√
det(�(x1, x2))

max
{

1,

(
K(xj , xj )det(dxk

⊗ dxk
K|Fi×Fi

)√
det(�(x1, x2))

)2di
}
.

Let �t(x1, x2) denote the covariance matrix of (10) and let t(x1, x2) denote the covariance
matrix of (dx1f

1
t |F1, dx2f

2
t |F2). Applying Lemma A.4 to the matrices X1 = H

F1
x1 f 1

t and X2 =
H

F2
x2 f 2

t and the vectors Y = (f 1
t (x1), f

2
t (x2)) and Z = (dx1f

1
t |F1, dx2f

2
t |F2), (45) is bounded

above by the maximum, over i, j, k ∈ {1,2}, of

c
E[‖HFi

xi f i
t ‖2

op | dxi
f i

t |Fi
= 0]di

√
det(�t(x1, x2))

max
{

1,

(
Var[f j

t (xj )]√det(t(x1, x2))√
det(�t(x1, x2))

)2di
}
.
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Recall that f i
t is equal in law to f , and that, by Lemma A.5,

det
(
�t(x1, x2)

) ≥ det
(
�1(x1, x2)

) = det
(
�(x1, x2)

)
and

det
(
t(x1, x2)

) ≤ det
(
0(x1, x2)

) = ∏
k=1,2

DC[dxk
f |Fk

] ≤ max
k=1,2

DC[dxk
f |Fk

]2,

where DC(X) is the determinant of the covariance of X in orthonormal coordinates. Since

Var
[
f (xj )

] = K(xj , xj ) and DC[dxk
f |Fk

] = det(dxk
⊗ dxk

K|Fi×Fi
)2,

we have the desired result. �

PROOF OF COROLLARY 1.2. The nondegeneracy condition in the statement of Corol-
lary 1.2 is equivalent to Condition 2.7, and so we are in the setting of Theorem 2.15. First,
we argue that there exists constants c1, c2 > 0, depending only on d , κ(0), and the Hessian
of κ at 0, such that, if

max
α∈Nd :|α|≤2

sup
x1∈B1,x2∈B2

∣∣∂ακ(x1 − x2)
∣∣ < c1,

then for any affine sets F1 and F2 the covariance matrix of the Gaussian vector

(46)
(
f (x1),∇f |F1(x1), f (x2),∇f |F2(x2)

)
has a determinant bounded below by c2. Let �1(x1, x2) denote this matrix, and observe that

�1(x1, x2) =
[

M11 M12

MT
12 M22

]
where, by stationarity,

Mii =
[

κ(0) 0
0 H

Fi

0 κ

]
,

and M12 depends only on the value and second derivatives of κ at x1 and x2 (here HF
0 denotes

the Hessian at the point x in an orthonormal basis of the linear span of F ). The result then
follows by the continuity, on the set of strictly positive-definite matrices, of the determinant
with respect to the entry-wise sup-norm.

Combined with the stationarity of f , under the assumption that

max
α∈Nd :|α|≤2

sup
x1∈B1,x2∈B2

∣∣∂ακ(x1 − x2)
∣∣ < c1,

the quantity cF1,F2(x1, x2) in Theorem 2.15 can be bound above by

c max
i

{
E
[∥∥HFi

0 f
∥∥2

op | ∇f |Fi
(0) = 0

]dim(Fi)
}

for some c > 0. Since this is a finite quantity, we have proved the result.
To verify the observation in Remark 1.3, note that we have already established that c1

depends only on d , κ(0), and the Hessian of κ at 0. Next, since all norms on R
d are equivalent,

E
[∥∥HFi

0 f
∥∥2

op | ∇f |Fi
(0) = 0

] ≤ cd max
j1,j2

E
[(

H
F1,F2
0 f

)2
j1,j2

| ∇f |Fi
(0) = 0

]
,

where cd is a constant depending only on the dimension d . By stationarity, and since condi-
tioning on part of a Gaussian vector reduces the variance of all coordinates, this is at most

cd max
j1,j2

E
[(

H
F1,F2
0 f

)2
j1,j2

] ≤ cd max
j1,j2

∂4κ(0)

∂x2
j1

∂x2
j2

.
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Finally, applying the Cauchy–Schwarz inequality in Fourier space,

max
j1,j2

∂4κ(0)

∂x2
j1

∂x2
j2

≤ max
j

∂4κ(0)

∂x4
j

and we have the result. �

PROOF OF COROLLARY 2.17. Observe that each of fn|B1∪B2 satisfies Condition 2.7,
since B1 ∪ B2 does not include antipodal points. Note also that a condition analogous to (4)
holds; more precisely, as n → ∞,

sup
x1∈B1,x2∈B2

∥∥(Kn(x1, x2), dx1Kn(x1, x2), dx2Kn(x1, x2), dx1 ⊗ dx2Kn(x1, x2)
)∥∥∞ → 0,

which, as in the proof of Theorem 2.15, implies that, as n → ∞,

sup
x1∈F1,x2∈F2

∣∣∣∣det(�1(x1, x2))

det(�0(x1, x2))
− 1

∣∣∣∣ → 0,

where �t(x1, x2) is the covariance matrix, for the field fn, that is defined in the proof of
Theorem 2.15 (note that we have omitted the dependence on n in the notation). Observe
also that the scale sn = 1/

√
n at which the Kostlan ensemble converges to a local limit is a

polynomial, and so all derivatives of Kn on the diagonal (x, x) grow at most polynomially,
uniformly over x. Along with the discussion in Remark 2.16, we deduce that

sup
F1∈F1,F2∈F2

sup
x1∈F1,x2∈F2

cF1,F2(x1, x2)

grows at most polynomially as a function of n, where cF1,F2(x1, x2) is the constant appearing
in Theorem 2.15 applied to fn (again we omit the dependence on n in the notation). Since on
the other hand

sup
x1∈B1,x2∈B2

∣∣Kn(x1, x2)
∣∣

decays exponentially in n (recall that B1 and B2 are contained within an open hemisphere),
we deduce the result from Theorem 2.15. �

6.2. Lower concentration for topological counts. Our proof of the lower concentration
results in Corollaries 1.6 and 2.19 essentially follows the proof of [44], Theorem 1.4. We
make use of the following simple lemma.

LEMMA 6.1. Let Bi ⊂ M be a sequence of disjoint stratified sets, and let Ai ∈ σtop(Bi)

be topological events such that supi P[Ai] < h < 1. Then∣∣∣∣P[⋂
i

Ai

]
− ∏

i

P[Ai]
∣∣∣∣ ≤ 1

1 − h
sup
n∈N

αtop

(
Bn,

⋃
j>n

Bj

)
.

PROOF. By the definition of αtop,∣∣∣∣P(An ∩
(⋂

j>n

Aj

))
− P(An)P

(⋂
j>n

Aj

)∣∣∣∣ ≤ αtop

(
Bn,

⋃
j>n

Bj

)
.

Iterating this inequality for n = 1,2, . . . and using that P(An) < h we get the upper bound(
1 + h + h2 + · · · ) × sup

n∈N
αtop

(
Bn,

⋃
j>n

Bj

)
,

which is equal to the desired upped bound. �
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PROOF OF COROLLARY 1.6. First, observe that we may assume the infimum in (8) is
eventually attained in the set r ∈ [gs, s/gs] for some function gs → ∞ as s → ∞, since
otherwise the right-hand side of (8) is bounded from below, and we may then choose c1 > 0
large enough so that (8) holds trivially.

Fix ε > 0, a function gs ∈ (0,
√

s) such that gs → ∞, and a mesoscopic parameter gs <

r < s/gs . Let B0 denote the unit cube, considered as a stratified set via its collection of gener-
alised faces of all dimensions. Consider placing (Vol(B) + o(1))(s/r)d disjoint translations
of rB0 inside sB , and let Mi denote these mesoscopic cubes. By the super-additivity of N ,
if N(sB)/sd ≤ (cN − ε)Vol(B), then there exist at least ε Vol(B)/(2cN − ε) × (s/r)d meso-
scopic cubes Mi such that N(Mi)/rd ≤ cN − ε/2. If this holds, then we can also find at least
ν(s/r)d mesoscopic cubes Mi with this property that are separated by a distance r , where

ν = cd × ε Vol(B)

2cN − ε
,

and cd > 0 is a constant that depends only on the dimension.
By stationarity and the law of large numbers (7), for each h ∈ (0,1),

P
[
N(Mi)/rd ≤ cN − ε/2

]
< h

eventually as s → ∞. Hence, by Lemma 6.1, for every choice of ν(s/r)d mesoscopic cubes
Mi which are r-separated, the probability that N(Mi)/rd ≤ cN − ε/2 for all of them is at
most

hν(s/r)d + 1

1 − h
αr,s,

where αr,s = maxn αtop(Mn,
⋃

i>n Mi). There are at most 2(Vol(B)+o(1))(s/r)d ways to choose
cubes Mi , hence by the union bound

P
[
N(sB)/sd ≤ (cN − ε)Vol(B)

] ≤ 2(Vol(B)+o(1))(s/r)d
(
hν(s/r)d + 1

1 − h
αr,s

)
.

Let F1 and F2 be the standard stratifications of Mn and
⋃

i>n Mi . Clearly, there is a constant
c > 0 which depends on the dimension only, such that |F1| ≤ c and |F2| ≤ cν(s/r)d . In both
stratifications, the strata with the largest volume are interiors of mesoscopic cubes that have
volume rd . By Corollary 1.2, this implies that there is a constant c1 > 1 such that

αr,s ≤ c1r
dsd κ̄(r).

Combining these estimates, taking cB = 2 log 2 Vol(B) and choosing h small enough, we see
that for every C > 0

P
[
N(sB)/sd ≤ (cN − ε)Vol(B)

] ≤ c1
(
e−C(s/r)d + ecB(s/r)d rdsd κ̄(r)

)
,

provided s is large enough. This proves the result for r ∈ [gs, s/gs]. As mentioned in the very
beginning of the proof, by choosing sufficiently large c1 we can extend the estimate to all
r ∈ [0, s]. �

PROOF OF COROLLARY 2.19. This follows closely the proof of Corollary 1.6. We first
treat the case that B is contained in an open hemisphere. Equip S

d with a marked pole x0,
and for r ∈ (0,1] let rB0 denote the symmetric spherical cap centred at x0 with volume
rd , considered as a stratified set via the stratification FB = {int(B0), ∂B0}. Fix ε > 0 and a
function gn such that gn → ∞ as n → ∞. Define a mesoscopic scale gn/

√
n < r < 1/gn and

consider placing (Vol(B) + o(1))/rd disjoint copies of rB0 inside B . Following exactly the
proof of Corollary 1.6, we deduce the existence of c1, c2 > 0 such that

P
[
N(B)/nd/2 ≤ (cN − ε)Vol(B)

] ≤ c1
(
e−c2r

−d + αr,n

)
,
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where αr,n denotes the supremum of α-mixing coefficients αtop(B1,B2) among all pairs of
disjoint stratified sets B1 and B2 contained in B and separated by a distance at least r . By
Theorem 2.15 (see also the proof of Corollary 2.17), there exist k, c3, c4 > 0 such that

αr,n ≤ c3n
ke−c4r

2n.

Setting r = n−1/(2+d) yields the desired bound.
In the general case, we simply choose a finite number of disjoint stratified sets Bi that

are each contained within an open hemisphere. Since by super-additivity N(B)/nd/2 ≤ cN ×
Vol(B) − ε implies that N(Bi)/nd/2 ≤ cN Vol(Bi) − ε/k for some Bi , the argument goes
through in this case as well. �

6.3. Decorrelation for topological counts. Corollary 2.20 is a direct consequence of the
following general result, applied to the random variables X = N(B1) and Y = N(B2).

PROPOSITION 6.2 (See [25], Theorem 17.2.2). Let X and Y be random variables and
define the α-mixing coefficient associated to their σ -algebras

α(X,Y ) = sup
A∈σ(X),B∈σ(Y )

∣∣P[A ∩ B] − P[A]P[B]∣∣.
Suppose further that

E
[
X2+δ] < c and E

[
Y 2+δ] < c

for positive constants δ, c > 0. Then∣∣Cov(X,Y )
∣∣ ≤ 8c2/(2+δ)α(X,Y )2/(2+δ).

APPENDIX A: GAUSSIAN COMPUTATIONS

In this section, we gather results about finite-dimensional Gaussian vectors. If X is a Gaus-
sian vector in finite-dimensional vector space equipped with a scalar product, let DC(X) be
the determinant of its covariance.

LEMMA A.1. Let X,Y be jointly Gaussian vectors such that Y is nondegenerate. Then
DC(X|Y) does not depend on Y , and

DC(X,Y ) = DC(X|Y)DC(Y ).

PROOF. This is an easy consequence of the Gaussian regression formula ([3], Proposi-
tion 1.2). �

LEMMA A.2. Given two independent Gaussian vectors X and Y of the same dimension,

DC(X + Y) ≥ DC(X) + DC(Y ).

PROOF. In terms of covariance matrices, this amounts to saying that given A,B two
symmetric non-negative matrices of the same size,

det(A + B) ≥ det(A) + det(B),

which follows from the Minkowski inequality. �
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LEMMA A.3. Let X,Y,Z be jointly Gaussian vectors such that Y and Z have the same
dimension and Z is independent of (X,Y ). Then

DC(X,Y + Z) ≥ DC(X,Y ) + DC(X)DC(Z).

PROOF. Let us assume that X is nondegenerate; the general case follows by continuity.
By Lemma A.1,

DC(X,Y + Z) = DC(X)DC(Y + Z|X).

Applying Lemma A.2,

DC(Y + Z|X) ≥ DC(Y |X) + DC(Z|X) = DC(Y |X) + DC(Z),

with the final equality since Z is independent of X. Hence

DC(X,Y + Z) ≥ DC(X)DC(Y |X) + DC(X)DC(Z) = DC(X,Y ) + DC(X)DC(Z),

where the equality holds by Lemma A.1. �

LEMMA A.4. Let X1 and X2 be respectively d1 × d1 and d2 × d2 random matrices,
and let Y = (Y1, Y2) ∈ R

2 and Z ∈ R
d1+d2 be random vectors. Suppose that (Y,Z) is a

nondegenerate Gaussian vector and, conditionally on Z = 0, X1 and X2 have entries that are
jointly Gaussian with Y . Let ϕY,Z denote the density of (Y,Z). Then there exists a constant
c > 0, depending only on d1 and d2, such that

(47) ϕY,Z(0)E
[∣∣det(X1)det(X2)

∣∣ | Y = 0,Z = 0
]

is bounded above by the maximum, over i ∈ {1,2}, of

cE[‖Xi‖2
op | Z = 0]di

√
DC(Y,Z)

max
{

1,

(
maxk Var[Yk]√DC(Z)√

DC(Y,Z)

)2di
}
,

where ‖ · ‖op denotes the (L2-)operator norm.

PROOF. Let c denote a positive constant, depending only on d1 and d2, that may change
from line to line. In the proof, we use repeated the fact that conditioning on part of a Gaussian
vector reduces the variance of all coordinates. By the Cauchy–Schwarz inequality and an
elementary bound on the determinant, (47) is bounded above by

cϕY,Z(0) max
i,j1,j2

E
[
(Xi)

2di

j1,j2
| Y = 0,Z = 0

]
.

Since a normally distributed random variable Z ∼ N (μ,σ 2) satisfies

E
[
Z2di

] ≤ c max
{
μ2di , σ 2di

}
,

and since the variance of a random variable is less than its second moment,

E
[
(Xi)

2di

j1,j2
| Y = 0,Z = 0

] ≤ c max
{
E
[
(Xi)

2
j1,j2

|Z = 0
]di ,E

[
(Xi)j1,j2 | Y = 0,Z = 0

]2di
}
.

Let �Y |Z and �Z denote the covariance matrices of Y |Z and Z, respectively. By conditioning
on Z = 0 and applying Lemma A.1, we have that

ϕY,Z(0) = c
e
− 1

2E[Y |Z=0]T �−1
Y |ZE[Y |Z=0]

√
DC(Y |Z)

e− 1
2E[Z]T �−1

Z E[Z]
√

DC(Z)

≤ c
e
− 1

2E[Y |Z=0]T �−1
Y |ZE[Y |Z=0]

√
DC(Y,Z)

≤ c√
DC(Y,Z)

.
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Since, moreover,

max
j1,j2

E
[
(Xi)

2
j1,j2

| Z = 0
] ≤ E

[‖Xi‖2
op | Z = 0

]
,

it suffices to show that

sup
�∈R2

{
E
[
(Xi)j1,j2 | Y − E[Y |Z = 0] = �,Z = 0

]2di e
− 1

2 �T �−1
Y |Z�}

is bounded above by

cE
[
(Xi)

2
j1,j2

| Z = 0
]di max

{
1,

(
maxk Var[Yk]√DC(Z)√

DC(Y,Z)

)2di
}
.

To show this, decompose �−1
Y |Z = UT �−1U , where U = (uk1,k2) is a 2 × 2 orthogonal ma-

trix and � = Diag(λk) is the 2 × 2 diagonal matrix of (positive) eigenvalues of �Y |Z . Ab-
breviating W = (wk) := U Cov[(Xi)j1,j2Yk|Z = 0] and replacing � by U�, by the Gaussian
regression formula ([3], Proposition 1.2) we have that

sup
�

{
E
[
(Xi)j1,j2 | Y −E[Y |Z = 0] = �,Z = 0

]2di e
− 1

2 �T �−1
Y |Z�}

= sup
�

{(
E
[
(Xi)j1,j2 | Z = 0

] + WT �−1�
)2di e− 1

2 �T �−1�}
≤ c max

{
sup

�

{
E
[
(Xi)j1,j2 | Z = 0

]2di e− 1
2 �T �−1�}, sup

�

{(
WT �−1�

)2di e− 1
2 �T �−1�}}

≤ c max
{
E
[
(Xi)

2
j1,j2

| Z = 0
]di , sup

�

{(
WT �−1�

)2di e− 1
2 �T �−1�}}.

Differentiating in �, the maxima of the expression on the right is attained at

� = (�1, �1) =

⎧⎪⎪⎨⎪⎪⎩
±√

2di√
w2

1λ
−1
1 + w2

2λ
−1
2

(w1,w2), (w1,w2) 
= (0,0),

(0,0), (w1,w2) = (0,0),

and yields a maximum value of

(2di/e)
di
(
w2

1λ
−1
1 + w2

2λ
−1
2

)di ≤ c
(
max

k
w2

k max
k

λ−1
k

)di
.

Since the eigenvalues of a positive-definite real symmetric matrix are bounded by a constant
times the maximum diagonal entry,

max
k

λ−1
k = maxk λk

det(�)
≤ c

maxk Var[Yk | Z = 0]
det(�Y |Z)

≤ c
maxk Var[Yk]

det(�Y |Z)
= c

maxk Var[Yk]DC(Z)

DC(Y,Z)
,

where in the last step we used Lemma A.1. Moreover, since U has entries bounded above in
absolute value by one (being orthogonal), and by the Cauchy–Schwarz inequality,

max
k

|wk| ≤ c max
k

∣∣Cov
[
(Xi)j1,j2Yk | Z = 0

]∣∣ ≤ cE
[
(Xi)

2
j1,j2

| Z = 0
]1/2 max

k
Var[Yk]1/2.

Combining we have the result. �

LEMMA A.5. Let (Y1, Y2) denote a (d1 +d2)-dimensional nondegenerate Gaussian vec-
tor. For each t ∈ [0,1], define Y t = (Y1, tY2 + √

1 − t2Ỹ2) where Ỹ2 is a copy of Y2 indepen-
dent of (Y1, Y2). Then

DC
(
Y 1) ≤ DC

(
Y t ) ≤ DC

(
Y 0).
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PROOF. Observe that DC(Y t ) has the block form[
A tB

tBT C

]
,

where A and C are (strictly) positive-definite. Since A is positive-definite and BC−1BT is
symmetric and positive-definite, there exists a P such that

A = P T P and BC−1BT = P T DP,

where D = Diag((di)i) is a positive diagonal matrix. Hence

DC
(
Y t ) = det(C)det

(
A − t2BC−1BT ) = det(C)det(P )2

∏
i

(
1 − t2di

)
which, since di > 0, is decreasing in t ∈ [0,1]. �

APPENDIX B: PROOF OF PITERBARG’S FORMULA

In the proof of Piterbarg’s formula, we will use the classical fact that the density function
ϕ(x;�) of a (possibly noncentred) Gaussian vector with covariance � satisfies

(48)
1

2

∂2

∂x2
i

ϕ(x;�) = ∂

∂�ii

ϕ(x;�) and
∂2

∂xi∂xj

ϕ(x;�) = ∂

∂�ij

ϕ(x;�), i 
= j.

PROOF OF LEMMA 2.22. Let (fi)i≥1 and (gi)i≥1 be sequences of smooth compactly
supported functions on R

m that converge to 1A and 1B in the sense of tempered distributions.
Following the proof of [40], Theorem 1.4, by writing the derivative with respect to t in terms
of derivatives with respect to the elements of the covariant matrix, and then by using the
identity (48) and integrating by parts, we obtain

d

dt
E
[
fi(Xt)gi(Yt )

] =
m∑

k=1

∫
R2m

∂xk
fi(x)∂yk

gi(y)γt (x, y)dx dy

=
m∑

k=1

∫
R2m

fi(x)gi(y)∂xk
∂yk

γt (x, y)dx dy;

(all the other terms disappear since the only covariances that depend on t are
Cov(Xt,k, Yt,k) = t). Passing to the limit as i → ∞ gives that

d

dt
P[Zt ∈ A × B] = d

dt
E
[
1A(Xt)1B(Yt )

] =
m∑

k=1

∫
R2m

1A(x)1B(y)∂xk
∂yk

γt (x, y)dx dy.

By Gauss’ theorem, applied both in the xk and in the yk variables, we have∫
R2m

1A(x)1B(y)∂xk
∂yk

γt (x, y)dx dy =
∫
∂A×∂B

νA(x)kνB(y)kγt (x, y)dx dy,

where νA(x)k is the kth component of νA(x), and dx on the right-hand side of the equation
is the volume element on ∂A (and similarly for B and y). Since

∑m
k=1(νA(x))k(νB(y))k =

〈νA(x), νB(y)〉,
d

dt
P[Zt ∈ A × B] =

∫
∂A×∂B

〈
νA(x), νB(y)

〉
γt (x, y)dx dy,

which proves the first part of the statement.
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To prove the last part of the lemma, let us consider X to be a translation of the standard
Gaussian vector by μ. Let Y be an independent copy of X. We can define Xt = X and Yt =
t (X −μ)+√

1 − t2(Y −μ)+μ. It is easy to see that these vectors satisfy the assumptions in
the first part of the lemma. Note that in this case Z0 = (X,Y ) and Z1 = (X,X). Integrating
with respect to t from 0 to 1, we have∫ 1

0

∫
∂A×∂B

〈
νA(x), νB(y)

〉
γt (x, y)dx dy dt = P

[
(X,X) ∈ A × B

] − P
[
(X,Y ) ∈ A × B

]
.

Since P[(X,X) ∈ A × B] = P[X ∈ A ∩ B] and P[(X,Y ) ∈ A × B] = P[X ∈ A]P[X ∈ B],
this proves the second part of the statement. �

APPENDIX C: ON STRATIFIED CRITICAL POINTS

Here, we prove two elementary lemmas about stratified critical points. Recall that M is a
smooth manifold and (B,F) is a stratified set of M .

LEMMA C.1. Let (uk, xk)k∈N be a sequence in C1(M)×B converging to a limit (u, x) ∈
C1(M) × B . Assume that, for each k ∈ N, xk is a stratified critical point of uk . Then x is a
stratified critical point of u.

Lemma C.1 implies that the discriminant DB is C1-closed. Moreover, taking uk = u for
all k, it implies that the set of stratified critical points of u in B is compact.

PROOF OF LEMMA C.1. Without loss of generality, we may assume that there exist
F,F ′ ∈ F such that xk ∈ F for each k ∈ N and x ∈ F ′. If F ′ = F , then the sequence (uk|F )k
converges to u|F in C1 so dxu|F = 0 and x is a stratified critical point of u. Otherwise,
F ′ < F and dxu vanishes on TxF |F ′ which contains TxF

′, so x is a critical point of u|F ′ . �

LEMMA C.2. Let u ∈ C2(M) and let x ∈ B be a nondegenerate stratified critical point
of u. Then x is isolated in the set of stratified critical points in B .

Lemma C.2 shows that Definition 3.1 is the natural definition of nondegenerate critical
points in the setting of stratified sets.

PROOF OF LEMMA C.2. Let x be a stratified critical point of u belonging to F ′ ∈ F .
Assume that there exists a sequence (xk)k∈N of stratified critical points of u distinct from x

converging to x; let us show that x is degenerate. Without loss of generality, we may assume
that there exists F ∈ F such that, for each k ∈ N, xk ∈ F . If F ′ = F , then x is a degenerate
critical point of u|F ′ . Otherwise, F ′ < F and dxu vanishes on TxF |F ′ , in which case x is a
degenerate stratified critical point of u. �
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