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We study a two-dimensional massless field in a box with potential
V (∇φ(·)) and zero boundary condition, where V is any symmetric and uni-
formly convex function. Naddaf–Spencer (Comm. Math. Phys. 183 (1997)
55–84) and Miller (Comm. Math. Phys. 308 (2011) 591–639) proved that the
rescaled macroscopic averages of this field converge to a continuum Gaussian
free field. In this paper, we prove that the distribution of local marginal φ(x),
for any x in the bulk, has a Gaussian tail. We further characterize the lead-
ing order of the maximum and the dimension of high points of this field, thus
generalizing the results of Bolthausen–Deuschel–Giacomin (Ann. Probab. 29
(2001) 1670–1692) and Daviaud (Ann. Probab. 34 (2006) 962–986) for the
discrete Gaussian free field.

1. Introduction.

1.1. Model. This paper studies the extreme values of certain two-dimensional lattice gra-
dient Gibbs measures (also known as the Ginzburg–Landau field). Take a nearest neighbor
potential V ∈ C2(R) that satisfies

V (x) = V (−x),(1.1)

0 < c− ≤ V ′′(x) ≤ c+ < ∞,(1.2)

where c−, c+ are positive constants.
Let DN := [−N,N]2 ∩ Z

2 and ∂DN consist of the vertices in DN that are connected to
Z

2 \ DN by some edge. Set D◦
N = DN \ ∂DN . For x, y ∈ Z

2 we also write x ∼ y if x and y

are connected by an edge. The Ginzburg–Landau Gibbs measure on DN with zero boundary
condition is given by

(1.3) dμN = Z−1
N exp

[
− ∑

x∈D◦
N

∑
y∼x

V
(
φ(x) − φ(y)

)] ∏
x∈D◦

N

dφ(x)
∏

x∈∂DN

δ0
(
φ(x)

)
,

where

δ0(y) =
{

1 y = 0,

0 else,

and ZN is the normalizing constant such that μN is a probability measure. We denote
by E

DN,0 and VarDN,0 the expectation and variance with respect to the measure μN . The
Ginzburg–Landau model is a natural generalization of the discrete Gaussian free field (DGFF,
corresponding to the case V (x) = x2/2). It is no longer Gaussian in general, but still log-
correlated in two dimension. In fact, one can prove that the limit

(1.4) lim
N→∞

VarDN,0 φ(0)

logN
= g for some g = g(V ) > 0
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exists; this result is new and follows from the proof of Theorem 1.4 in this paper. For the
infinite volume limit of the measure (1.3), the analogue of (1.4) was recently established in
[3]. The constant g = g(V ) is known as the effective stiffness of the random surface model.

1.2. Results. Our main result concerns the maximum of the Ginzburg–Landau field φ in
DN . For potential V (·) satisfying (1.1) and (1.2), the well-known Brascamp–Lieb inequalities

(Lemma 2.1) imply that with high probability,
supv∈DN

φ(v)

logN
is uniformly bounded above by a

constant depending only on c− (see [24] where a constant lower bound was also obtained,
and Remark 2.3 below). We prove that this random variable in fact satisfies a law of large
numbers, with more precise tail bounds given by (4.17) and (5.1) below.

THEOREM 1.1. Let φ be sampled from the Gibbs measure (1.3). Assume the potential
V (·) satisfies (1.1) and (1.2). Then there is a constant g = g(V ), such that

(1.5)
supv∈DN

φ(v)

logN
→ 2

√
g in L2.

REMARK 1.2. The explicit dependence of g(V ) on V is not known. The same constant
also appears in the covariance of the continuum Gaussian free field that emerges as the scaling
limit of the measure (1.3); see [31, 44]. One can give a variational characterization of g(V )

(see, e.g., [7, 31]).

Theorem 1.1 is known for the discrete Gaussian free field (see [12]), but not for any other
Ginzburg–Landau fields. We will summarize related results in Section 1.3 below. The upper
bound of Theorem 1.1 will be proved in Section 4.2 and the lower bound in Section 5.

Our next result studies the fractal structure of the sets where the Ginzburg–Landau field φ

is unusually high. We say that v ∈ DN is an η-high point for the Ginzburg–Landau field if
φ(v) ≥ 2

√
gη logN . The following theorem generalizes the dimension of the high points for

Gaussian free field, obtained by Daviaud [23].

THEOREM 1.3. Denote by HN(η) = {v ∈ DN : φ(v) ≥ 2
√

gη logN} the set of η-high
points. Then for any η ∈ (0,1),

(1.6)
log |HN(η)|

logN
→ 2

(
1 − η2)

in probability.

This result is consistent with the conjecture that the level sets of the Ginzburg–Landau
model with zero boundary condition converge to CLE(4), a collection of conformally invari-
ant random loops (see [48] for the definition of the CLE and how to construct a coupling
with GFF). Theorem 1.3 will be proved in Section 5.4. The main step in the proofs of the
upper bound (4.17) and the upper bound of (1.6) is the following pointwise tail bound for
the Ginzburg–Landau field (1.3). Here and in the sequel of the paper, for a set A ⊂ Z

2 and a
point v ∈ Z

2, we use dist(v,A) to denote the (lattice) distance from v to A.

THEOREM 1.4. Let g be the constant as in Theorem 1.1. Given any C < ∞, we have for
all v ∈ DN , and all 0 < u < C log dist(v, ∂DN),

(1.7) P
DN,0(φ(v) ≥ u

)≤ exp
(
− u2

2g log dist(v, ∂DN)
+ o

(
log dist(v, ∂DN)

))
.
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The tail bound (1.7) was only known for a class of potentials V (·) that has elliptic contast
at most 2 (i.e., c0 ≤ V ′′ ≤ 2c0, for some c0 > 0) and bounded third derivative, and φ is the
infinite volume limit of the Gibbs measure (1.3) (see [22]). Theorem 1.4 will be proved in
Section 4.

1.3. Historical survey.

1.3.1. Ginzburg–Landau fields. The Gibbs measure (1.3) was first introduced by Bras-
camp, Lebowitz and Lieb, in the name of anharmonic crystals [19]. It is believed that the
large scale behaviors of this class of Gibbs measures resemble that of the Gaussian free field.
Rigorous mathematical studies for convex perturbations of GFF (in particular, the special ex-
ample called lattice dipole gas) were initiated by the renormalization group approach of [30],
and further developed by [20], which confirm its correlation function behaves like a contin-
uous GFF in the scaling limit. Renormalization group is a powerful tool to study gradient
field models, but it is only applicable in the perturbative case, that is, when the potential is
given by a small perturbation of Gaussian, and thus the Hessian of the Hamiltonian is close
to the standard Laplacian. The nonperturbative approach that allows one to study any con-
vex potential V is based on the Helffer–Sjöstrand formula [32, 33] that represents the mean
and covariance of such fields in terms of an elliptic operator (or, probabilisticly, a random
walk in dynamic random environment). We give here an incomplete list of references that
study the scaling limits of gradient field models. The classification of the gradient Gibbs
states on Z

d were proved by Funaki and Spohn [29]. Deuschel, Giacomin and Ioffe [25]
studied the large deviation principle of the macroscopic surface profile in a bounded domain,
where they also introduce the random walk representation of the Helffer–Sjöstrand formula.
The central limit theorem for linear functionals of the gradient fields was first established
by Naddaf and Spencer [44] for the infinite volume gradient Gibbs states with zero tilt (the
corresponding dynamical CLT was proved in [31]), and later by Miller [43] for the gradient
fields in bounded domains. It is also proved in [42] that the level set for such gradient fields
in a bounded domain (with certain Dirichlet boundary condition) converges to the chordal
SLE(4), an example of the conformally-invariant random curve in the plane known as the
Schramm–Loewner Evolution (for a survey on SLE see, e.g., [39]).

Nonlinear functionals of the gradient fields are much less known. With additional bounded
ellipticity assumption on V , it is proved by Conlon and Spencer [22] that for the infinite
gradient-Gibbs states with zero slope, there exists C < ∞ such that∣∣∣∣logE

[
et(φ(0)−φ(x))]− t2

2
Var

[
φ(0) − φ(x)

]∣∣∣∣≤ Ct3∥∥V ′′′∥∥∞.

Their argument is based on the Helffer–Sjöstrand formula and operator theory on weighted
Hilbert space. This phenomenon is remarkable because it indicates the pointwise distribution
of φ(0) − φ(x) is nearly Gaussian, and one has to go to the large deviation regime (corre-
sponding to t = O(log |x|)) to see non-Gaussian tails. In this paper, we remove the bounded
ellipticity assumption, and rely our proof on a different strategy.

1.3.2. Extrema of log-correlated random fields. Although the macroscopic behavior of
linear functionals of the gradient fields are now well understood, finer properties of the field,
such as the behavior of its maximum, remain to be clarified. Questions about the maximum
fit into the wider context of the study of extrema of log-correlated random fields.

Multiscale analysis is the key to study the extrema of such random fields. The conceptually
simplest cases, which already exhibit the most crucial phenomena underlying the behavior
the extrema, are tree models such as Branching Brownian Motion and Branching Random
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Walk. In his seminal work, Bramson introduced a truncated second moment method to study
Branching Brownian Motion [13, 17]. This method has been much refined to obtain detailed
results to the level of the convergence of the extremal process in Bramson’s setting and for
Branching Random Walk [1, 2, 6, 14, 41].

Beyond such processes, the most investigated case is the Gaussian free field. The discrete
Gaussian free field is the special case V (x) = 1

2x2in the present set-up. Bolthausen, Deuschel
and Giacomin [12] first showed the equivalent of our main result, which was later improved
[15, 16] to

sup
x∈DN

φ(x) = 2
√

g0 logN − 3

4
√

g0 log logN + O(1) as N → ∞,

where g0 = 2/π . Furthermore, it has been proved that the O(1) term converges in law and the
geometric properties of the near extrema has been studied, including the convergence of the
extremal process [9–11, 27]. The equivalent of our Theorem 1.3 for the discrete Gaussian free
field was proved in [23]. Some results have been generalized to a wider class of log-correlated
Gaussian fields [26].

The article [8] studied the extrema of a log-correlated field that is neither Gaussian nor
endowed with an exact tree structure. It constructed what can be interpreted as a sequence
of regularizations of the field and from these obtained a collection of approximate branching
random walks indexed by the points of the field, to which Bramson’s method can be applied
(regularization also plays an important role in problems connected to the continuum Gaussian
free field [28, 34, 46, 47]).

[37] adapted this approach to the Gaussian free field, with the regularizations given by
harmonic averages on concentric boxes (“local projections”). It also describes a “K-level
coarse-graining” which is a particularly streamlined version of the multiscale argument that
provides leading order estimates for the maximum from minimal technical inputs. Subse-
quently, versions of it has been used to study the extrema of many cases of non-Gaussian
log-correlated random fields [4, 5, 21, 38, 45].

1.4. Proof strategy. To prove the tail bound (1.7), the estimates (1.5) for the maximum
and (1.6) for the high points we adapt the aforementioned local projections and K-level
coarse-graining of [37]. Namely, we consider the harmonic averages over circles of the field
around each point, as a process indexed by the side-length of the box, and use the first mo-
ment method to obtain an upper bound for the maximum and a truncated second moment
argument involving the average process to get a lower bound for the maximum. These av-
erage processes are expected to evolve similarly to branching random walks as one varies
the side-length of the box at dyadic scales. For the Gaussian free field, Gaussian orthogonal
decomposition implies the increments of such harmonic averages are independent, making
the random walk approximation fairly straightforward. This fails for the general gradient
field models studied in this paper. In fact, one of the main contributions of this paper is to
prove the asymptotic decoupling of these increments (Theorem 4.3). We apply the useful tool
from [43], that gives an approximate harmonic coupling of the Ginzburg–Landau field on a
bounded domain with different boundary conditions. Inspired by the K-level coarse-graining
of [37] we exploit that for the level of accuracy we seek in the present paper, it is enough
to consider the behavior of the approximate random walks over a relatively small number of
large increments, corresponding to a small number of scales (only finitely many in the case
of the Gaussian free field; for technical reasons, we use a slowly growing number of incre-
ments). The approximate harmonic coupling allows us to show that each increment of the
harmonic average, conditioned on the Ginzburg–Landau field outside, is distributed not far
from a Gaussian, after discarding a thin layers between each scale. This gives the pointwise
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tail bound for the Ginzburg–Landau field, and thus also the upper bound in Theorem 1.1.
A similar argument via the truncated second moment method gives the two-point tail bounds
needed to obtain the lower bound in Theorem 1.1.

1.5. Open question. We finish the Introduction with a corresponding open question for
dimer models. A (uniform) dimer model on Z

2 can be thought of as an integer valued random
surface h(v), v ∈ Z

2. It is an integrable model with determinantal structure. It is shown in [35]
and [36] that the height fluctuation h(0) − h(v) has logarithmic variance and, moreover, the
rescaled height function converges weakly to GFF. A main conjecture in this field is that the
level sets of the height function converges to CLE(4). Still, it would be very interesting to
prove the maximum of the dimer height function satisfies Theorem 1.1. The method in the
present paper does not apply directly because the harmonic coupling (see Section 2.3) have
not yet been established for the dimer model.

2. Tools.

2.1. Brascamp–Lieb inequality. One can bound the variances and exponential moments
with respect to the Ginzburg–Landau measure by those with respect to the Gaussian measure,
using the following Brascamp–Lieb inequality. Let φ be sampled from the Gibbs measure
(1.3), with a nearest-neighbor potential V ∈ C2(R) that satisfies infx∈R V ′′(x) ≥ c− > 0.
Given f ∈ R

DN , we define

〈φ,f 〉 := ∑
x∈DN

φ(x)f (x).

LEMMA 2.1 (Brascamp–Lieb inequalities [18]). Let EDN,0
DGFF and VarDN,0

DGFF denote the ex-
pectation and variance with respect to the discrete GFF measure (i.e., (1.3) with V (x) =
x2/2). Then, for any f ∈ R

DN ,

VarDN,0〈φ,f 〉 ≤ c−1− VarDN,0
DGFF〈φ,f 〉,(2.1)

E
DN,0(〈φ,f 〉 −E

DN,0〈φ,f 〉)2k

(2.2)
≤ c−k− E

DN,0
DGFF

(〈φ,f 〉 −E
DN,0
DGFF〈φ,f 〉)2k for k ∈ N,

E
DN,0[exp

(〈φ,f 〉 −E
DN,0〈φ,f 〉)]≤ exp

(
1

2
c−1− VarDN,0

DGFF〈φ,f 〉
)
.(2.3)

The Brascamp–Lieb inequalities can be used to show the following a priori tail bound
for φ.

LEMMA 2.2. There is a positive constant cBL such that

(2.4) P
DN,0(φ(v) ≥ u

)≤ e
−cBL

u2
dist(v,∂DN ) for v ∈ DN.

PROOF. By Chebyshev’s inequality,

P
DN,0(φ(v) ≥ u

)≤ e−tu
E

DN,0 exp
(
tφ(v)

)
.

Applying the Brascamp–Lieb inequality with f = δv , and using the fact that (see the Green’s
function asymptotics in [40])

VarDN,0
DGFF φ(v) = GDN

(v, v) =
√

2/π log dist(v, ∂DN) + O(1),
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we have

P
DN,0(φ(v) ≥ u

)≤ exp
(
−tu + t2

2
c1 log dist(v, ∂DN)

)
.

Optimizing over t then yields the result. �

REMARK 2.3. By a union bound over the (2N + 1)2 points of DN and take u �√
1/cBL logN , so that the right-hand side of (2.4) is � N−2, one obtains an upper bound

of
√

1/cBL logN for the maximum of φ(v). This is an upper bound of the right order, but the
constant in front of logN is larger than the “true” one 2

√
g.

2.2. The Helffer–Sjöstrand representation. In this section, we summarize the idea of [44]
(which was in turn inspired by the works [33]), that the variance of functions with respect
to the Ginzburg–Landau field can be written in terms of the Helffer–Sjöstrand operator. The
Helffer–Sjöstrand representation was used crucially in [44] to prove a central limit theorem
for the statistics of ∇φ.

It is known that the finite volume measure (1.3) is invariant under the Langevin-dynamics

(2.5)

⎧⎪⎨
⎪⎩

dφt (x) = ∑
y∼x

V ′(φt (y) − φt (x)
)
dt + √

2dBt(x) x ∈ D◦
N,

φt (x) = 0 x ∈ ∂DN,

where {Bt(x) : x ∈ D◦
N } is a family of independent Brownian motions. Let ωx : DN → R

be defined by ωx(y) = 1x=y . The infinitesimal generator of this process is the operator �φ

defined by

�φF(φ) := ∑
x∈D◦

N

∂2
xF (φ) − ∑

x∈D◦
N

∑
y∼x

V ′(φ(y) − φ(x)
)
∂xF (φ),

where

∂xF (φ) := lim
h→0

1

h

(
F(φ + hωx) − F(φ)

)
.

Define the Helffer–Sjöstrand operator L := −�φ + ∇∗V ′′(∇φ)∇ . Probabilistically, L is the
generator for the Markov process (Xt ,φt ), where φt is the Langevin dynamics (2.5) and Xt

is a continuous time random walk in DN with jump rates V ′′(φt (y) − φt(x)), stopped when
hitting the boundary.

The following representation of the variance is obtained in [44] (see also [25]).

PROPOSITION 2.4 (Helffer–Sjöstrand representation). For all F such that

E
DN,0

[
F(φ)2 + ∑

x∈D◦
N

(
∂xF (φ)

)2]
< ∞,

we have

VarDN,0[F(φ)
]= 〈

∂F,L−1∂F
〉
,

where 〈∂F,L−1∂F 〉 :=∑
x,y∈D◦

N
E

DN,0[∂xFL−1
xy ∂yF ].

If we consider a linear statistics of φ, and take F(φ) = ∑
x∈DN

ρ(x)φ(x) for some test
function ρ, then the above proposition implies

(2.6) VarDN,0
[ ∑
x∈DN

ρ(x)φ(x)

]
= 〈

ρ,L−1ρ
〉
.

So that the variance of a linear statistics is given by a bilinear quadratic form.
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2.3. Approximate harmonic coupling. By definition, the Ginzburg–Landau measures sat-
isfy the domain Markov property: conditioned on the values on the boundary of a domain,
the field inside the domain is again a gradient field with boundary condition given by the con-
ditioned values. For the discrete GFF, there is in addition a nice orthogonal decomposition.
More precisely, the conditioned field inside the domain is the discrete harmonic extension
of the boundary value to the whole domain plus an independent copy of a zero boundary
discrete GFF.

While this exact decomposition does not carry over to general Ginzburg–Landau measures,
the next result due to Jason Miller (see [43]), provides an approximate version. For D ⊂ Z

2,
define the Ginzburg–Landau measure on D with Dirichlet boundary condition f by

(2.7) dμ
f
D = Z−1

D exp
[
− ∑

x∈D◦

∑
y∼x

V
(
φ(x) − φ(y)

)] ∏
x∈D◦

dφ(x)
∏

x∈∂D

δ0
(
φ(x) − f (x)

)
.

THEOREM 2.5 (Theorem 1.2 in [43]). Let D ⊂ Z
2 be a simply connected domain of

diameter R, and denote Dr = {v ∈ D : dist(v, ∂D) > r}. Let 
 be such that f : ∂D → R

satisfies maxx∈∂D |f (x)| ≤ 
| logR|
. Let φ be sampled from the measure (2.7) with zero
boundary condition, and φf be sampled from the measure (2.7) with boundary condition f .
Then there exist constants c, γ, δ ∈ (0,1), that only depend on V , so that if r > cRγ then
the following holds. There exists a coupling (φ,φf ), such that if φ̂ : Dr → R is discrete
harmonic with φ̂|∂Dr = (φf − φ)|∂Dr , then

P
(
φf = φ + φ̂ in Dr)≥ 1 − c(
)R−δ.

An immediate application of Theorem 2.5 shows that the mean of a Ginzburg–Landau
field at one point in the bulk is approximately (discrete) harmonic.

THEOREM 2.6 (Theorem 1.3 in [43]). Suppose the same conditions in Theorem 2.5
holds. Let φf , c, γ , δ, Dr be defined as in Theorem 2.5. For all r > cRγ , and discrete
harmonic function φ̂ : Dr →R with φ̂|∂Dr = Eφf |∂Dr , then

max
v∈Dr

∣∣Eφf (v) − φ̂(v)
∣∣≤ c′(
)R−δ.

Theorem 2.5 allows to compare a Ginzburg–Landau field with nonzero boundary condition
with one that has zero boundary condition. Since Theorem 2.5 requires that the function f is
not too large, we introduce the “good” event

G(c) =
{
φ : max

v∈D

∣∣φ(v)
∣∣< c(logR)2

}
,

which is typical since even using only Brascamp–Lieb one has that maxv∈D |φ(v)| ≤
O(logR) with high probability. Indeed, we have the following.

LEMMA 2.7. There is some c1 = c1(c) > 0, such that PD,0(G(c)c) ≤ exp(−c1(logR)3).

PROOF. By the union bound,

P
D,0(Gc)≤ ∑

v∈D

P
D,0(∣∣φ(v)

∣∣> c(logR)2).
We apply Lemma 2.2, to obtain

P
D,0(∣∣φ(v)

∣∣> c(logR)2)≤ exp
(−(4C)−1(logR)3 + O(logR)2),

for some C < ∞, and summing over v ∈ D then completes the proof. �

We will use repeatedly the following consequence of Theorem 2.5. It applies to functions
ρ such that the integral of ρ against a harmonic function is always zero.
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LEMMA 2.8. There exist constants δ, γ > 0 such that for any simply connected D ⊂
Z

2 of diameter R, any r > Rγ and any ρ : D → R supported on Dr that satisfies∑
x∈Dr ρ(x)f (x) = 0 for all functions f harmonic in Dr , and 1

R

∑
y∈D |ρ(y)| < ∞, we have

for R large enough,∣∣∣∣ED,f

[
exp

(
R−1

∑
x∈D

ρ(x)φf (x)

)
1G

]
−E

D,0
[
exp

(
R−1

∑
x∈D

ρ(x)φ(x)

)
1G

]∣∣∣∣
≤ 2 exp

(
c VarD,0

DGFF

(
R−1

∑
x∈D

ρ(x)φ(x)

))
R−δ,

for some c < ∞.

REMARK 2.9. This lemma is useful if VarD,0
DGFF(R−1∑

x∈D ρ(x)φ(x)) � δ logR.

PROOF. Applying Theorem 2.5, there is an event C with P(Cc) ≤ R−δ0 , where δ0 is the
constant δ in Theorem 2.5, such that on C we have φf − φ = φ̂ in Dr . Therefore, on C∑

x∈D

ρ(x)φf (x) = ∑
x∈Dr

ρ(x)φf (x) = ∑
x∈Dr

ρ(x)φ(x) + ∑
x∈Dr

ρ(x)φ̂(x)

= ∑
x∈Dr

ρ(x)φ(x) = ∑
x∈D

ρ(x)φ(x),

where the first and the last equality follows from the fact that ρ is supported in Dr . On Cc we
apply Hölder’s inequality to obtain

E
D,f

[
exp

(
R−1

∑
x∈D

ρ(x)φf (x)

)
1G∩Cc

]

≤ P
(
Cc)1/2

E
D,f

[
exp

(
2R−1

∑
x∈D

ρ(x)φf (x)

)]1/2

(2.8)

≤ R−δ0/2
E

D,f

[
exp

(
2R−1

∑
x∈D

ρ(x)φf (x) −E
D,f

[
2R−1

∑
x∈D

ρ(x)φf (x)

])]1/2

× exp
(
E

D,f

[
R−1

∑
x∈D

ρ(x)φf (x)

])
.

By the Brascamp–Lieb inequality (2.3), there exist some c < ∞, such that

E
D,f

[
exp

(
2R−1

∑
x∈D

ρ(x)φf (x) −E
D,f

[
2R−1

∑
x∈D

ρ(x)φf (x)

])]

≤ exp
(
c VarD,f

DGFF

(
R−1

∑
x∈D

ρ(x)φf (x)

))
.

(2.9)

On the other hand, applying Theorem 2.6 yields∣∣∣∣ED,f

[
R−1

∑
x∈D

ρ(x)φf (x)

]∣∣∣∣=
∣∣∣∣ED,f

[
R−1

∑
x∈D

ρ(x)φf (x)

]
− R−1

∑
x∈D

ρ(x)φ̂(x)

∣∣∣∣
≤ ∥∥ED,f φf − φ̂

∥∥
L∞(Dr)

1

R

∑
x∈D

∣∣ρ(x)
∣∣≤ CR−δ0 .

(2.10)
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Combining (2.8), (2.9) and (2.10), we have for R large enough

E
D,f

[
exp

(
R−1

∑
x∈D

ρ(x)φf (x)

)
1G∩Cc

]

≤ C exp
(
c VarDGFF

(
R−1

∑
x∈D

ρ(x)φf (x)

))
R−δ0/2.

And similarly,

E
D,0

[
exp

(
R−1

∑
x∈D

ρ(x)φ(x)

)
1G∩Cc

]
≤ C exp

(
c VarDGFF

(
R−1

∑
x∈D

ρ(x)φ(x)

))
R−δ0/2.

Since the variance of linear functionals of Gaussian free field does not depend on boundary
conditions, we complete the proof. �

2.4. Central limit theorem. We now state the central limit theorem for macroscopic av-
erages of φ, proved in [43] as a consequence of Theorem A in [44] and Theorem 2.5 stated
above.

Let D ⊂ R
2 be a smooth simply connected domain. Before stating the central limit theo-

rem, we give the definition of the (continuum) a-Gaussian Free Field (a-GFF) h in D with
zero boundary condition, where a is a 2 × 2 positive definite matrix. The a-GFF in D is
the standard Gaussian in H 1

0 (D), such that for any f ∈ H 1
0 (D),

∫
D ∇h · ∇f is a Gaussian

random variable with mean 0 and variance
∫
D ∇f · a∇f . The a-GFF arise naturally as the

scaling limit of the fluctuation of the Ginzburg–Landau field (2.7) with general boundary
data; see [43]. In this paper, we only use the following central limit theorem for the measure
with zero boundary condition (1.3), and a becomes to a diagonal matrix (or a scalar) due to
the rotational symmetry.

THEOREM 2.10. Let D ⊂ R
2 be a piecewise smooth, simply connected domain, and

D(N) = D ∩ 1
N
Z

2. Let φ be sampled from the Ginzburg–Landau measure on D(N) with zero
boundary condition. Suppose that the sequence of functions ρN : D(N) →R satisfies

(2.11)
∑

x∈D(N)

ρN(x)H(x) = 0 for any harmonic function H : D(N) →R.

Also assume there exist some ρ ∈ C∞
0 (D), such that

(2.12)
∫
D

ρ(x)H(x)dx = 0 for any harmonic function H : D →R,

and N‖ρN − ρ‖L∞(D) → 0 as N → ∞. Then the linear functional

N−1
∑

x∈D(N)

ρN(x)φ(x)

converges in L2k , k ∈ N, to the random variable∫
D

h(x)ρ(x) dx,

where h is the a-GFF on D with zero boundary condition, for some a(V ) = ā(V )I that
satisfies c− ≤ ā ≤ c+.

We will apply Theorem 2.10 with ρN defined in terms of the harmonic measure of a
discrete cube (see (3.3) and comments thereafter) and ρ will be the corresponding quantity
defined using the harmonic measure of the standard Brownian motion.
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PROOF. If ρN = ρ for all N ≥ 1, this is a consequence of Theorem 1.1 in [43]. It suffices
to show that if ρN converges to ρ sufficiently fast, the linear statistics converges to the same
limit. This can be shown by a direct comparison of their variance using the Helffer–Sjöstrand
representation (Proposition 2.4).

In fact, applying (2.6) and use bilinearity we have

Var
[
N−1

∑
x∈D(N)

ρN(x)φ(x)

]
− Var

[
N−1

∑
x∈D(N)

ρ(x)φ(x)

]

=
〈

1

N
(ρN − ρ),L−1 1

N
ρ

〉
+
〈

1

N
ρN,L−1 1

N
(ρN − ρ)

〉
,

(2.13)

where we recall L := −�φ + ∇∗V ′′(∇φ)∇ is the Helffer–Sjöstrand operator. The uniform
convexity assumption of V implies that L ≥ c−�, and therefore ∇∗L−1∇ ≤ c−1− ∇∗�−1∇ is
a bounded operator Z2 → Z

2.
Notice that (2.11) and (2.12) implies we can write 1

N
ρN = ∇gN and 1

N
ρ = ∇g for some g,

gN , and N‖ρN −ρ‖L∞(D) → 0 suggests that one may take g, gN so that ‖gN −g‖L∞(D(N)) =
o( 1

N
). Substitute them into (2.13) and we obtain∣∣∣∣Var

[
N−1

∑
x∈D(N)

ρN(x)φ(x)

]
− Var

[
N−1

∑
x∈D(N)

ρ(x)φ(x)

]∣∣∣∣
≤ ∣∣〈gN − g,∇∗L−1∇g

〉∣∣+ ∣∣〈gN,∇∗L−1∇(gN − g)
〉∣∣

≤ C‖gN − g‖L2(D(N))

(‖g‖L2(D(N)) + ‖g‖L2(D(N))

)
.

Since ‖gN − g‖L∞(D(N)) = o( 1
N

), we have ‖gN − g‖L2(D(N)) → 0 as N → ∞, and this com-
pletes the proof for k = 1. The general case k ≥ 2 follows from combining the above argu-
ment for k = 1 with the exponential Brascamp–Lieb inequality (2.3). �

For the rest of the paper, we will only apply the convergence of the second moment (i.e.,
k = 1 result) in Theorem 2.10.

3. Harmonic averages. Our method to prove Theorem 1.4 is built upon Theorem 2.5
and a detailed study of the harmonic average of the Ginzburg–Landau field. Given B ⊂ Z

2,
v ∈ B and y ∈ ∂B , we denote by aB(v, ·) the harmonic measure on ∂B seen from v. In other
words, let Sx denote the simple random walk starting at x, and τ∂B = inf{t > 0 : Sx[t] ∈ ∂B},
we have

aB(x, y) = P
(
Sx[τ∂B] = y

)
.

Given v ∈ Z
2 and R > r > 0, let BR(v) = {y ∈ Z

2 : |v1 − y1| ≤ R, |v2 − y2| ≤ R}, and
Ar,R(v) := BR(v)\Br(v). Define the circle average of the Ginzburg–Landau field with radius
R at v by

(3.1) CR(v,φ) = ∑
y∈∂BR(v)

aBR(v)(v, y)φ(y).

For each ε,R > 0, such that (1 + ε)R < dist(v, ∂DN), we take a nonnegative smooth
radial function fε ∈ C∞

c ([1 − ε,1 + ε]) such that fε(1 − s) = fε(1 + s) for s ∈ [0, ε] and∫ 1+ε
1−ε fε(s) ds = 1. We further define

(3.2) XR(v,φ) =
(1+ε)R∑

r=(1−ε)R

fε(r/R)Cr(v,φ).
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The crucial object that we use below is the increment of the harmonic average process X.
For v ∈ DN , (1 + ε)−1 dist(v, ∂DN) > R1 > R2 > 0, we would like to study the increment

XR2(v,φ) − XR1(v,φ)

=
(

(1+ε)R2∑
r=(1−ε)R2

fε(r/R2) −
(1+ε)R1∑

r=(1−ε)R1

fε(r/R1)

) ∑
y∈∂Br (v)

aBr(v)(v, y)φ(y).

This can be written as
∑

y∈DN
ρN(v, y)φ(y), where we define

(3.3) ρR1,R2(v, y) =
[
fε

( |v − y|
R2

)
− fε

( |v − y|
R1

)]
aB|v−y|(v)(v, y).

The definition of ρR1,R2 depends on R1, R2. Later we will take R1, R2 at some scale r(N),
where r(N) grows to infinity as a power of N . In such situation, we will simply denote ρR1,R2

as ρr(N) or ρN , to emphasize its dependence on N .

LEMMA 3.1. For any discrete harmonic function h in DN , we have
∑

y∈DN
ρN(v, y) ×

h(y) = 0.

PROOF. Suppose h is define up to ∂DN , and h|∂DN
= H . We conclude the proof by

showing for i = 1,2,

(1+ε)Ri∑
r=(1−ε)Ri

fε(r/Ri)
∑

y∈∂Br (v)

aBr(v)(v, y)h(y) = h(v).

Indeed, since h is harmonic,

h(y) = ∑
z∈∂DN

aDN
(y, z)H(z).

Using the fact that ∑
y∈∂Br (v)

aBr(v)(v, y)aDN
(y, z) = aDN

(v, z),

we obtain

(1+ε)Ri∑
r=(1−ε)Ri

fε(r/Ri)
∑

y∈∂Br(v)

aBr(v)(v, y)h(y) =
(1+ε)Ri∑

r=(1−ε)Ri

fε(r/Ri)
∑

z∈∂DN

aDN
(v, z)H(z)

= h(v). �

The following result is a consequence of Theorem 2.5 and the lemma above.

LEMMA 3.2. Suppose the same conditions in Theorem 2.5 holds. Given v ∈ DN , R1 >

R2 > 0, ε > 0 such that (1 + 2ε)R1 < dist(v, ∂DN), (1 + 2ε)R2 < (1 − 2ε)R1. Let δ be the
constant from Theorem 2.5. Let φf be sampled from Ginzburg–Landau field (2.7), and φ0

be sampled from the zero boundary Ginzburg–Landau field on DN . Then, on an event with
probability 1 − O(R−δ

1 ), we have

XR2

(
v,φf )− XR1

(
v,φf )= XR2

(
v,φ0)− XR1

(
v,φ0).
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We sometimes omit the dependence of X on v and φ when it is clear from the context.
We are mostly concerned with large deviation estimates and, therefore, with moment gen-

erating functions. Thus we will use Proposition 3.3 below, which gives a Gaussian limit of
the moment generating function of macroscopic observables.

Now fix v = 0. Given ε > 0 fixed in the definition (3.2) and r > 0, take ε1 = ε1/4, and note
that we can write

X(1+ε1)r (0, φ) = ∑
y∈DN

ρr,+(y)φ(y),

X(1−ε1)r (0, φ) = ∑
y∈DN

ρr,−(y)φ(y).

Let Ar1,r2 = Br2(0) \ Br1(0). Note that ρr,+ and ρr,− are supported on annuli
A(1+ε1−ε)r,(1+ε1+ε)r and A(1−ε1−ε)r,(1−ε1+ε)r , respectively, and let ρr = ρr,+ − ρr,−. We fur-
ther notice that as r → ∞, the rescaled harmonic measure

raBr(0)(0, ·) → h(·),
where h is the Poisson kernel for a unit square in R

2; see [40], Chapter 8.1 for an explicit
formula. Thus as r → ∞ and y/r → x, rρr,+, rρr,− converge respectively to the smooth
functions

f +(x) = h(x)

|x| fε

(|x|), x ∈ A(1+ε1−ε),(1+ε1+ε),

f −(x) = h(x)

|x| fε

(|x|), x ∈ A(1−ε1−ε),(1−ε1+ε).

To simplify the notation below, we write A+ := A(1+ε1−ε),(1+ε1+ε) and A− :=
A(1−ε1−ε),(1−ε1+ε). We further denote f = f + − f −. The following estimate is proved by
combining Theorem 2.10 with the Brascamp–Lieb inequality.

PROPOSITION 3.3. Let D = [−1,1]2, v = 0, and fix some t ∈ (0,∞). Then for any ε1 >

0 small enough, depending on t , and r = r(N) such that N/4 < (1 − ε1)r < (1 + ε1)r < N ,
we have that

logEDN,0[exp
(
t (X(1−ε1)r − X(1+ε1)r )

)]
= t2

2

∫
A+∪A−

f (x)ga,D(x, y)f (y) dx dy + f1(ε1, r, t)t
2 + f2(ε1, t)t

4,
(3.4)

where a(V ) = ā(V )I is defined in Theorem 2.10, ga,D(x, ·) is the Dirichlet Green’s function
that solves the PDE {∇∗ · a∇u = δ(x) in D,

u = 0 on ∂D.

And there exists C < ∞, such that |f2(ε1, t)| ≤ Cε2
1, and f1(ε1, r, t)/ε1 → 0 as N → ∞.

Moreover, there exists g = g(V ), such that

(3.5)

logEDN,0[exp
(
t (X(1−ε1)r − X(1+ε1)r )

)]
= t2

2
g log

1 + ε1

1 − ε1
+ f̂1(ε1, r, t)t

2 + f2(ε1, t)
(
t2 + t4),

where f̂1(ε1, r, t)/ε1 → 0 as N → ∞.
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PROOF. We first show

(3.6) E
DN,0[exp

(
t (X(1−ε1)r − X(1+ε1)r )

)]= t2

2
VarDN,0[X(1−ε1)r − X(1+ε1)r ] + f2(ε1, t)t

4.

Indeed, we can expand E
DN,0[exp(t (X(1−ε1)r − X(1+ε1)r ))] into the Taylor series of t , and

bound the higher moments. Use the fact that the distribution of φ is symmetric, we can write

E
DN,0[exp

(
t (X(1−ε1)r − X(1+ε1)r )

)]
= E

DN,0
[
exp

(
t
∑

x∈DN

φ(x)ρr(x)

)]

= 1 + t2

2
VarDN,0

[ ∑
x∈DN

φ(x)ρr(x)

]
+

∞∑
k=2

t2k

(2k)!E
DN,0

∣∣∣∣ ∑
x∈DN

φ(x)ρr(x)

∣∣∣∣2k

.

We now claim

(3.7)
∞∑

k=2

t2k

(2k)!E
DN,0

∣∣∣∣ ∑
x∈DN

φ(x)ρr(x)

∣∣∣∣2k

= O
(
ε2

1
)
t4.

By the Brascamp–Lieb inequality for even moments (2.2), we have

(3.8) E
DN,0

∣∣∣∣ ∑
x∈DN

φ(x)ρr(x)

∣∣∣∣2k

≤ c−k− E
DN,0
DGFF

∣∣∣∣ ∑
x∈DN

φ(x)ρr(x)

∣∣∣∣2k

≤ (2k − 1)!!c−k− ε2k
1 .

By taking ε1 small enough such that ε1t
2 < 1, summing over k yields (3.7), and thus con-

cludes (3.6).
To prove (3.4), it suffices to obtain the asymptotic variance of X(1−ε1)r − X(1+ε1)r . The

Brascamp–Lieb inequality implies VarDN,0[X(1−ε1)r − X(1+ε1)r ] ≤ C log 1+ε1
1−ε1

for all N ≥ 1.
Notice that from Lemma 3.1 and standard harmonic measure estimates (see, e.g., [40], Chap-
ter 8.1) |raBr(0)(0, ·)−h(·)| = O(1/r2), we see that the spatial average

∑
x∈DN

φ(x)ρr(x) =
r−1∑

x∈DN
φ(x)rρr(x)satisfies the conditions of Theorem 2.10. Apply Theorem 2.10, and

note that rρr(x) → f (x) as r → ∞, we see that there exists a positive definite 2 × 2 matrix
a(V ) = ā(V )I , such that

VarDN,0[X(1−ε1)r − X(1+ε1)r ]

= VarDN,0
[
r−1

∑
x∈DN

φ(x)rρr(x)

]

= VarDa-GFF

[∫
A+

f (x)h(x) dx +
∫
A−

f (x)h(x) dx

]
+ f1(ε1, r, t),

where f1(ε1, r, t)/ε1 → 0 as N → ∞. Then the definition of the a-GFF implies

(3.9)

VarDa-GFF

[∫
A+

f (x)h(x) dx +
∫
A−

f (x)h(x) dx

]

=
∫
A+∪A−

f (x)ga,D(x, y)f (y) dx dy,

which concludes (3.4).
To obtain (3.5), we further claim that there exists g = g(ā), such that

(3.10) VarDN,0[X(1−ε1)r − X(1+ε1)r ] = g log
1 + ε1

1 − ε1
+ f̂1(ε1, r) + O

(
ε2

1
)
.
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This can be proved by an explicit evaluation of the integral (3.9). Instead, we give a proof here
using comparison to the standard discrete GFF. Since ga,D(x, y) = ā−1�−1

D (x, y), where �D

is the standard Dirichlet Laplacian in D, we can conclude (3.10) by showing

(3.11) VarDN,0
DGFF[X(1−ε1)r − X(1+ε1)r ] = 2

π
log

1 + ε1

1 − ε1
+ O

(
ε2

1
)
,

since the left-hand side converge as N → ∞ to
∫
A+∪A− f (x)�−1

D (x, y)f (y) dx dy, which
only differs from (3.9) by a multiplicative constant. This then follows from an explicit com-
putation: let R = (1 + ε1 + ε4

1)r , using the Gibbs–Markov property of discrete GFF, we have

VarDN,0
DGFF[X(1−ε1)r − X(1+ε1)r ] = VarDR,0

DGFF[X(1−ε1)r − X(1+ε1)r ].
Since VarDR,0

DGFF[X(1+ε1)r ] ≤ Cε4
1, the right-hand side equals to

VarDR,0
DGFF[X(1−ε1)r ] + CovDR,0

DGFF[X(1−ε1)r ,X(1+ε1)r ] + O
(
ε4

1
)

= VarDR,0
DGFF[X(1−ε1)r ] + O

(
ε2

1
)
,

where we apply Cauchy–Schwarz to bound the covariance. To compute VarDR,0
DGFF[X(1−ε1)r ],

again using the Gibbs–Markov property, which implies for any N/4 < r < N ,

VarDR,0
DGFF

[
Cr(0, φ)

]= VarDR,0
DGFF

[
φ(0)

]− VarDr,0
DGFF

[
φ(0)

]
= 2

π
log

R

r
+ O(1/N).

Here, we applied the standard Green’s function asymptotics (see, e.g., [40]) to obtain the last
line. Take a weighted sum over fε (with ε = ε4

1), we have

VarDR,0
DGFF[X(1−ε1)r ] = VarDR,0

DGFF

[
C(1−ε1)r (0, φ)

−
εr∑

r1=−εr

fε

(
1 + r1

(1 − ε1)r

)(
C(1−ε1)r (0, φ) − C(1−ε1)r+r1(0, φ)

)]
.

(3.12)

Again, the Gibbs–Markov property implies for any N/4 < r1 < r2 < R,

VarDR,0
DGFF

[
Cr1(0, φ) − Cr2(0, φ)

]= Var
Dr2 ,0
DGFF

[
Cr1(0, φ)

]= 2

π
log

r2

r1
+ O(1/N).

Substitute into the right-hand side of (3.12), we conclude that

VarDR,0
DGFF[X(1−ε1)r ] = VarDR,0

DGFF

[
C(1−ε1)r (0, φ)

]+ O
(
ε2

1
)= 2

π
log

1 + ε1

1 − ε1
+ O

(
ε2

1
)
.

This yields (3.10). �

4. Pointwise distribution for Ginzburg–Landau field. The main result of this section
is the Gaussian tail for the Ginzburg–Landau field at one site (Theorem 1.4). To prove this,
we will employ a multiscale decomposition argument to obtain the approximate Gaussian
asymptotics of moment generating function of the harmonic average process.

We first introduce the proper scales in order to carry out the inductive argument. Given
any v ∈ DN , ε > 0 and c ∈ (0,1), denote by � = dist(v, ∂DN) and M = M(c) = (1 −
c) log�/ log(1 + ε). Define the sequence of numbers {rk}∞k=1, {rk,+}∞k=0 and {rk,−}∞k=0 by

rk = (1 + ε)−k�,

rk,+ = (
1 + ε3)rk,(4.1)

rk,− = (
1 − ε3)rk.
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We also define

Xrk,+(v) =
(1+ε4)rk,+∑

r=(1−ε4)rk,+
fε4

(
r

rk,+

)
Cr(v,φ),

Xrk,−(v) =
(1+ε4)rk,−∑

r=(1−ε4)rk,−
fε4

(
r

rk,−

)
Cr(v,φ),

where Cr is defined in (3.1), and fε4 is the smooth function defined just below (3.1).
For r > 0, denote by P

r,0 the law of the Ginzburg–Landau field in Br(v) with zero bound-
ary condition (and denote by E

r,0 the corresponding expectation). The basic building block
of all our large deviation estimates is the following.

THEOREM 4.1. There exists g = g(V ), such that given C > 0, c ∈ (0,1) we have for all
v ∈ DN and |t | ≤ C,

logEDN,0[exp
(
tXrM,+(v)

)]= t2

2
(1 − c)g log� + o�(log�)

(
t2 + t4)+ O(1),

where the O(1) term depends on C and c.

REMARK 4.2. The proof of Theorem 4.1 also yields

logEDN,0[exp
(
tXrM,+(v) − tXr0,−(v)

)]= t2

2
(1 − c)g log� + o�(log�)

(
t2 + t4)+ O(1).

This will be used to prove Theorem 5.8 below.

Roughly speaking, this theorem indicates that as long as the last scale rM satisfies rM >

�c, for some c > 0, the harmonic average XrM,+ is nearly Gaussian with mean zero and
variance g log N

rM
. To prove this theorem, we will first prove the following decoupling result.

We denote

Wj = exp
(
t (Xrj,+ − Xrj−1,−)

)
,

Yj = exp
(
t (Xrj,− − Xrj,+)

)
,

Zj = exp
(
t (Xrj,+)

)
.

Here, Wj encodes the distribution of the increment of the harmonic average process X·, Yj

are introduced to make the Wj ’s decouple, and we will show they have little influence on the
large deviation estimates.

THEOREM 4.3. Given C > 0, c ∈ (0,1) and C1 < ∞ we have for all v ∈ DN and
|t | ≤ C,

logEDN,0[exp(tXrM,+)
]=

M∑
j=1

logErj−1,0[Wj ] + logEDN,0[exp(tXr0,−)
]

+ t2f (ε) log� + O(1),
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where |f (ε)| ≤ C1ε
2/ log(1 + ε), and the O(1) term depends on C and constants from

Lemma 2.5. More precisely, we have for and k = 1, . . . ,M ,

logEDN,0[exp(tXrk,+)
]

=
k∑

j=1

logErj−1,0[Wj ] + logEDN,0[exp(tXr0,−)
]

+ t2O

(
ε2

log(1 + ε)

)
log

�

rk
+ O

(
k−1∑
j=1

r−δ
j

)
.

(4.2)

Notice that
∑k

j=1 r−δ
j is a geometric sum, and is thus O(r−δ

k ).

PROOF OF THEOREM 4.1. Applying Proposition 3.3 (in particular, (3.5)), we see that
there exists g = g(V ), such that as � → ∞,

logErj−1,0[Wj ] = t2

2
g log

rj−1

rj
+ o�(1) log

rj−1

rj
t2 + O

(
ε2)(t2 + t4).

Summing over j and applying Theorem 4.3, we have

logEDN,0[exp(tXrM,+)
]= t2

2
(1 − c)g log� + o�(log�)t2 + (

t2 + t4)O(
ε2

log(1 + ε)

)
log�

+ t2f (ε) log� + O(1).

Since |t | ≤ C, sending ε → 0 we conclude Theorem 4.1. �

4.1. Proof of Theorem 4.3. We write XrM,+ as a telescoping sum

XrM,+ = (XrM,+ − XrM−1,−) + (XrM−1,− − XrM−2,+) + · · · (Xr1,+ − Xr0,−) + Xr0,−,

and, therefore,

ZM = e
tXrM,+ = e

tXr0,−
M∏

j=1

exp
(
t (Xrj,+ − Xrj−1,−)

)M−1∏
j=1

exp
(
t (Xrj,− − Xrj,+)

)

= WMYM−1WM−1 · · ·Y1W1 exp(tXr0,−).

Notice that

Zk = WkYk−1Zk−1 = WkZk−1 + Wk(Yk−1 − 1)Zk−1.

Since Zk−1 = Wk−1Yk−2Zk−2, by iterating we obtain

Zk =
k−1∑
m=1

Wm+1Zm

k∏
j=m+2

(
Wj(Yj−1 − 1)

)+ Z1

k∏
j=2

Wj(Yj−1 − 1)

= WkZk−1 + E
(k)
Y ,

(4.3)

where

(4.4) E
(k)
Y =

k−2∑
m=1

Wm+1Zm

k∏
j=m+2

(
Wj(Yj−1 − 1)

)+ Z1

k∏
j=2

Wj(Yj−1 − 1).

We will show that the main contribution to logEDN,0[Zk] is the first term in the summation
(4.3), that is, logEDN,0[WkZk−1], and that the other terms are negligible. We denote by Fk =
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σ(φ(x) : x ∈ DN \ Brk (v)), and take G = {maxx∈B�(v) |φ(x)| ≤ (log�)2}. Recall that by
Lemma 2.7, P(Gc) ≤ exp(−c1(log�)3) for some c1 > 0.

We can write

E
DN,0[Zk] = E

DN,0[Zk1G] +E
DN,0[Zk1Gc ].

Since |t | ≤ C, apply Hölder and the exponential Brascamp–Lieb inequality,

E
DN,0[Zk1Gc ] ≤ (

E
DN,0[Z2

k

])1/2
P

DN,0(Gc)1/2

≤ exp
(
2c−1− t2 VarDN,0

DGFF[XrM,+])PDN,0(Gc)1/2(4.5)

≤ exp
(
Ct2 log� − c1

2
(log�)3

)
≤ exp

(
−c1

4
(log�)3

)
,

which is negligible.
In order to prove (4.2), we set up a joint induction for:

• There exists an absolute constant C1 < ∞, such that for all k ≥ 0,

logEDN,0[Zk1G]

=
k∑

j=1

logErj−1,0[Wj 1G] + logEDN,0[exp(tXr0,−)1G
]+ t2Fk + Rk−1,

(4.6)

where |Fk| ≤ C1kε2 = C1
ε2

log(1+ε)
log �

rk
, and |Rk−1| ≤ C1

∑k−1
j=1 r−δ

j .
• There exists an absolute constant C2 < ∞, such that for all k ≥ 2,

(4.7) E
DN,0[E(k)

Y 1G
]≤ C2ε

2
E

DN,0[Zk−21G].
Notice that (4.6) implies (4.2), since for all k ≥ 1,

(4.8) E
rk−1,0[Wk1Gc ] ≤ exp

(
−c1

4
(log rk−1)

3
)
,

and similar bound hold for EDN,0[exp(tXr0,−)1Gc ]. Clearly, the base case k = 0 for (4.6) is
trivial.

Now assume both (4.6) and (4.7) hold up to k − 1. Let us first show the desired bound for
E

DN,0[E(k)
Y 1G]. For m = 1, . . . , k − 2, using the Markov property and Cauchy–Schwarz, we

conclude that each term in the first summand of (4.4) (multiplied by 1G) can be bounded by

E
DN,0

[
Wm+1Zm

k∏
j=m+2

(
Wj(Yj−1 − 1)

)
1G

]

= E
DN,0

[
E

[
Wm+1

k∏
j=m+2

(
Wj(Yj−1 − 1)

)
1G
∣∣∣Fm

]
Zm1G

]
(4.9)

≤ E
DN,0

[
E

[
k∏

j=m+1

W 2
j 1G

∣∣∣Fm

]1/2

E

[
k−1∏

j=m+1

(Yj − 1)21G
∣∣∣Fm

]1/2

Zm1G

]
.

We now claim that there exist constants C3,C4 < ∞, such that for |t | ≤ C,

(4.10) E
rj−1,−,0[(Yj − 1)2]≤ C3ε

4,

and

(4.11) E
rj−1,0

[
W 2

j

]≤ exp
(
4c−1− t2 Var

rj−1,0
DGFF [Xrj,+ − Xrj−1,−])≤ C4.
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Indeed, using the Taylor expansion we can write

E
rj−1,−,0[(Yj − 1)2]= E

rj−1,−,0
[(∑

k≥1

tk

k! (Xrj,− − Xrj,+)k
)2]

≤ ∑
k≥1

E
rj−1,−,0

[ 2k∑
j=1

2

j !(2k − j)! t
2k(Xrj,− − Xrj,+)2k

]
.

Using the identity

2k∑
j=1

1

j !(2k − j)! = 1

(2k)!2
2k,

and the Brascamp–Lieb inequality (2.2) combined with Wick’s theorem,

E
rj−1,−,0[(Xrj,− − Xrj,+)2k]≤ c−k− E

rj−1,−,0
DGFF

[
(Xrj,− − Xrj,+)2k]

≤ c−k−
(2k)!
k!2k

(
E

rj−1,−,0
DGFF

[
(Xrj,− − Xrj,+)2])k,

we obtain

E
rj−1,−,0[(Yj − 1)2]≤ ∑

k≥1

t2k2k+1

k! c−k−
(
E

rj−1,−,0
DGFF

[
(Xrj,− − Xrj,+)2])k

≤ C′t2
E

rj−1,−,0
DGFF

[
(Xrj,− − Xrj,+)2]

for some C′ < ∞. A similar computation as (3.11) using the Gibbs–Markov property then
yields

(4.12) Var
rj−1,−,0
DGFF [Xrj,− − Xrj,+] ≤ C′′ log

rj,+
rj,−

≤ C′′ε4.

This verifies (4.10). (4.11) follows directly from the exponential Brascamp–Lieb inequality
(2.3).

We then use (4.10) and (4.11) to obtain an upper bound of (4.9). Let F−
k = σ(φ(x) : x ∈

DN \ Brk,−(v)). Again use the Markov property

E

[
k−1∏

j=m+1

(Yj − 1)21G
∣∣∣Fm

]

= E

[
E
[
(Yk−1 − 1)21G |F−

k−2

] k−2∏
j=m+1

(Yj − 1)21G
∣∣∣Fm

]
.

We now use the fact that rk−2,− ≥ rM ≥ �c and, therefore, on the event G,

(4.13) max
x∈∂Brk−2,−(v)

∣∣φ(x)
∣∣≤ (log�)2 ≤

(
1

c
log rk−2,−

)2
.

Applying Theorem 2.5 (to any realization of φ|∂Brk−2,− that satisfy (4.13)), Cauchy–Schwarz

and the Brascamp–Lieb inequality, we conclude there is some C′
3 < ∞ and δ > 0, such that

with probability one,∣∣E[(Yk−1 − 1)21G |F−
k−2

]−E
rk−2,−,0[(Yk−1 − 1)21G

]∣∣≤ C′
3ε

4r−δ
k−2,
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for some δ > 0. Thus

E

[
k−1∏

j=m+1

(Yj − 1)21G
∣∣∣Fm

]

= (
E

rk−2,−,0[(Yk−1 − 1)21G
]+ O

(
ε4r−δ

k−2

))
E

[
k−2∏

j=m+1

(Yj − 1)21G
∣∣∣Fm

]
,

here we also use the fact that
∏k−2

j=m+1(Yj − 1)2 ≥ 0. By iterating this for j ≥ m + 1, apply-

ing the bound (4.10) and notice
∑

j r−δ
j−2 < ∞, we conclude there exist absolute constants

C′
2,C

′′
3 < ∞, such that with probability one,

E

[
k−1∏

j=m+1

(Yj − 1)21G
∣∣∣Fm

]
≤ C′

2
(
C′′

3 ε4)k−m−1
.

Similarly, there exists C′
4 < ∞, such that with probability one,

E

[
k∏

j=m+1

W 2
j 1G

∣∣∣Fm

]
≤ C′

2
(
C′

4
)k−m−1

.

Substitute these bounds into (4.9), we have for some C5 < ∞,

(4.14) E
DN,0

[
Wm+1Zm

k∏
j=m+2

(
Wj(Yj−1 − 1)

)
1G

]
≤ C′

2
(
C5ε

2)k−m−1
E

DN,0[Zm1G].

By the induction hypothesis (4.6) for m ≤ k − 2,

logEDN,0[Zm1G] − logEDN,0[Zk−21G]

≤ −
k−2∑

j=m+1

logErj−1,0[Wj 1G] + t2|Fk−2 − Fm| + |Rm−1|,

where |Fk−2 − Fm| ≤ C1(k − 2 − m)ε2 = C1
ε2

log(1+ε)
log rm

rk−2
, |Rm−1| ≤ C1r

−δ
m−1. Applying

Proposition 3.3 (and use the smallness of Erj−1,0[Wj 1Gc ]) to evaluate logErj−1,0[Wj 1G] as
� → ∞, the right-hand side is bounded above by

− t2

2
g log

rm

rk−2
+ t2o�(1) log

rm

rk−2
+ O

(
ε2

log(1 + ε)

)
log

rm

rk−2
+ O

(
r−δ
m−1

)
.

For ε sufficiently small, this is bounded by O(r−δ
m−1), and we have E

DN,0[Zm1G] ≤
2EDN,0[Zk−21G] for all m ≤ k − 2. This concludes that for some absolute constant C6 < ∞,
(4.14) is bounded by

C6ε
2(k−m−1)

E
DN,0[Zk−21G].

Summing over m, we then have

E
DN,0

[
k−2∑
m=1

Wm+1Zm

k∏
j=m+2

(
Wj(Yj−1 − 1)

)
1G

]
≤ C7ε

2
E

DN,0[Zk−21G],

for some C7 < ∞. A similar argument yields

E
DN,0

[
Z1

k∏
j=2

Wj(Yj−1 − 1)1G

]
≤ C′

7ε
2
E

DN,0[Zk−21G].

This completes the proof of (4.7) for k (with C2 = C7 + C′
7).
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We now move to the proof of (4.6). We first show that there exists C0 < ∞, such that

(4.15) logEDN,0[WkZk−11G] = logEDN,0[Zk−11G] + logErk−1,0[Wk1G] + R′
k−1,

where |R′
k−1| ≤ C0r

−δ
k−1. Using Markov property,

E
DN,0[WkZk−11G] = E

DN,0[Zk−11GE[Wk1G |Fk−1]].
Apply Lemma 2.8 (to any realization of φ|∂Brk−1

such that maxx∈∂Brk−1
φ(x) ≤ (1

c
×

log rk−1)
2) to obtain with probability one, there is some C0 < ∞ and δ > 0, such that∣∣E[Wk1G |Fk−1] −E

rk−1,0[Wk1G]∣∣≤ 2 exp
(
c Varrk−1,0

DGFF Wk

)
r−δ
k−1

≤ C0r
−δ
k−1.

Therefore,∣∣EDN,0[WkZk−11G] −E
DN,0[Zk−11G]Erk−1,0[Wk1G]∣∣≤ C0r

−δ
k−1E

DN,0[Zk−11G].
This yields (4.15).

Finally, we prove (4.6) for k using the joint induction hypothesis for (4.6) up to k − 1 and
for (4.7) up to k, and apply (4.15). By (4.15), and the induction hypothesis for (4.6),

logEDN,0[WkZk−11G]
= logEDN,0[Zk−11G] + logErk−1,0[Wk1G] + R′

k−1

=
k∑

j=1

logErj−1,0[Wj 1G] + logEDN,0[exp
(
t (Xr0,−)

)
1G
]+ t2Fk−1 + Rk−2 + R′

k−1.

(4.16)

We may write

logEDN,0[Zk1G] = logEDN,0[WkZk−11G] + log
[
1 + E

DN,0[E(k)
Y 1G]

EDN,0[WkZk−11G]
]
.

Using the induction hypothesis for (4.7), (4.16) and the asymptotics of logErj−1,0[Wj ], we
conclude for some absolute constant C8 < ∞,∣∣∣∣log

[
1 + E

DN,0[E(k)
Y 1G]

EDN,0[WkZk−11G]
]∣∣∣∣≤ C8ε

2 E
DN,0[Zk−21G]

EDN,0[WkZk−11G] ≤ 2C8ε
2.

Let Fk = Fk−1 + log[1+ E
DN ,0[E(k)

Y 1G ]
E

DN ,0[WkZk−11G ] ] and Rk−1 = Rk−2 +R′
k−1. Combining with (4.16),

we conclude

logEDN,0[Zk1G] =
k∑

j=1

logErj−1,0[Wj 1G] + logEDN,0[exp
(
t (Xr0,−)

)
1G
]+ t2Fk + Rk−1,

with |Fk| ≤ max{C1,2C8}kε2, |Rk−1| ≤ C1
∑k−1

j=1 r−δ
j . This completes the proof of (4.6), and

also Theorem 4.3.

4.2. Proof of upper bound. In this section, we prove the pointwise Gaussian tail bound
Theorem 1.4, and as a consequence derive the upper bound of the law of large numbers
Theorem 1.1. In fact, we obtain the following tail bound for the maximum of φ(x). For the
rest of the paper, g = g(V ) denotes the positive constant that appears in Theorem 3.3 and
Theorem 4.1.
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PROPOSITION 4.4. For any δ > 0, there is some C = C(δ) < ∞, such that

(4.17) P

(
sup

v∈DN

φ(v) ≥ (2
√

g + δ) logN
)

≤ C(δ)N−δ/
√

g.

We first give the proof of Theorem 1.4.

PROOF OF THEOREM 1.4. Given δ > 0 and v ∈ DN , take M = M(δ) = (1 − δ6) log�.
Therefore,

P
DN,0(φ(v) > u

)≤ P
DN,0(XrM,+(v) > u − δ log�

)+ P
DN,0(φ(v) − XrM,+(v) > δ log�

)
.

We apply Theorem 4.1 to obtain for all bounded t ,

P
DN,0(XrM,+ > u − δ log�) ≤ exp

(−t (u − δ log�)
)
E

DN,0[exp(tXrM,+)
]

= exp
(
−t (u − δ log�) + t2

2
g
(
1 − δ6) log� + o(log�)

)
.

Minimize the last display over t . Since u ≤ C log� the minimum is achieved at some
bounded t , thus

P
DN,0(XrM,+ > u − δ log�) ≤ exp

(
− (u − δ log�)2

2g(1 − δ6) log�
+ o(log�)

)

≤ exp
(
−(u − δ log�)2

2g log�
+ o(log�)

)
.

Apply Lemma 2.2 to obtain

P
DN,0(φ(v) − XrM,+ > δ log�

)≤ exp
(
−cBL

(δ log�)2

gδ6 log�

)
= exp

(
−cBL

log�

gδ4

)
.

Notice that for δ small enough,

2cBL
log�

gδ4 >
(u − δ log�)2

2g log�
,

so we send δ → 0 to conclude the proof. �

Finally, we show how Proposition 4.4 follows easily from Theorem 1.4.

PROOF OF PROPOSITION 4.4. If we pick γ0 small enough then for v ∈ DN such that
dist(v, ∂DN) ≤ Nγ0 we have from the Brascamp–Lieb tail bound, Lemma 2.2, that

P
(
φ(v) ≥ 2

√
g logN

)≤ exp
(
−cBL

4g(logN)2

γ0 logN

)
≤ N−2−2δ/

√
g.

Then a union bound shows that

P
(

max
v:dist(v,∂DN)≤Nγ0

φ(v) ≥ 2
√

g logN
)

≤ Nγ0−1−2δ/
√

g.

Fix this γ0 and take any v ∈ DN such that dist(v, ∂DN) > Nγ0 . Given any δ > 0, applying
Proposition 1.4 with u = (2

√
g + δ) logN yields

P
(
φ(v) ≥ (2

√
g + δ) logN

)≤ exp
(
−2

(logN)2

log�
− 2δ√

g

(logN)2

log�
+ o(logN)

)

≤ CN−2−2δ/
√

g+o(1),
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for some C < ∞. Therefore,

P
(

max
v:dist(v,∂DN)>Nγ0

φ(v) ≥ 2
√

g logN
)

≤ CN−2δ/
√

g+o(1),

thus completing the proof of (4.17). �

5. Proof of the lower bound. In this section, we prove the lower bound of the law of
large numbers Theorem 1.1. In fact, we prove the following tail bound.

PROPOSITION 5.1. For any δ > 0, there is some C = C(δ) < ∞, such that

(5.1) P
DN,0

(
sup

v∈DN

φ(v) ≤ (2
√

g − δ) logN
)

≤ C(δ)N−Cδ−1
.

We first prove a weaker form of the lower bound in Section 5.1, and then “bootstrap” to
obtain the desired lower bound in Section 5.3. Recall that PB,f represents the law of the
gradient field in B ⊂ Z

2 with boundary condition f on ∂B .

5.1. Second moment argument. Given B ⊂ Z
2, x ∈ B and y ∈ ∂B , we recall aB(x, y) is

the harmonic measure on ∂B seen from x. Also recall the harmonic averaged field Xrj ,+(v)

and Xrj ,−(v) from the beginning of Section 4. Heuristically, the process {Xrj ,+(v)} should
behave like a random walk with increments of variance g log(1 + ε). We make this heuristic
rigorous and show the following weak lower bound.

PROPOSITION 5.2. For all s > 0, there is N0 = N0(s) such that for N > N0(s),

(5.2) P
DN,0

[
∃v ∈ [−0.9N,0.9N ]2 s.t.

φ(v) − Xr0,−(v) ≥ (1 − 2s)2
√

g logN

]
≥ N−22s .

In fact, this probability tends to one as N → ∞. This will be proved later by bootstrapping
the weaker bound stated in Proposition 5.2. The proof of Proposition 5.2 is based on a second
moment method studying the truncated count of the increment of the harmonic averaged
process.

It suffices to prove Proposition 5.2 for small s. Given v ∈ [−0.9N,0.9N ]2, take c = s3 and
M = M(s3) = (1 − s3) logN/ log(1 + ε), and define rk and rk,± as in (4.1). Denote by [m]
the integer part of m. Then we have

P
DN,0

[
∃v ∈ [−0.9N,0.9N ]2 s.t.

φ(v) − Xr0,−(v) ≥ (1 − 2s)2
√

g logN

]

≥ P
DN,0

⎡
⎣ ∃v ∈ [−0.9N,0.9N ]2 s.t.

Xr[M],+(v) − Xr0,−(v) ≥
(

1 − 3

2
s

)
2
√

g logN

⎤
⎦

− P
DN,0

⎡
⎣ ∃v ∈ [−0.9N,0.9N ]2 s.t.

φ(v) − Xr[M],+(v) ≤ − s

2
2
√

g logN

⎤
⎦ .

The last term above can be bounded using the Brascamp–Lieb inequality. Indeed,

P
DN,0

⎡
⎣ ∃v ∈ [−0.9N,0.9N ]2 s.t.

φ(v) − Xr[M],+(v) ≤ − s

2
2
√

g logN

⎤
⎦
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≤ ∑
v∈[−0.9N,0.9N]2

P
DN,0

[
φ(v) − Xr[M],+(v) ≥ s

2
2
√

g logN

]

(5.3)

≤ N2 exp
(
−cBL

s2g(logN)2

VarDN,0
DGFF(φ(v) − Xr[M],+(v))

)

≤ N2 exp
(
−cBL

s2g(logN)2

gs3 logN

)
= N2−c′s−1

,

for some c′ > 0. For small s, this is much smaller than N−22s . Therefore, it suffices to study
Xr[M],+(v) − Xr0,−(v).

For fixed integer K ≥ 2 (which will be taken sufficiently large in the end), split “time” into
K1 := [(1 − s3)K]+ 1 intervals of size 1/K and consider the increments over these intervals

(5.4)
Um(v) = Xr[ mM

K1
],+(v) − Xr[ (m−1)M

K1
],−

(v)

for m = 1, . . . ,K1.

Roughly speaking, when v is in the bulk of DN , {Um}K1
m=1 are the differences between the

harmonic average at scale N1−m/K and the scale N1−(m−1)/K . Consider the events

Jm(v; s) =
{
Um(v) ∈

[
1

K
(1 − s)2

√
g logN,

1

K
(1 + s)2

√
g logN

]}
and

J (v; s) = ⋂
m=1,...,K1

Jm(v; s).

Define the counting random variable

NK1(s) = ∑
v∈[−0.9N,0.9N]2

1J (v;s).

Note that if NK1(s) ≥ 1 then there exists a v ∈ [−0.9N,0.9N ]2 such that

K1∑
m=1

Um(v) ≥ (1 − s)
(
1 − s3)2√

g logN ≥
(

1 − 5

4
s

)
2
√

g logN.

Furthermore, since

Xr[M],+(v) − Xr0,−(v) =
K1∑

m=1

Um(v) +
K1∑

m=1

(
X[mM/K1],−(v) − X[mM/K1],+(v)

)
,

and by direct computation

VarDN,0
DGFF

[
K1∑

m=1

(
X[mM/K1],−(v) − X[mM/K1],+(v)

)]= O(K1),

the Brascamp–Lieb tail bound Lemma 2.2 implies there exist some c(s,K1) > 0, such that

(5.5) P
DN,0

(
K1∑

m=1

(
X[mM/K1],−(v) − X[mM/K1],+(v)

)
> 2

√
g

s

4
logN

)
≤ e−c(s,K1)(logN)2

.

Combining (5.3) and (5.5), Proposition 5.2 will follow from

(5.6) P
DN,0[NK1(s) ≥ 1

]≥ N−22s .

We will prove the following.
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LEMMA 5.3. For all s > 0 and K ≥ 2/s, we have

(5.7) E
DN,0[NK1(s)

2]≤ N22s
E

DN,0[NK1(s)
]2

.

With additional work, the term N22s could be replaced (1 + o(1)), but for our purposes
(5.7) is enough. Note that (5.7) is true only because NK1(s) is a truncated count of high
points.

By the Paley–Zygmund inequality, Lemma 5.3 implies (5.6) and, therefore, yields Propo-
sition 5.2.

Lemma 5.3 follows from the following estimates.

LEMMA 5.4. For all fixed s > 0 and K ≥ 2, we have

E
DN,0[NK1(s)

]≥ cN−5s .

LEMMA 5.5. For all fixed s > 0 and K ≥ 2, we have

E
DN,0[NK1(s)

2]≤ N
2
K

+11s .

The proof of these lemmas use estimates for the joint distribution of {Um}K1
m=1, proved in

Section 5.2 below. Lemma 5.4 is immediate from taking union bound from the following
result.

LEMMA 5.6. For all fixed s > 0 and K ≥ 2, we have that

P
DN,0[J (v; s)]≥ cN−2−5s,

uniformly over v ∈ [−0.9N,0.9N ]2.

PROOF. Letting dQ

dPDN ,0 = exp(λ
∑K1

m=1 Um(v))

E
DN ,0[exp(λ

∑K1
m=1 Um(v))] we have

P
DN,0[J (v, s)

]= Q
[
J (v, s); e−λ

∑K1
m=1 Um(v)]

E
DN,0

[
exp

(
λ

K1∑
m=1

Um(v)

)]

≥ Q
[
J (v, s)

]
e−λ(1+s)(1−s3)2

√
g logN

E
DN,0

[
exp

(
λ

K1∑
m=1

Um(v)

)]
.

By Theorem 5.8, for all λ ≤ 2/
√

g,

(5.8) E
DN,0

[
exp

(
K1∑

m=1

λUm(v)

)]
= exp

(
1

2

K1∑
m=1

λ2 1

K
g logN + o(logN)

)
.

Therefore,

P
DN,0[J (v, s)

]≥ Q
[
J (v, s)

]
e

1
2 λ2(1−s3)g logN−λ(1+s)(1−s3)2

√
g logN+o(logN).

Setting λ = 2/
√

g, we find that

P
DN,0[J (v, s)

]≥ Q
[
J (v, s)

]
e−2 logN−5s logN.

It thus only remains to show that Q[J (v)] ≥ c. Under Q, we have for each j that

Q

[
exp

(
t

(
Uj(v) − 1

K
2
√

g logN

))]

= E
DN,0[exp(

∑K1
m=1(λ + 1{m=j}t)Um(v)]

EDN,0[exp(
∑K1

m=1 λUm(v)] exp
(
−2t

1

K

√
g logN

)
.

(5.9)
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Thus applying Theorem 5.8 (with maxλi = 2/
√

g + 1), we have that (5.9) equals

exp(1
2λ2(1 − s3)g logN + λt 1

K
g logN + 1

2 t2 1
K

g logN + o(logN))

exp(1
2λ2(1 − s3)g logN + o(logN))

exp
(
−2t

1

K

√
g logN

)

= exp
(

1

2
t2 1

K
g logN + o(logN)

)
,

where the last equality follows because λ = 2/
√

g. Using the exponential Chebyshev inequal-
ity with t = ±s/

√
g therefore shows that

Q

[∣∣∣∣Uj − 1

K

√
g logN

∣∣∣∣≥ s
1

K

√
g logN

]
≤ exp

(
−c

s2

K
logN

)
,

for some c > 0. Thus Q[J (v, s)] ≥ 1 − K exp(−c s2

K
logN) → 1, as N → ∞ for all K and s.

�

Lemma 5.5 will follow from the following.

LEMMA 5.7. For all fixed s > 0 and K ≥ 1, we have if N1− j
K ≤ |v1 − v2| ≤ N1− j−1

K for
some j ∈ {1, . . . ,K1}, then

P
DN,0[J (v1, s) ∩ J (v2, s)

]≤ exp
(
−2

2K1 − j

K
logN + 5s

2K1 − j

K
logN

)
.

PROOF. Note that B
N

1− j
K

(vi) for i = 1,2 are disjoint, but B
N

1− j−1
K

(vi) are not. Thus,

roughly speaking, the increments Uj+1(vi) for i = 1,2 depend on disjoint regions but
Uj(vi) do not. Because of this we expect Um(vi), i = 1,2 to be correlated for m = 1, . . . , j

(and essentially perfectly correlated if m ≤ j − 1), but essentially independent for m =
j + 1, . . . ,K1. With this in mind we in fact bound

P
DN,0[J ′],

where

J ′ = ⋂
m=1,...,K1

Jm(v1, s) ∩ ⋂
m=j+1,...,K1

Jm(v2, s),

that is, we drop the condition on v2 for m = 1, . . . , j .

Letting dQ

dPDN ,0 = exp(
∑K1

m=1 λUm(v1)+λ
∑K1

m=j+1 Um(v2)))

E
DN ,0[exp(

∑K1
m=1 λUm(v1)+λ

∑K1
m=j+1 Um(v2))]

we have

P
DN,0[J ′]

≤ Q

[
J ′; exp

(
−

K1∑
m=1

λUm(v1) − λ

K1∑
m=j+1

Um(v2)

)]

×E
DN,0

[
exp

(
K1∑

m=1

λUm(v1) + λ

K1∑
m=j+1

Um(v2)

)]

≤ exp
(
−λ

2K1 − j

K
(1 − s)2

√
g logN

)

×E
DN,0

[
exp

(
K1∑

m=1

λUm(v1) + λ

K1∑
m=j+1

Um(v2)

)]
.
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By Theorem 5.8, for all λ ≤ 2/
√

g,

(5.10)

E
DN,0

[
exp

(
K1∑

m=1

λUm(v1) +
K1∑

m=j+1

λUm(v2)

)
)

]

= exp

(
1

2

K1∑
m=1

λ2 1

K
g logN + 1

2

K1∑
m=j+1

λ2 1

K
g logN + o(logN)

)
.

Thus in fact PDN,0[J ′] is at most

exp
(

1

2
λ2 2K1 − j

K
g logN − λ

2K1 − j

K
(1 − s)2

√
g logN + o(logN)

)
.

Setting λ = 2/
√

g, we find that

P
DN,0[J ′]≤ exp

(
−2

2K1 − j

K
logN + 5s

2K1 − j

K
logN

)
. �

We can now prove the second moment estimate Lemma 5.5.

PROOF OF LEMMA 5.5. We write the second moment as

E
DN,0[N 2

K1

]≤ ∑
v1,v2∈[−0.9N,0.9N]2

P
DN,0[J (v1, s) ∩ J (v2, s)

]
.

Splitting the sum according to the distance |v1 − v2|, we get that

E
DN,0[N 2

K1

]=
K1∑
j=1

∑
N1−j/K≤|v1−v2|≤N1−(j−1)/K

P
DN,0[J (v1, s) ∩ J (v2, s)

]

+ ∑
|v1−v2|≤Ns3

P
DN,0[J (v1, s) ∩ J (v2, s)

]
.

The first summation gives the main contribution. Now using Lemma 5.7 and the fact that
there are at most N2 × N2−2(j−1)/K points at distance less than N1−(j−1)/K we obtain an
upper bound of

K1∑
j=1

N4−2(j−1)/K × N−2 2K1−j

K
+5s

2K1−j

K + N2N−2+5s

= N4
K1∑
j=1

N−4(1−s3)+2/KN10s(1−s3) +
K1∑
j=1

N5s

≤ [K1 + 1]N 2
K

+10s,

which for N large enough is at most N
2
K

+11s . �

5.2. Finite dimensional distribution of the harmonic averages. We now state and prove a
result concerns the joint distribution of the increment of the harmonic averages at mesoscopic
scales. The next theorem shows approximate joint Gaussianity of {Um}K1

m=1, defined in (5.4).
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THEOREM 5.8. For all bounded sequence {λm}m=1,...,K1 such that maxm λm ≤ C and
v ∈ [−0.9N,0.9N ]2, we have for all K sufficiently large,

(5.11) E
DN,0

[
exp

(
K1∑

m=1

λmUm(v)

)]
= exp

(
1

2

K1∑
m=1

λ2
m

1

K
g logN + o(logN)

)
,

where the o(logN) term depends on K , ε, C, and the constant δ from Theorem 2.5. Also,

for v1, v2 ∈ [−N/2,N/2]2 such that for some j ∈ {1, . . . ,K1}, N1− j
K ≤ |v1 −v2| ≤ N1− j−1

K ,
and for bounded sequences {λm,i}i=1,2 such that maxm,i λm,i ≤ C, we have for all K suffi-
ciently large,

(5.12)

E
DN,0

[
exp

(
K1∑

m=1

λm,1Um(v1) +
K1∑

m=j+1

λm,2Um(v2)

)
)

]

= exp

(
1

2

K1∑
m=1

λ2
m,1

1

K
g logN + 1

2

K1∑
m=j+1

λ2
m,2

1

K
g logN + o(logN)

)
.

PROOF. We first prove (5.11). Recall that

G =
{
φ : max

v∈DN

∣∣φ(v)
∣∣< (logN)2

}

=
{
φ : max

v∈DN

∣∣φ(v)
∣∣< c(s)(log rM)2

}
.

Using the Brascamp–Lieb inequality and Lemma 2.7, it is easy to bound

E
DN,0

[
exp

(
K1∑

m=1

λmUm(v)

)
1Gc

]
= oN(1),

therefore we only need to compute E
DN,0[exp(

∑K1
m=1 λmUm(v))1G].

Indeed, denote r[mM/K1] as r̃m, and Fm = σ {φ(v) : v ∈ DN \ Br̃m(v)}, by the Markov
property we have

E
DN,0

[
exp

(
K1∑

m=1

λmUm(v)

)
1G

]

= E
DN,0

[
exp

(
K1−1∑
m=1

λmUm

)
1GE

[
eλK1UK1 1G |FK1−1

]]
.

By Lemma 2.8, there exist C1 < ∞ and δ > 0, such that

∣∣E[eλK1UK1 1G |FK1−1
]−E

r̃K1−1,0
[
eλK1UK1 1G

]∣∣≤ r̃−δ
K1−1 exp

(
c1 Var

r̃K1−1,0
DGFF (λK1UK1)

)
≤ r̃−δ

K1−1 exp
(
C2C1

1

K
logN

)
,

where C = maxm λm. Take K large enough such that

C2C1
1

K
≤ 1

2
δs3,

we thus have∣∣E[eλK1UK1 1G |FK1−1
]−E

r̃K1−1,0
[
eλK1UK1 1G

]∣∣≤ r̃
−δ/2
K1−1 ≤ r̃

−δ/2
K1−1E

r̃K1−1,0
[
eλK1UK1 1G

]
.
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Therefore,

E
DN,0

[
exp

(
K1∑

m=1

λmUm(v)

)
1G

]

= (
1 + O

(
r̃
−δ/2
K1−1

))
E

r̃K1−1,0
[
eλK1UK1 1G

]
E

DN,0

[
exp

(
K1−1∑
m=1

λmUm

)
1G

]
.

Keep iterating then yields

E
DN,0

[
exp

(
K1∑

m=1

λmUm(v)

)
1G

]
=

K1∏
m=1

(
1 + O

(
r̃
−δ/2
m−1

))
E

r̃m−1,0
[
eλmUm1G

]
.

By Theorem 4.1 (and Remark 4.2), there exists g = g(V ) > 0, such that

(5.13) E
r̃m−1,0

[
eλmUm

]= exp
(

λ2
m

2

g

K
logN + o(logN)

)
,

and by Lemma 2.7 and the Brascamp–Lieb inequality,

E
r̃m−1,0

[
eλmUm1Gc

]= oN(1).

Since
∑K1

m=1 r̃
−δ/2
m−1 < ∞, this completes the proof of (5.11).

The proof of (5.12) is very similar to that of (5.11). We define for i = 1,2, Fm,i = σ {φ(v) :
v ∈ DN \ Br̃m(vi)}. Then, by the same argument,

E
DN,0

[
exp

(
K1∑

m=1

λm,1Um(v1) +
K1∑

m=j+1

λm,2Um(v2)

)
1G

]

= E
DN,0

[
exp

(
K1−1∑
m=1

λm,1Um(v1) +
K1∑

m=j+1

λm,2Um(v2)

)

× 1GE
[
exp

(
λK1,1UK1(v1)

)
1G |FK1−1,1

]]

= (
1 + O

(
r̃
−δ/2
K1−1

))
E

r̃K1−1,0
[
exp

(
λK1,1UK1(v1)

)
1G
]

×E
DN,0

[
exp

(
K1−1∑
m=1

λm,1Um(v1) +
K1∑

m=j+1

λm,2Um(v2)

)
1G

]
.

Then conditioned on FK1−1,2, apply the Markov property and Lemma 2.8, we can write the
above display as(

1 + O
(
r̃
−δ/2
K1−1

))
E

r̃K1−1,0
[
exp

(
λK1,1UK1(v1)

)
1G
]
E

r̃K1−1,0
[
exp

(
λK1,2UK1(v2)

)
1G
]

×E
DN,0

[
exp

(
K1−1∑
m=1

λm,1Um(v1) +
K1−1∑

m=j+1

λm,2Um(v2)

)
1G

]
.

Keep iterating, we obtain

E
DN,0

[
exp

(
K1∑

m=1

λm,1Um(v1) +
K1∑

m=j+1

λm,2Um(v2)

)
1G

]
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=
K1∏

m=j+1

(
1 + O

(
r̃
−δ/2
m−1

))
E

r̃m−1,0
[
exp

(
λm,1Um(v1)

)
1G
]
E

r̃m−1,0
[
exp

(
λm,2Um(v2)

)
1G
]

×
j∏

m=1

(
1 + O

(
r̃
−δ/2
m−1

))
E

r̃m−1,0
[
exp

(
λm,1Um(v1)

)
1G
]
.

Applying (5.13), we conclude the proof of (5.12). �

5.3. Bootstrapping. We now use Proposition 5.2 to prove the desired lower bound (5.1).
Proposition 5.2 shows that the field reaches (1 − 2s)2

√
g logN with at least polynomially

small probability. We will apply Theorem 2.5 to see that the field in different regions of
[−N,N]2 are essentially decoupled. Therefore, applying Proposition 5.2 in each region one
can show with high probability, there is some v ∈ [−N,N]2 such that φ(v) − Xr0,−(v) ≥
(1 − 2s)2

√
g logN .

To carry out this argument, tile [−N,N]2 by disjoint boxes D1,D2, . . . ,Dm of side-length
N1−η, where m � Nη, and η is a small number that will be chosen later. Let B be the union
of all the ∂Di .

Consider the good event

G =
{

max
v∈[−N,N]2

∣∣φ(v)
∣∣≤ (logN)2

}
.

By Lemma 2.7, we have P
DN,0[Gc] � e−c(logN)3

, as N → ∞.
On the event G, for i = 1, . . . ,m, let D̄i be the box concentric to Di , but with side length

1
2N1−η. Let R = 1

2N1−η. We further define

ÑKi = {∀v ∈ D̄i : φ(v) − XR,−(v,φ) < (1 − 2s)(1 − η)2
√

g logN
}
.

Now

P
DN,0[ÑKi, i = 1, . . . ,m;G] = P

DN,0[
P
[
ÑKi, i = 1, . . . ,m|φ(x), x ∈ B

];G].
Using the Gibbs property of the measure (1.3), we have the conditional decoupling

P
DN,0[ÑKi, i = 1, . . . ,m|φ(x), x ∈ B

]=
m∏

i=1

P
Di,φ1∂Di

[
ÑKi |φ(x), x ∈ ∂Di

]
.

Consider for each i the law P
Di,φ1∂Di . Then on G we can apply Lemmas 2.5 and 3.2 to

construct a coupling Qi of a field φ with law P
Di,φ1∂Di and a field φ0,i with law P

Di,0 such
that

Qi[∀v ∈ D̄i : φ(v) − XR,−(v,φ) = φ0,i (v) − XR,−
(
v,φ0,i)]≥ 1 − N−δ(1−η),

where the constant δ > 0 is from Theorem 2.5.
Thus

P
DN,0

(
∀v ∈ [−0.9N,0.9N ]2 :

φ(v) − XR,−(v,φ) < (1 − 2s)(1 − η)2
√

g logN;G
)

≤
m∏

i=1

(
P

Di,0[ÑKi] + N−δ(1−η))

≤
m∏

i=1

(
1 − (

N1−η)−21s + N−δ(1−η)),



2676 D. BELIUS AND W. WU

where we apply Proposition 5.2 to obtain the last inequality. Now let s and η be small enough,
depending on δ, such that

(5.14) 21s < δ and η > 21s/(1 + 21s).

Thus we have

(5.15) P
DN,0

(
∀v ∈ [−0.9N,0.9N ]2 :

φ(v) − XR,−(v,φ) < (1 − 2s)(1 − η)2
√

g logN;G
)

� e−Nε1
,

for some ε1 > 0.
In view of (5.14), we can take η = 21s. Then, on the complement of the event (5.15), there

exists v1 ∈ [−0.9N,0.9N ]2 such that

φ(v1) − XR,−(v1, φ) ≥ (1 − 19s)2
√

g logN.

Notice that (for g0 = 2/π )

VarDN,0
DGFF

[
XR,−(v1, φ)

]= g0η logN + o(logN) = 21sg0 logN + o(logN).

By Lemma 2.2, there exists cBL > 0, such that

(5.16) P
DN,0[XR,−(v1, φ) > s1/3 logN

]≤ exp
(
−cBL

s2/3(logN)2

s logN

)
= N−cBLs−1/3

.

Combining (5.15) and (5.16), we see that

P
DN,0

[
max

v∈[−0.9N,0.9N]2
φ(v) <

(
1 − 2s1/3)2√

g logN
]
≤ N−cBLs−1/3 + e−Nε1

.

And we conclude (5.1).

5.4. High points. We now sketch the proof of Theorem 1.3. The proof follows from the
same argument as the proof of Theorem 1.1, for completeness we sketch the idea below.

It suffices to prove that for any s > 0,

P
DN,0(∣∣HN(η)

∣∣> N2(1−η2)+s)= oN(1) and(5.17)

P
DN,0(∣∣HN(η)

∣∣< N2(1−η2)−s)= oN(1).(5.18)

Since

P
DN,0(∣∣HN(η)

∣∣> N2(1−η2)+s)≤ N−2(1−η2)−s
E
[∣∣HN(η)

∣∣]
≤ N−2(1−η2)−s

∑
v∈DN

P
DN,0(φ(v) ≥ 2

√
gη logN

)
,

the upper bound (5.17) follows directly from applying Theorem 1.4 with u = 2
√

gη logN .
We now focus on the lower bound (5.18). Recall the definition of Um in (5.4). For η ∈

(0,1), having in mind that we aim to count the points {v ∈ DN : φ(v) > 2
√

gη logN}, we
look at the following truncated event such that the increments Um are slightly higher than
2
√

g
η
K

logN :

Jm(v;η; s) =
{
Um(v) ∈

[
(1 + s)2

√
g

η

K
logN, (1 + 2s)2

√
g

η

K
logN

]}

and for K1 := [(1 − s3)K] + 1,

J (v;η; s) = ⋂
m=1,...,K1

Jm(v;η; s).
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Also define the counting random variable

NK1(η, s) = ∑
v∈[−0.9N,0.9N]2

1J (v;η;s).

By the same Brascamp–Lieb bounds as (5.3) and (5.5), to study the dimension of HN(η),
it suffices to study {v : J (v;η; s) occurs}. Indeed, the same first moment computation
as Lemma 5.4 and Lemma 5.6 (but instead using the change of measure dQ

dPDN ,0 =
exp(λη

∑K1
m=1 Um(v))

E
DN ,0[exp(λη

∑K1
m=1 Um(v))] ) yields

E
[
NK1(η, s)

]≥ N2(1−η2)−8sη2
,

and the same second moment computation as Lemma 5.5 and Lemma 5.7 yields

E
[
N 2

K1
(η, s)

]≤ N4(1−η2)−5sη2
.

Therefore,

E
[
N 2

K1
(η, s)

]≤ N11sη2
E
[
NK1(η, s)

]2
.

Applying the Payley–Zygmund inequality then yields

P
DN,0

(∣∣{v : J (v;η; s) occurs
}∣∣< 1

2
N2(1−η2)−s

)

≤ 1 − P
DN,0

(
NK1(η, s) >

1

2
E
[
NK1(η, s)

])

≤ 1 − cN−11sη2
.

But to complete the proof of (5.18) we want PDN,0(NK1(η, s) > 1
2E[NK1(η, s)]) to be close

to 1. This can be proved by carrying out the same bootstrapping in Section 5.3, obtaining the
high probability by creating a large number (Nγ , where γ = γ (s, δ), and δ is the constant
from Theorem 2.5) of essentially independent trials with success probability N−11sη2

.
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