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BY NIcOLAS FOURNIER" AND CAMILLE TARDIE"
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We consider a particle moving in d > 2 dimensions, its velocity being a
reversible diffusion process, with identity diffusion coefficient, of which the
invariant measure behaves, roughly, like (1 + |v|)7ﬂ as |v| — oo, for some
constant 8 > 0. We prove that for large times, after a suitable rescaling, the
position process resembles a Brownian motion if 8 > 44-d, a stable process if
B €[d, 4+ d) and an integrated multi-dimensional generalization of a Bessel
process if B € (d —2,d). The critical cases B =d, f=1+dand B =4+d
require special rescalings.

1. Introduction and results.

1.1. Motivation and references. Describing the motion of a particle with complex dy-
namics, after space-time rescaling, by a simple diffusion, is a natural and classical sub-
ject. See, for example, Langevin [24], Larsen—Keller [25], Bensoussans—Lions—Papanicolaou
[5] and Bodineau—Gallagher—St-Raymond [7]. Particles undergoing anomalous diffusion
are often observed in physics, and many mathematical works show how to modify some
Boltzmann-like linear equations to asymptotically get some fractional diffusion limit (i.e.,
a radially symmetric Lévy stable jumping position process). See Mischler—Mouhot-Mellet
[29], Jara—Komorowski—Olla [20], Mellet [28], Ben Abdallah—Mellet—Puel [3, 4], etc.

The kinetic Fokker—Planck equation is also of constant use in physics, because it is rather
simpler than the Boltzmann equation: assume that the density f;(x, v) of particles with posi-
tion x € R? and velocity v € R at time 7 > 0 solves

1
ey O fr(x,v) +v- Vi fi(x,v) = E(Avfl(x’ v) + B divy[F(v) fi (x, v)])

for some force field F : R — R? and some constant 8 > 0 that will be useful later. We then
try to understand the behavior of the density p;(x) = [ga fi(x, v) dv for large times.
The trajectory corresponding to (1) is the following stochastic kinetic model:

t t
) V,=v0+B,—§/ F(Vy)ds and Xt:x0+/ V, ds.
0 0

Here (B;);>0 is a d-dimensional Brownian motion. For (V;, X;);>0 (with values in RY x
Rd) solving (2), the family of time-marginals f; = Law(X;, V;) solves (1) in the sense of
distributions.

It is well known that if F is sufficiently confining, then the velocity process (V;);>0 is
close to equilibrium, its invariant distribution has a fast decay, and after rescaling, the position
process (X;);>0 resembles a Brownian motion in large time. In other words, (po;);>0 is close
to the solution to the heat equation.
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If on the contrary F is not sufficiently confining, for example, if F =0, then (X;);>0
cannot be reduced to an autonomous Markov process in large times. In other words, (0;):>0
does not solve an autonomous time-homogeneous PDE.

The only way to hope for some anomalous diffusion limit, for a Fokker—Planck toy model
like (1), is to choose the force in such a way that the invariant measure of the velocity process
has a fat tail. One realizes that one has to choose F behaving like F(v) ~ 1/|v]| as |v| — o0,
and the most natural choice is F(v) = v/(1 + |v|2). Now the asymptotic behavior of the
model may depend on the value of § > 0, since the invariant distribution of the velocity
process is given by (1 + |v|?)™#/2, up to some normalization constant.

The Fokker—Planck model (1), with the force F(v) =v/(1 + |v 1), is the object of the pa-
pers by Nasreddine—Puel [31] (d > 1 and 8 > 4+ d, diffusive regime), Cattiaux—Nasreddine—
Puel [11] (d = 1 and B =4 + d, critical diffusive regime) and Lebeau—Puel [26] (d =1 and
B e(,5)\{2,3,4}). In this last paper, the authors show that after time/space rescaling, the
density (p;);>0 is close to the solution to the fractional heat equation with index «/2, where
o = (B 4+ 1)/3. In other words, (X;),>0 resembles a symmetric «-stable process. This work
relies on a spectral approach and involves many explicit computations.

Using an alternative probabilistic approach, we studied the one-dimensional case in [15],
treating all the cases f € (0, 0o0) in a rather concise way. We allowed for a more general
(symmetric) force field F.

Physicists observed that atoms subjected to Sisyphus cooling anomalously diffuse;
see Castin—Dalibard—Cohen—Tannoudji [9], Sagi-Brook—Almog-Davidson [34] and
Marksteiner—Ellinger—Zoller [27]. A theoretical study has been proposed by Barkai—Aghion—
Kessler [2]. They precisely model the motion of atoms by (1) with F(v) =v/(1+ v?) induced
by the laser field, simplifying very slightly the model derived in [9]. They predict, in dimen-
sion d = 1 and with a quite high level of rigor, the results of [15], Theorem 1, excluding the
critical cases, with the following terminology: normal diffusion when 8 > 5, Lévy diffusion
when 8 € (1, 5) and Obukhov—Richardson phase when g € (0, 1). This last case is treated
in a rather confused way in [2], mainly because no tractable explicit computation can be
handled, since the limit process is an integrated symmetric Bessel process.

In [22], Kessler—Barkai mention other fields of applications of this model, such as single
particle models for long-range interacting systems (Bouchet—Dauxois [8]), condensation de-
scribing a charged particle in the vicinity of a charged polymer (Manning [28]), and motion
of nanoparticles in an appropriately constructed force field (Cohen [12]). We refer to [11, 26,
31] and especially [2, 22] for many other references and motivations.

The goal of the present paper is to study what happens in higher dimension. We also
allow for some nonradially symmetric force, to understand more deeply what happens, in
particular in the stable regime. To our knowledge, the results are completely new. The proofs
are technically much more involved than in dimension 1.

1.2. Main results. In the whole paper, we assume that the initial condition (v, xg) €
R? x R? is deterministic and, for simplicity, that vy 7 0. We also assume that the force is of
the following form.

ASSUMPTION 1. There is a potential U : R4 \ {0} = (0,00) of the form U(v) =
C(lv)y @/|v]), for some y : Sy—1 — (0,00) of class C*° and some I' : Ry — (0, 00)
of class C* satisfying I'(r) ~ r as r — o0, such that for any v € R4 \ {0}, F(v) =
VilogU )] =[U@)]~'VU (v).

Observe that F is of class C>° on RY \ {0}. We will check the following well-posedness
result.
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PROPOSITION 2. Under Assumption 1, (2) has a pathwise unique solution (Vi, X;)>0,
which is furthermore (R4 \ {0} x R -valued.

REMARK 3. Assume that 8 > d. As we will see, (V;);>0 has a unique invariant proba-
bility measure given by pg(dv) = c,g[U(v)]_/3 dv, for cg = [fRd[U(U)]_ﬂ dv]~ 1.

As already mentioned, the main example we have in mind is I'(r) =+/1 +r2and y =1,
whence U(v) =,/1+|v|? and F(v) =v/(1 + |v|?). We also allow for some non radially

symmetric potentials to understand more deeply what may happen.
In the whole paper, we denote by S; the set of symmetric positive-definite d x d matrices.
We also denote by ¢(df) the uniform probability measure on S;_1.

. . .d. .
For ((Z{);>0)e>0 a family of R9-valued processes, we write (Z5);>0 f—) (Z?),zo if for
any finite subset S C [0, oo) the vector (Z;);cs goes in law to (ZZO),GS as € — 0; and we

. d . . . .
write (Z7);>0 — (Z?)zzo if the convergence in law holds in the usual sense of continuous
processes. Here is our main result.

THEOREM 4. Fix > 0, suppose Assumption 1 and consider the solution (V;, X;)s>0 to
2). We set ag = Js, [y®)]1Fc(d0)]™! >0, as well as Mg =ag [5,  0ly(©)] Fs(dd) e
R and, if B > 1 +d, mg = [ga vjp(dv) € R,

(@) If B >4+d, thereis £ € S such that

fd.
(€'2[X1/e —mpt/€]),og = (ZBy)i=0,
where (B;)>0 is a d-dimensional Brownian motion.

(b) If B=4+d and iffloor_1|rF’(r)/l"(r) —112dr < oo, then

d.
(€72 loge| "2 (X, e — mpt/e]),-g L5 (SB)i=0

t>0

for some X € S;, where (B;);>0 is a d-dimensional Brownian motion.

©) Iffe(l+d,4+d),seta=(B+2—d)/3. Then

fd.
(€'/%[X1/e —mpt /€)oo = (S0,

where (S;);>0 is a nontrivial a-stable Lévy process.
(d) IfB=1+d and iffloor_1 |r/T'(r) — 1|dr < oo there is ¢ > 0 such that

.d.
(e[Xije — cMgllogelt/e])o L5 (S0,

where (S;):>0 is a nontrivial 1-stable Lévy process.
(e) IfBe(d,1+d),seta=(B+2—d)/3. Then
fud.
(El/aXt/e),ZO —> (S)1>0,

where (S;):>0 is a nontrivial a-stable Lévy process.

f) If B =d, then

fd.
(lelogel?X,/e),20 = (S)iz0,

where (S;):>0 is a nontrivial 2/3-stable Lévy process.
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d t
P ([ 1)
- 0 t>0

where (Vi)i=0 is a R4 -valued continuous process (see Definition 25) of which the norm
(IViDe=0 is a Bessel process with dimension d — B issued from 0.

The strong regularity of U is only used to apply as simply as possible some classical PDE
results.

REMARK 5. (i) In the diffusive regimes (a) and (b), the matrix ¥ depends only on U
and B; see Remarks 31(i) and 36(i). The additional condition when 8 = 4 4+ d more or less
imposes that I''(r) — 1 as r — oo and that this convergence does not occur too slowly. This
is slightly restrictive, but found no way to get rid of this assumption.

(i1) In cases (c), (d), (e) and (f), the Lévy measure of the «-stable process (S;);>¢ only
depends on U and B: a complicated formula involving It6’s excursion measure can be found
in Proposition 23(i). The additional condition when 8 = 1 + d requires that r~I0(r) does
not converge too slowly to 1 as r — oo and is very weak. The constant ¢ > 0 in point (d) is
explicit; see Remark 24.

(iii) In point (g), the law of (V;);>0 depends only on y and on 8.

(iv) Actually, point (g) should extend to any value of 8 € (—o00, d), with a rather simple
proof, the definition of the limit process (V;);>0 being less involved: see Definition 25 and
observe that for 8 < d — 2, the set of zeros of a Bessel process with dimension d — § issued
from O is trivial. We did not include this uninteresting case because the paper is already
technical enough.

For the main model we have in mind, Theorem 4 applies and its statement simplifies. See
Remarks 31(ii) and 36(ii) and Proposition 23(ii).

REMARK 6. Assume I'(r) =+/1+r2and y =1, that is, F(v) =v/(1 + [v]?).

d. . . .
(a) If B >4 4 d, then (el/th/E)tzo f—> (g Br)i=0, where (B;);>0 is a d-dimensional
Brownian motion, for some explicit g > 0.

.d.
(b) If B =4 +d, then (¢'/?|loge|™"?X,/e)i>0 4 (g By)i=0, wWhere (B;);>0 is a d-
dimensional Brownian motion, for some explicit g > 0.

(©)-(d)-(e) If B e(d,4+d), then (el/“Xt/e)tzo ﬁ') (S¢)r>0, where (S;);>0 is a radially
symmetric a-stable process, where o = (8 + 2 — d)/3 and with nonexplicit multiplicative
constant.

(f) If B =d, then (Jeloge|*/> X, /e)i=0 ELN (S1)s=0, Where (S;);>0 is a radially symmetric
2/3-stable process with nonexplicit multiplicative constant.

(g If pe(d—2,d), (€*X;/e)i>0 SN J§ Vs ds)i=0, with (V;)>0 introduced in Defini-
tion 25.

1.3. Comments. Pardoux—Veretennikov [32] studied in great generality the diffusive
case, allowing for some much more general SDEs with nonconstant diffusion coefficient
and general drift coefficient. Their results are sufficiently sharp to include the diffusive case
B > 4+d when F(v) =v/(1 + |v|?). Hence, the diffusive case (a) is rather classical.

We studied the one-dimensional case d = 1 with an even potential U in [15]. Many tech-
nical difficulties appear in higher dimension. In the diffusive and critical diffusive regime,
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the main difficulty is that we cannot solve explicitly the Poisson equation L¢ (v) = v (with £
the generator of (V;);>0), while this is feasible in dimension 1. Observe that such a problem
would disappear if dealing only with the force F(v) =v/(1 + [v]?).

We use a spherical decomposition V; = R;®; of the velocity process. This is of course
very natural in this context, and we do not see how to proceed in another way. However,
since in some sense, after rescaling, the radius process (R;);>o resembles a Bessel process
with dimension d — 8 € (—o00, 2), which hits 0, spherical coordinates are rather difficult to
deal with, the process ®; moving very fast each time R; touches 0.

In dimension 1, the most interesting stable regime is derived as follows. We write (V;);>0
as a function of a time-changed Brownian motion (W;);>0, using the classical speed measures
and scale functions of one-dimensional SDEs and express €/ X, /e accordingly. Passing to
the limit as € — 0, we find the expression of the (symmetric) stable process in terms of the
Brownian motion (W;);>¢ and of its inverse local time at 0 discovered by Biane—Yor [6];
see also It6—McKean [18], page 226, and Jeulin—Yor [21]. In higher dimension, the situation
is much more complicated, and we found no simpler way than writing our limiting stable
processes using some excursion Poisson point processes.

Let us emphasize that our proofs are qualitative. On the contrary, even in dimension 1,
the informal proofs of Barkai—Aghion—Kessler [2] rely on very explicit computations and
explicit solutions to O.D.E.s in terms of modified Bessel functions, and Lebeau—Puel [26]
also use rather explicit computations.

1.4. Plan of the paper. To start with, we explain informally in Section 2 our proof of
Theorem 4 in the most interesting case, that is when F(v) = v/(1 + |v|?) and when B e
d,4+4d).

In Section 3, we introduce some notation of constant use in the paper.

In Section 4, we write the velocity process (V;);>0 as (R;0;);>0, the radius process
(R;)t>0 solving an autonomous SDE, and the process (®;);>¢ being S;_-valued. We also
write down a representation of the radius as a function of a time-changed Brownian motion,
using the classical theory of speed measures and scale functions of one-dimensional SDEs.

We designed the other sections to be as independent as possible.

Sections 5, 6, 7 and 8 treat respectively, the stable regime (cases (c)—(d)—(e)—(f)), integrated
Bessel regime (case (g)), diffusive regime (case (a)) and critical diffusive regime (case (b)).

Finally, an Appendix at the end of the paper contains some more or less classical results
about ergodicity of diffusion processes, about It6’s excursion measure, about Bessel pro-
cesses, about convergence of inverse functions and, finally, a few technical estimates.

2. Informal proof in the stable regime with a symmetric force. We assume in this
section that F(v) =v/(1 + |v|?) and that B € (d, 4+ d) and explain informally how to prove
Theorem 4(c)—(d)—(e). We also assume, for example, that xo = 0 and that vo =6y € Sg_1.

Step 1. Writing the velocity process in spherical coordinates, we find that V; = R:© H,>
where

_ ird—1 /SRS>
3 R,=1+B — d
3) t + t+/0<2Rs 1+Rs2 s

for some 1D-Brownian motion (B,),Zo, independent of a spherical Sy_1-valued Brownian
motion ((:)t)tzo starting from 6y, and where H, = fé RS_2 ds.

Step 2. Using the classical speed measure and scale function, we may write the radius
process (R;);>0 as a space and time changed Brownian motion. For that we introduce 4 (r) =
B+2-d)f] u'=4[1 + u?1#/2 du, which is an increasing bijection from (0, 0o) into R.
We denote by A~! : R — (0, 00) its inverse function and by o (w) = ' (A~ (w)) from R to
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(0, 00). For (W;)>0 a one-dimensional Brownian motion, consider the continuous increasing
process A; = fé [0 (W,)]~2ds and its inverse (pr)r=0- One can classically check that R, =
h! (W),) is a (weak) solution to (3), so that we can write the position process as

Ph= (W) A

o (W2 & A

t A
X, :f W (W,,) O, ds =/
0 0
We used the substitution pg = u, that is, s = A,, whence ds = [0 (W,)]~2du. We next ob-
serve that 7; = Hy, = OA’ [h] (Wps)]_2 ds = fé[w(W,,)]_2 du, where we have set {(w) =
h~'(w)o (w). Finally,

piie K1 (W) A
X/ = ———O7 du.
e /0 oWz

Step 3. To study the large time behavior of the position process, it is more convenient to
start from a fixed Brownian motion (W;);>¢ and to use Step 2 with the Brownian motion
(Wf = (ce)~! Wicerz) =0 for some constant ¢ > 0 to be chosen later. After a few computa-
tions, we find that

ds where

T W/ (ce))Ore
=), o

. ! du . t du
T; =/ ————— and A; :/ 3 3
0 [cey(Wy/ce)] 0 c*€[o(Wy/(c€))]
and where (p5 );>0 is the inverse of (Af);>0.
Step 4. If choosing ¢ = [g[o (x)]72dx, it holds that lime_.o AS = L? a.s. for all t > 0,

where (L,O)rzo is the local time of (W;);>¢: by the occupation times formula (see Revuz—Yor
[33], Corollary 1.6, p. 224)

. LY dx B L dy dy o_ 0
A= /R Zelo /(e /R o /R dopi =t

As a consequence, pf tends to 7, the inverse of LY.
Step 5. Studying the function / near 0 and oo, and then h~! o and Y near —oo and oo,
we find that, with ¢ = (8 + 1 — d)/3 (see Lemma 42(ix) and (v)):

o limc0€e/(ce)2h 1 (w/(ce)o(w/(ce)]? = cw/*21,-0),
o lime_o[cey (w/ce)] ™2 = " w1 y=0) + (W) L{w<o}s

for some constants ¢’, ¢ > 0 and some unimportant function ¢ > 0. Here appears the scaling
1/a
€Y.

Passing to the limit informally in the expression of Step 3, we find that

Tt ~
61/"‘)(,/6 — S = c//o Wsl/“_zl{wv>o}®ys ds where

t t
U, =c”f0 W, 21w, ~0) du+/0 p(Wi)ljw, <o) du.

Unfortunately, this expression does not make sense, because U; = oo for all ¢ > 0, since
the Brownian motion is (almost) 1/2-Ho6lder continuous and since it hits 0. But in some
sense, U; — Uy is well-defined if W,, > O for all u € (s, ). And in some sense, the processes
((:)Us)se[a,b] and ((:)Us)se[a/,b/] are independent if W, > O on [a, b]U[d’, '] and if there exists
t € (b, a’) such that W, = 0, since then U, — Uj, = 00, so that the spherical Brownian motion
@, at time U/, has completely forgotten the values it has taken during [U,, Up].
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Since (t;)s>0 is the inverse local time of (W;);>¢, it holds that 7; is a stopping-time and
that W, = W, = 0 foreach r > 0. Hence, by the strong Markov property, for any reasonable
function f : R — RY, the process Z;, = 0” f(Wy)ds is Lévy, and its jumps are given by
AZ, = fr?, f(Wy)ds,forre J ={s>0: Aty > 0}.

The presence of (:)Us in the expression of (S;);>0 does not affect its Lévy character, because

(C:),)tzo is independent of (W;);>¢ and because in some sense, the family {(@)Uu)ue[fhfs] :
s € J} is independent. Hence, (S;);>0 is Lévy and its jumps are given by

Tt ~
AS:’/ wl/e=21 e L ds, teld
t ¢ 7 N {Ws >O} [c// -[(Tt+r[,)/2 Wu zdl/t] \
for some i.i.d. family {(@L)ueR : t € J} of eternal spherical Brownian motions. Informally,
for each t € J, we have set C:)L = C:)U(T[Ht_)/ﬁu for all u € R. The choice of (t; + 7,-)/2

for the time origin of the eternal spherical Brownian motion O is arbitrary, any time in
(t;—, 7;) would be suitable. Observe that the clock ¢” f(srt to2 Wi 2du is well-defined for
all s € (t;—, ;) because W, is continuous and does not vanish on u € (t;_, t;). This clock
tends to oo as u — 1, and to —oo as u — T,_.

It only remains to verify that the Lévy measure g of (S;);>0 is radially symmetric, which is
more or less obvious by symmetry of the law of the eternal spherical Brownian motion; and
enjoys the scaling property that ¢(A,) = a®q(A) for all A € B(R?\ {0}) and all @ > 0, where
A, = {x e R?:ax € A). This property is inherited from the scaling property of the Brownian
motion (this uses that the clock in the spherical Brownian motion is precisely proportional to
c’ f(bft‘f'ft—)/z WM_Z du).

To write all this properly, we have to use Itd’s excursion theory.

Let us mention one last difficulty: when o > 1, f(; sl / ale{WpO} ds is a.s. infinite for all
t > 0. Hence to study S;, one really has to use the symmetries of the spherical Brownian
motion and that the clock driving it explodes each time W hits 0.

3. Notation. In the whole paper, we suppose Assumption 1. We summarize here some
notation of constant use.

Recall that S;l" is the set of symmetric positive-definite d x d matrices.

We write the initial velocity as vy = rgfp, with rg > 0 and 6y € Sg_1.

For u € R? \ {0}, let L= (g — %) be the d x d-matrix of the orthogonal projection
onut.

For W :RY — RY, let V¥*W = (VW --- VW,)*.

Recall that ag = [ g o [y GG g(d@)]_1 > 0, where ¢ is the uniform probability measure
on Sy 1. We introduce the probability measure vg(df) = agly (G ¢(df) on S;_1. It holds
that Mg =[5,  6vp(dd) € R?,

If B>d, we set bg =] fooo[f‘(r)]_ﬁrd_1 dr]™! and introduce the probability measure
vp(dr) = bg[T(M)]Prd=1dr on (0,00). It has a finite mean mjy = [7°rvy(dr) > 0 if
B>1+d.

Still in the case where B > d, we recall that cg = [fRd[U(U)]_'B dv]~! and that np(dv) =
cg x [U(v)]7# dv on R?. It holds that cg = aghg and

Lo = [~ [ pwop@ovan

for any measurable ¢ : R — R . In particular, m p=M ﬂm:g ifg>1+d.
In the whole paper, we implicitly extend all the functions on Sy_; to R¢ \ {0} as follows:
for ¥ : Sg—1 — R and v € R\ {0}, we set ¥ (v) = ¥ (v/|v]).
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We endow S;_; with its natural Riemannian metric, denote by T'S;_1 its tangent bundle
and by Vg, divg and Ag the associated gradient, divergence and Laplace operators. With the
above convention, for a function ¥ : Sy_1 — R and a vector field ¥ : Sy_; — TSy_1, it
holds that, for 8 € Sy_1 c R4\ {0},

Vs (@) =V (@),  divgW(@) =divl(@) and Agy(d) = Ay ().

4. Representation of the solution. Here we show that (2) is well-posed and explain how
to build a solution (in law) from some independent radial and spherical processes, in a way
that will allow us to study the large time behavior of the position process by coupling.

LEMMA 7. Consider a d-dimensional Brownian motion (l}t) >0- The following equation,
of which the unknown (@z)zzo is R4 \ {0}-valued,

. 1 . d—1 gt © Vy (0,
) ®t:90+[7r®lst—— 2 g '3/ V(9 4
0 § 2 0 |®_§|2 S V(®s

has a unique strong solution, which is furthermore Sq_1-valued.
Recall that we have extended y to R? \ {0} by setting y (v) = y (v/|v]).

PROOF. The coefficients of this equation being of class C' on R? \ {0}, there classically
exists a unique maximal strong solution (defined until it reaches O or explodes to infinity),
and we only have to check that this solution a.s. remains in Sy_ for all times. By a classical
computation using the Itd6 formula, |®,|2 160> = 1 for all # > 0 a.s. This uses that for
o) = |6|% defined on R?, we have Vo (6) =20, so that (V¢ (6))*myr =0 and 9;;¢(0) =
26;;, from which 5 3¢} 8;j¢(0) (g1)ij — 5L V(©0) - 10]720 =0. O

The SDE (5) below has a unique strong solution: it has a unique local strong solution (until
it reaches 0 or co) because its coefficients are C! on (0, co) and we will see in Lemma 10
that one can build a (0, co)-valued global weak solution, so that the unique strong solution is
global.

LEMMA 8. For two independent Brownian motions (éz)zzo (in dimension 1) and (é,),zo
(in dimension d), consider the Sy_1-valued process (®;);>0 solution to (4) and the (0, 00)-
valued process (R;);>¢ solution to

d— tds B [tT/(Ry)

5 Ri=ro+ B+~ [ 27
(&) 1 =ro+ b+ > b r T2 TR

Setting H; = fo R2ds, V, = R;@H, and X; = xo + fé Vyds, the (R \ {0}) x R?-valued
process (V;, X,);zo is a weak solution to (2).

PROOF. Foreachtr >0, v, =inf{s >0: Hy > t}isa (Fy )s>0-stopping time, where F =
o(By :u <), so that we can set H; = ]:,, \Y O'(B s <t). Now for each t > 0, H; =
inf{s > 0:vs >t} is a (H;)s>0-stopping time and we can define the filtration G; = Hpy,. One
classically checks that:

(a) (E,),Zo is a (G;);>0-Brownian motion, because (éw)tzo is a (H;):>0-martingale, so
that (B; = E’th)tzO is a (Hu, = G1)r>0-martingale, and we have (B), =t because (E’t)tzo is
a Brownian motion;
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(b) B, = R dB is a (G;);>0-Brownian motion with dimension d, since (B,,,)t>o
is a (H:)r>o0- martlngale so that (B,),>o is a (G;);>o-martingale, and because (B)t =
Ig " R2 ds = Iyt;

(©) these two Brownian motions are independent because foralli =1, ...,d, ( B, By =0;
(d) for any continuous (#;);>o-adapted (S;);>0, we have fo S, dB, = fo 1SHY dB;.
Indeed, it suffices to verify that for any (G;);>o-martingale (M;);>0, fo S dBS, M), =

fo 1SHY (B, M)s.But (N; = M,,)s>0 is a (H;):>0-martingale, and we have

H ~ H R H H, .
</ Ssst,M> =</ S, dB;, st> =/ S, d(B, N),
0

_/ Sy, d((B, N)g /SHMR d(B, M),

because R, d((B, N)p,) =d(B, M),.Indeed, we have (B, M), = (fo "Ry, dB;, fOH' dNg); =
0" Ry, d(B,N); = [§ R d((B, N)p,).
Next, since ®; = Oy, is (G;);>0-adapted, recalling (4) and that |®,;| =1,

_ Vy (Oy)
(6) ®_9+/R JTldB——/RQG)ds——/ oL ds
0 © "or T, @y

Applying the 1t6 formula, we find, settlng Vi= Rt®, as in the statement,
-1 BI'(Ry)
Vi =vy+ @dB + ﬂ@LdB + — O, ds
S

2 T'(Ry)
d—1 ﬁ W(@»
_/o ( 2, Oty Ter Rsy<®x)>ds

B B [1(T/(R) vy (©;)
= v+ b 2/0 <F(Rs) O + 76y Rm@s))ds’

where we have set B; = fé ©,dB; + fé ToL dB,. This is a R?-valued (Gr)¢>0-martingale

with quadratic variation matrix fé[@s oF + 7T®SL] ds = I;t and thus a Brownian motion. It
only remains to verify that, for v =r6 with r > 0 and 6 € S;_1, one has

(7) F)=[T@)] ' T80+ [ry@)] . Vy 0),
which follows from F = V[log U] with U (v) =T (Jv])y (v/|v]). O

We next build the radial process using classical tools, namely speed measures and scale
functions; see Revuz—Yor [33], Chapter VII, Paragraph 3.

NOTATION 9. Fix 8 >d —2. Let h(r) = (B + 2 — d) [}, u'~[T' ()] du, which is an
increasing bijection from (0, co) into R. We denote by h~1:R — (0, 00) its inverse function,
for which A~1(0) = ry. We also introduce o (w) = h'(h~' (w)) and ¥ (w) = [0 (w)h~ (w)]?,
both from R to (0, co0)

In the following statement, we introduce a parameter € € (0, 1), which may seem artificial
at this stage, but this will be crucial to work by coupling.

LEMMA 10. Fix B > d — 2 and consider a Brownian motion (W;);>0. For € €
(0,1) and ac > 0, introduce A§ = ea_z fO[U(W /ac)]™ 2ds and its inverse pr. Set Ry =
Jeh~ 1(W ¢/ae). For each € € (0 1), the process (S; = E_l/zRet)t>0 is (0, 00)-valued and
is a weak solunon to (5).
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This can be rephrased as follows: (R;);>o has the same law as (\/ER,/G)QO, with (R;)s>0
solving (5). Of course, (/€ R;/¢);>0 is a natural object when studying the large time behavior
of (R¢):>0-

PROOF OF LEMMA 10. First, (S5);>0 is (0, 00)-valued by definition. Next, there clas-
sically exists a Brownian motion (l_?t),zo (see, e.g., Revuz—Yor [33], Proposition 1.13, p.
373) such that Y = W,e solves Y¢ = e '/2a. [§o (Y /ac)dBs, whence Zf = a_ 'Y =

e~ 1/2 [§0(Z$) dBy. Thus,

f=eh™(Z5)
— Jeh™ (0)+/ o(Z€)dBy f/ o2(Z¢)ds.

But 2~10) =ro, ("1 (2)o(z) = 1 and
—1 I'(h~(2))

=1\ 2 ! — (-1
(h) (@0*(@) = —0"(2) =—h"(h™"(2)/ W' (h~ (z)) o PTao)
because 1" (u)/ b’ (u) = [log(u' 4T w))]' = (1 —d)/u + BT’ (u)/ ' (u). Hence,
d—1 1 1 B [T N(ZH))

RS = B ds -
f =+ero+ B + 2\/5 0 h=1(Z¢) S 2/€Jo T(h=1(Z%)

B _ d- tds_g  T(RE/J€)
=.ero+ B, + —— 5 OF fF(Re/f) s

Hence, S = e‘l/zRG, solves (5) with the Brownian motion B; = ¢ "V/2B,,. O
Finally, we can give the proof of Proposition 2.

PROOF OF PROPOSITION 2. The global weak existence of a R \ {0}-valued solution
proved in Lemma 8, together with the local strong existence and pathwise uniqueness (until
the velocity process reaches 0 or explodes to infinity), which follows from the fact that the
drift F is of class C! on R\ {0}, imply the global existence and pathwise uniqueness for (2).

O

5. The stable regime. Here we prove Theorem 4(c)—(d)—(e)—(f). We fix B € [d,4 + d)
and set o = (8 + 2 — d)/3. We introduce some notation that will be used during the whole
section. We recall Notation 9. We fix € € (0, 1) and introduce

1
4 —xe iffeditd) and a =S del ife=d,

where « = fR[cf(w)]_2 dw < oo when B > d; see Lemma 42(i). We consider a one-
dimensional Brownian motion (W;);>0, set A; = ea_ 2 fé [o (W /ag)]_2 ds, introduce its in-
verse p; and put Ry = ﬁh_l(Wp;/ag). We know from Lemma 10 that Sy = e‘l/zR; =
h_l(Wpeet /ac) solves (5). We also consider the solution ((:););20 of (4), independent of
(W)i=o0.

LEMMA 11. Foreache € (0,1), (X;/e — X0)1>0 4 (Xf)tzo, where

o1 h= (W, /ac)Ore 1
® X"@ 0 loWajaop M WhereT: _a?/o (W, /ac)
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Furthermore, for any m € R¢, any t > 0, it holds that

- 1 rof Y (W, /a)Ore —m
9 Xije —mt/e = / Wu/ao)Or;
0

a? [0 (W, /ae)]?

€

PROOF. We know from Lemma 8 that, setting Hf = f(;[Sf]_2 ds, it holds that
(S£O 4120 = (Vi)i=0. Since X, —xo = f3 V; ds, we conclude that (X, /e —x0)r=0 = (X{)r=0,
where X¢ = 0[/ NG Heds = Ot/ ChT (Wpe, Ja)® He ds. Performing the change of variables

u=p¢,, thatis, s = e_lAZ, sods = ae_z[a(Wu/aE)]_2 du, we find

B 1 et h_l(Wu/ae)é)H;
X; = _2f 2
az Jo [o(Wy/ae)]

€

1 A€
~ du.

Using the same change of variables, one verifies that

e~ LAS ds
HE e :/ .y 2
i Jo (A= (Wpe /ae)]

_i/f du _i/f du
a2 0 [U(Wu/ae)]z[h_l(wu/ae)]z_6152 0 W(Wu/ae)'

€

The last claim follows from a;z Op’e o (W, /ac)] "> du = e_lA;f =e1t. O
We first study the convergence of the time-change.

LEMMA 12. (i) For all T > 0, a.s., supy 71 |AS — LY — 0 as € — 0, where (L?);=0 is
the local time at 0 of (W;);>0.
(ii) Forallt > 0, a.s., p; — 1, =inf{u >0 Lg > t}, the generalized inverse of (L?)szo-

PROOF. Point (ii) follows from point (i) by Lemma 41 and since P(t; # t,—) = 0. Con-
cerning point (i), we first assume that 8 > d. Since a. = k€, by the occupation times formula
(see Revuz—Yor [33], Corollary 1.6, p. 224)

. € /‘f ds 1 / LY dx / L dy
A = —= _— = — ] s
a2 o [o(Wy/ao))? k%€ Jro?(x/(ke))  Jr ko2(y)
where (L} );>0 is the local time of (W;);>¢ at x. Since k = fR[a(w)]_2 dw, which is finite by
Lemma 42(i), we write

L —L%d
A e
R ko(y)

This a.s. tends uniformly (on [0, T]) to 0 as € — 0 by dominated convergence, since
Sup[o, 7] |Lye — L?| a.s. tends to O for each fixed y by [33], Corollary 1.8, page 226, and
since supyy 7jxr Ly <00 ass.

We next treat the case where 8 = d, which is more complicated. We recall that a. =
€|loge|/4. By Lemma 42(vi)—(vii), we know that [oc(w)]2<C(+ |w])~! and that

/x dw xX—00 logx
—x [o(w)]? 4

We fix § > 0 and write Af = Jf’a + Qf’a, where

(10)

a5 € (" 1w, =) ds

€ € [ 1yw<s)ds
a2 o [o(Wy/ae))?

€8 _ &
and 0" =00 | lo Wy jao
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One checks that Supyo, 71 Jf’(S < CTe/[aez(l + 8/ac)] < CTe/(8ac), which tends to O as
€ — (0. We next use the occupation times formula (see Revuz—Yor [33], Corollary 1.6, p. 224)
to write

Q€’8—€f6 L} dx _6/5 dx 0 6/6 (LY — LY dx
" T2 ) sloxja0? T a2 )-slo(xja)P T a2 J=s [o(x/ac)?
:rG,(SL?—i_R[e’Sv

the last identity standing for a definition. By a substitution and (10),

€ [%/ac dy e-0e€log(8/ae)
re,5=—/ 7 —>1 ase—0.
de J—6/ac [o(y)] 4a,
All this proves that a.s., for all § > 0,
limsup sup |A¢ — L%| < limsup sup |RE?|.
e—0 [0,T] e—0 [0,7]

But we have |Rf”s| < res X supp_s 51 1L7 — LY, so that limsup,_, supjo. 11 1AF — LY <
SUp[o. 7x[—s.51 1Lt — LY as., and it suffices to let § — 0, using Revuz—Yor [33], Corol-
lary 1.8, page 226, to complete the proof. [J

We next proceed to three first approximations: in the formula (9), we show that one may
replace p; by its limiting value 7;, that the negative values of W have a negligible influence,
and that we may introduce a cutoff that will allow us to neglect the small jumps of the limiting
stable process. All this is rather tedious in the infinite variation case « € [1, 2). We recall that
my >0, Mg € R and mg = my Mg were defined in Section 3.

NOTATION 13. () IfBe[d,1+d),weset,ford € (0,1]and € € (0, 1),

7€.8 :al/a—Z/II h= (W, /ac)Ory
e [eWa/aoP?

1w,>sydu and Uf’a zael/af(f — Zf’s.

(1) f B=1+4d, we put
[ w/a) o w/a)] 2dw [ h ! (w)lo (w)] 2 dw

[l olo(w/a)] =2 dw S o (w12 dw
(so that k¢ 1 defined below vanishes) and we set, for § € (0, 1] and € € (0, 1),

Ce =

1 (o h Y (W, /a)®re — M
Zf”s:— t ( u/ e) T 2§e ﬂl{Wu>8}dua
de JO [O'(Wu/ae)]
1 8 hl(w/ae) — ¢
Ke, s = —/ —2d s
de J—00 [U(w/ae)]
US? = ac[XE — teMpt)e] — ZE° — ke s Mpt.

@iii) If B € (1 4+d,4+ d) we introduce, for § € (0, 1] and € € (0, 1),

ze? :al/a—Z/Tt W (Wa/a0)Or; = my
' ¢ 0 [0(W,/ac)]?

5 h~l(w/ac) —m)
_ /a2 B
fe.d = de /—oo [o (w/ae)]z

Ute,é =a61/“[)~(f — m,gt/e] — Z,é’s — KE,(sMﬂl‘.

I{Wu>3}du

’
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Observe that ¢ and «; ¢ are well defined by Lemma 42(i)—(viii).
LEMMA 14. ForallBeld,4+d),allt >0, all n > 0,

lim lim sup P[| US| > 5] = 0.
=0 -0

PROOF. Case (i): B €[d, 1+ d), whence a € [2/3, 1). Recalling (8),

s 1 o 0 h_l(Wu/ae)(CDTe Ly rpf h_l(Wu/ae)(’:)Tf
U =aé f 5 Liw,<s) du +a& f 7
0 [o(Wy/ae)] v [o(Wy/ae)l

2371

Since A~ (w)[o(w)]72 < C(1 + w)/* 21>y + C(1 + |w]) ~21 {0y by Lemma 42(viii),

al*2h N (w/ao)[o (w/a)]

< Cw' " 10 + Clw V72 (1 + |wl/ac) ™10y < Clw|/*72,
and thus
Tt
US| < Cfo W/ * 210 <w, <s) du

Tt IO[E
+ch |Wu|1/“_2(1+|Wu|/a€)_1/“1{wu<0}du+C/ | W, |2 du.
15

But 1/o —2 > —1, so that the integral fOT | W, |'/%=2 du is a.s. finite for all T > 0 (because its
expectation is finite). One concludes by dominated convergence, using that p; — 7; a.s. for

each r > 0 fixed by Lemma 12(ii), that a.s.,

Tt
lim limsup|US°| < cgir%/() W2 110w, <sydu = 0.

-0 <0

Case (iii): B € (1 +d, 4+ d). This is much more complicated. By (9),
U =g/ / ! (Wa/ae)Org — mp
o — e

Liw, <sydu — ke s Mpt

0 [U(Wu/ae)]z
€ 11 A
1/a—2 i h (‘/Vu/ae)@Tu6 —mg
T / [o(Wa/ao) 2

= K& + MIS® + (K5 — K5 ]+ Mp[ 157 — 15,

where we have set (extending the definition of k¢ s to all values of § € (0, oo]),

K8 — gl/a—2 /" h= (W, /ae)[Ore — Mg]
S [0 (W, /ao) 2
th= (W, /ae) —m)

I :al/a—zf 1y du — ke s LY.

S R CIUAZAT

We used that mg = meM s, that L(r), =t and that by Lemma 42(ii),

{w, <oy du,

(11) Ke,oo = de de

Lop oo h™l(w/ae) —mj Loy oo bl () —mj
/-oo lo(w/aol? /-oo [ ()2

We first treat /. By the occupation times formula (see Revuz—Yor [33], Corollary 1.6,

p. 224) and by definition of « s,

s hYw/ae) —m!
768 _ l/a—Z/ Birw — 19 dw.
! e —00 [O'(W/ae)]z ( ! Z) v
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For each § € (0, 00], each T > 0, we a.s. have lim._, Sup[o. 7 |If’5 — I,5| = 0, where we
have set I;S =(B+2—-d)? fos wl/"‘_z(L}” - L?) dw. Indeed, this follows from dominated
convergence, because:

o a/* = (w/ac) — myllo(w/a)]~? < Clw|/*~2 by Lemma 42(viii),

o limeoad’* [ (w/ae) — myllo(w/a)]™ = (B + 2 — d)2w!/* 120}, see
Lemma 42(ix),

e as., fplw|"* Zsupyg ry|LY — LY dw < oo, since 1/o —2 € (—=3/2,—1) and since
supjo. 7y 1L¢" — LY is a.s. bounded and almost 1/2-Holdér continuous (as a function of w),
see [33], Corollary 1.8, page 226.

We conclude that lims_, ¢ limsup, _, |I§t*5| =limg_, ¢ |I§,| =0 a.s. and, using that p; — 7;
a.s. by Lemma 12(ii) (for each fixed r > 0) and that + — [ is a.s. continuous on [0, co), that
lims_, o limsup,_, |I;tg°° — 17°°| =0 a.s. All this proves that a.s.,

.. 8 €,00 , _
Jim timsup{|75°] +- |15 — 1] = 0.

We next treat K. We mention at once that all the computations below concerning K are
also valid when 8 =1 + d, that is, « = 1. We introduce W = o (W;,t > 0). Assume for a
moment that there is C > 0 such that for any § € (0, oc], any € € (0, 1), any 0 <s <t¢, a.s.,

t ) 1
(12)  E[(K7° = K& W] < C/ Wl & [Lo<w, <s) + (1 + Wl /€)™ ] du.
N
Then, 7; and p; being VW-measurable, we will deduce that

B[(KS™ ~ K5™)2+ (K5 W]

T
5C‘/ W22
of

Tt —
+ C/O |WM|2/O[_2[1{O§WM§8} + (1 + |Wu|/€) l/a] du.

Since fOT |W,|*/*=2du < oo a.s. for all T > 0 because 2/ — 2 > —1 and since P — T as.
(for ¢t > 0 fixed) by Lemma 12(ii), conclude, by dominated convergence that a.s.,

lim limsup E[(K$?)* 4 (K& — K$°)2 W] =0,
=0 o ! ! Pr

from which the convergence lims_, ¢ limsup,_, |K§;5| + K> — K;’EOO| =0 in probability
follows.
We now check (12), starting from

€5 wesn2_ 2jaa [f [T Wafac) R (Wp/ac)
(K" = K7) = / / [0 (W, /ae)]? [0 (Wp/ae)]?

x (O — Mp)(Ore — Mp)dadb.

Liw, <s11qw, <s)

Since (7)o is VW-measurable, since (@t)tzo is independent of W, and since Mg =
Is o Ovg(do), Lemma 38(ii) (and the Markov property) tells us that there are C > 0 and
X > 0 such that

[E([67¢ — Mpl[O7c — Mp]IW)| < Cexp(—A|T§ — T ).

By Lemma 42(viii) and since a. = k€, we have

h= Y (w/ae) _ _
/a2 ) _¢ la=2rq : 1/aq
a0l = (€ +lw) " [Lwzo) + (1 +wl/€) " “Luw<gy].
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whence

t t
E[(Kf"s—Kf"s)2|W]§C/ / (e+|Wa|)l/°‘_2(e+|Wb|)l/°‘_2
N N

x [Ljo<w,<s) + (1 + |Wa|/6)_l/a][1{0§Wb§8} + (1+ |Wb|/6)_l/a]
x exp(—A|TS — T |) da db.

Next, we observe that, since afx//(w Jac) < C(e + le)2 by Lemma 42(iv),

b -2
/ (€ + |Ws]) 2 ds

for some ¢ > 0. Using that (xy)'/® < x2/* 4 y2/% and a symmetry argument, we conclude
that

>c

MTS =TS | = ds

1 b
?/ W (W /ac)

) €.5)\2 ! 2/a—2 1/
E[(K;* = K°) W= C | (e +IWo)™ " [Lo=w, <oy + (1 + [Wpl/€) ]
S

! 2 b )
x/ (€ + |Wal) exp(—c/ (e 4+ |Ws]) “ds
N a

t
<c f Wil 242 [Lio<w, <) + (1 + |Wpl/€) ] db
S

)da db

as desired. We finally used that for all b € [0, ¢], all continuous ¢ : R, — R,

(13) /Ot p(a) exp(— )da <2.

Case (ii): B =1+d. Applying (9) with m = {c Mg, we see that
L = h_l(‘/vu/ae)éTuE — L Mp 1
— W,
ac Jo [0 (Wy/ae)T?

N 1 /pf h= (W /ae)Ore — teMj
[O’(vvu/ae)]2
K5+ Mplg + Mg[15° - 15],

(s)ds

Uf’az <sydu — ke s Mgt

= K;[,(S —+ [K;;eoo —

where we have set, for § € (0, 1) U {oo}, with the convention that k¢ oo =0,
s 1 /, W (Wa/ad)[O7; — Mg]
[0 (Wu/ae)]?
16,5 _ i g h_l(Wu/ae) — &e
Y acdo lo(Wa/ao))?

1w, <oy du,

1w, <s) du — ke s L7

As in Case (iii), lims_, o limsup,_, o[| K ;"SI + K5 — K;tgooﬂ = 0 in probability.
We also have, for any § € (0, 1) U {oo}, by definition of x¢ s (in particular since k¢ | =

KE,OO = O)’

-1

(w/ae) — 0

— Lw —L/1 n)dw.
f low/a)P (L = Ltgzn)

As in Case (iii), it is sufficient to verify that for each § € (0, 1) U{oco},each T > 0, we a.s. have

lime 0 supyg 7 |If’8 — I?| =0, where we have set I} = 972 fés w= (LY — L91,<1)) dw.

This, here again, follows from dominated convergence, because, recalling that a. = ke:
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o a;'h'(w/ad)lo(w/a)l™ < Cw =0y + Clw|~'(1 + |[w) 1<) by Lem-
ma 42(viii),
o limepa; Ih= 1(w/ae)/[o*(w/az,g)]2 91w 11{w>0 see Lemma 42(ix),
o < Cf_léff h= Y (w)[o(w)]~2dw < C(1 + |loge|) by Lemma 42(viii),
aZ'¢lo(w/a)]™> < Ce (1 + |loge|)(1 + |w|/€)~*/3, and by Lemma 42(vi), this is
smaller than Ce!'/3(1 + |loge|)|w|~4/3.
e the integral

/R[lw|“1{w>0} w1+ [wl) oy + [w] 73] sup | LY — L0, <1y] dw
[0,T]

is a.s. finite, since supy 7 [L;" — L1y,<1y| is a.s. bounded, vanishes for w sufficiently large
(namely, for w > supo, 71 Ws) and is a.s. almost 1/2-Holdér continuous near 0; see [33],
Corollary 1.8, page 226. U

We need the excursion theory for the Brownian motion; see Revuz—Yor [33], Chapter XII,
Part 2. We introduce some notation and briefly summarize what we will use.

NOTATION 15. Recall that (W;),>¢ is a Brownian motion, that (L )i>0 is its local time
at 0, that 7, = inf{u > 0 : L0 > t} is its inverse. We introduce J = {s > 0: 7y > 7,_} and, for
sed,

€s = (Wrx_—i—rl{re[O,rs—rX_]})rzO eé,
where & is the set of continuous functions ¢ from R into R such that e(0) = 0, such that
£(e) =sup{r > 0:e(r) #0} € (0, 00)

and such that e(r) does not vanish on (0,¢(e¢)). For ¢ € £, we denote by x(e) =
sg(e(€(e)/2)) € {—1, 1} and observe that sg(e(r)) = x(e) for all r € (0, £(e)).

We introduce M =} . ; §(s.¢,), Which is a Poisson measure on [0, c0) x £ with intensity
measure ds E (de), where E is a o -finite measure on £ known as It6’s measure and that can be
decomposed as follows: denoting by £ ={e € £: €(e) =1 and x(e) = 1} and by E; € P(&y)
the law of the normalized Brownian excursion for all measurable A C £,

a9 sw=[" W 3000 [ B e

It holds that 7, = fo Jc £(e)M(ds, de) and for all t € J, all s € [t,—, 7;], we have Wy =
e:(s —t;—). Forany ¢ : R — R, any t > 0, we have

(15) / ¢ (W,)du = Z . ¢(W )du—f /[/Z(e) e(u))du}M(ds de).

seJN[0,1] -

We now rewrite the processes of Notation 13 in terms of the excursion Poisson measure.
We recall that ¥, h, o were defined in Notation 9.

NOTATION 16. Fixee (0,1)and0<éd <A <oo.Foree&,and 8 = (6,),cr in H =
C(R,Sy-1), let

te) h~ 1(e(u)/a€)9r (&) —MpBe
_ 1/a=2 cull
Fes.ale.0)=a / [0 (e(u)/ac )]

where mg e =0if Be[d,1 +d), mge =C(cMg it B=1+d and mg =mg in the case
B € (14d,4+ d) and where, for u € (0, £(e)),

15<eu)<aydu,

1 u dv
Feu(e) = z /6(6)/2 W
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Observe that Fe 5, 4(e, 8) =0if x(e) = —1. Also, we make start the clock r¢ ,(e) from the
middle £(e)/2 of the excursion because at the limit, aezw(x /a¢) vanishes at x = 0 sufficiently

fast so that a2 [y, [V (e(v) /ac)] ™ dv and a2 [*©7 [y (e(v) /ae)]~" dv will tend to infinity
as e — 0.

REMARK 17. Foralle € (0,1),all § € (0, 1), all t > 0, we have

t A
(16) Zte,s = /(‘) /(;FE,B,OO(es (®[PS€7+r—ré’()(e)]\/0))’€R)M(ds’ de) where

TR 9 Tavias.
_/o/g[a_z 0 w(ew)/ae)} (ds. de).

PROOF. For any reasonable ¢ : R x R — R and ¢ : R — R, if setting v, =
o #2(Wy) ds, we have

/(bl(Ws,vs)ds_ > /

seJN[0,1]Y "

=f0 /g[/oe(e) b1 (e(u),vfs_ +/Ou $2(e(v)) dv) du]M(ds,de).

With ¢1(w,v) = a* ow/a)] 2 (h (w/a)Oy — mpelliwssy and ¢o(w) =
a2 [y (w/a)] ™!, so that T = [3 ¢2(W;)ds and PS = T¢ by (15), this gives

¢1(Wu7 Vg, + /u d2(Wy) dv) du

68 /f[ 1 2/e(e)h (e(u)/ae)®PE +a? U e@)] 2 dy T meg.e
[0 (e(u)/ac)T?

X l{e(u)zg} du]M(ds, de),
from which the result follows because by definition of F 5 ~, we have

Fe 5,00 (ea (®[P;,+r—r€,0(e)]V0)reR)

te) h=Y(e(u)/a )C:) PE 4re u(e)— 0 —mg,
=a€1/a_2/0 €)OIP{_+reule)—reo(e)lv ﬂel{e(u)zé}du

[o(e(u)/ae)]?

and because P;_ is positive, as well as r¢ , (e) — r¢ o(e) which equals
1 /“ dv 1 /‘v’(‘f)/2 dv /
— - 4+ — - = -
a2 Juey2 Ye()/ae) — aZ o Y(e)/acr) a?lo Y(e(v)/ac)
as desired. [J
We now get rid of the correlation in the spherical process.

LEMMA 18. Let N be a Poisson measure on [0, 00) x €& x H with intensity measure
(ds,de, df) = ds E(de) A (dO)

for B € P(E) the law of the normalized Brownian excursion and A € P(H) the law of the
stationary eternal spherical process built in Lemma 38. For € € (0,1) and 6 € (0, 1), we

introduce the process
t
=/ // Fe 5.00(e,0)N(ds, de, do).
0 JEJH
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Forall T >0, all § > 0, there exists qr 5 : (0,1) — Ry with lime_,oqr,s(e) = 1 and such
that for any € € (0, 1), we can find a coupling between (Zf’a),e[o,f] and (Zf"s)te[oj] such
that PLZ; )01 = (Z§)reqo0.11] = qr.5(€).

Observe that the process (Z; ’8)20 is Lévy.

PROOF OF LEMMA 18. The proof is tedious, but simple in its principle: the main idea
is that the clock of © in (16) runs a very long way (asymptotically infinite when € — 0)
between two excursions, so that we can apply Lemma 38(iv).

Step 1. For all § € (0, 1), all e € £, there is s5(e) > 0 such that for all € € (0, 1), all 0,0’ €
H, we have Fe 5.00(e,0) = Fe 5.00(e,0") as soon as 6, = 6/, for all r € [—s5(e), ss(e)].

We recall that F¢ 5 oo (e, 08) =0 if x(e) = —1, so that it suffices to treat the case of positive
excursions. We have F¢ 5 oo(e,0) = Fe5.00(e,0") if 6, = 6], for all u € [—s5.(e), s5.¢(e)],
where

55, (€) = Max{—re inf{v>0:e(v)>8}A(E(e) /2) (€), Te suplv=0:e(v)>8}v(£(e)/2)(€) }

because then for all u € (0, £(e)) such that 6, () # Or’”(e), we have either r¢ ,(e) >

Te,sup{v>0:e(v)>8)v(L(e)/2) () OF Te y(€) < Teint{u>0:e(v)>8)A(t(e)/2)(€), whence in both cases

e(u) < &, which makes vanish the indicator function 1{)>s). Using now that

aZ’[Y(w/ac)]~! < Cw™2 for all w > 0 by Lemma 42(iv), we realize that
sup{v>0:e(v)>8}V(£(e)/2)  du

ss,e(e) <C PR
¢ inflv>0:e(v)>8}A(L(e)/2)  Le(u)]?

Denoting by ss(e) this last quantity, which is finite because e does not vanish during the
interval [inf{v > 0:e(v) > §} A (£(e)/2),sup{v > 0:e(v) > &} V (£(e)/2)], completes the
step.
Step 2. Since only a finite number of excursions exceed § per unit of time we may rewrite

(16) as

Ny

.8 ®
th = Z Fe,&,oo(e;s» (®[Ti€’8—|—r]\/0)r20)’

i=1
where & = {e € £ : sup, (0.4 €W) > &}, Nf = M([0, ¢] x &s), of which we denote by
(sf )i>1 the chronologically ordered instants of jump. For each i > 1, we have introduced by

ef € & the mark associated to sf , uniquely defined by the fact that M({(sf, e?)}) =1. We
also have set, for each i > 1,

T = PG — reo(ed).

1 ?
1

.....

€ — 0. It suffices to observe that, since ¥ (1) < C(1 + lul?) by Lemma 42(iv) and since
PS >TSS
sp—— 1=k

1 ple))2 dv t(e})/2 dv
e rtz = [ S =l areer
ag Jo lﬂ[ei (v)/ae] 0 a; + [ei )]
By monotone convergence, we conclude that (see Lemma 39(i))

ez du
liminf(Tf’(S — Tf_‘sl) > c/ ——— =00 as.
e~0 0 [ef (v)]?
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Step 4. We work conditionally on M and set A7 s = sup;_; N2 sa(e?). By Lem-

ma 38(iv), we can find, for each € € (0, 1), an i.i.d. family of A-distributed eternal processes

~ * N3

(@:*l*e)reR, .. (@r r ),G]R such that the probability that (@ T€8+r]v0)re[ Ar.s.Ars] =
(Onie )re[ Ars.Arg) forall i =1, N‘S (conditionally on M) is greater than pr s =
pA”(T 68 - TE‘S T;S‘S N5 |)» which a.s. tends to 1 as € — 0 by Step 3.

Step 5. We set, for t € [0 T],

N
= Z Fe,é,w(e?» (®:’l’€)r30)-
i=1

This process has the same law as the process (Zf’s)te[oj] of the statement. Furthermore, we
know from Step 1 that Z;* b= =7z % for all 7 € [0, T] as soon as (®[Tf"‘+r]v0)r€[—Ar,a~Ar,s] =

(6:’l’e)re[—Ar,s,Ar.a] foralli=1,..., N%. This occurs with probability g7 5(¢) =E[pr.s5.cl,
which tends to 1 as € — 0 by dominated convergence. [l

We introduce the compensated Poisson measure N=N-r.

LEMMA 19. Wefix§ e (0,1]and € € (0, 1).

() IfB €ld, 1 +d), we simply set Z&° = Z&°
(i) If B=1+d, weset Z&° = ZE° + ke sMpt and we have

t . t
:/ f/ Fe,a,l(e,e)N(ds,de,de)Jrf // Fe.1 o(e, 0)N(ds, de, d6).
0 JEJH 0 JEJH

(i) If pe (14+d,4+d), we set ZE”S = Zf’5 + Kke,s Mgt and we have

t -
=/ /f Fe.5.00(e, 0)N(ds, de, d6).
0 JEJH

PROOF. We recall that [ ¢ (w)dw = [c[f3 ¢ (e(n)) du]E(de) for all ¢ € L' (R); see
Lemma 39(ii).
To verify (iii), we have to check that

I:fa‘/HFe,g’oo(e,Q)A(dQ)E(de) = —KesMg.

Recalling the expression of F¢ s o and that A is the law of the eternal stationary spherical
process (see Lemma 38) of which the invariant measure is vg, which satisfies de, | Ovg(do) =
Mg, we find

@ h='(e(u)/ac))Mp —m
= /[ /e~ 2/ /ae)) Mg ﬁ1{e(u)>3}du] E(de)
£ 0 [0 (e(u)/ac)]?
) [U(w/ae)]z
Recalling that mg = M, ﬁm};, the definition of k. s (see Notation 13(iii)) and that k¢ oo =0
(see (11)),

,1 7 —1 /
1 (wia)—my 1 hlw/a) —m)
I'=Mpaé /a owjagp W= Mpas I owjaopr O

which equals — Mgk, s as desired.
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Concerning (ii), since Fe 5,00 = Fe.5.1 + Fe,1,00, We have to verify that

J = /SAFE,(;,I(e,Q)A(dQ)E(de) = —KesMg.

Proceeding as above, we find

J = Mga_'

€

/1 h_l(w/ae) - é‘e
————dw
s [o(w/ae)]?

_ 8 h_l(w/ae) — e
_ 1
o Mﬁae /—oo [U(w/ae)]z

= —Mﬁke,g

by definition of k¢ s and since k¢ 1 = 0, recall Notation 133ii). [
We introduce the limit (as € — 0) of the function defined in Notation 16.

NOTATION 20. FixO0<§<A<oo.Foreefand 6 = (6,),cr in H=C(R,S;_1), we
set

Fs A(e,0) -1 /ue)[e(u)]l/“_zer @1{s<ew<ay du,
, B+2—-d)? Jo ! -
where, for u € (0, £(e)),
1 u dv
ru(€) = (B+2—d)? ./e(e)/z [e(v)]*

Finally, we make tend € and § to 0.

LEMMA 21. Let (Zf’a),zo be the processes introduced in Lemma 19, built with the same
Poisson measure N for all values of €, € (0, 1). For all T > 0, supyg 7, |2t€’(S — Z:| goesto 0
in probability as (€, 5) — (0, 0), where

() Zi = J§ [ [ Fo.co(e, 0)N(ds, de, d6) if B € [d, 1 +d),

(i) Zr = [§ [e [o Fo1(e, )N(ds, de, d8) + [ fe [ F1.00(e, 0)N(ds, de, dd) if B =
1+d,
(ili) Z; = f§ [¢ [o Fo,00(e, O)N(ds, de, dd) if B € (1 +d, 4+ d).

PROOF. We divide the proof in several steps.
Step 1. There is C > O such that foralle € (0,1, all0<§ <A <oo,allec&,allf € H,

te) ~ ~
|Fes.a(e,0)| < Cfo ([e@)]"* % + 1piray[e@)] ™) Lis<eqy<a) du.

Indeed, by Lemma 42(viii), [1 + A~ (w)][o (w)]™? < C(1 4 |w|)!/*~2. This implies that
ael/a_z[l + h Y (w/a)lo(w/ac)]~? < Clw|"/*~2, and it only remains to note that when
B=14d (sothat @ = 1),

€3(1 4 |loge))

Z
lwl3

mg.e
Qe [U(w/ae)]2

by Lemma 42(vi), since a. = x€ and since ¢ < C(1 4 |loge|), see the end of the proof of
Lemma 14.

Mplte _ .1+ |logel

= <C
aclo(w/ad)l® = " ¢(1 4 [w|/e)’

17)
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Step 2. We fix 0 < §p < A < oo and verify that for all 6 € ‘H and E-almost every ¢ € £, we
have

li F, ,0)=F, ,0).
(6’8)1)%’50) e.5,A(e,0) = Fs ale,0)

Using precisely the same bounds as in Step 1, the result follows from dominated convergence,

because

a7 hY(w/a)o(w/a)]2 — (B + 2 — d)~2w!/%=2 for each fixed w > 0 by

Lemma 42(ix),
e 0 € H is continuous and r¢ ,(e) = a;z fé‘(e)/z[t//(e(v)/ae)]_1 dv — ry(e) for each u €

0, £(e)) by Lemma 42(v) (and by dominated convergence),
° aél/a 171,3,6[0(11)/616)]_2 — 0 for each fixed w > 0, because

« ifBeld, 1+d), mge=0,
x if p=1+d,see (17),
x if Be(l+d,4+d), then

all*mp c|[o(w/ac)] > < CeU (1 + w/e) HEFIZD/EFD g
by Lemma 42(vi), since mg ¢« =mg and since 2(B+1—-d)/(B+2—d) >2—1/a,
° foz(e)([e(u)]l/‘)‘_2 + [e(u)]~*/3) du < oo for E-almost every e € £ by Lemma 39(iv).

Step 3. We write 255 = Yf’l — Yf’z + Yf’(s’3 and Z; = Yt1 — Yt2 + Y,3, where

t
=/ // F1,00(e,0)N(ds, de, db),
0 JEJH

t
Yf":/ // Fe 1,00 (e, 6)N(ds, de, d),
0 JEJH

, z// Fioo(e,)AO)Ede) if fe(l+d,4+d),
Yoi=43 JeJu
0 if B eld,1+dl,
. t// Feloo(e,0)AO)E(de) ifBe(l+d 4+d),
Y7 = &Jn
0 if geld,1+dl,
t
ye /OI/gAFoJ(e,G)N(ds,de,dQ) if Beld, 1 +d),
/// Fo.1(e,0)N(ds, de,d6) if Be[l+d, 4+d),
. /f/ Fesi(e,0)N(ds, de, d8) if B e[d,1+d),
yed3 =
t /// Fesi(e,0)N(ds, de, d6) if B[l +d,4+d).

Step 3.1. For any B € [d, 4 + d), it holds that a.s.,

lim sup|v, — £ < hm/ // |Fi.00(e,0) — Fe.1.00(¢, 8)|N(ds, de, d) = 0.
e—0 [0 T

This uses only the facts that F (e, 0) = Fe 1,00(e,8) =0 as soon as SUP,-¢[0,£(¢)] e(r)<1,

that N({(s,e,0) € [0,T] x € x H : supjg g€ = 1}) is as. finite, and that

lime_0 Fe 1.00(e,0) = F1.50(e, 0) for E @ A-almost every (e, 0) € £ x H by Step 2.
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Step 3.2.1f B € (1 +d, 4 +d), it holds that

lim sup ]Yz | <T lim f / |Fl,00(€,0) — Fe 1,00(e,0)|A(d0) E(de) =
€—>0[0 T] e—>0 H

by dominated convergence, thanks to Steps 1 and 2 and since

L(e) 1a—2 o0 , )
/[/ (e()) 1{e(u)>1}du]3(d6) =/ x/ 2 dx < 00
ELJO - 1

by Lemma 39(ii) and since 1 /o —2 < —1 because « = (8 +2 —d)/3 > 1.
Step 3.3. If B eld, 1+ d),

. 3 683
eslim o Elsup v~ v

<7 tim [ [ [F01e.6) = Fesi(e.6)[A@0)E@e) =
(€,6—(0,0) Jg JH

by dominated convergence, using Steps 1 and 2 and that

L(e) 1
L o] tocunen dn|2@er = [ whe?dw < oo

by Lemma 39(ii) and since 1/o¢ —2 > —1 because« = (8 +2 —d)/3 < 1.
Step 3.4. If finally B € [1 +d, 4 + d), by Doob’s inequality,

li Y3 e 8,312
i E 5P ]

=41 i Fo1(e,0) — Fes 1(e,0)[>A(d6) E(de) =
<ar gim [ [For(e6) = Fesate. ) PA@)E @0

by dominated convergence, using Steps 1 and 2 and since we know from Lemma 39(iii) that

Telfs @ (e@) 272 4 Je)| ™) 1jo<ewy<1) dulE (de) < 4[] /x(x/*=2 4 x=4/3) dx]?
which is finite. [

Gathering all the previous lemmas, we deduce the following.

PROPOSITION 22.  Consider the process (Z;);> defined in Lemma 21 (its definition de-
pending on B) and set S; =k~ V/*Z, if B e (d,4+d) and S; =8Z, if B =d.

@) If B (1 +d.4+d), then (€"2[X, /e —mpte])=0 25 (S)i=o0.
(it) If B=1+d, then (e[X;je — Mplet/€])r>0 EER (8¢):=0-
i) If B € (d. 1 +d), then (/X )=0 25 (S)i=o0.
(iv) If B =d, then ([€|log €12 X /)20 L5 (S)rz0.
PROOF. Since a. = «e€ when B € (d,4+d) and a. = €|loge|/4 when B =d, it is suffi-
cient to prove that, setting mg . =mg if B € (1+d,4+d), mge = Mgi. if B =1+d and
mp.e =0if B € [d, 1 +d), it holds that (a./ “Xije = mp.ct/eDizo I (Zso.

e

We know from Lemma 11 that (Xt/g),>o = (xo + X )r>0. Since a6 xo — 0, it thus suf-

fices to verify that (Ze)t>0 f—> (Z1)s=0, where we have set ZE = aE [X,/E mg.et/€].
We consider @ : D([0, 00), RY) — R of the form ®(x) = ¢ (x4, ..., xg,) for some con-

tinuous and bounded ¢ : R" — R. Our goal is to check that I, = E[CD((Zf),Zo)] —
E[®((Z;)i=0)] =1 as e — 0.
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We know from Lemma 14 that for all > 0, all n > 0,
lim limsup P(| Z§ — [ZE° + ke s Mpt]| > ) =0,
§=0 -0
with the convention that «.s = 0 when B € [d,1 + d). Next we denote by I.s =

E[CD(([Zf"S + ke, sMpt])r>0)] and we deduce that lims_.o limsup,_, o [1e s — Ic| = 0. We thus
have to check that lims_, ¢ limsup,_,( |l s — I| = 0.

By Lemma 18, we know that for each § > 0, lim¢¢|lcs — Je 5| = O for each § >
0, where we have set Je s = I[?J[CIJ((Zf’5 + ke sMpgt);>0)]. It thus suffices to verify that
lims_,olimsup,_, o |Je,s — I| =0.

By Lemma 19, it holds that J s = E[®((Zf*),0)].

Finally, it follows from Lemma 21 that lim( 5)— 0,0y Je,s = I, which completes the proof.

O

We still have to study a little our limiting processes.

PROPOSITION 23. Forany B € [d,4+d), set « = (B + 2 — d)/3 and consider the limit
process (S;)=0 introduced in Proposition 22 (its definition depending on ).

(1) The process (S;):>0 is an «-stable Lévy process of which the Lévy measure q, depend-
ing only B and U, is given, for all A € B(R¢ \ {0}), by

e}
g(A) = af u” TPy € A)du,
0

where a = a/[k/2(B + 2 — d)**] with k = (B +2 — d)~! [P u?= [T @)]7P du (see
Lemma 42(1)) if B € (d,4+d), where a = 27/6/[3ﬁ] if B = d and where the R -valued ran-
dom variable Y is defined as follows. Consider a normalized Brownian excursion e (with unit
length), independent of an eternal stationary spherical process (é;)te]R as in Lemma 38(iii)
and set

1
B 1Ja—2 Ax
Y= /0 [e@)] [(B+2-d)2 f1)fe(v)] -2 du] I

.d.
(ii) Assume now that y = 1 (recall Assumption 1). Then (el/"‘X,/e),Zo f—> (Sp)i=0if B €

(d, 4+ d) and ([e|loge|1>>X;/e)i>0 R (Sp)i=0 if B=d. And in any case, (S;);>0 is a
radially symmetric o-stable Lévy process, that is, there is a constant b > 0 depending on
', B and d such that g(dz) = b|z|~4~* dz and thus Elexp(i§ - S;)] = exp(—bt|£|%) for all
e RY, all t > 0, for some other constant b’ > 0.

Observe that in (1), the random variable Y is well-defined thanks to Lemma 39(iv).

PROOF. We start with point (i). It readily follows from its definition (see Proposition 22
and Lemma 21) that (S;);>0 is a Lévy process with Lévy measure given by

(A) = /g = (de) /H AWO L h ereny. A€ BRI (0)),

where ¢ =k ~1/* if B € (d,4+d) and ¢ = 8 if B = d. Using the decomposition (14) of E and
that Fp(e,0) =0if x(e¢) = —1, we have

o de _
q(A4) = /0 N fgl g1(de) /HA(d‘g)l{cFo,oowec/E),e)eA}

SSRRY, .
= P(cFo. 0o . , O A
| TP (Vi /0. 6%) € 4)
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with the notation of the statement. But recalling Notation 20,

Fo.00(v2e(-/£), ©%)

_ 1 la-2g

T (B+2 _d)Z/ [[e(”/z)] [(/3+2 )72 [V te(w/0)]~ 2dv]d
¢l/Qa)y

(BH+2—d)F

whence

o dy P c¢1/ Q) 4 © qdu P 4
A :/ ( Y e ):f ~ " PuY € A).
94 0 2v2703 \(B+2—d)? 0o ulte ( )

Let us check that (S;);>0 is «-stable, that is, that its Lévy measure g satisfies g(A;) =
c®q(A), for all A € B(R?\ {0}), all ¢ > 0, where we have set A. = {z € R? : cz € A}. But

q(AC)=/ ad u]P’(cheA):c“/ adn u]P’(uYeA):co‘q(A).
0 ulto 0 ulto

We now turn to point (ii). If y = 1, then Mg = mg = 0, so that the announced convergence
to (S¢)s=0 follows from Proposition 22. Moreover, (S;);>0 is radially symmetric by defini-
tion, recalling Proposition 22, Lemma 21 and that N(ds, de, df) is a Poisson measure with
intensity ds E(de) A (d9) and observing that A € P(H) is the law of ©*, which is a stationary
Sg—1-valued Brownian motion (because y = 1; see Lemma 38). [

We can finally handle the following.

PROOF OF THEOREM 4(C)—(D)—(E)—(F). Points (c)—(e)—(f) immediately follow from
Propositions 22 and 23. For point (d), which concerns the case where g =1 4 d, we know

d.
that (e[ X;/e — Mpgict/€])>0 f—> (S¢)r=0, where (S;);>0 is a 1-stable Lévy process. We claim
that under the additional condition || loo r~ YT ()]~ = 1|dr < oo, there is b € R such that

. 1
(18) lim (. — 5l loge]) =

d.
whence (e[ X,/ — Mg|logelt/(9ke)])>0 f—> (S; +bMpgt);>0. This completes the proof be-
cause the Lévy process (S; + bMgt);> is also a 1-stable.
To check (18), we recall Notation 13 to write {¢ = C¢/D., where

1/ac 1/ac
Cezf h~'w)[o(w)] *dw and DG:/_OO [o(w)]%d

—00

By Lemma 42(i)~(vi), we have | De — k| < C [, (1+ [w]) ™3 dw < Ca’? < Ce'/? since
de =KE.

We thus only have to verify that lim._,o(C¢ — |loge|/9) exists. Recalling Notation 9 and
using the substitution r = h=Y(w), we find

e—f S T f re)]”

where we have set Ac =h™ 1(1/a€) Since h(r) =3 ul d[F(u)]1+d du ~r3asr — ooand
since ae = ke, it comes that A ~._.¢ [ke]™'/3, and so lime_o(|loge|/9 — (logA¢)/3) =
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(logk)/9, and we are reduced to check that lim._,o(Cc — (log A¢)/3) exists. But

e Moo 1/Ae[( r )‘+d , i|dr
— —10 —_ — — > J—
e—zlogde=3 " |\t r=1) |~

1 oo ro\ 1t 1 dr
_’5/0 [(m)) N {’Z”}T

as € — 0. This last quantity is well-defined and finite, because I" : [0, c0) — (0, 0c0) is
bounded from below, because I'(r) ~ r as r — 00, and because | 1°° r_1|(r/ @) —1|dr <
oo by assumption. [

REMARK 24. In Theorem 4(d), that is, when 8 = 1 4+ d, the constant c¢ is given by
c=1/09) = 3 [ u?= [T @)1~ =9 du)~! by Lemma 42(i).

6. The integrated Bessel regime. Here we give the proof of Theorem 4(g). We first
define properly the limit process (V;)>o.

DEFINITION 25. We fix 8 € (d — 2, d) and consider a Bessel process (R¢)r>0 starting

from 0 with dimension d — B € (0,2), as well as an i.i.d. family {(©}");er,i > 1} with
common law A (see Lemma 38(ii1)) independent of (R;);>0. We set Z ={t > 0: R, =0}
and we write Z¢ = J;~; ({;, r;) as the (countable) union of its connected components: for all
i > 1, we have Ry, = 7_3,. =0and R, > 0 for all r € (¢;, r;). We then define

1 R
Z {te;,ri)} /™t [f(z . )/QRY ds]

i>1

REMARK 26. In some sense to be precised, (V;);>¢ is the unique (in law) solution to
V: = B; ——/ F (V) ds,

where F(v) = U~ (v) VU (v), with U (v) = [vly(v/|v]) (f y =1, one finds F(v) = |v|_2v)
and where (B;);>( is a d-dimensional Brownian motion. This equation is what one gets when
informally searching for the limit of \/€V; e as € = 0, (V;);>0 being the solution to (2). But
it is not clearly well-defined because F is singular at 0. See [14], Section 6, for the detailed
study of such an equation in dimension d =2 and when y = 1.

We now introduce some notation that will be used during the whole section. We fix 8 €

(d — 2, d), recall Notation 9 and set, for € € (0, 1),
ac = — (BT2-d)/2.

For a 1 D-Brownian motion (W;);>0, we set Af = ea‘z fo [a(W Jac)]™ 2 ds, introduce its in-
verse pf and put Rf = \/eh™ 1(W </ae) and TE = fO[RE]_ ds. We also consider the solution

(61120 of (4), independent of (W;);=0.

LEMMA 27. Foralle € (0,1), (ﬁV;/é),Zo 4 (Rf(:)Tte)tzo,for (Vi)i>0 the velocity pro-
cess of (2).

PROOF. By Lemmas 8 and 10, setting S; = e_l/zRgt and 7_",E = f(;[Sg]_2 ds, it holds that
(Se(:)fe)[>() 4 (V)+=0, whence (ﬁSf/G@Tt? )t>0 4 (\/€Vi/e)i=0. To conclude, observe that

VeS¢ =Rf and T, = ol V2R 172 ds = IR 2ds =T, O

We first study the convergence of the radius process.
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LEMMA 28. There is a Bessel process (R;);>o with dimension d — 8 issued from O such
that (Rf);>0 a.s. converges to (R;);>0, uniformly on compact time intervals.

PROOF. Since [o(w)]™2 < C(1 + |w|)~2B+1=d)/(B+2=d) by emma 42(vi) and since

lim e[aco (w/ad)] ™ = (B +2—d)Pw ATV, )

by Lemma 42(xi), since fOT |W,|~2B+1=d)/(B+2=d) 45 is finite a.s. for all T > O because
2(4+1—-d)/(B+2—d) <1, we conclude, by dominated convergence, that a.s., for all
t >0, (Af);>0 converges to

t
A= (B+2—d) 2 [ WD g ds

Let p; =inf{s > 0: Ay > t} be its generalized inverse and let J = {t > 0: p; > p;_}. We now
verify that a.s., forall 7 > 0,

(19) lim sup [(Wye )y —(Wp,)4|=0.
€=>04e[0,7]
(a) By Lemma 41, we know that a.s., for all # € [0, 00) \ J, pf — p;.
(b) We a.s. have, forall 1 >0, A, = A, =1 (since A is continuous) and

t lfW[ZO,

pAlzlnf{s>t:Ws‘>O}:{inf{s>t:Ws=0} 1fW[<O

Indeed, the second equality is clear and, setting v, = inf{s >t : Wy > 0}, it holds that p4, =
inf{s >0: A; > A;} =inf{s > 1: A; > A,,} (because A,, = A, by definition of A), whence
clearly pa, =inf{s >t : Wy > 0} (again by definition of A).

(c) Since A is continuous, we deduce from (a) that a.s., for a.e. 7 > 0, A,e — Ap,. Since
moreover 1 — A, is a.s. continuous (by (b)) and nondecreasing (as well as  — A ;¢ for each
€ > 0), we conclude from the Dini theorem that a.s., supy 77 [Ape — Ap, | = 0.

(d) By (b), we a.s. have (W) = W, forallu > 0.

(e) Almost surely, u — W, is nonnegative and continuous. First, by (b), we have W, =
Wpa,, » Which is nonnegative by (d). Next, it suffices to prove that Wy, _ = W), for all u > 0.
Setting t = p,—, we see that W, =W, A (by (b) and since W; > 0). Hence W; =W, Apy =
Wpa,, by (b), whence W; = W), as desired.

(f) To complete the proof of (19), it suffices to note that (Wpe) — (W, )+ = W,

by (d) and (e), that u — W, is continuous by (e), and finally to use point (c).

- Wpu

Aps
-1 1/(B+2—d) .
By Lemma 42(x), /eh™ (w/a¢) = w 4 , uniformly on compact subsets of R. To-

gether with (19), this implies that (R = ﬁh_l(Wp; /ae))i=0 a.s. converges, uniformly on

compact time intervals, to ((Wp[)lr/(ﬂ +2_d)),20, which is a Bessel process with dimension

d — B issued from 0 by Lemma 40. [
We can now give the following proof.

PROOF OF THEOREM 4(G). Our goal is to verify that (Rf(:)T;)tzo goes in law to (Vs)s>0,
for the usual convergence of continuous processes. This implies that (32X, /e)i=0 gOes
in law to (f§ Vs ds),>0, since by Lemma 27, (053/2X,/6 = €3/2xy + 5 V€Vseds)=o and
(63/ Zx0 + fé R§®T5 ds);>o have the same law. We already know from Lemma 28 that a.s.,
supyo. 7] IRy — R:| — O forall T >0, where (R;);>0 is a Bessel process as in Definition 25
and we introduce Z = {t > 0: R, = 0} and write Z° = J;>(¢;,r;) with, for all i > 1,
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Re; =Ry, =0and R; > 0 for all t € (¢;, r;). Finally, we set W = o (W, s > 0) and observe
that W = o (RS, R, 1 > 0, € € (0, 1)) is independent of (©,);0.
Step 1. Foralli > j > 1, we have lim¢_,o(7] — r;) = 00 a.s., where
¢ _ e Wi+ri)/2 (s
U= (@i+ri)/2__/0 [Rse]Z'
Indeed, by the Fatou lemma, we know that a.s.,
/(€i+ri)/2 ds /‘(5i+r,‘)/2 ds
>
€+rp2 [Rs1?> ~ Ju [Rs]?

. e ¢
llggf(ti ~15) >

by Lemma 40(ii).
Step 2. For T > 0 and § > 0, we consider the (a.s. finite) set of indices

I(;,T={i21:£i <Tand sup R >8}
s€(i,ri)

$
l

E? =inf{s > ¢; : Ry > 8} and rf =sup{s <r;: Ry > 8}.

/z;? ds ‘ r? ds
| * s o
/2 [RSPL it 2 IR

*,1,€,

By Lemma 38(iv), knowing W, there is an i.i.d. family (((:), S)IGR),EIM of A-distributed
processes such that, setting

and for i € Zs 7, we introduce ¢; < E? < r? <r; defined by

We also set

AS,T =2 max [

i€ls

. A xie,d A

Qes.r ={Vi €Zs,1, (07" 1c1_ay 1.5 11 = OE+0v0)rel-45 1. 45,11}
we have Pr(Qc s 7|W) = p; 1 (€), where ps 7 (€) = pa; ,(v/, 75, — 7 ..., T, — 7, ) and
where we have written Zs 7 = {iy, ..., in}. We know that ps 7 (¢) a.s. tends to 1 as € — 0, so
that s 7 (€) = P(Q2 5,7) = E[ps, 7 (€)] also tends to 1 as € — 0.

Step 3. Knowing W, we consider an i.i.d. family ((@:’i’e’s),eR)ieN*\z“, independent of
(((:);"’6’6),ER)I~EN*\IN, and we consider the process (Vf’a)tzo built from (R;);>0 and the
i.i.d. family ((@;’l’e’a)teR),-zl as in Definition 25, that is,

8 A\*,0,€,8
V€7 = 1 te(l;.r; R[@ P _ .
t ;>1: {te(li,ri)} [f(t(’,l-+ri)/2RS2ds]

Forall e € (0,1) and all § € (0, 1), (Vf’s)tzo 4 (Vi)i=0- We will show that for all n > 0,

lim limsupP[A¢ 5,7 > n] =0 where A7 5. = sup |Rf(:)T; — Vf"s]
$=0 -0 [0,T]

and this will conclude the proof. Recalling that |V} ’SI =R,

A 8
Acs.r < sup |Rf — Ry|+ sup |R;Orc — Vi’ | 1R, <s)
[0,T1] [0,T1]

+ sup ‘RtéTf — V;’a‘l{nt>5}.
[0,T]

We already know that the first term a.s. tends to 0 as € — 0, the second one is bounded
by 28 and the third one is bounded by (supyy 71 R¢)A, 5 7, where we denote by A ; ;=

Supyo.7) |©Tf — R,_IV,G’8|1{RI>5}. All in all, we only have to check that

lim limsup P[A[ 5 7 > n] =0.
0

=0
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Step 4. Forallt € [0, T], R; > & implies that 1 € UteZa ’ (Zl T rd), whence
—149€,6 A * i,€,8 A
Y — O = 1 — O e, P ,
Ry Vi T le;” {re(?, r“) f(z 1y R 2 ds] (7 + L 47y /2L RE] 245))

because 7, = 7/ + f&i+,l,)/2[R§]_2 ds. Next, for x € (0, 1), it holds that
hm IP’( csr() =1,

/’ ds /’ ds }
—_— = <Xxi.
@+r2 2 Jegi+ry 2 [RS?

Indeed, for each i € Zs 7, R is continuous and positive on (Zl o ) and we have already seen
that lim¢_ ¢ supyo. 7] |Rf — R;| =0. For the same reasons, it holds that lim¢_,¢ IF’(Q6 a,T) =1

ff ds v V’ ds <A }
+r)/2 R2 i+r/2 [RE1P1 — >T

Now on Q¢ 5.7 (x) = Qe,5,7 N €2, 5.7 (X) N5 1, we have, for any 7 € [0, T,

where

Q)= {vl' € Ts.r,Vt e (€2,r)),

e”_{Vzezﬂ vr e (€2,r?),

(R;7Ve® — ©T,5)1{Rt>8}

_ Z 1 s s * i,€,8 A\*,0,€,8 )
- te(l?,rf t 2 P
i€Ts 1 et (© Ul R 2T Uiyl RET2 ds)

whence
/ A ,',6,5 A*,II,G,(S .
AL s <#(Ts1) sup{|®y"° — O | :
i€Isr,a,be[—Asr,As ] la—b| <x}

and we denote by Mg 7 (x) this last expression. But the law of M§7T(x) does not depend

*lG

on € € (0, 1) (because conditionally on WV, the family ((@t )teR)ieTs r 18 1.1.d. and A-
distributed. All in all, we have proved that for all § > 0, all T > 0, all > 0, x > 0, with a
small abuse of notation,

limsup P(A cor > 1) SP(Ms,7(x) > n) + limsup P((Qe,5.7 (1))

e—0 e—0
=P(Ms,7(x) > n).

But limy_, o P(M; 7(x) > n) = 0, because the A-distributed processes are continuous. We
thus have limsup, _, IP’(A/G,&T > 1) =0 for each § > 0, which completes the proof. [J

7. The diffusive regime. The goal of this section is to prove Theorem 4(a). As already
mentioned, this regime is almost treated in Pardoux—Veretennikov [32], which consider much
more general problems. However, we can not strictly apply their result because F is not
locally bounded (except if y = 1). Moreover, our proof is much simpler (because our model
is much simpler). First, we adapt to our context a Poincaré inequality found in Cattiaux—
Gozlan—Guillin—Roberto [10].

LEMMA 29. For any B > 2 + d, there is a constant C > 0 such that for all f €
loc(Rd) NLYRY, up) satisfying [pa f()ppg(dv) =

L @P(+10)matan) < /R IV F)Pup(av).
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PROOF. The constants below are allowed to depend only on U, 8 and d. By Assump-
tion 1, there are 0 < C; < C, such that C(1 + Ivl)_/S dv < pug(dv) < Co(1 + Ivl)_/3 dv.

We know from [10], Proposition 5.5, that for any « > d, there is a constant C such that for
ge HL RHNLYRY, (14 |v))~*dv) satisfying [ga g(v)(1 + [v])~%dv = 0, we have the
inequality [ra[g()1>(1 +[v]) ™ dv < C fa [Vg@)|>(1 + [v])>~* dv.

For f as in the statement, we apply this inequality with « =8 +2 >d and g = f —
a, the constant a € R being such that [ps g(v)(1 + ) ~A~2dv =0. We finally obtain that
Jralg@)PPA + )2 P dv < C3 fpa [VE@)2(1 + [v) 7P dv.

But [pa f(v)pp(dv) =0, whence a = — [pa g(v) g (dv) and thus

2
a? < C%[/Rdg(v)(l + 1)) 7° dv]

2
cg[fw(l + )PP (1 +|v|)1‘f’/2dv] :

whence a? < C%C4 Jra [g(v)]z(l + Jv])~P —2dy by the Cauchy—Schwarz inequality, where
the constant C4 = fpa (1 + |v])2~# dv is finite because S > 2 + d.
Using that f? <2g? + 2a? and setting Cs = [pa(1 + [v])727# dv, we find that

[ LT 1+ 1v) @)
2 —2-p 2 —2-B
§2C2A;d[g(v)] (14 1ol) > dv +2Cra /Rd(l—{—|v|) dv
<2051 + C5C4Cs] /Rd [g(v)]2(1 + |v|)—2—ﬁ dv
<2CC3[1 + C§C4C5]/Rd|Vg(v)|2(l + |v|)ﬂg dv

<2CT'CrC3[1 4 C3C4Cs5] /Rd|Vf(v)|2/L5(dv).

We finally used that Vg =V f. [

We next state a lemma that will allow us to solve the Poisson equation L f(v) =v — mg,
where L is the generator of the velocity process. We state a slightly more general version,
that will be needed when treating the critical case § =4+ d

LEMMA 30. Suppose that B> 2 +d. Let g : R? — R be of class C* and satisfy
(20) fRd g)up(dv) =0 and /Rd [¢)]*(1 + [v]) s (dv) < occ.

There exists f : R4 \ {0} = R, of class C*°, such that [ga |Vf(v)|2,u/5 (dv) < oo and solving
the equation %[Af —BF-Vf]l=gonRI\ {0}.

PROOF. We divide the proof in three steps.
Step 1. We introduce the weighted Sobolev space H} = {¢ € HILC(R”I) ‘lells < oo and
Jra (V) pp(dv) = 0}, where we have set

ol = [, To@P(1+10) ptan) + [ [Vow)up(av).

By the Lax—Milgram theorem, there is a unique f € H é such that for all ¢ € H é Jra V f(v)-
Vo)pp(dv) = =2 [pa p(v)g (V) pp(dv).
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Indeed, the quadratic form A(g, ¢) = [ra Vo (v) - V@ (v)ug(dv) is continuous on the
Hilbert space Hé and coercive (i.e., there is ¢ > 0 such that A(¢, ¢) > c|l¢|lg for all ¢ € Hé)

by Lemma 29; and the linear form L(¢) =2 [pa ¢(v)g(v)g(dv) is continuous on H é (here
we use the moment condition on g).

Step 2. Since [pa g(v)ug(dv) = 0, it comes by Step 1 that [pa V f(v) - Vo(v)ug(dv) =
—2 Jpa p(v)g(W)pp(dv) for all ¢ € le)c(Rd) with [[¢llg < oo (without the centering condi-
tion on ).

Step 3. We can now apply Gilbarg—Trudinger [16], Corollary 8.11, page 186: F being of
class C* on R¥ \ {0}, as well as g, and f being a weak solution to %[Af —BF-Vfl=g,
it is of class C* on R? \ {0}. More precisely, we fix v € R? \ {0} and we apply the cited
corollary on the open ball B(v, |v|/2) to conclude that f is of class C* on B(v, |v|/2).

Step 4. We thus can proceed rigorously to some integrations by parts to deduce that for all
NS Cf"(Rd \ {0}), recalling that pg(dv) = c,g[U(v)]_ﬂ dv, we have

L awe)Pvsiolpwd=2 [ owswuw]? da.

Hence div[U AV f] =2gU~# on R? \ {0} by continuity, whence the conclusion, since
Fv)=[UW]"'VU(@). O

We can now give the following proof.

PROOF OF THEOREM 4(A). Fix 8 > 4 + d and take, for each 1 <i <d, a C* function
fi: Rd'\ {0} — R such that [pa IVf,-(v)lzuﬁ(dv) < 00 and %[Afi(v) —BFW)-Vfi(v)]=
v — mjg, where m}, = Jga Vi tg(dv) is the i-th coordinate of mg. Such a function f; exists by
Lemma 30, because g;(v) = v; — m;g is C*°, ug-centered and [pa[g; 1> + Ivl)zuﬂ (dv)
is finite because 8 > 4 +d.

We now set f = (f1f>--- fa)* : RY — R? and apply the Itd formula, which is licit because
fis of class C*° on R4 \ {0} and because (V;);>0 never visits 0: recalling (2) and that V* f =
VAV f2---V fa),

t t
FOV) = fvo) + /O V* f(Vy) dBy + /0 (Vs — mpg) ds

t
— F(wo) + /O V* £ (V) dBy + X, — mpt — xo.

Hence /e (X, /e —mgt/€) = M{ + Y, where M{ = —ﬁfé/e V* f(Vy) dBs and where Y =
Velxo+ f(Vije) — f(vo)l.

For each > 0, Y goes to 0 in law (and thus in probability) as € — 0: this immediately
follows from the fact that f(V;/c) converges in law as € — 0; see Lemma 37(iii). It is not
clear (and probably false) that supg ,; |Y5| — 0, which explains why we deal with finite-
dimensional distributions.

Next, (M;);>0 converges in law, in the usual sense of continuous processes, to (X B;);>0,
where ¥ € Sj is the square root of [ra V* f(v)V f(v)ug(dv) € 83' (see below). Indeed,
since (M;);>0 is a continuous R9-valued martingale, it suffices, by Jacod—Shiryaev [19],
Theorem VIII-3.11, page 473, to verify that for all i, j € {1,...,d}, (Me’i, Me’j)t — Eizjt in
probability for each ¢ > 0. But this follows from the fact that the brackets (M€, M€/), =
€ (;/6 V fi(Vs)-V f;(Vs) ds, from Lemma 37(ii) and from the fact that [ |Vf(v)|zuﬂ (dv) <
0.

All this proves that indeed, (/€(X; Je — mgt/€));>0 converges, in the sense of finite-
dimensional distributions, to (X B;);>0, as € = 0.
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Let us finally explain why 2 is positive definite. For & € R¢ \ {0}, we have, setting
fe)=f)-§,

2% = [ VI up@) = [ VA0 p(a.

which is strictly positive because else we would have V fg¢(v) =0 for ae. v € R, so that
fe would be constant on R? \ {0} (recall that f is smooth on R? \ {0}). This is impossible,
because Afe (v) — BF(v) -V fe(v) =2(v —mpg)-& on R4 \ {0} and because constants do not
solve this equation. [J

REMARK 31. Consider some 8 >4 +d.

(i) In Theorem 4(a), ¥ € SJ is the square root of [pa V* f(v)V f(v)ug(dv), with ug
defined in Remark 3 and with f = (f1, ..., f4), where f; : R4 \ {0} — R is the (unique) C*°
solution to %[Af,- W) —BFWw)-Vfiv)]=v — m’ﬂ such that [pa |Vfi(v)|zuﬂ(dv) < 00.

(i) If U(v) = (1 + [v>)!/2, then pp(dv) = cg(l + |v|*>)"#/2dv and mg = 0, so that
(VeXi/i=0 2% (£ B,)=0. Furthermore, it holds that f;(v) = —a(|v|? + 3)v;, with a =
2/(3B —4 — 2d), and a computation shows that ¥ = g1, with

QZZ/IZMWJCI(U)FMﬂ(dv)
= _,/]Rd f] (U)[Afl(v) — ﬁF(v) . Vfl (U)],bb,s(dv)
= _2/Rd Siw)vipupg(dv)
=2acg /Rd(lvl2 +3)of(1+ o) 2 dv
2 —
=07%/Rd(|”|2+3)lv|2(1+|v|2) P12 qu.

8. The critical diffusive regime. The goal of this section is to prove Theorem 4(b).
We have not been able to solve the Poisson equation, so that we adopt a rather complicated
strategy. This would not be necessary if considering only the case U (v) = (1 +|v|?)!/? where
the solution to the Poisson equation is explicit: we could omit Lemmas 32 and 34 below.

LEMMA 32. Fixf8>0.Thereis WV :S;_1 — R4, of class C*°, such that for all 0 € Sq_1,
alk=1,...,d,
B Vsy ()

1
EAS‘I’k(Q) 25,0

9
- VsW(0) = E‘Pk(Q) + Ok.

PROOF. By Aubin [1], Theorem 4.18, page 114, for any A > 0 and any smooth function
g :Sg—1 — R, there is a unique smooth solution f :S;_; — R to

divs(y PVsf) =2y P Of +2).
This uses that y‘ﬂ is smooth and positive on S;_;. This equation can be also rewrite as

%Asf — gy_lvsy - Vs f =Af + g. Applying this result, for each fixed k =1, ..., d, with
A =9/2 and g(0) = 6, completes the proof. []

We now introduce some notation for the rest of the section. We write V; = R,© H, as in
Lemma 8 and we set ©; = ©p,. We know that (R;);>( solves (5) for some one-dimensional
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Bfownian motion (E,)lzo, that (®;);>¢ solves (6) for some d-dimensional Brownian motion
(Br)s>0, and that these two Brownian motions are independent.

LEMMA 33. Assume that B = 4 4+ d and consider the function V introduced in
Lemma 32. We have R?\IJ((@,) = rg\ll(é’o) —x0 + (X; —mpt) + M; +Y;, where

t _ t ~
M,=/ Rfv;ly(@s)stJr?)/ R2W(©,)dB;,
0 0

34+d) [t R2I(R,
Y, =mpt + %fo (Rs — }T(s))>w(®s)ds.

PROOF. Applying Ito’s formula with the function ¥ (extended to R? \ {0} as in Section 3
so that we can use the usual derivatives of R?), we find

t _ d—1 rt
w<®,)=w(90)+/ RI'V*W (0oL dBy — —/ R72V*W(O,)0; ds
0 $ ’

Vy (®s
v (Oy)

2f R Z (02 )04 W(©,) .

t
— g/ RV W(O,)me.
0 i,j=1

But the way W has been extended to R4 \ {0} implies that 75 V¥ (0) = VlIl(Q) =Vs¥ (),
that V*W(0)0 = 0 and that Z” 1(7T91)ij0;jW(0) = AV(O) — Zl] 10:0;0;; W (0) =
AV (0) = AsW¥(0). Consequently,

t _
\w&hﬂww+/RﬁWW@aws
0

Vsy (©5)

1 t
ds+- | RT2AqW(®,)d
,(©)) S+2A s AsY(O:)ds

[
- E/o R7IVEW(O;)

t _ t 9
=W () + f R7'Viw(©,)dB; + / R;Z[E\p(e)s) + @s] ds.
0 0
Recalling (5) and that 8 =4 + d, 1t6’s formula tells us that

! - 3d-1) [! 3 ' T'(Ry)R?
0 0

2 Jo T(Ry)
2
:r8—|—3/0[Rs2d1§s / Ryds + 3(4+d)/( Rrr(lgli)>ds.

We conclude that
R3\Il(®,)_r0111(90)+/ R2ViW(0;) dB; +/ [ U (Oy) + O ]d
5 .9
+3f R2W(O;)dB, — 5/ Ry (Oy)ds
0 0

N 3(4+4d) ft(Rs _ RIT'(Ry)

F(R) )W(@S) ds.

In other words, we have Rflll(®,) = rS\IJ(QO) —x0 + (X; —mpt) + M; +Y; as desired. []

‘We now treat the error term.
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LEMMA 34. Adopt the assumptions and notation of Lemma 33. Suppose the additional
condition f1°°r—1|rr’(r)/ I'(r) — 1120~ 'dr < 00. For each t > 0, in probability,

lim | loge|™'2e! 2[R}, W(®,/¢) — rg W (Bo) + x0 — Y1/e] =0.

PROOF. First, setting ¥ (v) = |v|3\II(v/|v|) — rglIJ(Go) + xo, we have
lim | loge| ™2 2[R} W(O,/¢) — rg W (00) + x0] = lim | loge| ™12y (V) =0
€— €e—

in probability, since by Lemma 37(ii), V; converges in law as ¢t — o0.
Next, we have Y; = fot g(Vy) ds, where we have set

217
gy =my+ 2D (D

2 I'(r) )\11(9),

where r = |v| and @ = v/|v|. This function is of class C> on R¢ \ {0} and, as we will see
below,

(a) _/Rd|g(v)|2(1+|v|)2uﬁ(dv)<oo and (b) /Rdg(v)uﬁ(dv)zoh

Applying Lemma 30 (coordinate by coordinate), there exists f : R? \ {0} — R? of class C,
satisfying [pa |Vf(v)|zuﬂ(dv) < oo and, foreachk=1,...,d, %[Afk —BF -V fi] = gk.
By Itd’s formula, starting from (2),

t
F(V) = f(wo) + Ni +Y where Nt=/0 V* £(V,) dB,.

To conclude that |loge|~1/2¢!/?y, Je converges to O in probability, as € — 0, we observe
that |loge|_1/ 2el/2g S (Vise) — f(vo)] tends to O in probability, which follows from the fact
that V; converges in law as r — oo, and that |loge|~'/2¢!/2 N, /e — 0 in probability, which
follows from the fact that (¢'/2N, /e)1=0 converges in law by Jacod—Shiryaev [19], Theorem
VIII-3.11, page 473. Indeed, (€2 N, /e)1=0 1s a continuous local martingale of which the
bracket € fot/e V* f(Vs)V* f(Vy)ds a.s. converges to [[ra V* f(v)V f(v)ug(dv)]t as € — 0
by Lemma 37(ii).

We now check (a). Since |g(v)| < C(1 + |v])|1 — |[v|T’(Jv])/ T (Jv])| and since B =4 +d,

/Rd|g(v)|2(1 + |v|)2,u,3(dv) = C/Rd|g(v)|2(1 + |v|)727d dv

00 rT(r)
= C./o ‘1 “To

2 rd—l dr
I+

which converges since, by assumption, [ r~|rI'(r)/T'(r) — 1|?r~!dr.
We finally check (b), recalling the notation introduced in Section 3:

7= [ s@npa)

B 3(4+d) [ ')\
=m0 (- L) IR s | O

34+d
:m,g-l—%flh,
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the first and last equalities standing for definitions. First,

n=ty [~(r- %)ﬂ—l[rm]—ﬂ dr

_bﬂ/ [C)] P dr+ ’3/ ()] Py dr

whence Ji = bg[l — (1+d)/B1 [5° rY[T(r)]7F and thus J; =[1 — (1 +d)/Blm}.
Next, recall that 1 AsW(0) — £y (6)17' Vsy (8) - VsW(6) = 3W(6) +6 by Lemma 32 and
observe that for any smooth ¥ : S;_; — R, we have

sy () }
A — Y
/S d_l[ $U6) — BT VsU6) v (d6)

=ap [ divs([y @] "5y ©)s () =0.
Sa-1

Hence, /2 = f5,  W(0)vp(dd) = —(2/9) 5,  0vp(d6) = —(2/9) Mg, so that

3(4+d 14+d
g(l + ) mﬁMlg—O
2 B /9

because f =4 +d andmg =myMg. [

J=mg—

We finally treat the main martingale term.

LEMMA 35. With the assumptions and notation of Lemma 33, as ¢ — 0,
— d
(1loge| ™22 My e),.g — (ZBi)iz0

for some X € ST, where (B:)r>0 is a d-dimensional Brownian motion.

PROOF. Using one more time Jacod—Shiryaev [19], Theorem VIII-3.11, page 473, it
suffices to check that there is £2 € S; such that lime_.o Z¢ = %?¢ in probability for each

t >0, where Z; is the matrix of brackets of the martingale | loge| =122 M, Je» namely

2= [T rip
| S (®S)dsa
lTogel Jo

where D(0) = VW (0)VsW (0) + 9V (0)W*(9). We proceed by coupling.

Step 1. We recall Notation 9 and use Lemma 10 with ac = k€, where k = [ [0 (w)]_2 dw <
oo; see Lemma 42(i). We consider a one-dimensional Brownian motion (W;);>¢, introduce
AS = ea;z fé[a(Ws/ae)]_2 ds and its inverse p; and put Rf = Jeh™! (Wpe /ae). We know
from Lemma 10 that S; = eV ZR; solves (5). We also consider the solution (C:)t),zo of
(4), independent of (W;);>0. We then know from Lemma 8 that, setting HS = fé[Sf]_2 ds,

(S€®H5)1>0 4 (V¢)¢>0. In particular, for each r > 0, Z¢ 4 7€, where
t £ )t> > p t t

- e d oA
Z5 = SS) " D(®pge)ds.
! |log6|A (S5)°D¢ He) ds

Step 2. Here we verify that Z =K ;;, where, recalling Notation 9,

CA 22/0 ¥ (Wajae)

. e / (A1 (W, /a-)1*D(Or¢)
[logelaZ Jo
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Recalling that S¢ = e~"/2R¢, = h™!(W,¢ /ac) and using the change of variables u = pg,,

that is, s = e_lAZ, whence ds = a;z[a(Wu/ae)]_2 du, we find

pe [hY (W /a)1*D (O e | )

- € —1 4¢
Z¢ = / “_ du,
! |10g€|a€2 0 [CT(VVM/GG)]2

and it only remains to check that H¢

e = T . With the same substitution,
t

. e_lAf ds
€714 _/0 (A= (Wpe, /ae)]?

_i/f du _i/f du
—alo lo(Wy/a)Plh=Y(Wy/a) > a2 Jo y(Wy/ac)

Step 3. We now prove that there is C > 0 such that E[|K; — GDIf|2|W] < Ct/|loge|? for
allr >0,alle € (0,1), where W =o (W;, t > 0), where Gp = de-1 D(8)vg(d6) and where

e € [T (Wfaor
Ir= |10ge|a€2/0 [0 (W /ae)]? »

We set Af =E[|K; — GDIf|2|W] and write

A €2 /t /, [h= (W /ae)* Th= 1 (Wp/ao)]*
"7 |loge|2at Jo Jo  [0(Wa/ao)l?  [0(Wp/ae)]?

X E([D(@T;) — GD][D((:)T;) — GD]|W) da db.

Using that (7}°);>0 is VV-measurable, that ((:)Z)IZO is independent of W, that D is bounded
and that Gp = [g ., Ddvg, we deduce from Lemma 38(ii) and the Markov property that
there are C > 0 and A > 0O such that a.s.,

|E([D(Ore) — GD][D((:)T;) — Gp]IW)| < Cexp(=A|T; —T;]).

By Lemma 42(iii) with a. = ke, we have ea=2[h~ ! (w/ac)]*[o(w/ac)]™2 < C(e + |w])~},
whence

C L ~1 -1
A6<7// W W _A|T€ — T¢|) da db.
L= Tiogel Jo Jo (€T Wal) e+ IWsl) ™ exp(=A[T7 = T5) da

Next, since a2y (w/ac) < C(e + |w|)? by Lemma 42(iv),

AT =T =2 >

b -2
/ (e 4+ |Ws]) " ds

1 0 ds
Ry —
az Ja Yy (Ws/ae)
for some ¢ > 0. Using furthermore that xy < x> + y? and a symmetry argument, we conclude
that

b -2
f (e + |W,]) "2 ds

c C t t )
Af<—— €+ |Wu|) “expl — dadb.
f—|loge|2/o/o(+' al) p<c )“
The conclusion follows; see (13).
Step 4. One can check precisely as in Lemma 12 that for all T > 0, supyy 7y |A7 — L9| —
0 a.s. as € — 0, where (L?),Zo is the local time at 0 of (W;);>¢. Actually, the proof of
Lemma 12 works (without any modification) for any § > d.
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Step 5. We verify that for each T > 0, a.s., lime—qsupy 7y |If — (K/36)L?| = 0. This
resembles the proof of Lemma 12. By Lemma 42(iii), we know that [A~ (w)]*/[o (w)]* <
C(1 + |w])~! and that

/x [h_l(w)]4 dw X—00 bﬂ
—x  [ow)]? 36

We fix 8 > 0 and write I€ = J° + Q°, where

jes_ € /f[h—l(vvs/ae)]4
~ |logelaZ Jo  [o(Wy/ae)?

1)

1w, |>s) ds

and

€ /f [ (Wy/a)1*
" |logela2 Jo [o(Ws/ao))?

Since a¢ = ke and since |w| > 8 implies that [A~" (w/ac)]*/[o (w/ac)]? < C(1 + |8/€))~ !,
we find supyg 7 Jf’“S < CT/[é|loge]], which tends to 0 as € — 0. We next use the occupation
times formula to write

€8 __
or

(1w, |<s} ds.

s € [h=1(x/ae)]* L} dx

o _|1oge|ag/a [o(x/ac)]?
R /6 [~ /a0l dx € /8 [h! (x/ad)]* (L} — LY) dx
|logelaZ J-s  [o(x/a0)l> " |logelaZ J-s [0 (x/ac))?

= rgygL? + Rf’a,
the last identity standing for a definition. By a substitution and (21),

€ /M ' )1*dy o €log(B/ac) 1
|logelae J-sj/a.  [o(y)]? 36| log€|a, 36k

e, s =

as € — 0 because a, = xe. Recalling that I€ = re sL) + Rf’(3 + Jf"s, we have proved that
a.s.,

forall § >0, limsup sup|I¢ — LY/(36k)| <limsup sup |RE?).
e—>0 [0,T] e—>0 [0,T]

But |Rf’5| <res X SUp[_g .51 |L7 — L?|, whence
lim sup sup 1€ = L%@B6)| < sup  |L¥ — LY)/(36k)
e—0 [0,T [0,T]x[—8,5]
a.s. Letting § — 0, using Revuz—Yor [33], Corollary 1.8, page 226, completes the step.

Step 6. We finally conclude. We fix ¢ > 0 and recall from Steps 1 and 2 that Z; 4 Zf =
K;tg. By Step 4, we know that A — L(S) a.s. for each s > 0, so that Lemma 41 tells us that p;

a.s. converges to t; = inf{u >0 : Lg > t}, because ¢ is a.s. not a jump time of (z5)>0. Using
that pf is VW-measurable, we deduce from Step 3 that for any A > 0,

CA

E[|Kpe — Gplye |1{p,<A}]_|10g—6|2

Since p; a.s. tends to 7;, one deduces that Zf —-Gp I;e converges in probability to 0. We then
t

infer from Step 5, using again that p; a.s. tends to 7;, that |I;f — Lgf /(36k)| a.s. tends to 0.
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But (L%);>0 being continuous, we see that Lgts a.s. tends to L% = t. All this proves that Z,
and thus also Z;, converges in probability, as € — 0, to »2t, where
22— @
36K
This matrix is positive definite: for £ € R?\ {0} and Ve (0)=w(0)-§,

£°Gpt = [ [IVsw: @) +99:0) 158 =9 [ [we(@)vpce)

which cannot vanish, because else we would have Wg () = 0 for all 6 € Sy, which is
impossible because We solves L AsWs (0) — £[y (0)17' Vsy (6) - VsWe (0) = JW: (6) + & - 6.
O

We now have all the tools to give the following proof.

PROOF OF THEOREM 4(B). Recall first that we know from Lemma 33 that X; — mgt =
[R?W(@t) — rO\I’(QO) Y] — M,, from Lemma 34 that for each r > 0,

lim |loge|~ V2l 2[R W(Oy)e) — rg W (B0) + x0 — Yi/e] =0
€e—

in probability, and from Lemma 35 that (|1oge|_1/261/2Mt/€),20 i) (X2Bs)i>0 as € — 0.
d.

We conclude that, as desired, (| 10g€|_1/261/2(X;/5 — mpgt/€)i>0 f—> (XB/)i>0 as € — 0.

[l

By Lemma 42(i), « can be computed slightly more explicitly.

REMARK 36. Assume that 8 =4+4d.

(i) In Theorem 4(b), X € Sd+ is the square root of
1
_ / [VEW(0)VsW(6) + 9 (6)W*(6)]vs(d6),
36k Js,_,

with vg defined in Section 3, W introduced in Lemma 32 and with

[

(ii) If U(v) = (1 + [v]?)"/2, then pug(dv) = cp(1 + |v[>)~#/>dv and mg = 0, so that we

have (61/2| loge|_1/2Xt/E)t20 Ld') (¥ B;):>0- Moreover, y = 1, whence vg(df) = ¢(df) and
V(@) = —ab, where a = 2/(8 +d) (a computation shows that AgW(6) = a(d — 1)6, whence
TAsW(0) = 3W(H) + 0). Since now VW (0) = —amy., whence ViW(0)VsW (9) = a’my1,
we find

2 _ a’

=— 996* ¢ (d6
36k '/édl [T[GL + ]g( )

2 2

_ a 5
= 36¢ /Sd_l[ld+899 Jo(do) = 7 [/d 1(1+891)g(c19)]1d.

Observing that f5, 67¢(df) = 1/d, we conclude that & = g1y, with ¢ = [9cd (8 +d)]~1/2.
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APPENDIX

We still work in dimension d > 2 in the whole section.

A.1. Ergodicity and convergence in law. We first recall some classical properties of
the velocity process.

LEMMA 37. Assume that B > d and consider the R? \ {0}-valued velocity process
(V)i>0; see (2).

(i) The measure with density pg defined in Remark 3 is its unique invariant probability
measure.
(ii) Forany ¢ € L'(R?, up), imy_—oo T~' [ (Vi) ds = fpa ¢ dugp as.
(iii) It holds that V; goes in law to ug as t — 0.

PROOF. We denote by L the generator of the velocity process, we have Lo(v) =
HAp@) — BF(v) - Vo()] for all ¢ € C2(RY \ {0}), all v € R \ {0}. We also denote by
P; (v, dw) its semi-group: for r > 0 and v € R \ {0}, P;(v, dw) is the law of V; when Vy = v.

Recalling that s (dv) = cg[U (v)]~# dv and that Lo(v) = (U (v)1? div([U (v)]#Ve(v)),
we see that [ps Lo(v)ug(dv) =0forall ¢ € CX(R4 \{0}), and pg is an invariant probability
measure. The uniqueness of this invariant probability measure follows from point (iii). In a
few lines below, we will verify the two following points.

(a) There is @ : R? \ {0} — [0, 00) of class C? such that

Iim &)= hm D) =
[v]—0+ [v]
and, for some b, ¢ > 0 and some compact set C C R? \ {0}, for all v € R? \ {0}, LD (v) <
—b + clpecy.

(b) There is fo > 0 such that for any compact set C C R4 \ {0}, there is «¢ > 0 and a
probability measure ¢c on R? \ {0} such that for all A € B(R? \ {0}), inf,ec Py(x,A) >
acic(A).

These two conditions allow us to apply Theorems 4.4 and 5.1 of Meyn-Tweedie [30],
which tell us that (V;);>¢ is Harris recurrent, whence point (ii) (by Revuz—Yor [33], Theo-
rem 3.12, page 427, any Harris recurrent process with an invariant probability measure satis-
fies the ergodic theorem) and Law(V;) — g, whence point (iii). Indeed, in the terminology
of [30], (a) implies condition (CD2) and (b) implies that all compact sets are petite.

Point (a). For some g > 0 to be chosen later, set, for r € (0, 00), g(r) = —q + 1{,¢[1,3)) and
o(r) = f; y' N (1P dy 3 g)x? [T (x)] 7P dx. For v € RY\ {0}, set ®(v) = ¢([v]) +m,
for some constant m to be chosen later.

But it holds that ¢’ () = r1=9[T ()18 [ g(x)x¢= 1[I (x)]# dx, VO (v) = LU0y " (r) =

Sl

g(r) — [ — B¢/ (), and AD(v) = ¢"(Iv]) + =L ¢/ (v]). whence F(v) - VO (v) =
FF((|\5||)>¢/(|U|), see (7). We find that L& (v) = g(|v])/2.

The integrals fozg()c)x“'_l[F()c)]_/6 dx and fzoog(x)xd_l[r‘(x)]_/g dx converge and are
positive if ¢ > 0 is small enough, so that

2 2
: _ 1-d B d—1 =B 4, —
rlg%go(r)_/o y 4Ty dy f} g()x®[IF(x)] "dx =00 and

Jim o) = [~y o ay [ eoxd 1R P = oo
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Hence it holds that limjy_o4 ®(v) = limy|— 00 P(v) = co. With the choice m =
—min,~o@(r) € R, the function ® is nonnegative and thus suitable.

Point (b). We will prove, and this is sufficient, that for any compact set C C R4 \ {0}, there
exists a constant k¢ > 0 such that for all v € C all measurable A C C, P;(v, A) > kc|Al, |A|
being the Lebesgue measure of A.

Consider @’ > a > 0 such that the annulus D = {x € R?, a < |x| < a’} contains C. Recall
(2) and that the force F is bounded on D; see Assumption 1. By the Girsanov theorem, for
any A € B(R?),

P1(v, A) =Py (Vi € A) > Ey[1{vse(0,1],v,eD} 1 v, e} ]
> cE[1yvse0,11,v+B,eD} 1 v+ B ea}]

for some constant ¢ > 0, where (B;);¢[0,1] is a d-dimensional Brownian motion issued from 0.
But the density g(v, w) of v 4 By restricted to the event that (v 4 By)s¢[0,1] does not get out
of D is bounded below, as a function of (v, w), on C x C, whence the conclusion. [J

We recall some facts about the total variation distance: for two probability measures P, Q
on some measurable set E,

1
”P_Q”TV:E sup
(22) I¢llco<1

=inf{P(X #Y) :Law(X) = P,Law(Y) = Q}.

/E $(0)(P — 0)(dx)

Furthermore, if P and Q have some densities f and g with respect to some measure R on E,
then

1
(23) = Q||Tv=5/E|f<x)—g<x)|R(dx>.

LEMMA 38. We consider the Sq_1-valued process ((:),)tzo, solution to (4).

(i) The measure vg(df) = aﬂ[y(e)]_ﬁg(de) on Sq_1 is its unique invariant probability
measure.

(i1) Thereis C > 0 and A > 0 such that for all t > 0, all measurable and bounded function
¢:S4-1— R,

sup <Cllglloce™.

0pESy—_1

By [6(O)] - /S ¢ dvg
d—1

(iii) There exists a (unique in law) stationary eternal version ((:);) teR Of this Sg_1-valued
process process and it holds that Law((:)‘;) =vg forallt € R. We denote by A € P(H), where
H=C(R,S4—1), the law of this stationary process.

(iv) Consider the process (@,),20 starting from some given 6y € Sy_1. Fix k > 1 and
consider some positive sequences (tr})nz Ly eves (t,/f)nzl, all tending to infinity as n — o0o. We
can find, for each A > 1 and each n > 1, an i.i.d. family of A-distributed eternal processes
((:)?’l’n’A),eR, - ((:);’k’”’A)teR such that, defining pa(t{, ..., 1) by the formula

~ ~ Ax 1,1, A Ax,k,n,A
IED[(@(z;urt)vos cees (“)(tl”+---+t,?+z)v0)te[—A,A] = (®t s O )te[—A,A]]’

it holds that lim,, _, oo pa(t{, ..., 17}) = 1.

PROOF. We recall that the generator L of the (@,),Zo is given, for p € C 2(Sy— 1) and
0 € Sa-1, by Lo(0) = §[As9(0) — BEEI - Vso(0)] = Sy O)1F divs([y @)1 Vse©)),
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so that vg(df) = agl y(@)]_ﬁg(dQ) is an invariant probability measure. The uniqueness
of this invariant probability measure follows from point (ii). We denote by Q;(x, dy) the
semi-group, defined as the law of ®, when @0 =Xx € Sg—1. Grigor’yan [17], Theorem 3.3,
page 103, tells us that Q;(x, dy) has a density g;(x, y) with respect to the uniform measure
¢ on Sy_1, which is positive and smooth as a function of (¢, x, y) € (0, 00) X Sg_1 X Sg_1.
For (ii), it suffices that b = SUPy veS, 101(x,) — O1(x, )|lTv < 1, because then the

semi-group property implies that || Q;(x, -) — vgllTv < bl'l whence the result by (22). But,
setting @ = min{q(x, y) : x, y € Sg_1} > 0 and recalling (23), we have

1
[01G ) = Q1 )y =5 /Sd_l lg1(x, ) — q1(x, y)[s (dy)

1
) /Sd_1|(q1(x’ M —a) = (@1(x', y) = a)ls(@dy),

which is bounded by %fSKH[(q] x,y)—a)+(@q(x',y)—a)lcdy)=1—a < 1.

Point (iii) follows from the Kolmogorov extension theorem. Indeed, consider, for each
n > 0, the solution (@?),z_n starting at time —n with initial law vg and observe that for all
m > n, Law((©),>_,) = Law((©!");>_,) because Law(®” ) = vg.

Next, we consider n large enough so that min{z{', ..., #;} > 2A. We will check by induction
that forall £ =1, ...k, ||FZ’Z — A%’EHTV < pa.n Where Ay = Law(((:),*)te[o,z/;]), where

[’ € P(C(0, 241, 84-1)") s the law of (O asdrei0.241s -5 Oy yyr a1 ret024):
and where

¢
Pasn=C X:exp(—)x(t;1 —24)),
i=1

with C > 0 and A > O introduced in (ii). By (22), this will prove point (iv). We re-
call that, by (ii), SUPg, S, 1Q:(6o, ) — vglltv < Cexp(—Ar), and we introduce Ay x €

P(C(0,24A],S4—_1)) the law of ((:)t);e[o,ZA] when starting from @0 =xeS4_1.
Writing FZ’I = Js,, Qu—a(B0,dx)Aax(-) and A = [,  vp(dx)A 4 x(-), we find that
indeed,

Iyt — Aalry = Qu-a0, ) —vg|ry < Cexp(=A(t] — A)) < pa,in.

nt—1

Assuming next that ||T", Af(e_l)HTv < Ppai—1 forsome l e {2,..., k}, we write

FZ’Z(dQ(”,...,dG(@)z /XGS Fz,ﬁ—l(de(l),”.’de(e—l))
d—1

x Qu_aa (O3 " dx)Aa . (d6?),
A®HdOD, ... do®) = f AV @M e ug(dx) A (d6©).
xeSd 1

We conclude that

N -1 -1
T3¢ = ARy < sup [Qp2a(y.) = vglpy + T3 = ARy

YESt—1
(" =24
< Ce )+pA,Z—l,n,

which equals p4 ¢, as desired. [J
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A.2. On Ito’s measure. We recall that It6’s measure E € P(€) was introduced in Nota-
tion 15.

LEMMA 39. (i) For E-almost every e € £, fue)/z |e(u)|_2 du = o0

(i) Forall g € L'(R), [¢[/{'” ¢(e(u)) dulE(de) = fi ¢ (x) dx.
(iii) For all measurable ¢ : R — R,

L(e) 2 2
/g[/o ¢(e(u))du} E(de) < 4[/& \/|x_|¢(x)dx} :
(iv) For q < 3/2, for E-almost every e € £, we have foz(e) le(u)|~9 du < oo.

PROOF. For (i), it suffices to use that [, L (] logrl)_1 dr = oo and Lévy’s modulus of

continuity (see Revuz—Yor [33], Theorem 2.7, p. 30), which implies that for E-a.e. e € £,
lim sup;\ o sup,.¢qo, (27| logr|)~e(r)|> = 1.

Next (iv) follows from (iii), since the integral f; |e(u)| ™% du is finite if and only if
foe(e) le(u)|~91jequ))<1y du < oo (for any e € £) and since

() - 2 . 2
/él:/() |e(u)| q1{|e(u)|51}du:| E(d€)§4|:/l|x| / _qu:| < 00.

We now check points (ii) and (iii). We recall that for (W;),>¢ a Brownian motion, for
(L})i>0.xer its family of local times, for (7;);>¢ the inverse of (L?),Zo, the second Ray—
Knight theorem (see Revuz—Yor [33], Theorem 2.3, p. 456) tells us that (Lg’l)wzo is a
squared Bessel process with dimension O issued from 1. Hence, for some Brownian mo-

tion (By,)w>0, We have Lg’l =1+ 2wa Ly dB,, so that E[Lg’l] =1 and E[(L’;‘i - D=
4E[(fo /LY dB,)?] =4[’ E[L} ]1dv = 4w. By symmetry, for any w € R, we have
E[L7]=1and E[(L} — 1)2] = 4|w|. Applying (15) with t = 1, we see that

fg[/og(e) ¢(e(w)) du] E(de) = E[/ol /g[/oz(e) P(e(u)) du:|M(ds, de)]
=E[/Ofl ¢(Ws)ds]

But finally, by the occupation times formula and the Fubini theorem,

B ["oovoas| B[ [ gLt aw|= [ e

which proves (ii). Similarly,

/g[/(f(e)qﬁ(e(u))du]zE(de): (/ /[ Z(e) e(u))du}M(ds de)) ]
—E (/ ¢(W)ds—/¢(w)dw)2]
=E_</R¢(w)(LZ’1 - 1)dw> }

N /R/wa)d’(“m[(wl —1)(L" —1)] dwdu.

We complete the proof of (iii) using that ]El[(Lrwl — 1)2] = 4|x| and the Cauchy—Schwarz
inequality. [
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A.3. On Bessel processes.

LEMMA 40. (1) Fix é € (0,2), consider a Brownian motion (W;);>0, introduce the in-
verse p; of Ay = (2 — 8)72 fé Ws—2(1—5)/(2—8)1{wy>0} ds and set R; = (Wp[)lL/(z_s). Then
(R+t)s>0 is a Bessel process with dimension 2 — § issued from 0.

(ii) For (R:)s=0 a Bessel process with dimension § > 0, a.s., for all t > 0 such that R; =0
and all h > 0, we have fl+h “2ds =00

PROOF. Point (i) is more or less included in Donati—-Roynette—Vallois—Yor [13], Corol-
lary 2.2, who state that for (R;);>0 a Bessel process with dimension é € (0, 2) issued from 0,
for C; = (2 —§)2 f(; Rsz(l_s) ds and for D; the inverse of C;, (RDt)z_‘S is a reflected Brownian
motion. Moreover, this is clearly an if and only if condition.

Butfor C; = 2—8)2 i RE" P ds = 2= 8)2 f§ (W) 2 ™/ ds = £ 14w, ~0) du and
for D, its inverse, we have D, Ag,, where &; is the inverse of fo 1w, >0 ds It is then clear
that R%T‘S = (WpD[ )+ = (Wg, )+ is areflected Brownian motion.

Point (ii) follows from Khoshnevisan [23], (2.1a), page 1299, that asserts that a.s., for all
T > 0, limsup;,\ o sup;cpo,7j[A(1 V log(1/m)1"/2[R; 45 — R;| = +/2. Indeed we have that
f0+[h(1 viog(1/h)] tdh =00. O

A 4. Inverting time changes. We recall a classical result about the convergence of in-
verse functions.

LEMMA 41. Consider, for each n > 1, a continuous increasing bijective function (a;');>0
from [0, 00) into itself, as well as its inverse (r]');>0. Assume that (a}');>o converges pointwise
to some function (a;);>o such that lims, a; = 00, denote by ry = inf{u > 0: a,, > t} its right-
continuous generalized inverse and set J = {t € [0, 00) : r;— < r}. Forallt € [0,00) \ J, we
have lim;_, o 1]' =17.

A.5. Technical estimates. Finally, we study the functions 4, i, o introduced in Nota-
tion 9. We recall that A(r) = (B +2 — d) frro W' =T w))P du is an increasing bijection from
(0, 00) into R, that k= : R — (0, o) is its inverse function. We have set o (w) = h'(h~! (w))
and ¥ (w) = [o(w)h~ ! (w)]?, both being functions from R to (0, c0).

LEMMA 42. Fix 8 >d —2 and set « = (B + 2 — d)/3. There are some constants 0 <
¢ < C such that the results below are valid for all w € R (except in point (v)).

W) IfB>d k= [zglo@2dz=B+2—ad)~" [Cri= [T ()] Pdr < cc.
(i) If p>1+d, m;g = Urh h=' (D)o ()72 d2)/ (Jglo ()] 72 d2).

_ [ (w)]* Lt 1 x A (@))% dz X—>00 Jogx
(111) Ifﬂ_4+d7 [ ( )]2 <C(1+|w|) andf [U(z)]2 36 .

(iv) If B €ld. 4+d]. c(1 +w) 10 < ¥ (w) < C(1+ w2
) If Beld,4+d), limy_on>¥(w/n) = (B + 2 — d)*w? for any w > 0.
i) If B>d—2,[c(w)]72 < C( + |w]) 2B+1=/(F+2=d),
viD) If B=d, [* [o()] 2dg TR o,
(viid) If B € [d,4-+d), WD < C(1 4+ w) * gy + C+ [w) o).

(x) If Beld,4+d), for all m € R, we have

1/o— zh (w/n)

T A
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x) If B € (d —2,d) and ac = P22 Jen=" (w/a) — wl/ P> uniformly on
compact sets.
(xi) If Be(d—2,d) and ac = e PT2=D/2,

. -2 — — — —
lim efaco (w/a0)] > = (B+2 - d) 2w 2P/ ERDY,

PROOF. The three following points will be of constant use.

(a) We have h=!(w) ~ w!/B+2=D) 5 (w) ~ (B + 2 — d)ywPT1=D/B+2=d) and o (w) ~
(B +2—d)*w? as w — oo.

(b) If d > 3, there are c,c’,¢” > 0 such that, as w — —o0, h~ ! (w) ~ c|w|~1/@=2),
o(w) ~ ¢/ |w|@=D/d=2) and v (w) ~ " |w|?.

(c) If d = 2, there are a function € satisfying lim,_, _ oo €(w) =0 and ¢, ¢/, ¢” > 0 such
that h 1 (w) = exp[—c|w|(1+€(w))], such that o (w) ~ ¢’ exp[c|w|(1 +€(w))] as w — —o0
and limy, , oo ¥ (w) =¢”.

To check (a), it suffices to note that by Assumption 1, A(r) ~ rP+2=d a5 1 s 00. Next, (b)
follows from the fact that 2(r) ~ —cr2~4 as r — 0 (with ¢ = [F(O)]’B(ﬂ +2—-d)/(d—-2)>
0), while (c) uses that h(r) ~ —clog(1/r) (with ¢ = B[T (0)], the result then holds with
e(w) =c[logh™'(w)]/w —1,c=1/¢, ¢’ =cand ¢’ = ¢?).

We now prove (i). Using the substitution » = A~ 1(z),

/ dz o dr /00 rd=1 d
= _— = = r’
R[WAI)P? Jo W) BH+2-dlo [T())P
which is finite if and only if d — 1 — 8 < —1, thatis, 8 > d. Recall that I" : [0, c0) — (0, c0)
is supposed to be continuous and that I'(r) ~ r as r — oo.

We proceed similarly for (ii). With m;g defined in Section 3,

Jeh ' @lo@12de _ [ ri o1 dr e rre) P
Jrlo ()12 dz [ 1 dr S r e Fdr T

For (iii), we see that when B = 4 + d, (a) implies that [~ (w)]*/[o (w)]*> ~ 36~ w™!
as w — 00, whence the bound [& *l(w)]4/[a(w)]2 <C(l+ |w|)*1 on Ry and the estimate

y % YR lEx gt g > 3, (b) tells s that [~ (w)]*/[o (w)]? ~ clw|~2dHD/@=D)
as w — —oo (for some constant ¢ > 0), and we conclude using that 2(d +1)/(d —2) > 1. If

d =2, (c) gives us [A~"(w)]*/[o (w)]* ~ [¢'1 2 exp(—6¢c|w|(1 + €(w))) as w — —o0, from
which the estimates follow.

Point (iv) immediately follows from (a) (concerning the lowerbound and the upperbound
on R ) and (b) or (c) (concerning the upperbound on R_).

Point (v) is a consequence of (a).

Point (vi) follows from (a) (concerning the bound on R ) and from (b) (and the fact that
d-1)/d-2)>B+1—-d)/(B+2—4d))or(c).

With the same arguments as in (vi), we see that [* [o(w)]~2dw R J3To (w)1 =2 dw,
which is equivalent to [log x]/4 as x — oo by (a), whence (vii).

Points (viii) and (ix) follow from (b) or (¢) (when w < 0) or (a) and using the fact that
1/(B+2—-d)-2(+1—-d)/(B+2—d)=1/a —2 (when w > 0).

Points (x) and (x1) follow from (a) (when w > 0) and (b) or (¢) (when w < 0). Observe that
in (x), the convergence is uniform on compact sets for free by the Dini theorem, since for each
€e>0,w— \/Eh_l (w/a¢) is nondecreasing and since the limit function w — w}r/ (B+2=d) 45
continuous and nondecreasing. [J
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