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ANOMALOUS DIFFUSION FOR MULTI-DIMENSIONAL
CRITICAL KINETIC FOKKER–PLANCK EQUATIONS

BY NICOLAS FOURNIER* AND CAMILLE TARDIF†

Sorbonne Université—LPSM, *nicolas.fournier@upmc.fr; †camille.tardif@upmc.fr

We consider a particle moving in d ≥ 2 dimensions, its velocity being a
reversible diffusion process, with identity diffusion coefficient, of which the
invariant measure behaves, roughly, like (1 + |v|)−β as |v| → ∞, for some
constant β > 0. We prove that for large times, after a suitable rescaling, the
position process resembles a Brownian motion if β ≥ 4+d, a stable process if
β ∈ [d,4 + d) and an integrated multi-dimensional generalization of a Bessel
process if β ∈ (d − 2, d). The critical cases β = d, β = 1 + d and β = 4 + d

require special rescalings.

1. Introduction and results.

1.1. Motivation and references. Describing the motion of a particle with complex dy-
namics, after space-time rescaling, by a simple diffusion, is a natural and classical sub-
ject. See, for example, Langevin [24], Larsen–Keller [25], Bensoussans–Lions–Papanicolaou
[5] and Bodineau–Gallagher–St-Raymond [7]. Particles undergoing anomalous diffusion
are often observed in physics, and many mathematical works show how to modify some
Boltzmann-like linear equations to asymptotically get some fractional diffusion limit (i.e.,
a radially symmetric Lévy stable jumping position process). See Mischler–Mouhot–Mellet
[29], Jara–Komorowski–Olla [20], Mellet [28], Ben Abdallah–Mellet–Puel [3, 4], etc.

The kinetic Fokker–Planck equation is also of constant use in physics, because it is rather
simpler than the Boltzmann equation: assume that the density ft (x, v) of particles with posi-
tion x ∈ R

d and velocity v ∈ R
d at time t ≥ 0 solves

(1) ∂tft (x, v) + v · ∇xft (x, v) = 1

2

(
�vft (x, v) + β divv

[
F(v)ft (x, v)

])

for some force field F :Rd →R
d and some constant β > 0 that will be useful later. We then

try to understand the behavior of the density ρt (x) = ∫
Rd ft (x, v)dv for large times.

The trajectory corresponding to (1) is the following stochastic kinetic model:

(2) Vt = v0 + Bt − β

2

∫ t

0
F(Vs)ds and Xt = x0 +

∫ t

0
Vs ds.

Here (Bt )t≥0 is a d-dimensional Brownian motion. For (Vt ,Xt)t≥0 (with values in R
d ×

R
d ) solving (2), the family of time-marginals ft = Law(Xt ,Vt ) solves (1) in the sense of

distributions.
It is well known that if F is sufficiently confining, then the velocity process (Vt )t≥0 is

close to equilibrium, its invariant distribution has a fast decay, and after rescaling, the position
process (Xt)t≥0 resembles a Brownian motion in large time. In other words, (ρt )t≥0 is close
to the solution to the heat equation.
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If on the contrary F is not sufficiently confining, for example, if F ≡ 0, then (Xt)t≥0
cannot be reduced to an autonomous Markov process in large times. In other words, (ρt )t≥0
does not solve an autonomous time-homogeneous PDE.

The only way to hope for some anomalous diffusion limit, for a Fokker–Planck toy model
like (1), is to choose the force in such a way that the invariant measure of the velocity process
has a fat tail. One realizes that one has to choose F behaving like F(v) ∼ 1/|v| as |v| → ∞,
and the most natural choice is F(v) = v/(1 + |v|2). Now the asymptotic behavior of the
model may depend on the value of β > 0, since the invariant distribution of the velocity
process is given by (1 + |v|2)−β/2, up to some normalization constant.

The Fokker–Planck model (1), with the force F(v) = v/(1 + |v|2), is the object of the pa-
pers by Nasreddine–Puel [31] (d ≥ 1 and β > 4+d , diffusive regime), Cattiaux–Nasreddine–
Puel [11] (d ≥ 1 and β = 4 + d , critical diffusive regime) and Lebeau–Puel [26] (d = 1 and
β ∈ (1,5) \ {2,3,4}). In this last paper, the authors show that after time/space rescaling, the
density (ρt )t≥0 is close to the solution to the fractional heat equation with index α/2, where
α = (β + 1)/3. In other words, (Xt)t≥0 resembles a symmetric α-stable process. This work
relies on a spectral approach and involves many explicit computations.

Using an alternative probabilistic approach, we studied the one-dimensional case in [15],
treating all the cases β ∈ (0,∞) in a rather concise way. We allowed for a more general
(symmetric) force field F .

Physicists observed that atoms subjected to Sisyphus cooling anomalously diffuse;
see Castin–Dalibard–Cohen–Tannoudji [9], Sagi–Brook–Almog–Davidson [34] and
Marksteiner–Ellinger–Zoller [27]. A theoretical study has been proposed by Barkai–Aghion–
Kessler [2]. They precisely model the motion of atoms by (1) with F(v) = v/(1+v2) induced
by the laser field, simplifying very slightly the model derived in [9]. They predict, in dimen-
sion d = 1 and with a quite high level of rigor, the results of [15], Theorem 1, excluding the
critical cases, with the following terminology: normal diffusion when β > 5, Lévy diffusion
when β ∈ (1,5) and Obukhov–Richardson phase when β ∈ (0,1). This last case is treated
in a rather confused way in [2], mainly because no tractable explicit computation can be
handled, since the limit process is an integrated symmetric Bessel process.

In [22], Kessler–Barkai mention other fields of applications of this model, such as single
particle models for long-range interacting systems (Bouchet–Dauxois [8]), condensation de-
scribing a charged particle in the vicinity of a charged polymer (Manning [28]), and motion
of nanoparticles in an appropriately constructed force field (Cohen [12]). We refer to [11, 26,
31] and especially [2, 22] for many other references and motivations.

The goal of the present paper is to study what happens in higher dimension. We also
allow for some nonradially symmetric force, to understand more deeply what happens, in
particular in the stable regime. To our knowledge, the results are completely new. The proofs
are technically much more involved than in dimension 1.

1.2. Main results. In the whole paper, we assume that the initial condition (v0, x0) ∈
R

d ×R
d is deterministic and, for simplicity, that v0 	= 0. We also assume that the force is of

the following form.

ASSUMPTION 1. There is a potential U : Rd \ {0} → (0,∞) of the form U(v) =
�(|v|)γ (v/|v|), for some γ : Sd−1 → (0,∞) of class C∞ and some � : R+ → (0,∞)

of class C∞ satisfying �(r) ∼ r as r → ∞, such that for any v ∈ R
d \ {0}, F(v) =

∇[logU(v)] = [U(v)]−1∇U(v).

Observe that F is of class C∞ on R
d \ {0}. We will check the following well-posedness

result.
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PROPOSITION 2. Under Assumption 1, (2) has a pathwise unique solution (Vt ,Xt)t≥0,
which is furthermore (Rd \ {0}) ×R

d -valued.

REMARK 3. Assume that β > d . As we will see, (Vt )t≥0 has a unique invariant proba-
bility measure given by μβ(dv) = cβ[U(v)]−β dv, for cβ = [∫

Rd [U(v)]−β dv]−1.

As already mentioned, the main example we have in mind is �(r) = √
1 + r2 and γ ≡ 1,

whence U(v) =
√

1 + |v|2 and F(v) = v/(1 + |v|2). We also allow for some non radially
symmetric potentials to understand more deeply what may happen.

In the whole paper, we denote by S+
d the set of symmetric positive-definite d ×d matrices.

We also denote by ς(dθ) the uniform probability measure on Sd−1.

For ((Zε
t )t≥0)ε≥0 a family of Rd -valued processes, we write (Zε

t )t≥0
f.d.−→ (Z0

t )t≥0 if for
any finite subset S ⊂ [0,∞) the vector (Zε

t )t∈S goes in law to (Z0
t )t∈S as ε → 0; and we

write (Zε
t )t≥0

d−→ (Z0
t )t≥0 if the convergence in law holds in the usual sense of continuous

processes. Here is our main result.

THEOREM 4. Fix β > 0, suppose Assumption 1 and consider the solution (Vt ,Xt)t≥0 to
(2). We set aβ = [∫

Sd−1
[γ (θ)]−βς(dθ)]−1 > 0, as well as Mβ = aβ

∫
Sd−1

θ [γ (θ)]−βς(dθ) ∈
R

d and, if β > 1 + d , mβ = ∫
Rd vμβ(dv) ∈ R

d .

(a) If β > 4 + d , there is � ∈ S+
d such that

(
ε1/2[Xt/ε − mβt/ε])t≥0

f.d.−→ (�Bt)t≥0,

where (Bt )t≥0 is a d-dimensional Brownian motion.
(b) If β = 4 + d and if

∫∞
1 r−1|r�′(r)/�(r) − 1|2 dr < ∞, then

(
ε1/2| log ε|−1/2[Xt/ε − mβt/ε])t≥0

f.d.−→ (�Bt)t≥0

for some � ∈ S+
d , where (Bt )t≥0 is a d-dimensional Brownian motion.

(c) If β ∈ (1 + d,4 + d), set α = (β + 2 − d)/3. Then

(
ε1/α[Xt/ε − mβt/ε])t≥0

f.d.−→ (St )t≥0,

where (St )t≥0 is a nontrivial α-stable Lévy process.
(d) If β = 1 + d and if

∫∞
1 r−1|r/�(r) − 1|dr < ∞ there is c > 0 such that

(
ε
[
Xt/ε − cMβ | log ε|t/ε])t≥0

f.d.−→ (St )t≥0,

where (St )t≥0 is a nontrivial 1-stable Lévy process.
(e) If β ∈ (d,1 + d), set α = (β + 2 − d)/3. Then

(
ε1/αXt/ε

)
t≥0

f.d.−→ (St )t≥0,

where (St )t≥0 is a nontrivial α-stable Lévy process.
(f) If β = d , then

(|ε log ε|3/2Xt/ε

)
t≥0

f.d.−→ (St )t≥0,

where (St )t≥0 is a nontrivial 2/3-stable Lévy process.
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(g) If β ∈ (d − 2, d),

(
ε3/2Xt/ε

)
t≥0

d−→
(∫ t

0
Vs ds

)
t≥0

,

where (Vt )t≥0 is a R
d -valued continuous process (see Definition 25) of which the norm

(|Vt |)t≥0 is a Bessel process with dimension d − β issued from 0.

The strong regularity of U is only used to apply as simply as possible some classical PDE
results.

REMARK 5. (i) In the diffusive regimes (a) and (b), the matrix � depends only on U

and β; see Remarks 31(i) and 36(i). The additional condition when β = 4 + d more or less
imposes that �′(r) → 1 as r → ∞ and that this convergence does not occur too slowly. This
is slightly restrictive, but found no way to get rid of this assumption.

(ii) In cases (c), (d), (e) and (f), the Lévy measure of the α-stable process (St )t≥0 only
depends on U and β: a complicated formula involving Itô’s excursion measure can be found
in Proposition 23(i). The additional condition when β = 1 + d requires that r−1�(r) does
not converge too slowly to 1 as r → ∞ and is very weak. The constant c > 0 in point (d) is
explicit; see Remark 24.

(iii) In point (g), the law of (Vt )t≥0 depends only on γ and on β .
(iv) Actually, point (g) should extend to any value of β ∈ (−∞, d), with a rather simple

proof, the definition of the limit process (Vt )t≥0 being less involved: see Definition 25 and
observe that for β ≤ d − 2, the set of zeros of a Bessel process with dimension d − β issued
from 0 is trivial. We did not include this uninteresting case because the paper is already
technical enough.

For the main model we have in mind, Theorem 4 applies and its statement simplifies. See
Remarks 31(ii) and 36(ii) and Proposition 23(ii).

REMARK 6. Assume �(r) = √
1 + r2 and γ ≡ 1, that is, F(v) = v/(1 + |v|2).

(a) If β > 4 + d , then (ε1/2Xt/ε)t≥0
f.d.−→ (qBt )t≥0, where (Bt )t≥0 is a d-dimensional

Brownian motion, for some explicit q > 0.

(b) If β = 4 + d , then (ε1/2| log ε|−1/2Xt/ε)t≥0
f.d.−→ (qBt )t≥0, where (Bt )t≥0 is a d-

dimensional Brownian motion, for some explicit q > 0.

(c)–(d)–(e) If β ∈ (d,4 + d), then (ε1/αXt/ε)t≥0
f.d.−→ (St )t≥0, where (St )t≥0 is a radially

symmetric α-stable process, where α = (β + 2 − d)/3 and with nonexplicit multiplicative
constant.

(f) If β = d , then (|ε log ε|3/2Xt/ε)t≥0
f.d.−→ (St )t≥0, where (St )t≥0 is a radially symmetric

2/3-stable process with nonexplicit multiplicative constant.

(g) If β ∈ (d − 2, d), (ε3/2Xt/ε)t≥0
d−→ (

∫ t
0 Vs ds)t≥0, with (Vt )t≥0 introduced in Defini-

tion 25.

1.3. Comments. Pardoux–Veretennikov [32] studied in great generality the diffusive
case, allowing for some much more general SDEs with nonconstant diffusion coefficient
and general drift coefficient. Their results are sufficiently sharp to include the diffusive case
β > 4 + d when F(v) = v/(1 + |v|2). Hence, the diffusive case (a) is rather classical.

We studied the one-dimensional case d = 1 with an even potential U in [15]. Many tech-
nical difficulties appear in higher dimension. In the diffusive and critical diffusive regime,
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the main difficulty is that we cannot solve explicitly the Poisson equation Lφ(v) = v (with L
the generator of (Vt )t≥0), while this is feasible in dimension 1. Observe that such a problem
would disappear if dealing only with the force F(v) = v/(1 + |v|2).

We use a spherical decomposition Vt = Rt�t of the velocity process. This is of course
very natural in this context, and we do not see how to proceed in another way. However,
since in some sense, after rescaling, the radius process (Rt )t≥0 resembles a Bessel process
with dimension d − β ∈ (−∞,2), which hits 0, spherical coordinates are rather difficult to
deal with, the process �t moving very fast each time Rt touches 0.

In dimension 1, the most interesting stable regime is derived as follows. We write (Vt )t≥0
as a function of a time-changed Brownian motion (Wt)t≥0, using the classical speed measures
and scale functions of one-dimensional SDEs and express ε1/αXt/ε accordingly. Passing to
the limit as ε → 0, we find the expression of the (symmetric) stable process in terms of the
Brownian motion (Wt)t≥0 and of its inverse local time at 0 discovered by Biane–Yor [6];
see also Itô–McKean [18], page 226, and Jeulin–Yor [21]. In higher dimension, the situation
is much more complicated, and we found no simpler way than writing our limiting stable
processes using some excursion Poisson point processes.

Let us emphasize that our proofs are qualitative. On the contrary, even in dimension 1,
the informal proofs of Barkai–Aghion–Kessler [2] rely on very explicit computations and
explicit solutions to O.D.E.s in terms of modified Bessel functions, and Lebeau–Puel [26]
also use rather explicit computations.

1.4. Plan of the paper. To start with, we explain informally in Section 2 our proof of
Theorem 4 in the most interesting case, that is when F(v) = v/(1 + |v|2) and when β ∈
(d,4 + d).

In Section 3, we introduce some notation of constant use in the paper.
In Section 4, we write the velocity process (Vt )t≥0 as (Rt�t)t≥0, the radius process

(Rt )t≥0 solving an autonomous SDE, and the process (�t)t≥0 being Sd−1-valued. We also
write down a representation of the radius as a function of a time-changed Brownian motion,
using the classical theory of speed measures and scale functions of one-dimensional SDEs.

We designed the other sections to be as independent as possible.
Sections 5, 6, 7 and 8 treat respectively, the stable regime (cases (c)–(d)–(e)–(f)), integrated

Bessel regime (case (g)), diffusive regime (case (a)) and critical diffusive regime (case (b)).
Finally, an Appendix at the end of the paper contains some more or less classical results

about ergodicity of diffusion processes, about Itô’s excursion measure, about Bessel pro-
cesses, about convergence of inverse functions and, finally, a few technical estimates.

2. Informal proof in the stable regime with a symmetric force. We assume in this
section that F(v) = v/(1 + |v|2) and that β ∈ (d,4 + d) and explain informally how to prove
Theorem 4(c)–(d)–(e). We also assume, for example, that x0 = 0 and that v0 = θ0 ∈ Sd−1.

Step 1. Writing the velocity process in spherical coordinates, we find that Vt = Rt�̂Ht ,
where

(3) Rt = 1 + B̃t +
∫ t

0

(
d − 1

2Rs

− βRs

1 + R2
s

)
ds

for some 1D-Brownian motion (B̃t )t≥0, independent of a spherical Sd−1-valued Brownian
motion (�̂t )t≥0 starting from θ0, and where Ht = ∫ t0 R−2

s ds.
Step 2. Using the classical speed measure and scale function, we may write the radius

process (Rt )t≥0 as a space and time changed Brownian motion. For that we introduce h(r) =
(β + 2 − d)

∫ r
1 u1−d [1 + u2]β/2 du, which is an increasing bijection from (0,∞) into R.

We denote by h−1 : R → (0,∞) its inverse function and by σ(w) = h′(h−1(w)) from R to
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(0,∞). For (Wt)t≥0 a one-dimensional Brownian motion, consider the continuous increasing
process At = ∫ t

0 [σ(Ws)]−2 ds and its inverse (ρt )t≥0. One can classically check that Rt =
h−1(Wρt ) is a (weak) solution to (3), so that we can write the position process as

Xt =
∫ t

0
h−1(Wρs )�̂Hs ds =

∫ ρt

0

h−1(Wu)

[σ(Wu)]2 �̂HAu
du.

We used the substitution ρs = u, that is, s = Au, whence ds = [σ(Wu)]−2 du. We next ob-
serve that Tt = HAt = ∫ At

0 [h−1(Wρs )]−2 ds = ∫ t0 [ψ(Wu)]−2 du, where we have set ψ(w) =
h−1(w)σ(w). Finally,

Xt/ε =
∫ ρt/ε

0

h−1(Wu)

[σ(Wu)]2 �̂Tu du.

Step 3. To study the large time behavior of the position process, it is more convenient to
start from a fixed Brownian motion (Wt)t≥0 and to use Step 2 with the Brownian motion
(Wε

t = (cε)−1W(cε)2t )t≥0, for some constant c > 0 to be chosen later. After a few computa-
tions, we find that

Xt/ε =
∫ ρε

t

0

h−1(Ws/(cε))�̂T ε
s

(cε)2[σ(Ws/(cε))]2 ds where

T ε
t =

∫ t

0

du

[cεψ(Wu/cε)]2 and Aε
t =

∫ t

0

du

c2ε[σ(Wu/(cε))]2 ,

and where (ρε
t )t≥0 is the inverse of (Aε

t )t≥0.
Step 4. If choosing c = ∫

R
[σ(x)]−2 dx, it holds that limε→0 A

ε
t = L0

t a.s. for all t ≥ 0,
where (L0

t )t≥0 is the local time of (Wt)t≥0: by the occupation times formula (see Revuz–Yor
[33], Corollary 1.6, p. 224)

Aε
t =

∫
R

Lx
t dx

c2ε[σ(x/(cε))]2 =
∫
R

L
cεy
t dy

c[σ(y)]2 −→
∫
R

dy

c[σ(y)]2L
0
t = L0

t .

As a consequence, ρε
t tends to τt , the inverse of L0

t .
Step 5. Studying the function h near 0 and ∞, and then h−1, σ and ψ near −∞ and ∞,

we find that, with α = (β + 1 − d)/3 (see Lemma 42(ix) and (v)):

• limε→0 ε
1/α(cε)−2h−1(w/(cε))[σ(w/(cε))]−2 = c′w1/α−21{w>0},

• limε→0[cεψ(w/cε)]−2 = c′′w−21{w>0} + ϕ(w)1{w≤0},

for some constants c′, c′′ > 0 and some unimportant function ϕ ≥ 0. Here appears the scaling
ε1/α .

Passing to the limit informally in the expression of Step 3, we find that

ε1/αXt/ε −→ St = c′
∫ τt

0
W 1/α−2

s 1{Ws>0}�̂Us ds where

Ut = c′′
∫ t

0
W−2

u 1{Wu>0} du +
∫ t

0
ϕ(Wu)1{Wu≤0} du.

Unfortunately, this expression does not make sense, because Ut = ∞ for all t > 0, since
the Brownian motion is (almost) 1/2-Hölder continuous and since it hits 0. But in some
sense, Ut − Us is well-defined if Wu > 0 for all u ∈ (s, t). And in some sense, the processes
(�̂Us )s∈[a,b] and (�̂Us )s∈[a′,b′] are independent if Wu > 0 on [a, b]∪[a′, b′] and if there exists
t ∈ (b, a′) such that Wt = 0, since then Ua′ −Ub = ∞, so that the spherical Brownian motion
�̂, at time Ua′ , has completely forgotten the values it has taken during [Ua,Ub].
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Since (τt )t≥0 is the inverse local time of (Wt)t≥0, it holds that τt is a stopping-time and
that Wτt− = Wτt = 0 for each t ≥ 0. Hence, by the strong Markov property, for any reasonable
function f : R → R

d , the process Zt = ∫ τt
0 f (Ws)ds is Lévy, and its jumps are given by

�Zt = ∫ τtτt− f (Ws)ds, for t ∈ J = {s ≥ 0 : �τs > 0}.
The presence of �̂Us in the expression of (St )t≥0 does not affect its Lévy character, because

(�̂t )t≥0 is independent of (Wt)t≥0 and because in some sense, the family {(�̂Uu)u∈[τs−,τs ] :
s ∈ J } is independent. Hence, (St )t≥0 is Lévy and its jumps are given by

�St = c′
∫ τt

τt−
W 1/α−2

s 1{Ws>0}�̂t

[c′′ ∫ s
(τt+τt−)/2 W−2

u du] ds, t ∈ J

for some i.i.d. family {(�̂t
u)u∈R : t ∈ J } of eternal spherical Brownian motions. Informally,

for each t ∈ J , we have set �̂t
u = �̂U(τt+τt−)/2+u for all u ∈ R. The choice of (τt + τt−)/2

for the time origin of the eternal spherical Brownian motion �̂t is arbitrary, any time in
(τt−, τt ) would be suitable. Observe that the clock c′′ ∫ s

(τt+τt−)/2 W
−2
u du is well-defined for

all s ∈ (τt−, τt ) because Wu is continuous and does not vanish on u ∈ (τt−, τt ). This clock
tends to ∞ as u → τt , and to −∞ as u → τt−.

It only remains to verify that the Lévy measure q of (St )t≥0 is radially symmetric, which is
more or less obvious by symmetry of the law of the eternal spherical Brownian motion; and
enjoys the scaling property that q(Aa) = aαq(A) for all A ∈ B(Rd \ {0}) and all a > 0, where
Aa = {x ∈ R

d : ax ∈ A}. This property is inherited from the scaling property of the Brownian
motion (this uses that the clock in the spherical Brownian motion is precisely proportional to
c′′ ∫ s

(τt+τt−)/2 W
−2
u du).

To write all this properly, we have to use Itô’s excursion theory.
Let us mention one last difficulty: when α ≥ 1,

∫ t
0 W

1/α−2
s 1{Ws>0} ds is a.s. infinite for all

t > 0. Hence to study St , one really has to use the symmetries of the spherical Brownian
motion and that the clock driving it explodes each time W hits 0.

3. Notation. In the whole paper, we suppose Assumption 1. We summarize here some
notation of constant use.

Recall that S+
d is the set of symmetric positive-definite d × d matrices.

We write the initial velocity as v0 = r0θ0, with r0 > 0 and θ0 ∈ Sd−1.
For u ∈ R

d \ {0}, let πu⊥ = (Id − uu∗
|u|2 ) be the d × d-matrix of the orthogonal projection

on u⊥.
For � :Rd →R

d , let ∇∗� = (∇�1 · · ·∇�d)
∗.

Recall that aβ = [∫
Sd−1

[γ (θ)]−βς(dθ)]−1 > 0, where ς is the uniform probability measure

on Sd−1. We introduce the probability measure νβ(dθ) = aβ[γ (θ)]−βς(dθ) on Sd−1. It holds
that Mβ = ∫

Sd−1
θνβ(dθ) ∈ R

d .

If β > d , we set bβ = [∫∞
0 [�(r)]−βrd−1 dr]−1 and introduce the probability measure

ν′
β(dr) = bβ [�(r)]−βrd−1 dr on (0,∞). It has a finite mean m′

β = ∫∞
0 rν′

β(dr) > 0 if
β > 1 + d .

Still in the case where β > d , we recall that cβ = [∫
Rd [U(v)]−β dv]−1 and that μβ(dv) =

cβ × [U(v)]−β dv on R
d . It holds that cβ = aβbβ and

∫
Rd

ϕ(v)μβ(dv) =
∫ ∞

0

∫
Sd−1

ϕ(rθ)νβ(dθ)ν
′
β(dr)

for any measurable ϕ :Rd →R+. In particular, mβ = Mβm
′
β if β > 1 + d .

In the whole paper, we implicitly extend all the functions on Sd−1 to R
d \ {0} as follows:

for ψ : Sd−1 →R and v ∈ R
d \ {0}, we set ψ(v) = ψ(v/|v|).



2366 N. FOURNIER AND C. TARDIF

We endow Sd−1 with its natural Riemannian metric, denote by T Sd−1 its tangent bundle
and by ∇S , divS and �S the associated gradient, divergence and Laplace operators. With the
above convention, for a function ψ : Sd−1 → R and a vector field � : Sd−1 → T Sd−1, it
holds that, for θ ∈ Sd−1 ⊂ R

d \ {0},
∇Sψ(θ) = ∇ψ(θ), divS �(θ) = div�(θ) and �Sψ(θ) = �ψ(θ).

4. Representation of the solution. Here we show that (2) is well-posed and explain how
to build a solution (in law) from some independent radial and spherical processes, in a way
that will allow us to study the large time behavior of the position process by coupling.

LEMMA 7. Consider a d-dimensional Brownian motion (B̂t )t≥0. The following equation,
of which the unknown (�̂t )t≥0 is Rd \ {0}-valued,

(4) �̂t = θ0 +
∫ t

0
π
�̂⊥

s
dB̂s − d − 1

2

∫ t

0

�̂s

|�̂s |2
ds − β

2

∫ t

0
π
�̂⊥

s

∇γ (�̂s)

γ (�̂s)
ds,

has a unique strong solution, which is furthermore Sd−1-valued.

Recall that we have extended γ to R
d \ {0} by setting γ (v) = γ (v/|v|).

PROOF. The coefficients of this equation being of class C1 on R
d \ {0}, there classically

exists a unique maximal strong solution (defined until it reaches 0 or explodes to infinity),
and we only have to check that this solution a.s. remains in Sd−1 for all times. By a classical
computation using the Itô formula, |�̂t |2 = |θ0|2 = 1 for all t ≥ 0 a.s. This uses that for
φ(θ) = |θ |2 defined on R

d , we have ∇φ(θ) = 2θ , so that (∇φ(θ))∗πθ⊥ = 0 and ∂ijφ(θ) =
2δij , from which 1

2
∑d

i,j=1 ∂ijφ(θ)(πθ⊥)ij − d−1
2 ∇φ(θ) · |θ |−2θ = 0. �

The SDE (5) below has a unique strong solution: it has a unique local strong solution (until
it reaches 0 or ∞) because its coefficients are C1 on (0,∞) and we will see in Lemma 10
that one can build a (0,∞)-valued global weak solution, so that the unique strong solution is
global.

LEMMA 8. For two independent Brownian motions (B̃t )t≥0 (in dimension 1) and (B̂t )t≥0

(in dimension d), consider the Sd−1-valued process (�̂t )t≥0 solution to (4) and the (0,∞)-
valued process (Rt )t≥0 solution to

(5) Rt = r0 + B̃t + d − 1

2

∫ t

0

ds

Rs

− β

2

∫ t

0

�′(Rs)

�(Rs)
ds.

Setting Ht = ∫ t
0 R−2

s ds, Vt = Rt�̂Ht and Xt = x0 + ∫ t
0 Vs ds, the (Rd \ {0}) × R

d -valued
process (Vt ,Xt)t≥0 is a weak solution to (2).

PROOF. For each t ≥ 0, νt = inf{s > 0 : Hs > t} is a (F̃s)s≥0-stopping time, where F̃s =
σ(B̃u : u ≤ s), so that we can set Ht = F̃νt ∨ σ(B̂s : s ≤ t). Now for each t ≥ 0, Ht =
inf{s > 0 : νs > t} is a (Hs)s≥0-stopping time and we can define the filtration Gt = HHt . One
classically checks that:

(a) (B̃t )t≥0 is a (Gt )t≥0-Brownian motion, because (B̃νt )t≥0 is a (Ht )t≥0-martingale, so
that (B̃t = B̃νHt

)t≥0 is a (HHt = Gt )t≥0-martingale, and we have 〈B̃〉t = t because (B̃t )t≥0 is
a Brownian motion;
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(b) B̄t = ∫Ht

0 Rνs dB̂s is a (Gt )t≥0-Brownian motion with dimension d , since (B̄νt )t≥0

is a (Ht )t≥0-martingale, so that (B̄t )t≥0 is a (Gt )t≥0-martingale, and because 〈B̄〉t =
Id
∫Ht

0 R2
νs

ds = Idt ;

(c) these two Brownian motions are independent because for all i = 1, . . . , d , 〈B̃, B̄i〉 ≡ 0;
(d) for any continuous (Ht )t≥0-adapted (St )t≥0, we have

∫Ht

0 Ss dB̂s = ∫ t
0 R−1

s SHs dB̄s .

Indeed, it suffices to verify that for any (Gt )t≥0-martingale (Mt)t≥0, 〈∫H·
0 Ss dB̂s,M〉t =∫ t

0 R−1
s SHs d〈B̄,M〉s . But (Nt = Mνt )t≥0 is a (Ht )t≥0-martingale, and we have〈∫ H·

0
Ss dB̂s,M

〉
t

=
〈∫ H·

0
Ss dB̂s,

∫ H·

0
dNs

〉
t

=
∫ Ht

0
Ss d〈B̂,N〉s

=
∫ t

0
SHu d

(〈B̂,N〉Hu

)=
∫ t

0
SHuR

−1
u d〈B̄,M〉u,

because Ru d(〈B̂,N〉Hu) = d〈B̄,M〉u. Indeed, we have 〈B̄,M〉t = 〈∫H·
0 Rνs dB̂s,

∫H·
0 dNs〉t =∫Ht

0 Rνs d〈B̂,N〉s = ∫ t0 Ru d(〈B̂,N〉Hu).
Next, since �t = �̂Ht is (Gt )t≥0-adapted, recalling (4) and that |�̂t | = 1,

�t =θ0 +
∫ t

0
R−1

s π�⊥
s

dB̄s − d − 1

2

∫ t

0
R−2

s �s ds − β

2

∫ t

0
R−2

s π�⊥
s

∇γ (�s)

γ (�s)
ds.(6)

Applying the Itô formula, we find, setting Vt = Rt�t as in the statement,

Vt = v0 +
∫ t

0
�s dB̃s +

∫ t

0
π�⊥

s
dB̄s +

∫ t

0

(
d − 1

2Rs

− β

2

�′(Rs)

�(Rs)

)
�s ds

−
∫ t

0

(
d − 1

2Rs

�s + β

2
π�⊥

s

∇γ (�s)

Rsγ (�s)

)
ds

= v0 + Bt − β

2

∫ t

0

(
�′(Rs)

�(Rs)
�s + π�⊥

s

∇γ (�s)

Rsγ (�s)

)
ds,

where we have set Bt = ∫ t
0 �s dB̃s + ∫ t

0 π�⊥
s

dB̄s . This is a R
d -valued (Gt )t≥0-martingale

with quadratic variation matrix
∫ t

0 [�s�
∗
s + π�⊥

s
]ds = Id t and thus a Brownian motion. It

only remains to verify that, for v = rθ with r > 0 and θ ∈ Sd−1, one has

(7) F(v) = [�(r)
]−1

�′(r)θ + [rγ (θ)
]−1

πθ⊥∇γ (θ),

which follows from F = ∇[logU ] with U(v) = �(|v|)γ (v/|v|). �

We next build the radial process using classical tools, namely speed measures and scale
functions; see Revuz–Yor [33], Chapter VII, Paragraph 3.

NOTATION 9. Fix β > d − 2. Let h(r) = (β + 2 − d)
∫ r
r0
u1−d [�(u)]β du, which is an

increasing bijection from (0,∞) into R. We denote by h−1 : R→ (0,∞) its inverse function,
for which h−1(0) = r0. We also introduce σ(w) = h′(h−1(w)) and ψ(w) = [σ(w)h−1(w)]2,
both from R to (0,∞)

In the following statement, we introduce a parameter ε ∈ (0,1), which may seem artificial
at this stage, but this will be crucial to work by coupling.

LEMMA 10. Fix β > d − 2 and consider a Brownian motion (Wt)t≥0. For ε ∈
(0,1) and aε > 0, introduce Aε

t = εa−2
ε

∫ t
0 [σ(Ws/aε)]−2 ds and its inverse ρε

t . Set Rε
t =√

εh−1(Wρε
t
/aε). For each ε ∈ (0,1), the process (Sε

t = ε−1/2Rε
εt )t≥0 is (0,∞)-valued and

is a weak solution to (5).
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This can be rephrased as follows: (Rε
t )t≥0 has the same law as (

√
εRt/ε)t≥0, with (Rt )t≥0

solving (5). Of course, (
√
εRt/ε)t≥0 is a natural object when studying the large time behavior

of (Rt )t≥0.

PROOF OF LEMMA 10. First, (Sε
t )t≥0 is (0,∞)-valued by definition. Next, there clas-

sically exists a Brownian motion (B̄t )t≥0 (see, e.g., Revuz–Yor [33], Proposition 1.13, p.
373) such that Y ε

t = Wρε
t

solves Y ε
t = ε−1/2aε

∫ t
0 σ(Y ε

s /aε)dB̄s , whence Zε
t = a−1

ε Y ε
t =

ε−1/2 ∫ t
0 σ(Zε

s )dB̄s . Thus,

Rε
t = √

εh−1(Zε
t

)

= √
εh−1(0) +

∫ t

0

(
h−1)′(Zε

s

)
σ
(
Zε

s

)
dB̄s

1

2
√
ε

∫ t

0

(
h−1)′′(Zε

s

)
σ 2(Zε

s

)
ds.

But h−1(0) = r0, (h−1)′(z)σ (z) = 1 and

(
h−1)′′(z)σ 2(z) = −σ ′(z) = −h′′(h−1(z)

)
/h′(h−1(z)

) d − 1

h−1(z)
− β

�′(h−1(z))

�(h−1(z))

because h′′(u)/h′(u) = [log(u1−d�β(u))]′ = (1 − d)/u + β�′(u)/�(u). Hence,

Rε
t = √

εr0 + B̄t + d − 1

2
√
ε

∫ t

0

1

h−1(Zε
s )

ds − β

2
√
ε

∫ t

0

�′(h−1(Zε
s ))

�(h−1(Zε
s ))

ds

= √
εr0 + B̄t + d − 1

2

∫ t

0

ds

Rε
s

− β

2

∫ t

0

�′(Rε
s /

√
ε)√

ε�(Rε
s /

√
ε)

ds.

Hence, Sε
t = ε−1/2Rε

εt solves (5) with the Brownian motion B̃t = ε−1/2B̄εt . �

Finally, we can give the proof of Proposition 2.

PROOF OF PROPOSITION 2. The global weak existence of a R
d \ {0}-valued solution

proved in Lemma 8, together with the local strong existence and pathwise uniqueness (until
the velocity process reaches 0 or explodes to infinity), which follows from the fact that the
drift F is of class C1 on R

d \ {0}, imply the global existence and pathwise uniqueness for (2).
�

5. The stable regime. Here we prove Theorem 4(c)–(d)–(e)–(f). We fix β ∈ [d,4 + d)

and set α = (β + 2 − d)/3. We introduce some notation that will be used during the whole
section. We recall Notation 9. We fix ε ∈ (0,1) and introduce

aε = κε if β ∈ (d,4 + d) and aε = ε| log ε|
4

if ε = d,

where κ = ∫
R
[σ(w)]−2 dw < ∞ when β > d; see Lemma 42(i). We consider a one-

dimensional Brownian motion (Wt)t≥0, set Aε
t = εa−2

ε

∫ t
0 [σ(Ws/aε)]−2 ds, introduce its in-

verse ρε
t and put Rε

t = √
εh−1(Wρε

t
/aε). We know from Lemma 10 that Sε

t = ε−1/2Rε
εt =

h−1(Wρε
εt
/aε) solves (5). We also consider the solution (�̂t )t≥0 of (4), independent of

(Wt)t≥0.

LEMMA 11. For each ε ∈ (0,1), (Xt/ε − x0)t≥0
d= (X̃ε

t )t≥0, where

(8) X̃ε
t = 1

a2
ε

∫ ρε
t

0

h−1(Wu/aε)�̂T ε
u

[σ(Wu/aε)]2 du where T ε
t = 1

a2
ε

∫ t

0

ds

ψ(Ws/aε)
.
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Furthermore, for any m ∈ R
d , any t ≥ 0, it holds that

(9) X̃t/ε − mt/ε = 1

a2
ε

∫ ρε
t

0

h−1(Wu/aε)�̂T ε
u

− m

[σ(Wu/aε)]2 du.

PROOF. We know from Lemma 8 that, setting Hε
t = ∫ t

0 [Sε
s ]−2 ds, it holds that

(Sε
t �̂Hε

t
)t≥0

d= (Vt )t≥0. Since Xt −x0 = ∫ t0 Vs ds, we conclude that (Xt/ε −x0)t≥0
d= (X̃ε

t )t≥0,

where X̃ε
t = ∫ t/ε0 Sε

s �̂Hε
s

ds = ∫ t/ε0 h−1(Wρε
εs
/aε)�̂Hε

s
ds. Performing the change of variables

u = ρε
εs , that is, s = ε−1Aε

u, so ds = a−2
ε [σ(Wu/aε)]−2 du, we find

X̃ε
t = 1

a2
ε

∫ ρε
t

0

h−1(Wu/aε)�̂Hε

ε−1Aε
u

[σ(Wu/aε)]2 du.

Using the same change of variables, one verifies that

Hε
ε−1Aε

t
=
∫ ε−1Aε

t

0

ds

[h−1(Wρε
εs
/aε)]2

= 1

a2
ε

∫ t

0

du

[σ(Wu/aε)]2[h−1(Wu/aε)]2 = 1

a2
ε

∫ t

0

du

ψ(Wu/aε)
.

The last claim follows from a−2
ε

∫ ρε
t

0 [σ(Wu/aε)]−2 du = ε−1Aε
ρε
t
= ε−1t . �

We first study the convergence of the time-change.

LEMMA 12. (i) For all T > 0, a.s., sup[0,T ] |Aε
t − L0

t | → 0 as ε → 0, where (L0
t )t≥0 is

the local time at 0 of (Wt)t≥0.
(ii) For all t ≥ 0, a.s., ρε

t → τt = inf{u ≥ 0 : L0
u > t}, the generalized inverse of (L0

s )s≥0.

PROOF. Point (ii) follows from point (i) by Lemma 41 and since P(τt 	= τt−) = 0. Con-
cerning point (i), we first assume that β > d . Since aε = κε, by the occupation times formula
(see Revuz–Yor [33], Corollary 1.6, p. 224)

Aε
t = ε

a2
ε

∫ t

0

ds

[σ(Ws/aε)]2 = 1

κ2ε

∫
R

Lx
t dx

σ 2(x/(κε))
=
∫
R

L
κεy
t dy

κσ 2(y)
,

where (Lx
t )t≥0 is the local time of (Wt)t≥0 at x. Since κ = ∫

R
[σ(w)]−2 dw, which is finite by

Lemma 42(i), we write

∣∣Aε
t − L0

t

∣∣≤
∫
R

|Lκεy
t − L0

t |dy

κσ 2(y)
.

This a.s. tends uniformly (on [0, T ]) to 0 as ε → 0 by dominated convergence, since
sup[0,T ] |Lκεy

t − L0
t | a.s. tends to 0 for each fixed y by [33], Corollary 1.8, page 226, and

since sup[0,T ]×RLx
t < ∞ a.s.

We next treat the case where β = d , which is more complicated. We recall that aε =
ε| log ε|/4. By Lemma 42(vi)–(vii), we know that [σ(w)]−2 ≤ C(1 + |w|)−1 and that

(10)
∫ x

−x

dw

[σ(w)]2
x→∞∼ logx

4
.

We fix δ > 0 and write Aε
t = J

ε,δ
t + Q

ε,δ
t , where

J
ε,δ
t = ε

a2
ε

∫ t

0

1{|Ws |>δ} ds

[σ(Ws/aε)]2 and Q
ε,δ
t = ε

a2
ε

∫ t

0

1{|Ws |≤δ} ds

[σ(Ws/aε)]2 .
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One checks that sup[0,T ] J
ε,δ
t ≤ CT ε/[a2

ε (1 + δ/aε)] ≤ CT ε/(δaε), which tends to 0 as
ε → 0. We next use the occupation times formula (see Revuz–Yor [33], Corollary 1.6, p. 224)
to write

Q
ε,δ
t = ε

a2
ε

∫ δ

−δ

Lx
t dx

[σ(x/aε)]2 = ε

a2
ε

∫ δ

−δ

dx

[σ(x/aε)]2L
0
t + ε

a2
ε

∫ δ

−δ

(Lx
t − L0

t )dx

[σ(x/aε)]2

= rε,δL
0
t + R

ε,δ
t ,

the last identity standing for a definition. By a substitution and (10),

rε,δ = ε

aε

∫ δ/aε

−δ/aε

dy

[σ(y)]2
ε→0∼ ε log(δ/aε)

4aε
−→ 1 as ε → 0.

All this proves that a.s., for all δ > 0,

lim sup
ε→0

sup
[0,T ]

∣∣Aε
t − L0

t

∣∣≤ lim sup
ε→0

sup
[0,T ]

∣∣Rε,δ
t

∣∣.
But we have |Rε,δ

t | ≤ rε,δ × sup[−δ,δ] |Lx
t − L0

t |, so that lim supε→0 sup[0,T ] |Aε
t − L0

t | ≤
sup[0,T ]×[−δ,δ] |Lx

t − L0
t | a.s., and it suffices to let δ → 0, using Revuz–Yor [33], Corol-

lary 1.8, page 226, to complete the proof. �

We next proceed to three first approximations: in the formula (9), we show that one may
replace ρε

t by its limiting value τt , that the negative values of W have a negligible influence,
and that we may introduce a cutoff that will allow us to neglect the small jumps of the limiting
stable process. All this is rather tedious in the infinite variation case α ∈ [1,2). We recall that
m′

β > 0, Mβ ∈ R
d and mβ = m′

βMβ were defined in Section 3.

NOTATION 13. (i) If β ∈ [d,1 + d), we set, for δ ∈ (0,1] and ε ∈ (0,1),

Z
ε,δ
t = a1/α−2

ε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

[σ(Wu/aε)]2 1{Wu>δ} du and U
ε,δ
t = a1/α

ε X̃ε
t − Z

ε,δ
t .

(ii) If β = 1 + d , we put

ζε =
∫ 1
−∞ h−1(w/aε)[σ(w/aε)]−2 dw∫ 1

−∞[σ(w/aε)]−2 dw
=
∫ 1/aε−∞ h−1(w)[σ(w)]−2 dw∫ 1/aε−∞ [σ(w)]−2 dw

(so that κε,1 defined below vanishes) and we set, for δ ∈ (0,1] and ε ∈ (0,1),

Z
ε,δ
t = 1

aε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

− ζεMβ

[σ(Wu/aε)]2 1{Wu>δ} du,

κε,δ = 1

aε

∫ δ

−∞
h−1(w/aε) − ζε

[σ(w/aε)]2 dw,

U
ε,δ
t = aε

[
X̃ε

t − ζεMβt/ε
]− Z

ε,δ
t − κε,δMβt.

(iii) If β ∈ (1 + d,4 + d) we introduce, for δ ∈ (0,1] and ε ∈ (0,1),

Z
ε,δ
t = a1/α−2

ε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

− mβ

[σ(Wu/aε)]2 1{Wu>δ} du

κε,δ = a1/α−2
ε

∫ δ

−∞
h−1(w/aε) − m′

β

[σ(w/aε)]2 dw,

U
ε,δ
t = a1/α

ε

[
X̃ε

t − mβt/ε
]− Z

ε,δ
t − κε,δMβt.
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Observe that ζε and κδ,ε are well defined by Lemma 42(i)–(viii).

LEMMA 14. For all β ∈ [d,4 + d), all t ≥ 0, all η > 0,

lim
δ→0

lim sup
ε→0

P
[∣∣Uε,δ

t

∣∣> η
]= 0.

PROOF. Case (i): β ∈ [d,1 + d), whence α ∈ [2/3,1). Recalling (8),

U
ε,δ
t = a

1
α
−2

ε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

[σ(Wu/aε)]2 1{Wu≤δ} du + a
1
α
−2

ε

∫ ρε
t

τt

h−1(Wu/aε)�̂T ε
u

[σ(Wu/aε)]2 du.

Since h−1(w)[σ(w)]−2 ≤ C(1 + w)1/α−21{w≥0} + C(1 + |w|)−21{w<0} by Lemma 42(viii),

a1/α−2
ε h−1(w/aε)

[
σ(w/aε)

]−2

≤ Cw1/α−21{w≥0} + C|w|1/α−2(1 + |w|/aε)−1/α1{w<0} ≤ C|w|1/α−2,

and thus∣∣Uε,δ
t

∣∣≤ C

∫ τt

0
W 1/α−2

u 1{0≤Wu≤δ} du

+ C

∫ τt

0
|Wu|1/α−2(1 + |Wu|/aε)−1/α1{Wu<0} du + C

∫ ρε
t

τt

|Wu|1/α−2 du.

But 1/α − 2 > −1, so that the integral
∫ T

0 |Wu|1/α−2 du is a.s. finite for all T > 0 (because its
expectation is finite). One concludes by dominated convergence, using that ρε

t → τt a.s. for
each t ≥ 0 fixed by Lemma 12(ii), that a.s.,

lim
δ→0

lim sup
ε→0

∣∣Uε,δ
t

∣∣≤ C lim
δ→0

∫ τt

0
W 1/α−2

u 1{0≤Wu≤δ} du = 0.

Case (iii): β ∈ (1 + d,4 + d). This is much more complicated. By (9),

U
ε,δ
t = a1/α−2

ε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

− mβ

[σ(Wu/aε)]2 1{Wu≤δ} du − κε,δMβt

+ a1/α−2
ε

∫ ρε
t

τt

h−1(Wu/aε)�̂T ε
u

− mβ

[σ(Wu/aε)]2 du

= Kε,δ
τt

+ MβI
ε,δ
τt

+ [Kε,∞
ρε
t

− Kε,∞
τt

]+ Mβ

[
I
ε,∞
ρε
t

− I ε,∞
τt

]
,

where we have set (extending the definition of κε,δ to all values of δ ∈ (0,∞]),

K
ε,δ
t = a1/α−2

ε

∫ t

0

h−1(Wu/aε)[�̂T ε
u

− Mβ]
[σ(Wu/aε)]2 1{Wu≤δ} du,

I
ε,δ
t = a1/α−2

ε

∫ t

0

h−1(Wu/aε) − m′
β

[σ(Wu/aε)]2 1{Wu≤δ} du − κε,δL
0
t .

We used that mβ = m′
βMβ , that L0

τt
= t and that by Lemma 42(ii),

(11) κε,∞ = a
1
α
−2

ε

∫ ∞
−∞

h−1(w/aε) − m′
β

[σ(w/aε)]2 dw = a
1
α
−1

ε

∫ ∞
−∞

h−1(y) − m′
β

[σ(y)]2 dy = 0.

We first treat I . By the occupation times formula (see Revuz–Yor [33], Corollary 1.6,
p. 224) and by definition of κε,δ ,

I
ε,δ
t = a1/α−2

ε

∫ δ

−∞
h−1(w/aε) − m′

β

[σ(w/aε)]2

(
Lw

t − L0
t

)
dw.
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For each δ ∈ (0,∞], each T ≥ 0, we a.s. have limε→0 sup[0,T ] |I ε,δ
t − I δ

t | = 0, where we

have set I δ
t = (β + 2 − d)−2 ∫ δ

0 w1/α−2(Lw
t − L0

t )dw. Indeed, this follows from dominated
convergence, because:

• a
1/α−2
ε |h−1(w/aε) − m′

β |[σ(w/aε)]−2 ≤ C|w|1/α−2 by Lemma 42(viii),

• limε→0 a
1/α−2
ε [h−1(w/aε) − m′

β ][σ(w/aε)]−2 = (β + 2 − d)−2w1/α−21{w≥0}, see
Lemma 42(ix),

• a.s.,
∫
R

|w|1/α−2 sup[0,T ] |Lw
t − L0

t |dw < ∞, since 1/α − 2 ∈ (−3/2,−1) and since
sup[0,T ] |Lw

t − L0
t | is a.s. bounded and almost 1/2-Holdër continuous (as a function of w),

see [33], Corollary 1.8, page 226.

We conclude that limδ→0 lim supε→0 |I ε,δ
τt

| = limδ→0 |I δ
τt
| = 0 a.s. and, using that ρε

t → τt
a.s. by Lemma 12(ii) (for each fixed t ≥ 0) and that t → I∞

t is a.s. continuous on [0,∞), that
limδ→0 lim supε→0 |I ε,∞

ρε
t

− I ε,∞
τt

| = 0 a.s. All this proves that a.s.,

lim
δ→0

lim sup
ε→0

[∣∣I ε,δ
τt

∣∣+ ∣∣I ε,∞
ρε
t

− I ε,∞
τt

∣∣]= 0.

We next treat K . We mention at once that all the computations below concerning K are
also valid when β = 1 + d , that is, α = 1. We introduce W = σ(Wt , t ≥ 0). Assume for a
moment that there is C > 0 such that for any δ ∈ (0,∞], any ε ∈ (0,1), any 0 ≤ s ≤ t , a.s.,

(12) E
[(
K

ε,δ
t − Kε,δ

s

)2|W]≤ C

∫ t

s
|Wu| 2

α
−2[1{0≤Wu≤δ} + (1 + |Wu|/ε)− 1

α
]
du.

Then, τt and ρε
t being W-measurable, we will deduce that

E
[(
Kε,∞

τt
− K

ε,∞
ρε
t

)2 + (Kε,δ
τt

)2|W]

≤ C

∣∣∣∣
∫ τt

ρε
t

|Wu|2/α−2 du
∣∣∣∣+ C

∫ τt

0
|Wu|2/α−2[1{0≤Wu≤δ} + (1 + |Wu|/ε)−1/α]du.

Since
∫ T

0 |Wu|2/α−2 du < ∞ a.s. for all T > 0 because 2/α − 2 > −1 and since ρε
t → τt a.s.

(for t ≥ 0 fixed) by Lemma 12(ii), conclude, by dominated convergence that a.s.,

lim
δ→0

lim sup
ε→0

E
[(
Kε,δ

τt

)2 + (Kε,∞
τt

− K
ε,∞
ρε
t

)2|W]= 0,

from which the convergence limδ→0 lim supε→0 |Kε,δ
τt

| + |Kε,∞
τt

− K
ε,∞
ρε
t

| = 0 in probability
follows.

We now check (12), starting from

(
K

ε,δ
t − Kε,δ

s

)2 = a2/α−4
ε

∫ t

s

∫ t

s

h−1(Wa/aε)

[σ(Wa/aε)]2

h−1(Wb/aε)

[σ(Wb/aε)]2 1{Wa≤δ}1{Wb≤δ}

× (�̂T ε
a

− Mβ)(�̂T ε
b

− Mβ)da db.

Since (T ε
t )t≥0 is W-measurable, since (�̂t )t≥0 is independent of W , and since Mβ =∫

Sd−1
θνβ(dθ), Lemma 38(ii) (and the Markov property) tells us that there are C > 0 and

λ > 0 such that ∣∣E([�̂T ε
a

− Mβ][�̂T ε
b

− Mβ]|W)∣∣≤ C exp
(−λ

∣∣T ε
b − T ε

a

∣∣).
By Lemma 42(viii) and since aε = κε, we have

a1/α−2
ε

h−1(w/aε)

[σ(w/aε)]2 ≤ C
(
ε + |w|)1/α−2[1{w≥0} + (1 + |w|/ε)−1/α1{w<0}

]
,
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whence

E
[(
K

ε,δ
t − Kε,δ

s

)2|W]≤ C

∫ t

s

∫ t

s

(
ε + |Wa|)1/α−2(

ε + |Wb|)1/α−2

× [1{0<Wa≤δ} + (1 + |Wa|/ε)−1/α][1{0≤Wb≤δ} + (1 + |Wb|/ε)−1/α]
× exp

(−λ
∣∣T ε

a − T ε
b

∣∣)da db.

Next, we observe that, since a2
εψ(w/aε) ≤ C(ε + |w|)2 by Lemma 42(iv),

λ
∣∣T ε

a − T ε
b

∣∣= λ

∣∣∣∣ 1

a2
ε

∫ b

a

ds

ψ(Ws/aε)
ds
∣∣∣∣≥ c

∣∣∣∣
∫ b

a

(
ε + |Ws |)−2 ds

∣∣∣∣
for some c > 0. Using that (xy)1/α ≤ x2/α + y2/α and a symmetry argument, we conclude
that

E
[(
K

ε,δ
t − Kε,δ

s

)2|W]≤ C

∫ t

s

(
ε + |Wb|)2/α−2[1{0≤Wb≤δ} + (1 + |Wb|/ε)−1/α]

×
∫ t

s

(
ε + |Wa|)−2 exp

(
−c

∣∣∣∣
∫ b

a

(
ε + |Ws |)−2 ds

∣∣∣∣
)

da db

≤ C

∫ t

s
|Wb|2/α−2[1{0≤Wb≤δ} + (1 + |Wb|/ε)−1/α]db

as desired. We finally used that for all b ∈ [0, t], all continuous ϕ :R+ →R+,
∫ t

0
ϕ(a) exp

(
−
∣∣∣∣
∫ b

a
ϕ(s)ds

∣∣∣∣
)

da ≤ 2.(13)

Case (ii): β = 1 + d . Applying (9) with m = ζεMβ , we see that

U
ε,δ
t = 1

aε

∫ τt

0

h−1(Wu/aε)�̂T ε
u

− ζεMβ

[σ(Wu/aε)]2 1{Wu≤δ} du − κε,δMβt

+ 1

aε

∫ ρε
t

τt

h−1(Wu/aε)�̂T ε
u

− ζεMβ

[σ(Wu/aε)]2 du

= Kε,δ
τt

+ [Kε,∞
ρε
t

− Kε,∞
τt

]+ MβI
ε,δ
τt

+ Mβ

[
I
ε,∞
ρε
t

− I ε,∞
τt

]
,

where we have set, for δ ∈ (0,1) ∪ {∞}, with the convention that κε,∞ = 0,

K
ε,δ
t = 1

aε

∫ t

0

h−1(Wu/aε)[�̂T ε
u

− Mβ]
[σ(Wu/aε)]2 1{Wu≤δ} du,

I
ε,δ
t = 1

aε

∫ t

0

h−1(Wu/aε) − ζε

[σ(Wu/aε)]2 1{Wu≤δ} du − κε,δL
0
t .

As in Case (iii), limδ→0 lim supε→0[|Kε,δ
τt

| + |Kε,∞
τt

− K
ε,∞
ρε
t

|] = 0 in probability.
We also have, for any δ ∈ (0,1) ∪ {∞}, by definition of κε,δ (in particular since κε,1 =

κε,∞ = 0),

I
ε,δ
t = 1

aε

∫ δ

−∞
h−1(w/aε) − ζε

[σ(w/aε)]2

(
Lw

t − L0
t 1{w≤1}

)
dw.

As in Case (iii), it is sufficient to verify that for each δ ∈ (0,1)∪{∞}, each T ≥ 0, we a.s. have
limε→0 sup[0,T ] |I ε,δ

t − I δ
t | = 0, where we have set I δ

t = 9−2 ∫ δ
0 w−1(Lw

t − L0
t 1{w≤1})dw.

This, here again, follows from dominated convergence, because, recalling that aε = κε:
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• a−1
ε h−1(w/aε)[σ(w/aε)]−2 ≤ Cw−11{w≥0} + C|w|−1(1 + |w|)−11{w<0} by Lem-

ma 42(viii),
• limε→0 a

−1
ε h−1(w/aε)/[σ(w/aε)]2 = 9−1w−11{w≥0}, see Lemma 42(ix),

• ζε ≤ C
∫ 1/aε−∞ h−1(w)[σ(w)]−2 dw ≤ C(1 + | log ε|) by Lemma 42(viii),

• a−1
ε ζε[σ(w/aε)]−2 ≤ Cε−1(1 + | log ε|)(1 + |w|/ε)−4/3, and by Lemma 42(vi), this is

smaller than Cε1/3(1 + | log ε|)|w|−4/3.
• the integral∫

R

[|w|−11{w>0} + |w|−1(1 + |w|)−11{w<0} + |w|−4/3] sup
[0,T ]

∣∣Lw
t − L0

t 1{w≤1}
∣∣dw

is a.s. finite, since sup[0,T ] |Lw
t − L0

t 1{w≤1}| is a.s. bounded, vanishes for w sufficiently large
(namely, for w > sup[0,T ] Ws ) and is a.s. almost 1/2-Holdër continuous near 0; see [33],
Corollary 1.8, page 226. �

We need the excursion theory for the Brownian motion; see Revuz–Yor [33], Chapter XII,
Part 2. We introduce some notation and briefly summarize what we will use.

NOTATION 15. Recall that (Wt)t≥0 is a Brownian motion, that (L0
t )t≥0 is its local time

at 0, that τt = inf{u ≥ 0 : L0
u > t} is its inverse. We introduce J = {s > 0 : τs > τs−} and, for

s ∈ J ,

es = (Wτs−+r1{r∈[0,τs−τs−]})r≥0 ∈ E,
where E is the set of continuous functions e from R+ into R such that e(0) = 0, such that

�(e) = sup
{
r > 0 : e(r) 	= 0

} ∈ (0,∞)

and such that e(r) does not vanish on (0, �(e)). For e ∈ E , we denote by x(e) =
sg(e(�(e)/2)) ∈ {−1,1} and observe that sg(e(r)) = x(e) for all r ∈ (0, �(e)).

We introduce M =∑s∈J δ(s,es), which is a Poisson measure on [0,∞) × E with intensity
measure ds�(de), where � is a σ -finite measure on E known as Itô’s measure and that can be
decomposed as follows: denoting by E1 = {e ∈ E : �(e) = 1 and x(e) = 1} and by �1 ∈ P(E1)

the law of the normalized Brownian excursion, for all measurable A ⊂ E ,

(14) �(A) =
∫ ∞

0

d�√
2π�3

∫
{−1,1}

1

2
(δ−1 + δ1)(dx)

∫
E1

�1(de)1{(x√
�e(r/�))r≥0∈A}.

It holds that τt = ∫ t
0
∫
E �(e)M(ds,de) and for all t ∈ J , all s ∈ [τt−, τt ], we have Ws =

et (s − τt−). For any φ :R →R+, any t ≥ 0, we have

(15)
∫ τt

0
φ(Wu)du = ∑

s∈J∩[0,t]

∫ τs

τs−
φ(Wu)du =

∫ t

0

∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]
M(ds,de).

We now rewrite the processes of Notation 13 in terms of the excursion Poisson measure.
We recall that ψ,h,σ were defined in Notation 9.

NOTATION 16. Fix ε ∈ (0,1) and 0 ≤ δ < A ≤ ∞. For e ∈ E , and θ = (θr)r∈R in H =
C(R,Sd−1), let

Fε,δ,A(e, θ) = a1/α−2
ε

∫ �(e)

0

h−1(e(u)/aε)θrε,u(e) − mβ,ε

[σ(e(u)/aε)]2 1{δ<e(u)<A} du,

where mβ,ε = 0 if β ∈ [d,1 + d), mβ,ε = ζεMβ if β = 1 + d and mβ,ε = mβ in the case
β ∈ (1 + d,4 + d) and where, for u ∈ (0, �(e)),

rε,u(e) = 1

a2
ε

∫ u

�(e)/2

dv

ψ(e(v)/aε)
.
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Observe that Fε,δ,A(e, θ) = 0 if x(e) = −1. Also, we make start the clock rε,u(e) from the
middle �(e)/2 of the excursion because at the limit, a2

εψ(x/aε) vanishes at x = 0 sufficiently
fast so that a−2

ε

∫
0+[ψ(e(v)/aε)]−1 dv and a−2

ε

∫ �(e)−[ψ(e(v)/aε)]−1 dv will tend to infinity
as ε → 0.

REMARK 17. For all ε ∈ (0,1), all δ ∈ (0,1), all t ≥ 0, we have

Z
ε,δ
t =

∫ t

0

∫
E
Fε,δ,∞

(
e, (�̂[P ε

s−+r−rε,0(e)]∨0)r∈R
)
M(ds,de) where(16)

P ε
t =

∫ t

0

∫
E

[
1

a2
ε

∫ �(e)

0

du

ψ(e(u)/aε)

]
M(ds,de).

PROOF. For any reasonable φ1 : R × R → R and φ2 : R → R, if setting νt =∫ t
0 φ2(Ws)ds, we have∫ τt

0
φ1(Ws, νs)ds = ∑

s∈J∩[0,t]

∫ τs

τs−
φ1

(
Wu,ντs− +

∫ u

τs−
φ2(Wv)dv

)
du

=
∫ t

0

∫
E

[∫ �(e)

0
φ1

(
e(u), ντs− +

∫ u

0
φ2
(
e(v)

)
dv
)

du
]
M(ds,de).

With φ1(w, ν) = a
1/α−2
ε [σ(w/aε)]−2[h−1(w/aε)�̂ν − mβ,ε]1{w>δ} and φ2(w) =

a−2
ε [ψ(w/aε)]−1, so that T ε

t = ∫ t0 φ2(Ws)ds and P ε
t = T ε

τt
by (15), this gives

Z
ε,δ
t =

∫ t

0

∫
E

[
a

1
α
−2

ε

∫ �(e)

0

h−1(e(u)/aε)�̂P ε
s−+a−2

ε

∫ u
0 [ψ(e(v))]−2 dv − mβ,ε

[σ(e(u)/aε)]2

× 1{e(u)≥δ} du
]
M(ds,de),

from which the result follows because by definition of Fε,δ,∞, we have

Fε,δ,∞
(
e, (�̂[P ε

s−+r−rε,0(e)]∨0)r∈R
)

= a1/α−2
ε

∫ �(e)

0

h−1(e(u)/aε)�̂[P ε
s−+rε,u(e)−rε,0(e)]∨0 − mβ,ε

[σ(e(u)/aε)]2 1{e(u)≥δ} du

and because P ε
s− is positive, as well as rε,u(e) − rε,0(e) which equals

1

a2
ε

∫ u

�(e)/2

dv

ψ(e(v)/aε)
+ 1

a2
ε

∫ �(e)/2

0

dv

ψ(e(v)/aε)
= 1

a2
ε

∫ u

0

dv

ψ(e(v)/aε)

as desired. �

We now get rid of the correlation in the spherical process.

LEMMA 18. Let N be a Poisson measure on [0,∞) × E ×H with intensity measure

π(ds,de,dθ) = ds�(de)�(dθ)

for � ∈ P(E) the law of the normalized Brownian excursion and � ∈ P(H) the law of the
stationary eternal spherical process built in Lemma 38. For ε ∈ (0,1) and δ ∈ (0,1), we
introduce the process

Z̄
ε,δ
t =

∫ t

0

∫
E

∫
H
Fε,δ,∞(e, θ)N(ds,de,dθ).
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For all T > 0, all δ > 0, there exists qT,δ : (0,1) → R+ with limε→0 qT,δ(ε) = 1 and such
that for any ε ∈ (0,1), we can find a coupling between (Z

ε,δ
t )t∈[0,T ] and (Z̄

ε,δ
t )t∈[0,T ] such

that P[(Zε,δ
t )t∈[0,T ] = (Z̄

ε,δ
t )t∈[0,T ]] ≥ qT,δ(ε).

Observe that the process (Z̄
ε,δ
t )t≥0 is Lévy.

PROOF OF LEMMA 18. The proof is tedious, but simple in its principle: the main idea
is that the clock of �̂ in (16) runs a very long way (asymptotically infinite when ε → 0)
between two excursions, so that we can apply Lemma 38(iv).

Step 1. For all δ ∈ (0,1), all e ∈ E , there is sδ(e) > 0 such that for all ε ∈ (0,1), all θ, θ ′ ∈
H, we have Fε,δ,∞(e, θ) = Fε,δ,∞(e, θ ′) as soon as θr = θ ′

r for all r ∈ [−sδ(e), sδ(e)].
We recall that Fε,δ,∞(e, θ) = 0 if x(e) = −1, so that it suffices to treat the case of positive

excursions. We have Fε,δ,∞(e, θ) = Fε,δ,∞(e, θ ′) if θu = θ ′
u for all u ∈ [−sδ,ε(e), sδ,ε(e)],

where

sδ,ε(e) = max
{−rε,inf{v>0:e(v)>δ}∧(�(e)/2)(e), rε,sup{v>0:e(v)>δ}∨(�(e)/2)(e)

}
because then for all u ∈ (0, �(e)) such that θrε,u(e) 	= θ ′

rε,u(e)
, we have either rε,u(e) >

rε,sup{v>0:e(v)>δ}∨(�(e)/2)(e) or rε,u(e) < rε,inf{v>0:e(v)>δ}∧(�(e)/2)(e), whence in both cases
e(u) < δ, which makes vanish the indicator function 1{e(u)≥δ}. Using now that
a−2
ε [ψ(w/aε)]−1 ≤ Cw−2 for all w > 0 by Lemma 42(iv), we realize that

sδ,ε(e) ≤ C

∫ sup{v>0:e(v)>δ}∨(�(e)/2)

inf{v>0:e(v)>δ}∧(�(e)/2)

du

[e(u)]2 .

Denoting by sδ(e) this last quantity, which is finite because e does not vanish during the
interval [inf{v > 0 : e(v) > δ} ∧ (�(e)/2), sup{v > 0 : e(v) > δ} ∨ (�(e)/2)], completes the
step.

Step 2. Since only a finite number of excursions exceed δ per unit of time we may rewrite
(16) as

Z
ε,δ
t =

Nδ
t∑

i=1

Fε,δ,∞
(
eδi , (�̂[T ε,δ

i +r]∨0)r≥0
)
,

where Eδ = {e ∈ E : supu∈[0,�(e)] e(u) > δ}, Nδ
t = M([0, t] × Eδ), of which we denote by

(sδi )i≥1 the chronologically ordered instants of jump. For each i ≥ 1, we have introduced by
eδi ∈ Eδ the mark associated to sδi , uniquely defined by the fact that M({(sδi , eδi )}) = 1. We
also have set, for each i ≥ 1,

T
ε,δ
i = P ε

sδi − − rε,0
(
eδi
)
.

Step 3. Here we show that, ∀δ ∈ (0,1), T > 0, a.s., mini=1,...,Nδ
T
(T

ε,δ
i − T

ε,δ
i−1) → ∞ as

ε → 0. It suffices to observe that, since ψ(u) ≤ C(1 + |u|2) by Lemma 42(iv) and since
P ε

sδi −
≥ T

ε,δ
i−1,

T
ε,δ
i − T

ε,δ
i−1 ≥ −rε,0

(
eδi
)= 1

a2
ε

∫ �(eδi )/2

0

dv

ψ[eδi (v)/aε]
≥ c

∫ �(eδi )/2

0

dv

a2
ε + [eδi (v)]2

.

By monotone convergence, we conclude that (see Lemma 39(i))

lim inf
ε→0

(
T

ε,δ
i − T

ε,δ
i−1

)≥ c

∫ �(eδi )/2

0

dv

[eδi (v)]2
= ∞ a.s.
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Step 4. We work conditionally on M and set AT,δ = supi=1,...,Nδ
T
sδ(e

δ
i ). By Lem-

ma 38(iv), we can find, for each ε ∈ (0,1), an i.i.d. family of �-distributed eternal processes

(�̂�,1,ε
r )r∈R, . . . , (�̂

�,Nδ
T ,ε

r )r∈R such that the probability that (�̂[T ε,δ
i +r]∨0)r∈[−AT,δ,AT,δ] =

(�̂�,i,ε
r )r∈[−AT,δ,AT,δ] for all i = 1, . . . ,Nδ

T (conditionally on M) is greater than pT,δ,ε =
pAT,δ

(T
ε,δ

1 , T
ε,δ
2 − T

ε,δ
1 , . . . , T

ε,δ

Nδ
t

− T
ε,δ

Nδ
t −1

), which a.s. tends to 1 as ε → 0 by Step 3.

Step 5. We set, for t ∈ [0, T ],

Z̄
ε,δ
t =

Nδ
t∑

i=1

Fε,δ,∞
(
eδi ,
(
�̂�,i,ε

r

)
r≥0

)
.

This process has the same law as the process (Z̄
ε,δ
t )t∈[0,T ] of the statement. Furthermore, we

know from Step 1 that Zε,δ
t = Z̄

ε,δ
t for all t ∈ [0, T ] as soon as (�̂[T ε,δ

i +r]∨0)r∈[−AT,δ,AT,δ] =
(�̂

�,i,ε
t )r∈[−AT,δ,AT,δ] for all i = 1, . . . ,Nδ

T . This occurs with probability qT,δ(ε) = E[pT,δ,ε],
which tends to 1 as ε → 0 by dominated convergence. �

We introduce the compensated Poisson measure Ñ = N − π .

LEMMA 19. We fix δ ∈ (0,1] and ε ∈ (0,1).

(i) If β ∈ [d,1 + d), we simply set Ẑε,δ
t = Z̄

ε,δ
t .

(ii) If β = 1 + d , we set Ẑε,δ
t = Z̄

ε,δ
t + κε,δMβt and we have

Ẑ
ε,δ
t =

∫ t

0

∫
E

∫
H
Fε,δ,1(e, θ)Ñ(ds,de,dθ) +

∫ t

0

∫
E

∫
H
Fε,1,∞(e, θ)N(ds,de,dθ).

(iii) If β ∈ (1 + d,4 + d), we set Ẑε,δ
t = Z̄

ε,δ
t + κε,δMβt and we have

Ẑ
ε,δ
t =

∫ t

0

∫
E

∫
H
Fε,δ,∞(e, θ)Ñ(ds,de,dθ).

PROOF. We recall that
∫
R
φ(w)dw = ∫

E [∫ �(e)0 φ(e(u))du]�(de) for all φ ∈ L1(R); see
Lemma 39(ii).

To verify (iii), we have to check that

I =
∫
E

∫
H
Fε,δ,∞(e, θ)�(dθ)�(de) = −κε,δMβ.

Recalling the expression of Fε,δ,∞ and that � is the law of the eternal stationary spherical
process (see Lemma 38) of which the invariant measure is νβ , which satisfies

∫
Sd−1

θνβ(dθ) =
Mβ , we find

I =
∫
E

[
a1/α−2
ε

∫ �(e)

0

h−1(e(u)/aε))Mβ − mβ

[σ(e(u)/aε)]2 1{e(u)>δ} du
]
�(de)

= a1/α−2
ε

∫ ∞
δ

h−1(w/aε)Mβ − mβ

[σ(w/aε)]2 dw.

Recalling that mβ = Mβm
′
β , the definition of κε,δ (see Notation 13(iii)) and that κε,∞ = 0

(see (11)),

I = Mβa
1
α
−2

ε

∫ ∞
δ

h−1(w/aε) − m′
β

[σ(w/aε)]2 dw = −Mβa
1
α
−2

ε

∫ δ

−∞
h−1(w/aε) − m′

β

[σ(w/aε)]2 dw,

which equals −Mβκε,δ as desired.
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Concerning (ii), since Fε,δ,∞ = Fε,δ,1 + Fε,1,∞, we have to verify that

J =
∫
E

∫
H
Fε,δ,1(e, θ)�(dθ)�(de) = −κε,δMβ.

Proceeding as above, we find

J = Mβa
−1
ε

∫ 1

δ

h−1(w/aε) − ζε

[σ(w/aε)]2 dw

= −Mβa
−1
ε

∫ δ

−∞
h−1(w/aε) − ζε

[σ(w/aε)]2 dw

= −Mβκε,δ

by definition of κε,δ and since κε,1 = 0, recall Notation 13(ii). �

We introduce the limit (as ε → 0) of the function defined in Notation 16.

NOTATION 20. Fix 0 ≤ δ < A ≤ ∞. For e ∈ E and θ = (θr)r∈R in H = C(R,Sd−1), we
set

Fδ,A(e, θ) = 1

(β + 2 − d)2

∫ �(e)

0

[
e(u)

]1/α−2
θru(e)1{δ≤e(u)≤A} du,

where, for u ∈ (0, �(e)),

ru(e) = 1

(β + 2 − d)2

∫ u

�(e)/2

dv

[e(v)]2 .

Finally, we make tend ε and δ to 0.

LEMMA 21. Let (Ẑε,δ
t )t≥0 be the processes introduced in Lemma 19, built with the same

Poisson measure N for all values of ε, δ ∈ (0,1). For all T > 0, sup[0,T ] |Ẑε,δ
t −Zt | goes to 0

in probability as (ε, δ) → (0,0), where

(i) Zt = ∫ t0 ∫E ∫HF0,∞(e, θ)N(ds,de,dθ) if β ∈ [d,1 + d),
(ii) Zt = ∫ t

0
∫
E
∫
HF0,1(e, θ)Ñ(ds,de,dθ) + ∫ t

0
∫
E
∫
HF1,∞(e, θ)N(ds,de,dθ) if β =

1 + d ,
(iii) Zt = ∫ t0 ∫E ∫HF0,∞(e, θ)Ñ(ds,de,dθ) if β ∈ (1 + d,4 + d).

PROOF. We divide the proof in several steps.
Step 1. There is C > 0 such that for all ε ∈ (0,1], all 0 ≤ δ ≤ A ≤ ∞, all e ∈ E , all θ ∈ H,

∣∣Fε,δ,A(e, θ)
∣∣≤ C

∫ �(e)

0

([
e(u)

]1/α−2 + 1{β=1+d}
[
e(u)

]−4/3)1{δ≤e(u)≤A} du.

Indeed, by Lemma 42(viii), [1 + h−1(w)][σ(w)]−2 ≤ C(1 + |w|)1/α−2. This implies that
a

1/α−2
ε [1 + h−1(w/aε)][σ(w/aε)]−2 ≤ C|w|1/α−2, and it only remains to note that when

β = 1 + d (so that α = 1),

(17)
∣∣∣∣ mβ,ε

aε[σ(w/aε)]2

∣∣∣∣= |Mβ |ζε
aε[σ(w/aε)]2 ≤ C

1 + | log ε|
ε(1 + |w|/ε) 4

3

≤ C
ε

1
3 (1 + | log ε|)

|w| 4
3

by Lemma 42(vi), since aε = κε and since ζε ≤ C(1 + | log ε|), see the end of the proof of
Lemma 14.
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Step 2. We fix 0 ≤ δ0 <A ≤ ∞ and verify that for all θ ∈ H and �-almost every e ∈ E , we
have

lim
(ε,δ)→(0,δ0)

Fε,δ,A(e, θ) = Fδ0,A(e, θ).

Using precisely the same bounds as in Step 1, the result follows from dominated convergence,
because

• a
1/α−2
ε h−1(w/aε)[σ(w/aε)]−2 → (β + 2 − d)−2w1/α−2 for each fixed w > 0 by

Lemma 42(ix),
• θ ∈ H is continuous and rε,u(e) = a−2

ε

∫ u
�(e)/2[ψ(e(v)/aε)]−1 dv → ru(e) for each u ∈

(0, �(e)) by Lemma 42(v) (and by dominated convergence),
• a

1/α−2
ε mβ,ε[σ(w/aε)]−2 → 0 for each fixed w > 0, because

� if β ∈ [d,1 + d), mβ,ε = 0,
� if β = 1 + d , see (17),
� if β ∈ (1 + d,4 + d), then

a1/α−2
ε |mβ,ε |[σ(w/aε)

]−2 ≤ Cε1/α−2(1 + w/ε)−2(β+1−d)/(β+2−d) → 0,

by Lemma 42(vi), since mβ,ε = mβ and since 2(β + 1 − d)/(β + 2 − d) > 2 − 1/α,

• ∫ �(e)
0 ([e(u)]1/α−2 + [e(u)]−4/3)du < ∞ for �-almost every e ∈ E by Lemma 39(iv).

Step 3. We write Ẑ
ε,δ
t = Y

ε,1
t − Y

ε,2
t + Y

ε,δ,3
t and Zt = Y 1

t − Y 2
t + Y 3

t , where

Y 1
t =

∫ t

0

∫
E

∫
H
F1,∞(e, θ)N(ds,de,dθ),

Y
ε,1
t =

∫ t

0

∫
E

∫
H
Fε,1,∞(e, θ)N(ds,de,dθ),

Y 2
t =

⎧⎨
⎩
t

∫
E

∫
H
F1,∞(e, θ)�(dθ)�(de) if β ∈ (1 + d,4 + d),

0 if β ∈ [d,1 + d],

Y
ε,2
t =

⎧⎨
⎩
t

∫
E

∫
H
Fε,1,∞(e, θ)�(dθ)�(de) if β ∈ (1 + d,4 + d),

0 if β ∈ [d,1 + d],

Y 3
t =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

∫
E

∫
H
F0,1(e, θ)N(ds,de,dθ) if β ∈ [d,1 + d),∫ t

0

∫
E

∫
H
F0,1(e, θ)Ñ(ds,de,dθ) if β ∈ [1 + d,4 + d),

Y
ε,δ,3
t =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

∫
E

∫
H
Fε,δ,1(e, θ)N(ds,de,dθ) if β ∈ [d,1 + d),∫ t

0

∫
E

∫
H
Fε,δ,1(e, θ)Ñ(ds,de,dθ) if β ∈ [1 + d,4 + d).

Step 3.1. For any β ∈ [d,4 + d), it holds that a.s.,

lim
ε→0

sup
[0,T ]

∣∣Y 1
t − Y

ε,1
t

∣∣≤ lim
ε→0

∫ T

0

∫
E

∫
H

∣∣F1,∞(e, θ) − Fε,1,∞(e, θ)
∣∣N(ds,de,dθ) = 0.

This uses only the facts that F1,∞(e, θ) = Fε,1,∞(e, θ) = 0 as soon as supr∈[0,�(e)] e(r) < 1,
that N({(s, e, θ) ∈ [0, T ] × E × H : sup[0,�(e)] e ≥ 1}) is a.s. finite, and that
limε→0 Fε,1,∞(e, θ) = F1,∞(e, θ) for � ⊗ �-almost every (e, θ) ∈ E ×H by Step 2.
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Step 3.2. If β ∈ (1 + d,4 + d), it holds that

lim
ε→0

sup
[0,T ]

∣∣Y 2
t − Y

ε,2
t

∣∣≤ T lim
ε→0

∫
E

∫
H

∣∣F1,∞(e, θ) − Fε,1,∞(e, θ)
∣∣�(dθ)�(de) = 0

by dominated convergence, thanks to Steps 1 and 2 and since
∫
E

[∫ �(e)

0

(
e(u)

)1/α−21{e(u)≥1} du
]
�(de) =

∫ ∞
1

x1/α−2 dx < ∞
by Lemma 39(ii) and since 1/α − 2 < −1 because α = (β + 2 − d)/3 > 1.

Step 3.3. If β ∈ [d,1 + d),

lim
(ε,δ)→(0,0)

E

[
sup
[0,T ]

∣∣Y 3
t − Y

ε,δ,3
t

∣∣]

≤ T lim
(ε,δ→(0,0)

∫
E

∫
H

∣∣F0,1(e, θ) − Fε,δ,1(e, θ)
∣∣�(dθ)�(de) = 0

by dominated convergence, using Steps 1 and 2 and that
∫
E

[∫ �(e)

0

[
e(u)

]1/α−21{0≤e(u)≤1} du
]
�(de) =

∫ 1

0
w1/α−2 dw < ∞

by Lemma 39(ii) and since 1/α − 2 > −1 because α = (β + 2 − d)/3 < 1.
Step 3.4. If finally β ∈ [1 + d,4 + d), by Doob’s inequality,

lim
(ε,δ)→(0,0)

E

[
sup
[0,T ]

∣∣Y 3
t − Y

ε,δ,3
t

∣∣2]

≤ 4T lim
(ε,δ)→(0,0)

∫
E

∫
H

∣∣F0,1(e, θ) − Fε,δ,1(e, θ)
∣∣2�(dθ)�(de) = 0

by dominated convergence, using Steps 1 and 2 and since we know from Lemma 39(iii) that∫
E [∫ �(e)0 (|e(u)|1/α−2 + |e(u)|−4/3)1{0≤e(u)≤1} du]2�(de) ≤ 4[∫ 1

0
√
x(x1/α−2 + x−4/3)dx]2

which is finite. �

Gathering all the previous lemmas, we deduce the following.

PROPOSITION 22. Consider the process (Zt )t≥0 defined in Lemma 21 (its definition de-
pending on β) and set St = κ−1/αZt if β ∈ (d,4 + d) and St = 8Zt if β = d .

(i) If β ∈ (1 + d,4 + d), then (ε1/α[Xt/ε − mβt/ε])t≥0
f.d.−→ (St )t≥0.

(ii) If β = 1 + d , then (ε[Xt/ε − Mβζεt/ε])t≥0
f.d.−→ (St )t≥0.

(iii) If β ∈ (d,1 + d), then (ε1/αXt/ε)t≥0
f.d.−→ (St )t≥0.

(iv) If β = d , then ([ε| log ε|]3/2Xt/ε)t≥0
f.d.−→ (St )t≥0.

PROOF. Since aε = κε when β ∈ (d,4 + d) and aε = ε| log ε|/4 when β = d , it is suffi-
cient to prove that, setting mβ,ε = mβ if β ∈ (1 + d,4 + d), mβ,ε = Mβζε if β = 1 + d and

mβ,ε = 0 if β ∈ [d,1 + d), it holds that (a1/α
ε [Xt/ε − mβ,εt/ε])t≥0

f.d.−→ (Zt )t≥0.

We know from Lemma 11 that (Xt/ε)t≥0
d= (x0 + X̃ε

t )t≥0. Since a
1/α
ε x0 → 0, it thus suf-

fices to verify that (Žε
t )t≥0

f.d.−→ (Zt )t≥0, where we have set Žε
t = a

1/α
ε [X̃t/ε − mβ,εt/ε].

We consider � : D([0,∞),Rd) → R of the form �(x) = φ(xt1, . . . , xtn) for some con-
tinuous and bounded φ : Rn → R. Our goal is to check that Iε = E[�((Žε

t )t≥0)] →
E[�((Zt)t≥0)] = I as ε → 0.
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We know from Lemma 14 that for all t ≥ 0, all η > 0,

lim
δ→0

lim sup
ε→0

P
(∣∣Žε

t − [Zε,δ
t + κε,δMβt

]∣∣≥ η
)= 0,

with the convention that κε,δ = 0 when β ∈ [d,1 + d). Next we denote by Iε,δ =
E[�(([Zε,δ

t + κε,δMβt])t≥0)] and we deduce that limδ→0 lim supε→0 |Iε,δ − Iε | = 0. We thus
have to check that limδ→0 lim supε→0 |Iε,δ − I | = 0.

By Lemma 18, we know that for each δ > 0, limε→0 |Iε,δ − Jε,δ| = 0 for each δ >

0, where we have set Jε,δ = E[�((Z̄
ε,δ
t + κε,δMβt)t≥0)]. It thus suffices to verify that

limδ→0 lim supε→0 |Jε,δ − I | = 0.
By Lemma 19, it holds that Jε,δ = E[�((Ẑ

ε,δ
t )t≥0)].

Finally, it follows from Lemma 21 that lim(ε,δ)→(0,0) Jε,δ = I , which completes the proof.
�

We still have to study a little our limiting processes.

PROPOSITION 23. For any β ∈ [d,4 + d), set α = (β + 2 − d)/3 and consider the limit
process (St )t≥0 introduced in Proposition 22 (its definition depending on β).

(i) The process (St )t≥0 is an α-stable Lévy process of which the Lévy measure q , depend-
ing only β and U , is given, for all A ∈ B(Rd \ {0}), by

q(A) = a

∫ ∞
0

u−1−α
P(uY ∈ A)du,

where a = α/[κ√
2π(β + 2 − d)2α] with κ = (β + 2 − d)−1 ∫∞

0 ud−1[�(u)]−β du (see
Lemma 42(i)) if β ∈ (d,4+d), where a = 27/6/[3√

π ] if β = d and where the Rd -valued ran-
dom variable Y is defined as follows. Consider a normalized Brownian excursion e (with unit
length), independent of an eternal stationary spherical process (�̂�

t )t∈R as in Lemma 38(iii)
and set

Y =
∫ 1

0

[
e(u)

]1/α−2
�̂�

[(β+2−d)−2
∫ u

1/2[e(v)]−2 dv] du.

(ii) Assume now that γ ≡ 1 (recall Assumption 1). Then (ε1/αXt/ε)t≥0
f.d.−→ (St )t≥0 if β ∈

(d,4 + d) and ([ε| log ε|]3/2Xt/ε)t≥0
f.d.−→ (St )t≥0 if β = d . And in any case, (St )t≥0 is a

radially symmetric α-stable Lévy process, that is, there is a constant b > 0 depending on
�, β and d such that q(dz) = b|z|−d−α dz and thus E[exp(iξ · St )] = exp(−b′t |ξ |α) for all
ξ ∈ R

d , all t ≥ 0, for some other constant b′ > 0.

Observe that in (i), the random variable Y is well-defined thanks to Lemma 39(iv).

PROOF. We start with point (i). It readily follows from its definition (see Proposition 22
and Lemma 21) that (St )t≥0 is a Lévy process with Lévy measure given by

q(A) =
∫
E
�(de)

∫
H
�(dθ)1{cF0,∞(e,θ)∈A}, A ∈ B

(
R

d \ {0}),
where c = κ−1/α if β ∈ (d,4 + d) and c = 8 if β = d . Using the decomposition (14) of � and
that F0(e, θ) = 0 if x(e) = −1, we have

q(A) =
∫ ∞

0

d�

2
√

2π�3

∫
E1

�1(de)
∫
H
�(dθ)1{cF0,∞(

√
�e(·/�),θ)∈A}

=
∫ ∞

0

d�

2
√

2π�3
P
(
cF0,∞

(√
�e(·/�), �̂�) ∈ A

)
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with the notation of the statement. But recalling Notation 20,

F0,∞
(√

�e(·/�), �̂�)

= 1

(β + 2 − d)2

∫ �

0

[√
�e(u/�)

]1/α−2
�̂�

[(β+2−d)−2
∫ u
�/2[

√
�e(v/�)]−2 dv] du

= �1/(2α)Y

(β + 2 − d)2 ,

whence

q(A) =
∫ ∞

0

d�

2
√

2π�3
P

(
c�1/(2α)

(β + 2 − d)2 Y ∈ A

)
=
∫ ∞

0

adu

u1+α
P(uY ∈ A).

Let us check that (St )t≥0 is α-stable, that is, that its Lévy measure q satisfies q(Ac) =
cαq(A), for all A ∈ B(Rd \ {0}), all c > 0, where we have set Ac = {z ∈ R

d : cz ∈ A}. But

q(Ac) =
∫ ∞

0

adu

u1+α
P(cuY ∈ A) = cα

∫ ∞
0

adu

u1+α
P(uY ∈ A) = cαq(A).

We now turn to point (ii). If γ ≡ 1, then Mβ = mβ = 0, so that the announced convergence
to (St )t≥0 follows from Proposition 22. Moreover, (St )t≥0 is radially symmetric by defini-
tion, recalling Proposition 22, Lemma 21 and that N(ds,de,dθ) is a Poisson measure with
intensity ds�(de)�(dθ) and observing that � ∈P(H) is the law of �̂�, which is a stationary
Sd−1-valued Brownian motion (because γ ≡ 1; see Lemma 38). �

We can finally handle the following.

PROOF OF THEOREM 4(C)–(D)–(E)–(F). Points (c)–(e)–(f) immediately follow from
Propositions 22 and 23. For point (d), which concerns the case where β = 1 + d , we know

that (ε[Xt/ε −Mβζεt/ε])t≥0
f.d.−→ (St )t≥0, where (St )t≥0 is a 1-stable Lévy process. We claim

that under the additional condition
∫∞

1 r−1|[�(r)]−1r − 1|dr < ∞, there is b ∈ R such that

(18) lim
ε→0

(
ζε − 1

9κ
| log ε|

)
= b,

whence (ε[Xt/ε −Mβ | log ε|t/(9κε)])t≥0
f.d.−→ (St + bMβt)t≥0. This completes the proof be-

cause the Lévy process (St + bMβt)t≥0 is also a 1-stable.
To check (18), we recall Notation 13 to write ζε = Cε/Dε , where

Cε =
∫ 1/aε

−∞
h−1(w)

[
σ(w)

]−2 dw and Dε =
∫ 1/aε

−∞
[
σ(w)

]−2 dw.

By Lemma 42(i)–(vi), we have |Dε − κ| ≤ C
∫∞

1/aε (1 + |w|)−4/3 dw ≤ Ca
1/3
ε ≤ Cε1/3 since

aε = κε.
We thus only have to verify that limε→0(Cε − | log ε|/9) exists. Recalling Notation 9 and

using the substitution r = h−1(w), we find

Cε =
∫ h−1(1/aε)

0
r
[
h′(r)

]−1 dr = 1

3

∫ Aε

0
rd
[
�(r)

]−1−d dr,

where we have set Aε = h−1(1/aε). Since h(r) = 3
∫ r
r0
u1−d [�(u)]1+d du ∼ r3 as r → ∞ and

since aε = κε, it comes that Aε ∼ε→0 [κε]−1/3, and so limε→0(| log ε|/9 − (logAε)/3) =
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(logκ)/9, and we are reduced to check that limε→0(Cε − (logAε)/3) exists. But

Cε − 1

3
logAε = 1

3

∫ Aε

0

[(
r

�(r)

)1+d

− 1{r≥1}
]

dr

r

→ 1

3

∫ ∞
0

[(
r

�(r)

)1+d

− 1{r≥1}
]

dr

r

as ε → 0. This last quantity is well-defined and finite, because � : [0,∞) → (0,∞) is
bounded from below, because �(r) ∼ r as r → ∞, and because

∫∞
1 r−1|(r/�(r)) − 1|dr <

∞ by assumption. �

REMARK 24. In Theorem 4(d), that is, when β = 1 + d , the constant c is given by
c = 1/(9κ) = (3

∫∞
0 ud−1[�(u)]−1−d du)−1 by Lemma 42(i).

6. The integrated Bessel regime. Here we give the proof of Theorem 4(g). We first
define properly the limit process (Vt )t≥0.

DEFINITION 25. We fix β ∈ (d − 2, d) and consider a Bessel process (Rt )t≥0 starting
from 0 with dimension d − β ∈ (0,2), as well as an i.i.d. family {(�̂�,i

t )t∈R, i ≥ 1} with
common law � (see Lemma 38(iii)) independent of (Rt )t≥0. We set Z = {t ≥ 0 : Rt = 0}
and we write Zc =⋃i≥1(�i, ri) as the (countable) union of its connected components: for all
i ≥ 1, we have R�i = Rri = 0 and Rt > 0 for all t ∈ (�i, ri). We then define

Vt =∑
i≥1

1{t∈(�i ,ri )}Rt �̂
�,i

[∫ t(�i+ri )/2 R
−2
s ds].

REMARK 26. In some sense to be precised, (Vt )t≥0 is the unique (in law) solution to

Vt = Bt − β

2

∫ t

0
F(Vs)ds,

where F(v) = U−1(v)∇U(v), with U(v) = |v|γ (v/|v|) (if γ ≡ 1, one finds F(v) = |v|−2v)
and where (Bt )t≥0 is a d-dimensional Brownian motion. This equation is what one gets when
informally searching for the limit of

√
εVt/ε as ε → 0, (Vt )t≥0 being the solution to (2). But

it is not clearly well-defined because F is singular at 0. See [14], Section 6, for the detailed
study of such an equation in dimension d = 2 and when γ ≡ 1.

We now introduce some notation that will be used during the whole section. We fix β ∈
(d − 2, d), recall Notation 9 and set, for ε ∈ (0,1),

aε = ε(β+2−d)/2.

For a 1D-Brownian motion (Wt)t≥0, we set Aε
t = εa−2

ε

∫ t
0 [σ(Ws/aε)]−2 ds, introduce its in-

verse ρε
t and put Rε

t = √
εh−1(Wρε

t
/aε) and T ε

t = ∫ t0 [Rε
s ]−2 ds. We also consider the solution

(�̂t )t≥0 of (4), independent of (Wt)t≥0.

LEMMA 27. For all ε ∈ (0,1), (
√
εVt/ε)t≥0

d= (Rε
t �̂T ε

t
)t≥0, for (Vt )t≥0 the velocity pro-

cess of (2).

PROOF. By Lemmas 8 and 10, setting Sε
t = ε−1/2Rε

εt and T̄ ε
t = ∫ t0 [Sε

s ]−2 ds, it holds that

(Sε
t �̂T̄ ε

t
)t≥0

d= (Vt )t≥0, whence (
√
εSε

t/ε�̂T̄ ε
t/ε

)t≥0
d= (

√
εVt/ε)t≥0. To conclude, observe that

√
εSε

t/ε = Rε
t and T̄ ε

t/ε = ∫ t/ε0 [ε−1/2Rε
εs]−2 ds = ∫ t0 [Rε

s ]−2 ds = T ε
t . �

We first study the convergence of the radius process.
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LEMMA 28. There is a Bessel process (Rt )t≥0 with dimension d −β issued from 0 such
that (Rε

t )t≥0 a.s. converges to (Rt )t≥0, uniformly on compact time intervals.

PROOF. Since [σ(w)]−2 ≤ C(1 + |w|)−2(β+1−d)/(β+2−d) by Lemma 42(vi) and since

lim
ε→0

ε
[
aεσ (w/aε)

]−2 = (β + 2 − d)−2w−2(β+1−d)/(β+2−d)1{w>0}

by Lemma 42(xi), since
∫ T

0 |Ws |−2(β+1−d)/(β+2−d) ds is finite a.s. for all T > 0 because
2(β + 1 − d)/(β + 2 − d) < 1, we conclude, by dominated convergence, that a.s., for all
t ≥ 0, (Aε

t )t≥0 converges to

At = (β + 2 − d)−2
∫ t

0
W−2(β+1−d)/(β+2−d)

s 1{Ws>0} ds.

Let ρt = inf{s > 0 : As > t} be its generalized inverse and let J = {t > 0 : ρt > ρt−}. We now
verify that a.s., for all T > 0,

(19) lim
ε→0

sup
u∈[0,T ]

∣∣(Wρε
u
)+ − (Wρu)+

∣∣= 0.

(a) By Lemma 41, we know that a.s., for all t ∈ [0,∞) \ J , ρε
t → ρt .

(b) We a.s. have, for all t ≥ 0, Aρt− = Aρt = t (since A is continuous) and

ρAt = inf{s > t : Ws > 0} =
{
t if Wt ≥ 0,
inf{s > t : Ws = 0} if Wt < 0.

Indeed, the second equality is clear and, setting νt = inf{s > t : Ws > 0}, it holds that ρAt =
inf{s > 0 : As > At } = inf{s > t : As > Aνt } (because Aνt = At by definition of A), whence
clearly ρAt = inf{s > t : Ws > 0} (again by definition of A).

(c) Since A is continuous, we deduce from (a) that a.s., for a.e. t ≥ 0, Aρε
t
→ Aρt . Since

moreover t → Aρt is a.s. continuous (by (b)) and nondecreasing (as well as t → Aρε
t

for each
ε > 0), we conclude from the Dini theorem that a.s., sup[0,T ] |Aρε

t
− Aρt | → 0.

(d) By (b), we a.s. have (Wu)+ = WρAu
for all u ≥ 0.

(e) Almost surely, u → Wρu is nonnegative and continuous. First, by (b), we have Wρu =
WρAρu

, which is nonnegative by (d). Next, it suffices to prove that Wρu− = Wρu for all u ≥ 0.
Setting t = ρu−, we see that Wt = WρAt

(by (b) and since Wt ≥ 0). Hence Wt = WρAρu− =
WρAρu

by (b), whence Wt = Wρu as desired.
(f) To complete the proof of (19), it suffices to note that (Wρε

u
)+ − (Wρu)+ = WρA

ρεu

−Wρu

by (d) and (e), that u → Wρu is continuous by (e), and finally to use point (c).

By Lemma 42(x),
√
εh−1(w/aε) → w

1/(β+2−d)
+ , uniformly on compact subsets of R. To-

gether with (19), this implies that (Rε
t = √

εh−1(Wρε
t
/aε))t≥0 a.s. converges, uniformly on

compact time intervals, to ((Wρt )
1/(β+2−d)
+ )t≥0, which is a Bessel process with dimension

d − β issued from 0 by Lemma 40. �

We can now give the following proof.

PROOF OF THEOREM 4(G). Our goal is to verify that (Rε
t �̂T ε

t
)t≥0 goes in law to (Vt )t≥0,

for the usual convergence of continuous processes. This implies that (ε3/2Xt/ε)t≥0 goes
in law to (

∫ t
0 Vs ds)t≥0, since by Lemma 27, (ε3/2Xt/ε = ε3/2x0 + ∫ t

0
√
εVs/ε ds)t≥0 and

(ε3/2x0 + ∫ t0 Rε
s �̂T ε

s
ds)t≥0 have the same law. We already know from Lemma 28 that a.s.,

sup[0,T ] |Rε
t − Rt | → 0 for all T > 0, where (Rt )t≥0 is a Bessel process as in Definition 25

and we introduce Z = {t ≥ 0 : Rt = 0} and write Zc = ⋃
i≥1(�i, ri) with, for all i ≥ 1,
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R�i = Rri = 0 and Rt > 0 for all t ∈ (�i, ri). Finally, we set W = σ(Ws, s ≥ 0) and observe
that W = σ(Rε

t ,Rt , t ≥ 0, ε ∈ (0,1)) is independent of (�̂t )t≥0.
Step 1. For all i > j ≥ 1, we have limε→0(τ

ε
i − τ ε

j ) = ∞ a.s., where

τ ε
i = T ε

(�i+ri )/2 =
∫ (�i+ri )/2

0

ds

[Rε
s ]2 .

Indeed, by the Fatou lemma, we know that a.s.,

lim inf
ε→0

(
τ ε
i − τ ε

j

)≥
∫ (�i+ri )/2

(�j+rj )/2

ds

[Rs]2 ≥
∫ (�i+ri )/2

�i

ds

[Rs]2 = ∞
by Lemma 40(ii).

Step 2. For T > 0 and δ > 0, we consider the (a.s. finite) set of indices

Iδ,T =
{
i ≥ 1 : �i ≤ T and sup

s∈(�i ,ri )

Rs > δ
}

and for i ∈ Iδ,T , we introduce �i < �δi < rδi < ri defined by

�δi = inf{s > �i : Rs > δ} and rδi = sup{s < ri : Rs > δ}.
We also set

Aδ,T = 2 max
i∈Iδ,T

[∣∣∣∣
∫ �δi

(�i+ri )/2

ds

[Rs]2

∣∣∣∣+
∣∣∣∣
∫ rδi

(�i+ri )/2

ds

[Rs]2

∣∣∣∣
]
.

By Lemma 38(iv), knowing W , there is an i.i.d. family ((�̂
�,i,ε,δ
t )t∈R)i∈Iδ,T

of �-distributed
processes such that, setting

!ε,δ,T = {∀i ∈ Iδ,T ,
(
�̂

�,i,ε,δ
t

)
t∈[−Aδ,T ,Aδ,T ] = (�̂(τ ε

i +t)∨0)t∈[−Aδ,T ,Aδ,T ]
}
,

we have Pr(!ε,δ,T |W) = pδ,T (ε), where pδ,T (ε) = pAδ,T
(τ ε

i1
, τ ε

i2
− τ ε

i1
, . . . , τ ε

in
− τ ε

in−1
) and

where we have written Iδ,T = {i1, . . . , in}. We know that pδ,T (ε) a.s. tends to 1 as ε → 0, so
that rδ,T (ε) = P(!ε,δ,T ) = E[pδ,T (ε)] also tends to 1 as ε → 0.

Step 3. Knowing W , we consider an i.i.d. family ((�̂
�,i,ε,δ
t )t∈R)i∈N∗\Iδ,T

, independent of

((�̂
�,i,ε,δ
t )t∈R)i∈N∗\Iδ,T

, and we consider the process (Vε,δ
t )t≥0 built from (Rt )t≥0 and the

i.i.d. family ((�̂
�,i,ε,δ
t )t∈R)i≥1 as in Definition 25, that is,

Vε,δ
t =∑

i≥1

1{t∈(�i ,ri )}Rt �̂
�,i,ε,δ

[∫ t(�i+ri )/2 R
−2
s ds].

For all ε ∈ (0,1) and all δ ∈ (0,1), (Vε,δ
t )t≥0

d= (Vt )t≥0. We will show that for all η > 0,

lim
δ→0

lim sup
ε→0

P[�ε,δ,T > η] = 0 where �T,δ,ε = sup
[0,T ]

∣∣Rε
t �̂T ε

t
− Vε,δ

t

∣∣

and this will conclude the proof. Recalling that |Vε,δ
t | =Rt ,

�ε,δ,T ≤ sup
[0,T ]

∣∣Rε
t −Rt

∣∣+ sup
[0,T ]

∣∣Rt �̂T ε
t

− Vε,δ
t

∣∣1{Rt≤δ}

+ sup
[0,T ]

∣∣Rt �̂T ε
t

− Vε,δ
t

∣∣1{Rt>δ}.

We already know that the first term a.s. tends to 0 as ε → 0, the second one is bounded
by 2δ and the third one is bounded by (sup[0,T ]Rt )�

′
ε,δ,T , where we denote by �′

ε,δ,T =
sup[0,T ] |�̂T ε

t
−R−1

t Vε,δ
t |1{Rt>δ}. All in all, we only have to check that

lim
δ→0

lim sup
ε→0

P
[
�′

ε,δ,T > η
]= 0.
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Step 4. For all t ∈ [0, T ], Rt > δ implies that t ∈⋃i∈Iδ,T
(�δi , r

δ
i ), whence

R−1
t Vε,δ

t − �̂T ε
t

= ∑
i∈Iδ,T

1{t∈(�δi ,r
δ
i )}
(
�̂

�,i,ε,δ

[∫ t(�i+ri )/2 R
−2
s ds] − �̂[τ ε

i +∫ t(�i+ri )/2[Rε
s ]−2 ds]

)
,

because T ε
t = τ ε

i + ∫ t(�i+ri )/2[Rε
s ]−2 ds. Next, for x ∈ (0,1), it holds that

lim
ε→0

P
(
!′

ε,δ,T (x)
)= 1,

where

!′
ε,δ,T (x) =

{
∀i ∈ Iδ,T ,∀t ∈ (�δi , rδi ),

∣∣∣∣
∫ t

(�i+ri )/2

ds

R2
s

−
∫ t

(�i+ri )/2

ds

[Rε
s ]2

∣∣∣∣≤ x

}
.

Indeed, for each i ∈ Iδ,T , Rs is continuous and positive on (�δi , r
δ
i ) and we have already seen

that limε→0 sup[0,T ] |Rε
t −Rt | = 0. For the same reasons, it holds that limε→0 P(!

′′
ε,δ,T ) = 1

!′′
ε,δ,T =

{
∀i ∈ Iδ,T ,∀t ∈ (�δi , rδi ),

∣∣∣∣
∫ t

(�i+ri )/2

ds

R2
s

∣∣∣∣∨
∣∣∣∣
∫ t

(�i+ri )/2

ds

[Rε
s ]2

∣∣∣∣≤ Aδ,T

}
.

Now on !̄ε,δ,T (x) = !ε,δ,T ∩ !′
ε,δ,T (x) ∩ !′′

ε,δ,T , we have, for any t ∈ [0, T ],
(
R−1

t Vε,δ
t − �̂T ε

t

)
1{Rt>δ}

= ∑
i∈Iδ,T

1{t∈(�δi ,r
δ
i )}
(
�̂

�,i,ε,δ

[∫ t(�i+ri )/2 R
−2
s ds] − �̂

�,i,ε,δ

[∫ t(�i+ri )/2[Rε
s ]−2 ds]

)
,

whence

�′
ε,δ,T ≤ #(Iδ,T ) sup

{∣∣�̂�,i,ε,δ
a − �̂

�,i,ε,δ
b

∣∣ :
i ∈ Iδ,T , a, b ∈ [−Aδ,T ,Aδ,T ], |a − b| < x

}
and we denote by Mε

δ,T (x) this last expression. But the law of Mε
δ,T (x) does not depend

on ε ∈ (0,1) (because conditionally on W , the family ((�̂
�,i,ε,δ
t )t∈R)i∈Iδ,T

is i.i.d. and �-
distributed. All in all, we have proved that for all δ > 0, all T > 0, all η > 0, x > 0, with a
small abuse of notation,

lim sup
ε→0

P
(
�′

ε,δ,T > η
)≤ P

(
Mδ,T (x) > η

)+ lim sup
ε→0

P
((
!̄ε,δ,T (x)

)c)

= P
(
Mδ,T (x) > η

)
.

But limx→0 P(Mδ,T (x) > η) = 0, because the �-distributed processes are continuous. We
thus have lim supε→0 P(�

′
ε,δ,T > η) = 0 for each δ > 0, which completes the proof. �

7. The diffusive regime. The goal of this section is to prove Theorem 4(a). As already
mentioned, this regime is almost treated in Pardoux–Veretennikov [32], which consider much
more general problems. However, we can not strictly apply their result because F is not
locally bounded (except if γ ≡ 1). Moreover, our proof is much simpler (because our model
is much simpler). First, we adapt to our context a Poincaré inequality found in Cattiaux–
Gozlan–Guillin–Roberto [10].

LEMMA 29. For any β > 2 + d , there is a constant C > 0 such that for all f ∈
H 1

loc(R
d) ∩ L1(Rd,μβ) satisfying

∫
Rd f (v)μβ(dv) = 0,∫

Rd

[
f (v)

]2(1 + |v|)−2
μβ(dv) ≤ C

∫
Rd

∣∣∇f (v)
∣∣2μβ(dv).



MULTI-DIMENSIONAL KINETIC FOKKER–PLANCK EQUATIONS 2387

PROOF. The constants below are allowed to depend only on U , β and d . By Assump-
tion 1, there are 0 <C1 <C2 such that C1(1 + |v|)−β dv ≤ μβ(dv) ≤ C2(1 + |v|)−β dv.

We know from [10], Proposition 5.5, that for any α > d , there is a constant C such that for
g ∈ H 1

loc(R
d) ∩ L1(Rd, (1 + |v|)−α dv) satisfying

∫
Rd g(v)(1 + |v|)−α dv = 0, we have the

inequality
∫
Rd [g(v)]2(1 + |v|)−α dv ≤ C

∫
Rd |∇g(v)|2(1 + |v|)2−α dv.

For f as in the statement, we apply this inequality with α = β + 2 > d and g = f −
a, the constant a ∈ R being such that

∫
Rd g(v)(1 + |v|)−β−2 dv = 0. We finally obtain that∫

Rd [g(v)]2(1 + |v|)−2−β dv ≤ C3
∫
Rd |∇g(v)|2(1 + |v|)−β dv.

But
∫
Rd f (v)μβ(dv) = 0, whence a = − ∫

Rd g(v)μβ(dv) and thus

a2 ≤ C2
2

[∫
Rd

g(v)
(
1 + |v|)−β dv

]2

= C2
2

[∫
Rd

(
1 + |v|)−β/2−1

g(v)
(
1 + |v|)1−β/2 dv

]2
,

whence a2 ≤ C2
2C4

∫
Rd [g(v)]2(1 + |v|)−β−2 dv by the Cauchy–Schwarz inequality, where

the constant C4 = ∫
Rd (1 + |v|)2−β dv is finite because β > 2 + d .

Using that f 2 ≤ 2g2 + 2a2 and setting C5 = ∫
Rd (1 + |v|)−2−β dv, we find that∫

Rd

[
f (v)

]2(1 + |v|)−2
μβ(dv)

≤ 2C2

∫
Rd

[
g(v)

]2(1 + |v|)−2−β dv + 2C2a
2
∫
Rd

(
1 + |v|)−2−β dv

≤ 2C2
[
1 + C2

2C4C5
] ∫

Rd

[
g(v)

]2(1 + |v|)−2−β dv

≤ 2C2C3
[
1 + C2

2C4C5
] ∫

Rd

∣∣∇g(v)
∣∣2(1 + |v|)−β dv

≤ 2C−1
1 C2C3

[
1 + C2

2C4C5
] ∫

Rd

∣∣∇f (v)
∣∣2μβ(dv).

We finally used that ∇g = ∇f . �

We next state a lemma that will allow us to solve the Poisson equation Lf (v) = v − mβ ,
where L is the generator of the velocity process. We state a slightly more general version,
that will be needed when treating the critical case β = 4 + d

LEMMA 30. Suppose that β > 2 + d . Let g :Rd →R be of class C∞ and satisfy

(20)
∫
Rd

g(v)μβ(dv) = 0 and
∫
Rd

[
g(v)

]2(1 + |v|)2μβ(dv) < ∞.

There exists f :Rd \ {0} →R, of class C∞, such that
∫
Rd |∇f (v)|2μβ(dv) < ∞ and solving

the equation 1
2 [�f − βF · ∇f ] = g on R

d \ {0}.
PROOF. We divide the proof in three steps.
Step 1. We introduce the weighted Sobolev space H 1

β = {ϕ ∈ H 1
loc(R

d) : |||ϕ|||β < ∞ and∫
Rd ϕ(v)μβ(dv) = 0}, where we have set

|||ϕ|||2β =
∫
Rd

[
ϕ(v)

]2(1 + |v|)−2
μβ(dv) +

∫
Rd

∣∣∇ϕ(v)
∣∣2μβ(dv).

By the Lax–Milgram theorem, there is a unique f ∈ H 1
β such that for all ϕ ∈ H 1

β ,
∫
Rd ∇f (v) ·

∇ϕ(v)μβ(dv) = −2
∫
Rd ϕ(v)g(v)μβ(dv).
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Indeed, the quadratic form A(ϕ,φ) = ∫
Rd ∇ϕ(v) · ∇φ(v)μβ(dv) is continuous on the

Hilbert space H 1
β and coercive (i.e., there is c > 0 such that A(ϕ,ϕ) ≥ c|||ϕ|||β for all ϕ ∈ H 1

β )

by Lemma 29; and the linear form L(ϕ) = 2
∫
Rd ϕ(v)g(v)μβ(dv) is continuous on H 1

β (here
we use the moment condition on g).

Step 2. Since
∫
Rd g(v)μβ(dv) = 0, it comes by Step 1 that

∫
Rd ∇f (v) · ∇ϕ(v)μβ(dv) =

−2
∫
Rd ϕ(v)g(v)μβ(dv) for all ϕ ∈ H 1

loc(R
d) with |||ϕ|||β < ∞ (without the centering condi-

tion on ϕ).
Step 3. We can now apply Gilbarg–Trudinger [16], Corollary 8.11, page 186: F being of

class C∞ on R
d \ {0}, as well as g, and f being a weak solution to 1

2 [�f − βF · ∇f ] = g,
it is of class C∞ on R

d \ {0}. More precisely, we fix v ∈ R
d \ {0} and we apply the cited

corollary on the open ball B(v, |v|/2) to conclude that f is of class C∞ on B(v, |v|/2).
Step 4. We thus can proceed rigorously to some integrations by parts to deduce that for all

ϕ ∈ C∞
c (Rd \ {0}), recalling that μβ(dv) = cβ[U(v)]−β dv, we have∫

Rd
div
[(
U(v)

)−β∇f (v)
]
ϕ(v)dv = 2

∫
Rd

ϕ(v)g(v)
[
U(v)

]−β dv.

Hence div[U−β∇f ] = 2gU−β on R
d \ {0} by continuity, whence the conclusion, since

F(v) = [U(v)]−1∇U(v). �

We can now give the following proof.

PROOF OF THEOREM 4(A). Fix β > 4 + d and take, for each 1 ≤ i ≤ d , a C∞ function
fi : Rd \ {0} → R such that

∫
Rd |∇fi(v)|2μβ(dv) < ∞ and 1

2 [�fi(v) − βF(v) · ∇fi(v)] =
vi −mi

β , where mi
β = ∫

Rd viμβ(dv) is the i-th coordinate of mβ . Such a function fi exists by

Lemma 30, because gi(v) = vi − mi
β is C∞, μβ -centered and

∫
Rd [gi(v)]2(1 + |v|)2μβ(dv)

is finite because β > 4 + d .
We now set f = (f1f2 · · ·fd)

∗ :Rd →R
d and apply the Itô formula, which is licit because

f is of class C∞ on R
d \ {0} and because (Vt )t≥0 never visits 0: recalling (2) and that ∇∗f =

(∇f1∇f2 · · ·∇fd)
∗,

f (Vt ) = f (v0) +
∫ t

0
∇∗f (Vs)dBs +

∫ t

0
(Vs − mβ)ds

= f (v0) +
∫ t

0
∇∗f (Vs)dBs + Xt − mβt − x0.

Hence
√
ε(Xt/ε −mβt/ε) = Mε

t +Y ε
t , where Mε

t = −√
ε
∫ t/ε

0 ∇∗f (Vs)dBs and where Y ε
t =√

ε[x0 + f (Vt/ε) − f (v0)].
For each t ≥ 0, Y ε

t goes to 0 in law (and thus in probability) as ε → 0: this immediately
follows from the fact that f (Vt/ε) converges in law as ε → 0; see Lemma 37(iii). It is not
clear (and probably false) that sup[0,t] |Y ε

s | → 0, which explains why we deal with finite-
dimensional distributions.

Next, (Mε
t )t≥0 converges in law, in the usual sense of continuous processes, to (�Bt)t≥0,

where � ∈ S+
d is the square root of

∫
Rd ∇∗f (v)∇f (v)μβ(dv) ∈ S+

d (see below). Indeed,
since (Mε

t )t≥0 is a continuous R
d -valued martingale, it suffices, by Jacod–Shiryaev [19],

Theorem VIII-3.11, page 473, to verify that for all i, j ∈ {1, . . . , d}, 〈Mε,i,Mε,j 〉t → �2
ij t in

probability for each t ≥ 0. But this follows from the fact that the brackets 〈Mε,i,Mε,j 〉t =
ε
∫ t/ε

0 ∇fi(Vs) ·∇fj (Vs)ds, from Lemma 37(ii) and from the fact that
∫
Rd |∇f (v)|2μβ(dv) <

∞.
All this proves that indeed, (

√
ε(Xt/ε − mβt/ε))t≥0 converges, in the sense of finite-

dimensional distributions, to (�Bt)t≥0, as ε → 0.
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Let us finally explain why �2 is positive definite. For ξ ∈ R
d \ {0}, we have, setting

fξ (v) = f (v) · ξ ,

ξ∗�2ξ =
∫
Rd

∣∣∇f (v)ξ
∣∣2μβ(dv) =

∫
Rd

∣∣∇fξ (v)
∣∣2μβ(dv),

which is strictly positive because else we would have ∇fξ (v) = 0 for a.e. v ∈ R
d , so that

fξ would be constant on R
d \ {0} (recall that f is smooth on R

d \ {0}). This is impossible,
because �fξ (v)− βF(v) · ∇fξ (v) = 2(v −mβ) · ξ on R

d \ {0} and because constants do not
solve this equation. �

REMARK 31. Consider some β > 4 + d .

(i) In Theorem 4(a), � ∈ S+
d is the square root of

∫
Rd ∇∗f (v)∇f (v)μβ(dv), with μβ

defined in Remark 3 and with f = (f1, . . . , fd), where fi :Rd \ {0} →R is the (unique) C∞
solution to 1

2 [�fi(v) − βF(v) · ∇fi(v)] = vi − mi
β such that

∫
Rd |∇fi(v)|2μβ(dv) < ∞.

(ii) If U(v) = (1 + |v|2)1/2, then μβ(dv) = cβ(1 + |v|2)−β/2 dv and mβ = 0, so that

(
√
εXt/ε)t≥0

f.d.−→ (�Bt)t≥0. Furthermore, it holds that fi(v) = −a(|v|2 + 3)vi , with a =
2/(3β − 4 − 2d), and a computation shows that � = qId , with

q2 =
∫
Rd

∣∣∇f1(v)
∣∣2μβ(dv)

= −
∫
Rd

f1(v)
[
�f1(v) − βF(v) · ∇f1(v)

]
μβ(dv)

= −2
∫
Rd

f1(v)v1μβ(dv)

= 2acβ

∫
Rd

(|v|2 + 3
)
v2

1
(
1 + |v|2)−β/2 dv

= 2acβ
d

∫
Rd

(|v|2 + 3
)|v|2(1 + |v|2)−β/2 dv.

8. The critical diffusive regime. The goal of this section is to prove Theorem 4(b).
We have not been able to solve the Poisson equation, so that we adopt a rather complicated
strategy. This would not be necessary if considering only the case U(v) = (1+|v|2)1/2 where
the solution to the Poisson equation is explicit: we could omit Lemmas 32 and 34 below.

LEMMA 32. Fix β > 0. There is � : Sd−1 →R
d , of class C∞, such that for all θ ∈ Sd−1,

all k = 1, . . . , d ,

1

2
�S�k(θ) − β

2

∇Sγ (θ)

γ (θ)
· ∇S�k(θ) = 9

2
�k(θ) + θk.

PROOF. By Aubin [1], Theorem 4.18, page 114, for any λ > 0 and any smooth function
g : Sd−1 →R, there is a unique smooth solution f : Sd−1 →R to

divS

(
γ−β∇Sf

)= 2γ−β(λf + g).

This uses that γ−β is smooth and positive on Sd−1. This equation can be also rewrite as
1
2�Sf − β

2 γ
−1∇Sγ · ∇Sf = λf + g. Applying this result, for each fixed k = 1, . . . , d , with

λ = 9/2 and g(θ) = θk , completes the proof. �

We now introduce some notation for the rest of the section. We write Vt = Rt�̂Ht as in
Lemma 8 and we set �t = �̂Ht . We know that (Rt )t≥0 solves (5) for some one-dimensional
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Brownian motion (B̃t )t≥0, that (�t)t≥0 solves (6) for some d-dimensional Brownian motion
(B̄t )t≥0, and that these two Brownian motions are independent.

LEMMA 33. Assume that β = 4 + d and consider the function � introduced in
Lemma 32. We have R3

t �(�t) = r3
0�(θ0) − x0 + (Xt − mβt) + Mt + Yt , where

Mt =
∫ t

0
R2

s ∇∗
S�(�s)dB̄s + 3

∫ t

0
R2

s �(�s)dB̃s,

Yt = mβt + 3(4 + d)

2

∫ t

0

(
Rs − R2

s �
′(Rs)

�(Rs)

)
�(�s)ds.

PROOF. Applying Itô’s formula with the function � (extended to R
d \ {0} as in Section 3

so that we can use the usual derivatives of Rd ), we find

�(�t) = �(θ0) +
∫ t

0
R−1

s ∇∗�(�s)π�⊥
s

dB̄s − d − 1

2

∫ t

0
R−2

s ∇∗�(�s)�s ds

− β

2

∫ t

0
R−2

s ∇∗�(�s)π�⊥
s

∇γ (�s)

γ (�s)
ds + 1

2

∫ t

0
R−2

s

d∑
i,j=1

(π�⊥
s
)ij ∂ij�(�s)ds.

But the way � has been extended to R
d \ {0} implies that πθ⊥∇�(θ) = ∇�(θ) = ∇S�(θ),

that ∇∗�(θ)θ = 0 and that
∑d

i,j=1(πθ⊥)ij ∂ij�(θ) = ��(θ) − ∑d
i,j=1 θiθj ∂ij�(θ) =

��(θ) = �S�(θ). Consequently,

�(�t) = �(θ0) +
∫ t

0
R−1

s ∇∗
S�(�s)dB̄s

− β

2

∫ t

0
R−2

s ∇∗
S�(�s)

∇Sγ (�s)

γ (�s)
ds + 1

2

∫ t

0
R−2

s �S�(�s)ds

= �(θ0) +
∫ t

0
R−1

s ∇∗
S�(�s)dB̄s +

∫ t

0
R−2

s

[
9

2
�(�s) + �s

]
ds.

Recalling (5) and that β = 4 + d , Itô’s formula tells us that

R3
t = r3

0 + 3
∫ t

0
R2

s dB̃s + 3(d − 1)

2

∫ t

0
Rs ds − 3β

2

∫ t

0

�′(Rs)R
2
s

�(Rs)
ds + 3

∫ t

0
Rs ds

= r3
0 + 3

∫ t

0
R2

s dB̃s − 9

2

∫ t

0
Rs ds + 3(4 + d)

2

∫ t

0

(
Rs − R2

s �
′(Rs)

�(Rs)

)
ds.

We conclude that

R3
t �(�t) = r3

0�(θ0) +
∫ t

0
R2

s ∇∗
S�(�s)dB̄s +

∫ t

0
Rs

[
9

2
�(�s) + �s

]
ds

+ 3
∫ t

0
R2

s �(�s)dB̃s − 9

2

∫ t

0
Rs�(�s)ds

+ 3(4 + d)

2

∫ t

0

(
Rs − R2

s �
′(Rs)

�(Rs)

)
�(�s)ds.

In other words, we have R3
t �(�t) = r3

0�(θ0) − x0 + (Xt − mβt) + Mt + Yt as desired. �

We now treat the error term.
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LEMMA 34. Adopt the assumptions and notation of Lemma 33. Suppose the additional
condition

∫∞
1 r−1|r�′(r)/�(r) − 1|2r−1 dr < ∞. For each t ≥ 0, in probability,

lim
ε→0

| log ε|−1/2ε1/2[R3
t/ε�(�t/ε) − r3

0�(θ0) + x0 − Yt/ε

]= 0.

PROOF. First, setting ψ(v) = |v|3�(v/|v|) − r3
0�(θ0) + x0, we have

lim
ε→0

| log ε|−1/2ε1/2[R3
t/ε�(�t/ε) − r3

0�(θ0) + x0
]= lim

ε→0
| log ε|−1/2ε1/2ψ(Vt/ε) = 0

in probability, since by Lemma 37(ii), Vt converges in law as t → ∞.
Next, we have Yt = ∫ t0 g(Vs)ds, where we have set

g(v) = mβ + 3(4 + d)

2

(
r − r2�′(r)

�(r)

)
�(θ),

where r = |v| and θ = v/|v|. This function is of class C∞ on R
d \ {0} and, as we will see

below,

(a)
∫
Rd

∣∣g(v)∣∣2(1 + |v|)2μβ(dv) < ∞ and (b)
∫
Rd

g(v)μβ(dv) = 0.

Applying Lemma 30 (coordinate by coordinate), there exists f : Rd \ {0} →R
d of class C∞,

satisfying
∫
Rd |∇f (v)|2μβ(dv) < ∞ and, for each k = 1, . . . , d , 1

2 [�fk − βF · ∇fk] = gk .
By Itô’s formula, starting from (2),

f (Vt ) = f (v0) + Nt + Yt where Nt =
∫ t

0
∇∗f (Vs)dBs.

To conclude that | log ε|−1/2ε1/2Yt/ε converges to 0 in probability, as ε → 0, we observe
that | log ε|−1/2ε1/2[f (Vt/ε) − f (v0)] tends to 0 in probability, which follows from the fact
that Vt converges in law as t → ∞, and that | log ε|−1/2ε1/2Nt/ε → 0 in probability, which
follows from the fact that (ε1/2Nt/ε)t≥0 converges in law by Jacod–Shiryaev [19], Theorem
VIII-3.11, page 473. Indeed, (ε1/2Nt/ε)t≥0 is a continuous local martingale of which the

bracket ε
∫ t/ε

0 ∇∗f (Vs)∇∗f (Vs)ds a.s. converges to [∫
Rd ∇∗f (v)∇f (v)μβ(dv)]t as ε → 0

by Lemma 37(ii).
We now check (a). Since |g(v)| ≤ C(1 + |v|)|1 − |v|�′(|v|)/�(|v|)| and since β = 4 + d ,

∫
Rd

∣∣g(v)∣∣2(1 + |v|)2μβ(dv) ≤ C

∫
Rd

∣∣g(v)∣∣2(1 + |v|)−2−d dv

≤ C

∫ ∞
0

∣∣∣∣1 − r�′(r)
�(r)

∣∣∣∣
2 rd−1 dr

(1 + r)d
,

which converges since, by assumption,
∫∞

1 r−1|r�′(r)/�(r) − 1|2r−1 dr .
We finally check (b), recalling the notation introduced in Section 3:

J =
∫
Rd

g(v)μβ(dv)

= mβ + 3(4 + d)

2

∫ ∞
0

(
r − r2�′(r)

�(r)

)
ν′
β(dr)

∫
Sd−1

�(θ)νβ(dθ)

= mβ + 3(4 + d)

2
J1J2,
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the first and last equalities standing for definitions. First,

J1 = bβ

∫ ∞
0

(
r − r2�′(r)

�(r)

)
rd−1[�(r)

]−β dr

= bβ

∫ ∞
0

rd
[
�(r)

]−β dr + bβ

β

∫ ∞
0

r1+d([�(r)
]−β)′ dr,

whence J1 = bβ[1 − (1 + d)/β] ∫∞
0 rd [�(r)]−β and thus J1 = [1 − (1 + d)/β]m′

β .

Next, recall that 1
2�S�(θ)− β

2 [γ (θ)]−1∇Sγ (θ) ·∇S�(θ) = 9
2�(θ)+ θ by Lemma 32 and

observe that for any smooth ψ : Sd−1 →R, we have∫
Sd−1

[
�Sψ(θ) − β

∇Sγ (θ)

γ (θ)
· ∇Sψ(θ)

]
νβ(dθ)

= aβ

∫
Sd−1

divS

([
γ (θ)

]−β∇Sψ(θ)
)
ς(dθ) = 0.

Hence, J2 = ∫
Sd−1

�(θ)νβ(dθ) = −(2/9)
∫
Sd−1

θνβ(dθ) = −(2/9)Mβ , so that

J = mβ − 3(4 + d)

2

(
1 − 1 + d

β

)
2

9
m′

βMβ = 0

because β = 4 + d and mβ = m′
βMβ . �

We finally treat the main martingale term.

LEMMA 35. With the assumptions and notation of Lemma 33, as ε → 0,
(| log ε|−1/2ε1/2Mt/ε

)
t≥0

d−→ (�Bt)t≥0

for some � ∈ S+
d , where (Bt )t≥0 is a d-dimensional Brownian motion.

PROOF. Using one more time Jacod–Shiryaev [19], Theorem VIII-3.11, page 473, it
suffices to check that there is �2 ∈ S+

d such that limε→0 Z
ε
t = �2t in probability for each

t ≥ 0, where Zε
t is the matrix of brackets of the martingale | log ε|−1/2ε1/2Mt/ε , namely

Zε
t = ε

| log ε|
∫ t/ε

0
R4

s D(�s)ds,

where D(θ) = ∇∗
S�(θ)∇S�(θ) + 9�(θ)�∗(θ). We proceed by coupling.

Step 1. We recall Notation 9 and use Lemma 10 with aε = κε, where κ = ∫
R
[σ(w)]−2 dw<

∞; see Lemma 42(i). We consider a one-dimensional Brownian motion (Wt)t≥0, introduce
Aε

t = εa−2
ε

∫ t
0 [σ(Ws/aε)]−2 ds and its inverse ρε

t and put Rε
t = √

εh−1(Wρε
t
/aε). We know

from Lemma 10 that Sε
t = ε−1/2Rε

εt solves (5). We also consider the solution (�̂t )t≥0 of
(4), independent of (Wt)t≥0. We then know from Lemma 8 that, setting Hε

t = ∫ t
0 [Sε

s ]−2 ds,

(Sε
t �̂Hε

t
)t≥0

d= (Vt )t≥0. In particular, for each t ≥ 0, Zε
t

d= Z̃ε
t , where

Z̃ε
t = ε

| log ε|
∫ t/ε

0

(
Sε
s

)4
D(�̂Hε

s
)ds.

Step 2. Here we verify that Z̃ε
t = Kε

ρε
t
, where, recalling Notation 9,

Kε
t = ε

| log ε|a2
ε

∫ t

0

[h−1(Ws/aε)]4D(�̂T ε
s
)

[σ(Ws/aε)]2 ds and T ε
t = 1

a2
ε

∫ t

0

du

ψ(Wu/aε)
.



MULTI-DIMENSIONAL KINETIC FOKKER–PLANCK EQUATIONS 2393

Recalling that Sε
s = ε−1/2Rε

εt = h−1(Wρε
εs
/aε) and using the change of variables u = ρε

εs ,
that is, s = ε−1Aε

u, whence ds = a−2
ε [σ(Wu/aε)]−2 du, we find

Z̃ε
t = ε

| log ε|a2
ε

∫ ρε
t

0

[h−1(Wu/aε)]4D(�̂Hε

ε−1Aε
u

)

[σ(Wu/aε)]2 du,

and it only remains to check that Hε
ε−1Aε

t
= T ε

t . With the same substitution,

Hε
ε−1Aε

t
=
∫ ε−1Aε

t

0

ds

[h−1(Wρε
εs
/aε)]2

= 1

a2
ε

∫ t

0

du

[σ(Wu/aε)]2[h−1(Wu/aε)]2 = 1

a2
ε

∫ t

0

du

ψ(Wu/aε)
.

Step 3. We now prove that there is C > 0 such that E[|Kε
t −GDIε

t |2|W] ≤ Ct/| log ε|2 for
all t ≥ 0, all ε ∈ (0,1), where W = σ(Wt, t ≥ 0), where GD = ∫

Sd−1
D(θ)νβ(dθ) and where

I ε
t = ε

| log ε|a2
ε

∫ t

0

[h−1(Ws/aε)]4

[σ(Ws/aε)]2 ds.

We set �ε
t = E[|Kε

t − GDIε
t |2|W] and write

�ε
t = ε2

| log ε|2a4
ε

∫ t

0

∫ t

0

[h−1(Wa/aε)]4

[σ(Wa/aε)]2

[h−1(Wb/aε)]4

[σ(Wb/aε)]2

×E
([
D(�̂T ε

a
) − GD

][
D(�̂T ε

b
) − GD

]|W)
da db.

Using that (T ε
t )t≥0 is W-measurable, that (�̂t )t≥0 is independent of W , that D is bounded

and that GD = ∫
Sd−1

D dνβ , we deduce from Lemma 38(ii) and the Markov property that
there are C > 0 and λ > 0 such that a.s.,

∣∣E([D(�̂T ε
a
) − GD

][
D(�̂T ε

b
) − GD

]|W)∣∣≤ C exp
(−λ

∣∣T ε
b − T ε

a

∣∣).
By Lemma 42(iii) with aε = κε, we have εa−2

ε [h−1(w/aε)]4[σ(w/aε)]−2 ≤ C(ε + |w|)−1,
whence

�ε
t ≤ C

| log ε|2
∫ t

0

∫ t

0

(
ε + |Wa|)−1(

ε + |Wb|)−1 exp
(−λ

∣∣T ε
a − T ε

b

∣∣)da db.

Next, since a2
εψ(w/aε) ≤ C(ε + |w|)2 by Lemma 42(iv),

λ
∣∣T ε

a − T ε
b

∣∣= λ

∣∣∣∣ 1

a2
ε

∫ b

a

ds

ψ(Ws/aε)
ds
∣∣∣∣≥ c

∣∣∣∣
∫ b

a

(
ε + |Ws |)−2 ds

∣∣∣∣
for some c > 0. Using furthermore that xy ≤ x2 +y2 and a symmetry argument, we conclude
that

�ε
t ≤ C

| log ε|2
∫ t

0

∫ t

0

(
ε + |Wa|)−2 exp

(
−c

∣∣∣∣
∫ b

a

(
ε + |Ws |)−2 ds

∣∣∣∣
)

da db.

The conclusion follows; see (13).
Step 4. One can check precisely as in Lemma 12 that for all T ≥ 0, sup[0,T ] |Aε

t − L0
t | →

0 a.s. as ε → 0, where (L0
t )t≥0 is the local time at 0 of (Wt)t≥0. Actually, the proof of

Lemma 12 works (without any modification) for any β > d .
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Step 5. We verify that for each T ≥ 0, a.s., limε→0 sup[0,T ] |I ε
t − (κ/36)L0

t | = 0. This
resembles the proof of Lemma 12. By Lemma 42(iii), we know that [h−1(w)]4/[σ(w)]2 ≤
C(1 + |w|)−1 and that

(21)
∫ x

−x

[h−1(w)]4 dw

[σ(w)]2
x→∞∼ logx

36
.

We fix δ > 0 and write I ε
t = J

ε,δ
t + Q

ε,δ
t , where

J
ε,δ
t = ε

| log ε|a2
ε

∫ t

0

[h−1(Ws/aε)]4

[σ(Ws/aε)]2 1{|Ws |>δ} ds

and

Q
ε,δ
t = ε

| log ε|a2
ε

∫ t

0

[h−1(Ws/aε)]4

[σ(Ws/aε)]2 1{|Ws |≤δ} ds.

Since aε = κε and since |w| > δ implies that [h−1(w/aε)]4/[σ(w/aε)]2 ≤ C(1 + |δ/ε|)−1,
we find sup[0,T ] J

ε,δ
t ≤ CT/[δ| log ε|], which tends to 0 as ε → 0. We next use the occupation

times formula to write

Q
ε,δ
t = ε

| log ε|a2
ε

∫ δ

−δ

[h−1(x/aε)]4Lx
t dx

[σ(x/aε)]2

= ε

| log ε|a2
ε

∫ δ

−δ

[h−1(x/aε)]4 dx

[σ(x/aε)]2 L0
t + ε

| log ε|a2
ε

∫ δ

−δ

[h−1(x/aε)]4(Lx
t − L0

t )dx

[σ(x/aε)]2

= rε,δL
0
t + R

ε,δ
t ,

the last identity standing for a definition. By a substitution and (21),

rε,δ = ε

| log ε|aε
∫ δ/aε

−δ/aε

[h−1(y)]4 dy

[σ(y)]2
ε→0∼ ε log(δ/aε)

36| log ε|aε −→ 1

36κ

as ε → 0 because aε = κε. Recalling that I ε
t = rε,δL

0
t + R

ε,δ
t + J

ε,δ
t , we have proved that

a.s.,

for all δ > 0, lim sup
ε→0

sup
[0,T ]

∣∣I ε
t − L0

t /(36κ)
∣∣≤ lim sup

ε→0
sup
[0,T ]

∣∣Rε,δ
t

∣∣.

But |Rε,δ
t | ≤ rε,δ × sup[−δ,δ] |Lx

t − L0
t |, whence

lim sup
ε→0

sup
[0,T ]

∣∣I ε
t − L0

t /(36κ)
∣∣≤ sup

[0,T ]×[−δ,δ]
∣∣Lx

t − L0
t

∣∣/(36κ)

a.s. Letting δ → 0, using Revuz–Yor [33], Corollary 1.8, page 226, completes the step.

Step 6. We finally conclude. We fix t ≥ 0 and recall from Steps 1 and 2 that Zε
t

d= Z̃ε
t =

Kε
ρε
t
. By Step 4, we know that Aε

s → L0
s a.s. for each s ≥ 0, so that Lemma 41 tells us that ρε

t

a.s. converges to τt = inf{u ≥ 0 : L0
u > t}, because t is a.s. not a jump time of (τs)s≥0. Using

that ρε
t is W-measurable, we deduce from Step 3 that for any A> 0,

E
[∣∣Kε

ρε
t
− GDIε

ρε
t

∣∣1{ρε
t ≤A}

]≤ CA

| log ε|2 → 0.

Since ρε
t a.s. tends to τt , one deduces that Z̃ε

t −GDIε
ρε
t

converges in probability to 0. We then

infer from Step 5, using again that ρε
t a.s. tends to τt , that |I ε

ρε
t
− L0

ρε
t
/(36κ)| a.s. tends to 0.
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But (L0
s )s≥0 being continuous, we see that L0

ρε
t

a.s. tends to L0
τt

= t . All this proves that Z̃ε
t ,

and thus also Zε
t , converges in probability, as ε → 0, to �2t , where

�2 = GD

36κ
.

This matrix is positive definite: for ξ ∈R
d \ {0} and �ξ(θ) = �(θ) · ξ ,

ξ∗GDξ =
∫
Rd

[∣∣∇S�ξ (θ)
∣∣2 + 9

∣∣�ξ(θ)
∣∣2]νβ(dθ) ≥ 9

∫
Rd

∣∣�ξ(θ)
∣∣2νβ(dθ)

which cannot vanish, because else we would have �ξ(θ) = 0 for all θ ∈ Sd−1, which is
impossible because �ξ solves 1

2�S�ξ(θ)− β
2 [γ (θ)]−1∇Sγ (θ) · ∇S�ξ (θ) = 9

2�ξ(θ)+ ξ · θ .
�

We now have all the tools to give the following proof.

PROOF OF THEOREM 4(B). Recall first that we know from Lemma 33 that Xt −mβt =
[R3

t �(�t) − r3
0�(θ0) − Yt ] − Mt , from Lemma 34 that for each t ≥ 0,

lim
ε→0

| log ε|−1/2ε1/2[R3
t/ε�(�t/ε) − r3

0�(θ0) + x0 − Yt/ε

]= 0

in probability, and from Lemma 35 that (| log ε|−1/2ε1/2Mt/ε)t≥0
d−→ (�Bt)t≥0 as ε → 0.

We conclude that, as desired, (| log ε|−1/2ε1/2(Xt/ε − mβt/ε)t≥0
f.d.−→ (�Bt)t≥0 as ε → 0.

�

By Lemma 42(i), κ can be computed slightly more explicitly.

REMARK 36. Assume that β = 4 + d .

(i) In Theorem 4(b), � ∈ S+
d is the square root of

1

36κ

∫
Sd−1

[∇∗
S�(θ)∇S�(θ) + 9�(θ)�∗(θ)

]
νβ(dθ),

with νβ defined in Section 3, � introduced in Lemma 32 and with

κ = 1

6

∫ ∞
0

rd−1[�(r)
]−4−d dr.

(ii) If U(v) = (1 + |v|2)1/2, then μβ(dv) = cβ(1 + |v|2)−β/2 dv and mβ = 0, so that we

have (ε1/2| log ε|−1/2Xt/ε)t≥0
f.d.−→ (�Bt)t≥0. Moreover, γ ≡ 1, whence νβ(dθ) = ς(dθ) and

�(θ) = −aθ , where a = 2/(8+d) (a computation shows that �S�(θ) = a(d −1)θ , whence
1
2�S�(θ) = 9

2�(θ) + θ ). Since now ∇S�(θ) = −aπθ⊥ , whence ∇∗
S�(θ)∇S�(θ) = a2πθ⊥ ,

we find

�2 = a2

36κ

∫
Sd−1

[
πθ⊥ + 9θθ∗]ς(dθ)

= a2

36κ

∫
Sd−1

[
Id + 8θθ∗]ς(dθ) = a2

36κ

[∫
Sd−1

(
1 + 8θ2

1
)
ς(dθ)

]
Id .

Observing that
∫
Sd−1

θ2
1ς(dθ) = 1/d , we conclude that � = qId , with q = [9κd(8 + d)]−1/2.
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APPENDIX

We still work in dimension d ≥ 2 in the whole section.

A.1. Ergodicity and convergence in law. We first recall some classical properties of
the velocity process.

LEMMA 37. Assume that β > d and consider the R
d \ {0}-valued velocity process

(Vt )t≥0; see (2).

(i) The measure with density μβ defined in Remark 3 is its unique invariant probability
measure.

(ii) For any φ ∈ L1(Rd,μβ), limT→∞ T −1 ∫ T
0 φ(Vs)ds = ∫

Rd φ dμβ a.s.
(iii) It holds that Vt goes in law to μβ as t → ∞.

PROOF. We denote by L the generator of the velocity process, we have Lϕ(v) =
1
2 [�ϕ(v) − βF(v) · ∇ϕ(v)] for all ϕ ∈ C2(Rd \ {0}), all v ∈ R

d \ {0}. We also denote by
Pt(v,dw) its semi-group: for t ≥ 0 and v ∈ R

d \ {0}, Pt(v,dw) is the law of Vt when V0 = v.
Recalling that μβ(dv) = cβ[U(v)]−β dv and that Lϕ(v) = 1

2 [U(v)]β div([U(v)]−β∇ϕ(v)),
we see that

∫
Rd Lϕ(v)μβ(dv) = 0 for all ϕ ∈ C2(Rd \ {0}), and μβ is an invariant probability

measure. The uniqueness of this invariant probability measure follows from point (iii). In a
few lines below, we will verify the two following points.

(a) There is � :Rd \ {0} → [0,∞) of class C2 such that

lim|v|→0+�(v) = lim|v|→∞�(v) = ∞

and, for some b, c > 0 and some compact set C ⊂ R
d \ {0}, for all v ∈ R

d \ {0}, L�(v) ≤
−b + c1{v∈C}.

(b) There is t0 > 0 such that for any compact set C ⊂ R
d \ {0}, there is αC > 0 and a

probability measure ζC on R
d \ {0} such that for all A ∈ B(Rd \ {0}), infx∈C Pt0(x,A) ≥

αCζC(A).
These two conditions allow us to apply Theorems 4.4 and 5.1 of Meyn–Tweedie [30],

which tell us that (Vt )t≥0 is Harris recurrent, whence point (ii) (by Revuz–Yor [33], Theo-
rem 3.12, page 427, any Harris recurrent process with an invariant probability measure satis-
fies the ergodic theorem) and Law(Vt ) → μβ , whence point (iii). Indeed, in the terminology
of [30], (a) implies condition (CD2) and (b) implies that all compact sets are petite.

Point (a). For some q > 0 to be chosen later, set, for r ∈ (0,∞), g(r) = −q +1{r∈[1,3]} and
ϕ(r) = ∫ r2 y1−d [�(y)]β dy

∫ y
2 g(x)xd−1[�(x)]−β dx. For v ∈R

d \{0}, set �(v) = ϕ(|v|)+m,
for some constant m to be chosen later.

But it holds that ϕ′(r) = r1−d [�(r)]β ∫ r2 g(x)xd−1[�(x)]−β dx, ∇�(v) = ϕ′(|v|)
|v| v, ϕ′′(r) =

g(r) − [d−1
r

− β �′(r)
�(r)

]ϕ′(r), and ��(v) = ϕ′′(|v|) + d−1
|v| ϕ′(|v|), whence F(v) · ∇�(v) =

�′(|v|)
�(|v|) ϕ

′(|v|); see (7). We find that L�(v) = g(|v|)/2.

The integrals
∫ 2

0 g(x)xd−1[�(x)]−β dx and
∫∞

2 g(x)xd−1[�(x)]−β dx converge and are
positive if q > 0 is small enough, so that

lim
r→0

ϕ(r) =
∫ 2

0
y1−d[�(y)

]β dy
∫ 2

y
g(x)xd−1[�(x)

]−β dx = ∞ and

lim
r→∞ϕ(r) =

∫ ∞
2

y1−d[�(y)
]β dy

∫ y

2
g(x)xd−1[�(x)

]−β dx = ∞.
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Hence it holds that lim|v|→0+ �(v) = lim|v|→∞ �(v) = ∞. With the choice m =
−minr>0 ϕ(r) ∈ R, the function � is nonnegative and thus suitable.

Point (b). We will prove, and this is sufficient, that for any compact set C ⊂R
d \ {0}, there

exists a constant κC > 0 such that for all v ∈ C all measurable A ⊂ C, P1(v,A) ≥ κC |A|, |A|
being the Lebesgue measure of A.

Consider a′ > a > 0 such that the annulus D = {x ∈ R
d, a < |x| < a′} contains C. Recall

(2) and that the force F is bounded on D; see Assumption 1. By the Girsanov theorem, for
any A ∈ B(Rd),

P1(v,A) = Pv(V1 ∈ A) ≥ Ev[1{∀s∈[0,1],Vs∈D}1{V1∈A}]
≥ cE[1{∀s∈[0,1],v+Bs∈D}1{v+B1∈A}]

for some constant c > 0, where (Bt )t∈[0,1] is a d-dimensional Brownian motion issued from 0.
But the density g(v,w) of v + B1 restricted to the event that (v + Bs)s∈[0,1] does not get out
of D is bounded below, as a function of (v,w), on C × C, whence the conclusion. �

We recall some facts about the total variation distance: for two probability measures P,Q

on some measurable set E,

‖P − Q‖TV = 1

2
sup

‖φ‖∞≤1

∣∣∣∣
∫
E
φ(x)(P − Q)(dx)

∣∣∣∣
= inf

{
P(X 	= Y) : Law(X) = P,Law(Y ) = Q

}
.

(22)

Furthermore, if P and Q have some densities f and g with respect to some measure R on E,
then

(23) ‖P − Q‖TV = 1

2

∫
E

∣∣f (x) − g(x)
∣∣R(dx).

LEMMA 38. We consider the Sd−1-valued process (�̂t )t≥0, solution to (4).

(i) The measure νβ(dθ) = aβ [γ (θ)]−βς(dθ) on Sd−1 is its unique invariant probability
measure.

(ii) There is C > 0 and λ > 0 such that for all t ≥ 0, all measurable and bounded function
φ : Sd−1 →R,

sup
θ0∈Sd−1

∣∣∣∣Eθ0

[
φ(�̂t )

]−
∫
Sd−1

φ dνβ

∣∣∣∣≤ C‖φ‖∞e−λt .

(iii) There exists a (unique in law) stationary eternal version (�̂�
t )t∈R of this Sd−1-valued

process process and it holds that Law(�̂�
t ) = νβ for all t ∈ R. We denote by � ∈ P(H), where

H = C(R,Sd−1), the law of this stationary process.
(iv) Consider the process (�̂t )t≥0 starting from some given θ0 ∈ Sd−1. Fix k ≥ 1 and

consider some positive sequences (t1
n)n≥1, . . . , (tkn)n≥1, all tending to infinity as n → ∞. We

can find, for each A ≥ 1 and each n ≥ 1, an i.i.d. family of �-distributed eternal processes
(�̂

�,1,n,A
t )t∈R, . . . , (�̂�,k,n,A

t )t∈R such that, defining pA(t
n
1 , . . . , t

n
k ) by the formula

P
[
(�̂(tn1 +t)∨0, . . . , �̂(tn1 +···+tnk +t)∨0)t∈[−A,A] = (�̂�,1,n,A

t , . . . , �̂
�,k,n,A
t

)
t∈[−A,A]

]
,

it holds that limn→∞ pA(t
n
1 , . . . , t

n
k ) = 1.

PROOF. We recall that the generator L̂ of the (�̂t )t≥0 is given, for ϕ ∈ C2(Sd−1) and
θ ∈ Sd−1, by L̂ϕ(θ) = 1

2 [�Sϕ(θ) − β
∇Sγ (θ)
γ (θ)

· ∇Sϕ(θ)] = 1
2 [γ (θ)]β divS([γ (θ)]−β∇Sϕ(θ)),
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so that νβ(dθ) = aβ [γ (θ)]−βς(dθ) is an invariant probability measure. The uniqueness
of this invariant probability measure follows from point (ii). We denote by Qt(x,dy) the
semi-group, defined as the law of �̂t when �̂0 = x ∈ Sd−1. Grigor’yan [17], Theorem 3.3,
page 103, tells us that Qt(x,dy) has a density qt (x, y) with respect to the uniform measure
ς on Sd−1, which is positive and smooth as a function of (t, x, y) ∈ (0,∞) × Sd−1 × Sd−1.

For (ii), it suffices that b = supx,x′∈Sd−1
‖Q1(x, ·) − Q1(x

′, ·)‖TV < 1, because then the
semi-group property implies that ‖Qt(x, ·) − νβ‖TV ≤ b�t�, whence the result by (22). But,
setting a = min{q1(x, y) : x, y ∈ Sd−1} > 0 and recalling (23), we have

∥∥Q1(x, ·) − Q1
(
x′, ·)∥∥TV = 1

2

∫
Sd−1

∣∣q1(x, y) − q1
(
x′, y

)∣∣ς(dy)

= 1

2

∫
Sd−1

∣∣(q1(x, y) − a
)− (q1

(
x′, y

)− a
)∣∣ς(dy),

which is bounded by 1
2

∫
Sd−1

[(q1(x, y) − a) + (q1(x
′, y) − a)]ς(dy) = 1 − a < 1.

Point (iii) follows from the Kolmogorov extension theorem. Indeed, consider, for each
n ≥ 0, the solution (�̂n

t )t≥−n starting at time −n with initial law νβ and observe that for all
m> n, Law((�̂n

t )t≥−n) = Law((�̂m
t )t≥−n) because Law(�̂m−n) = νβ .

Next, we consider n large enough so that min{tn1 , . . . , tnk } ≥ 2A. We will check by induction

that for all � = 1, . . . , k, ‖�n,�
A − �⊗�

A ‖TV ≤ pA,�,n where �A = Law((�̂�
t )t∈[0,2A]), where

�
n,�
A ∈ P(C([0,2A],Sd−1)

�) is the law of ((�̂tn1 −A+t )t∈[0,2A], . . . , (�̂tn1 +···+t�k−A+t )t∈[0,2A]),
and where

pA,�,n = C

�∑
i=1

exp
(−λ

(
tni − 2A

))
,

with C > 0 and λ > 0 introduced in (ii). By (22), this will prove point (iv). We re-
call that, by (ii), supθ0∈Sd−1

‖Qt(θ0, ·) − νβ‖TV ≤ C exp(−λt), and we introduce �A,x ∈
P(C([0,2A],Sd−1)) the law of (�̂t )t∈[0,2A] when starting from �̂0 = x ∈ Sd−1.

Writing �
n,1
A = ∫

Sd−1
Qtn1 −A(θ0,dx)�A,x(·) and �A = ∫

Sd−1
νβ(dx)�A,x(·), we find that

indeed,
∥∥�n,1

A − �A

∥∥
TV ≤ ∥∥Qtn1 −A(θ0, ·) − νβ

∥∥
TV ≤ C exp

(−λ
(
tn1 − A

))≤ pA,1,n.

Assuming next that ‖�n,�−1
A − �

⊗(�−1)
A ‖TV ≤ pA,�−1,n for some � ∈ {2, . . . , k}, we write

�
n,�
A

(
dθ(1), . . . ,dθ(�))=

∫
x∈Sd−1

�
n,�−1
A

(
dθ(1), . . . ,dθ(�−1))

× Qtn� −2A
(
θ
(�−1)
2A ,dx

)
�A,x

(
dθ(�)),

�⊗�(dθ(1), . . . ,dθ(�))=
∫
x∈Sd−1

�
⊗(�−1)
A

(
dθ(1), . . . ,dθ(�−1))νβ(dx)�A,x

(
dθ(�)).

We conclude that
∥∥�n,�

A − �⊗�
A

∥∥
TV ≤ sup

y∈Sd−1

∥∥Qtn� −2A(y, ·) − νβ
∥∥

TV + ∥∥�n,�−1
A − �

⊗(�−1)
A

∥∥
TV

≤ Ce−λ(tn� −2A) + pA,�−1,n,

which equals pA,�,n as desired. �
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A.2. On Itô’s measure. We recall that Itô’s measure � ∈ P(E) was introduced in Nota-
tion 15.

LEMMA 39. (i) For �-almost every e ∈ E ,
∫ �(e)/2

0 |e(u)|−2 du = ∞.

(ii) For all φ ∈ L1(R),
∫
E [∫ �(e)0 φ(e(u))du]�(de) = ∫

R
φ(x)dx.

(iii) For all measurable φ : R→R+,
∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]2

�(de) ≤ 4
[∫

R

√|x|φ(x)dx
]2

.

(iv) For q < 3/2, for �-almost every e ∈ E , we have
∫ �(e)

0 |e(u)|−q du < ∞.

PROOF. For (i), it suffices to use that
∫

0+(r| log r|)−1 dr = ∞ and Lévy’s modulus of
continuity (see Revuz–Yor [33], Theorem 2.7, p. 30), which implies that for �-a.e. e ∈ E ,
lim supt↘0 supr∈[0,t](2r| log r|)−1|e(r)|2 = 1.

Next (iv) follows from (iii), since the integral
∫ �(e)

0 |e(u)|−q du is finite if and only if∫ �(e)
0 |e(u)|−q1{|e(u)|≤1} du < ∞ (for any e ∈ E) and since

∫
E

[∫ �(e)

0

∣∣e(u)∣∣−q1{|e(u)|≤1} du
]2

�(de) ≤ 4
[∫ 1

−1
|x|1/2−q dx

]2
< ∞.

We now check points (ii) and (iii). We recall that for (Wt)t≥0 a Brownian motion, for
(Lx

t )t≥0,x∈R its family of local times, for (τt )t≥0 the inverse of (L0
t )t≥0, the second Ray–

Knight theorem (see Revuz–Yor [33], Theorem 2.3, p. 456) tells us that (Lw
τ1
)w≥0 is a

squared Bessel process with dimension 0 issued from 1. Hence, for some Brownian mo-
tion (Bw)w≥0, we have Lw

τ1
= 1 + 2

∫ w
0

√
Lw

τ1
dBv , so that E[Lw

τ1
] = 1 and E[(Lw

τ1
− 1)2] =

4E[(∫ w0
√
Lw

τ1
dBv)

2] = 4
∫ w

0 E[Lv
τ1

]dv = 4w. By symmetry, for any w ∈ R, we have

E[Lw
τ1

] = 1 and E[(Lw
τ1

− 1)2] = 4|w|. Applying (15) with t = 1, we see that
∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]
�(de) = E

[∫ 1

0

∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]
M(ds,de)

]

= E

[∫ τ1

0
φ(Ws)ds

]
.

But finally, by the occupation times formula and the Fubini theorem,

E

[∫ τ1

0
φ(Ws)ds

]
= E

[∫
R

φ(w)Lw
τ1

dw
]

=
∫
R

φ(w)dw

which proves (ii). Similarly,
∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]2

�(de) = E

[(∫ 1

0

∫
E

[∫ �(e)

0
φ
(
e(u)

)
du
]
M̃(ds,de)

)2]

= E

[(∫ τ1

0
φ(Ws)ds −

∫
R

φ(w)dw
)2]

= E

[(∫
R

φ(w)
(
Lw

τ1
− 1
)

dw
)2]

=
∫
R

∫
R

φ(w)φ(u)E
[(
Lw

τ1
− 1
)(
Lu

τ1
− 1
)]

dw du.

We complete the proof of (iii) using that E[(Lw
τ1

− 1)2] = 4|x| and the Cauchy–Schwarz
inequality. �
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A.3. On Bessel processes.

LEMMA 40. (i) Fix δ ∈ (0,2), consider a Brownian motion (Wt)t≥0, introduce the in-

verse ρt of At = (2 − δ)−2 ∫ t
0 W

−2(1−δ)/(2−δ)
s 1{Ws>0} ds and set Rt = (Wρt )

1/(2−δ)
+ . Then

(Rt )t≥0 is a Bessel process with dimension 2 − δ issued from 0.
(ii) For (Rt )t≥0 a Bessel process with dimension δ > 0, a.s., for all t ≥ 0 such that Rt = 0

and all h > 0, we have
∫ t+h
t R−2

s ds = ∞.

PROOF. Point (i) is more or less included in Donati–Roynette–Vallois–Yor [13], Corol-
lary 2.2, who state that for (Rt )t≥0 a Bessel process with dimension δ ∈ (0,2) issued from 0,
for Ct = (2− δ)2 ∫ t

0 R
2(1−δ)
s ds and for Dt the inverse of Ct , (RDt )

2−δ is a reflected Brownian
motion. Moreover, this is clearly an if and only if condition.

But for Ct = (2− δ)2 ∫ t
0 R

2(1−δ)
s ds = (2− δ)2 ∫ t

0 (Wρs )
2(1−δ)/(2−δ)
+ ds = ∫ ρt

0 1{Wu>0} du and
for Dt its inverse, we have Dt = AEt , where Et is the inverse of

∫ t
0 1{Ws>0} ds. It is then clear

that R2−δ
Dt

= (WρDt
)+ = (WEt )+ is a reflected Brownian motion.

Point (ii) follows from Khoshnevisan [23], (2.1a), page 1299, that asserts that a.s., for all
T > 0, lim suph↘0 supt∈[0,T ][h(1 ∨ log(1/h))]1/2|Rt+h − Rt | = √

2. Indeed we have that∫
0+[h(1 ∨ log(1/h))]−1 dh = ∞. �

A.4. Inverting time changes. We recall a classical result about the convergence of in-
verse functions.

LEMMA 41. Consider, for each n ≥ 1, a continuous increasing bijective function (an
t )t≥0

from [0,∞) into itself, as well as its inverse (rnt )t≥0. Assume that (an
t )t≥0 converges pointwise

to some function (at )t≥0 such that lim∞ at = ∞, denote by rt = inf{u ≥ 0 : au > t} its right-
continuous generalized inverse and set J = {t ∈ [0,∞) : rt− < rt }. For all t ∈ [0,∞) \ J , we
have limt→∞ rnt = rt .

A.5. Technical estimates. Finally, we study the functions h,ψ,σ introduced in Nota-
tion 9. We recall that h(r) = (β + 2 − d)

∫ r
r0
u1−d [�(u)]β du is an increasing bijection from

(0,∞) into R, that h−1 :R → (0,∞) is its inverse function. We have set σ(w) = h′(h−1(w))

and ψ(w) = [σ(w)h−1(w)]2, both being functions from R to (0,∞).

LEMMA 42. Fix β > d − 2 and set α = (β + 2 − d)/3. There are some constants 0 <

c < C such that the results below are valid for all w ∈ R (except in point (v)).

(i) If β > d , κ = ∫
R
[σ(z)]−2 dz = (β + 2 − d)−1 ∫∞

0 rd−1[�(r)]−β dr < ∞.
(ii) If β > 1 + d , m′

β = (
∫
R
h−1(z)[σ(z)]−2 dz)/(

∫
R
[σ(z)]−2 dz).

(iii) If β = 4 + d , [h−1(w)]4

[σ(w)]2 ≤ C(1 + |w|)−1 and
∫ x
−x

[h−1(z)]4 dz
[σ(z)]2

x→∞∼ logx
36 .

(iv) If β ∈ [d,4 + d], c(1 + w)21{w>0} ≤ ψ(w) ≤ C(1 + |w|)2.
(v) If β ∈ [d,4 + d), limη→0 η

2ψ(w/η) = (β + 2 − d)2w2 for any w > 0.
(vi) If β > d − 2, [σ(w)]−2 ≤ C(1 + |w|)−2(β+1−d)/(β+2−d).

(vii) If β = d ,
∫ x
−x[σ(z)]−2 dz

x→∞∼ logx
4 .

(viii) If β ∈ [d,4 + d), 1+h−1(w)

[σ(w)]2 ≤ C(1 + w)1/α−21{w≥0} + C(1 + |w|)−21{w<0}.
(ix) If β ∈ [d,4 + d), for all m ∈ R, we have

lim
η→0

η1/α−2 h
−1(w/η) − m

[σ(w/η)]2 = (β + 2 − d)−2w1/α−21{w≥0}.
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(x) If β ∈ (d − 2, d) and aε = ε(β+2−d)/2,
√
εh−1(w/aε) → w

1/(β+2−d)
+ uniformly on

compact sets.
(xi) If β ∈ (d − 2, d) and aε = ε(β+2−d)/2,

lim
ε→0

ε
[
aεσ (w/aε)

]−2 = (β + 2 − d)−2w−2(β+1−d)/(β+2−d)1{w>0}.

PROOF. The three following points will be of constant use.
(a) We have h−1(w) ∼ w1/(β+2−d), σ(w) ∼ (β + 2 − d)w(β+1−d)/(β+2−d) and ψ(w) ∼

(β + 2 − d)2w2 as w → ∞.
(b) If d ≥ 3, there are c, c′, c′′ > 0 such that, as w → −∞, h−1(w) ∼ c|w|−1/(d−2),

σ(w) ∼ c′|w|(d−1)/(d−2) and ψ(w) ∼ c′′|w|2.
(c) If d = 2, there are a function ε satisfying limw→−∞ ε(w) = 0 and c, c′, c′′ > 0 such

that h−1(w) = exp[−c|w|(1+ε(w))], such that σ(w) ∼ c′ exp[c|w|(1+ε(w))] as w → −∞
and limw→−∞ ψ(w) = c′′.

To check (a), it suffices to note that by Assumption 1, h(r) ∼ rβ+2−d as r → ∞. Next, (b)
follows from the fact that h(r) ∼ −cr2−d as r → 0 (with c = [�(0)]β(β + 2 − d)/(d − 2) >
0), while (c) uses that h(r) ∼ −c log(1/r) (with c = β[�(0)]β , the result then holds with
ε(w) = c[logh−1(w)]/w − 1, c = 1/c, c′ = c and c′′ = c2).

We now prove (i). Using the substitution r = h−1(z),

κ =
∫
R

dz

[h′(h−1(z))]2 =
∫ ∞

0

dr

h′(r)
= 1

β + 2 − d

∫ ∞
0

rd−1

[�(r)]β dr,

which is finite if and only if d − 1 − β < −1, that is, β > d . Recall that � : [0,∞) → (0,∞)

is supposed to be continuous and that �(r) ∼ r as r → ∞.
We proceed similarly for (ii). With m′

β defined in Section 3,
∫
R
h−1(z)[σ(z)]−2 dz∫
R
[σ(z)]−2 dz

=
∫∞

0 r[h′(r)]−1 dr∫∞
0 [h′(r)]−1 dr

=
∫∞

0 rd [�(r)]−β dr∫∞
0 rd−1[�(r)]−β dr

= m′
β.

For (iii), we see that when β = 4 + d , (a) implies that [h−1(w)]4/[σ(w)]2 ∼ 36−1w−1

as w → ∞, whence the bound [h−1(w)]4/[σ(w)]2 ≤ C(1 + |w|)−1 on R+ and the estimate∫ x
0

[h−1(w)]4 dw
[σ(w)]2

x→∞∼ logx
36 . If d ≥ 3, (b) tells us that [h−1(w)]4/[σ(w)]2 ∼ c|w|−2(d+1)/(d−2)

as w → −∞ (for some constant c > 0), and we conclude using that 2(d + 1)/(d − 2) > 1. If
d = 2, (c) gives us [h−1(w)]4/[σ(w)]2 ∼ [c′]−2 exp(−6c|w|(1 + ε(w))) as w → −∞, from
which the estimates follow.

Point (iv) immediately follows from (a) (concerning the lowerbound and the upperbound
on R+) and (b) or (c) (concerning the upperbound on R−).

Point (v) is a consequence of (a).
Point (vi) follows from (a) (concerning the bound on R+) and from (b) (and the fact that

(d − 1)/(d − 2) > (β + 1 − d)/(β + 2 − d)) or (c).
With the same arguments as in (vi), we see that

∫ x
−x[σ(w)]−2 dw

x→∞∼ ∫ x
0 [σ(w)]−2 dw,

which is equivalent to [logx]/4 as x → ∞ by (a), whence (vii).
Points (viii) and (ix) follow from (b) or (c) (when w < 0) or (a) and using the fact that

1/(β + 2 − d) − 2(β + 1 − d)/(β + 2 − d) = 1/α − 2 (when w ≥ 0).
Points (x) and (xi) follow from (a) (when w ≥ 0) and (b) or (c) (when w < 0). Observe that

in (x), the convergence is uniform on compact sets for free by the Dini theorem, since for each
ε > 0, w → √

εh−1(w/aε) is nondecreasing and since the limit function w → w
1/(β+2−d)
+ is

continuous and nondecreasing. �
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