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FINITELY DEPENDENT PROCESSES ARE FINITARY

BY YINON SPINKA
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We show that any finitely dependent invariant process on a transitive
amenable graph is a finitary factor of an i.i.d. process. With an additional as-
sumption on the geometry of the graph, namely that no two balls with differ-
ent centers are identical, we further show that the i.i.d. process may be taken
to have entropy arbitrarily close to that of the finitely dependent process. As
an application, we give an affirmative answer to a question of Holroyd (Ann.
Inst. Henri Poincaré Probab. Stat. 53 (2017) 753–765).

1. Introduction. Consider a random process X = (Xv)v∈V living on the vertex set V of
an infinite graph G. The process X is said to be finitely dependent if its restrictions to sets
which are sufficiently separated (at least some fixed distance apart) are independent. A trivial
example of a finitely dependent process is a process Y = (Yv)v∈V in which all random vari-
ables are independent. A natural question is then how close is a finitely dependent process
to such an independent process? Before addressing this question, we first observe that “local
functions” of an independent process Y are always finitely dependent. That is, if X is ob-
tained from Y by computing each Xv as a function only of the random variables Yu for which
u is at a uniformly bounded distance from v, then X is finitely dependent.

Suppose now that G is transitive and henceforth restrict attention to processes X which are
invariant under all automorphisms of G (or under a transitive subgroup of automorphisms).
In particular, the independent process Y considered above must now be an i.i.d. process, that
is, in addition to being independent, the {Yv}v are also identically distributed. If X is obtained
from Y by applying the same local function at each vertex v (i.e., the function applied at u is
the composition of the function applied at v with any automorphism taking u to v), then X

is said to be a block factor of Y . Thus, block factors of i.i.d. processes provide a recipe for
constructing invariant finitely dependent processes.

It was a long-standing open problem [14, 15] to determine whether block factors of i.i.d.
processes are the only (invariant) finitely dependent processes on Z, until finally an example
was given by Burton–Goulet–Meester [4] of a 1-dependent process which is not a block factor
of any i.i.d. process. Recently, Holroyd and Liggett [12] showed that proper colorings distin-
guish between block factors of i.i.d. processes and finitely dependent processes—no proper
coloring of Z is a block factor of an i.i.d. process, but finitely dependent proper colorings
exist.

Thus, it is not true that every finitely dependent process is a block factor of an i.i.d. process.
In other words, given a finitely dependent process X, one cannot in general hope to find an
i.i.d. process Y and an invariant rule for computing X from Y , which allows to determine
the value of Xv by looking at Y on a fixed-size window around v. The goal of this paper is
to show the “next best thing,” namely that it is possible to determine Xv by looking at Y on
a variable-sized window around v, where the size of the window, though always finite, may
vary according to the input Y .

We say that X is a finitary factor of Y if there is an invariant rule which allows to compute
the value of X at any vertex v by only looking at variables Yu for which u is within a certain
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finite, but random, distance from v (formal definitions are given below). Thus, a block factor
is a finitary factor in which the required distance is not only finite, but is determistically
bounded by some constant. The main contribution of this paper is to prove that every finitely
dependent process is a finitary factor of an i.i.d. process. This result holds on any amenable
graph G. When it is further assumed that no two balls in G with different centers are identical,
it is also possible to control the entropy of the i.i.d. process involved, and the result becomes
that every finitely dependent process is a finitary factor of an i.i.d. process with only slightly
larger entropy.

1.1. Definitions and main result. Let V be a countable set, let G be a graph on vertex set
V and let � be a group acting on V. A random field (or random process) on G is a collection
of random variables X = (Xv)v∈V indexed by the vertices of G and defined on a common
probability space. We say that X is �-invariant if its distribution is not affected by the action
of �, that is, if (Xγv)v∈V has the same distribution as X for any γ ∈ �. We say that X is
k-dependent if (Xu)u∈U and (Xv)v∈V are independent for any two sets U,V ⊂ V such that
dist(u, v) > k for all u ∈ U and v ∈ V . We say that X is finitely dependent if it is k-dependent
for some finite k.

Suppose now that G is a transitive locally finite graph and that � is a subgroup of the
automorphism group of G. Let S and T be two measurable spaces, and let X = (Xv)v∈V and
Y = (Yv)v∈V be S-valued and T -valued �-invariant random fields. A coding from Y to X is a
measurable function ϕ : T V → SV that is �-equivariant, that is, commutes with the action of
every element of �, and satisfies that ϕ(Y ) and X are identical in distribution. Such a coding
is also called a factor map from Y to X, and when such a coding exists, we say that X is a
�-factor of Y .

Suppose now that S and T are countable. Let 0 ∈ V be a distinguished vertex. The coding
radius of ϕ at a point y ∈ T V, denoted by R(y), is the minimal integer r ≥ 0 such that
ϕ(y′)0 = ϕ(y)0 for all y′ ∈ T V which coincide with y on the ball of radius r around 0 in the
graph-distance, that is, y′

v = yv for all v ∈ V such that dist(v,0) ≤ r . It may happen that no
such r exists, in which case, R(y) = ∞. Thus, associated to a coding is a random variable
R = R(Y ) which describes the coding radius. While S will always be at most countable, we
will allow T to be a larger space, in which case the coding radius may be similarly defined.1

A coding is called finitary if R is almost surely finite. When there exists a finitary coding
from Y to X, we say that X is a finitary �-factor of Y .

A graph is said to be amenable if inf |∂V |/|V | = 0, where the infimum is over all finite
nonempty subsets V of V, and where ∂V denotes the edge-boundary of V .

THEOREM 1.1. Let G be a transitive amenable graph and let � be a transitive group of
automorphisms of G. Then any finitely dependent �-invariant random field on G is a finitary
�-factor of an i.i.d. process.

With a minor additional constraint on the geometry of the graph G, we can further control
the entropy of the i.i.d. process used in the coding (see Section 3.1 for the definition of
entropy). The condition we require is that

(1) �r(u) 	= �r(v) for any distinct u, v ∈ V and r ≥ 0,

where �r(u) is the ball of radius r around u.

1We will only be concerned with spaces T which are finite, countable or of the form T1 × T2 × · · · for finite
sets (Ti). In the latter case, the coding radius is the smallest r for which there exists n such that ϕ(y′)0 = ϕ(y)0
for all y′ having the property that y′

v,i = yv,i for all (v, i) such that dist(v,0) ≤ r and 1 ≤ i ≤ n.
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THEOREM 1.2. Let G be a transitive amenable graph satisfying (1), let � be a transitive
group of automorphisms of G, and let X be a finite-valued finitely dependent �-invariant
random field on G. Then for any ε > 0 there exists an i.i.d. process Y with entropy h(Y ) <

h(X) + ε such that X is a finitary �-factor of Y .

Let us make some remarks about how the two theorems compare to one another. In The-
orem 1.2, S is finite (note the assumption that X is finite-valued) and, in particular, X has
finite entropy, while in Theorem 1.1, S may be countable and X may have infinite entropy. In
Theorem 1.2, Y has finite entropy so that T is countable, whereas Theorem 1.1 may require a
larger space T for the conclusion to hold. In fact, in the absence of condition (1), even when
S is finite, it might not be possible to have T countable (see Remark 4 in Section 7).

Let us also remark that, while the theorems do not assume connectivity of the graph, there
is no loss of generality in assuming this, since transitivity implies that the connected compo-
nents are isomorphic and finite dependence implies that the random field is independent on
different components. Thus, the same coding can be used for all components.

1.2. Discussion. Finite dependence and finitary factors have applications in computer
science. For example, if the graph G represents machines in a network and the random field
X represents a common plan in which each machine v is assigned a specific role Xv , then fi-
nite dependence provides certain security benefits in the face of an attacker (if someone gains
access to some machines, they learn nothing about the roles of far away machines, thereby
confining the security breach), and being a finitary factor of an i.i.d. process provides relia-
bility (e.g., no single point of failure) as it means that the machines can determine their own
roles in a distributed manner by following a common protocol, while using local randomness
and communicating with finitely many other machines. See, for example, [19, 22] for more
information.

The finitary coding properties of finitely dependent processes on G = Z, and in some
cases on G = Zd with d ≥ 2, have been studied in various contexts. We give a brief account
of these works. We are unaware of any works regarding finitary factors for finitely dependent
processes on other graphs.

A result by Smorodinsky [23] shows that every stationary (i.e., translation-invariant)
finitely dependent process on Z is finitarily isomorphic (a stronger notion than being a finitary
factor) to an i.i.d. process. This result is not for the full autormorphism group of the graph
(which includes reflections), but rather only for the group of translations. In this respect, The-
orem 1.2 strengthens this result (if one is content with a finitary factor, rather than a finitary
isomorphism), as it provides a finitary factor which is also reflection invariant whenever the
finitely dependent process is such. The proof in [23] is based on the so-called marker-filler
method of Keane and Smorodinsky [16, 17]. Unfortunately, only a brief sketch of the proof
is provided in [23] and the details seem to be missing (after some initial steps, Smorodinsky
says that the rest of the proof proceeds along the same lines as in [17] with some necessary
modifications). Our proof is based on a different approach; see Section 2 for an outline.

The question of whether there exists a stationary finitely dependent process which is not a
block factor of any i.i.d. process was raised by Ibragimov and Linnik [14, 15] in 1965. Some
progress on this question was made [1, 2] until it was finally resolved in 1993 by Burton–
Goulet–Meester [4] who gave the first example of a stationary finitely dependent process
which is not a block factor of an i.i.d. process. In fact, they showed such an example in which
the finitely dependent process is a 1-dependent hidden-Markov process with finite energy.
Some history about finitely dependent processes that cannot be written as block factors is
given in [12].

Holroyd and Liggett [12] constructed a stationary 1-dependent 4-coloring and a stationary
2-dependent 3-coloring of Z, neither of which is a block factor of an i.i.d. process (indeed, no
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coloring is such [12]). Holroyd [8] subsequently showed that the 1-dependent 4-coloring is a
finitary factor of an i.i.d. process. Regarding the analogous statement for the 2-dependent 3-
coloring, Holroyd writes in [8] that “one may attempt to apply our method to the 2-dependent
3-coloring, but we will see that it meets a fundamental obstacle in this case.” Our result
shows that either coloring is a finitary factor of an i.i.d. process (with slightly larger entropy),
answering affirmatively question (iii) in [8, Open problems]. In fact, the two colorings are
also reflection invariant, and hence the finitary factors may also be taken to commute with
reflections. Related aspects of these two colorings were studied in [10].

In a subsequent paper [11], Holroyd and Liggett constructed, for any q ≥ 4, a 1-dependent
q-coloring of Z which is invariant under translations and reflections and is also symmetric
under permutations of the colors. It was shown in [9] that each of these colorings is a finitary
factor of an i.i.d. process (with exponential tail on the coding radius). Our result shows that
each of these colorings is a finitary factor of an i.i.d. process, where the factor map commutes
with all automorphisms of Z and the i.i.d. process has entropy only slightly larger than the
coloring.

In [12], Holroyd and Liggett also constructed stationary finitely dependent colorings of
Zd with d ≥ 2. More specifically, they constructed a stationary 1-dependent 4d -coloring of
Zd and a stationary finitely dependent 4-coloring of Zd . However, unlike the above one-
dimensional colorings, these colorings are only translation-invariant and not automorphism-
invariant. In fact, it is still unknown whether there exists a finitely dependent coloring of Zd

(d ≥ 2) which is invariant under all automorphisms of Zd .
In the same paper [12], Holroyd and Liggett also investigated the existence of stationary

finitely dependent processes on Z which are supported on a given shift of finite type. They
showed that for any reasonably nondegenerate (namely, nonlattice) shift of finite type S on
Z, there exists a stationary finitely dependent process which almost surely belongs to S . It
was later shown [9] that there exists such a process which is also a finitary factor of an i.i.d.
process (with exponential tail on the coding radius).

A block factor is precisely a finitary factor with bounded coding radius. Given a finitary
factor which is not a block factor, it is natural to wonder about the typical value of the coding
radius. As we have mentioned, the 1-dependent 4-coloring of Z from [12], which is not a
block factor of any i.i.d. process, was shown in [8] to be a finitary factor of an i.i.d. process.
This finitary factor was shown to have (at least) power-law tail on the coding radius, thus
yielding a perhaps infinite expected coding radius. Holroyd–Hutchcroft–Levy [9] showed
that there exist finitely dependent colorings of Z which are finitary factors of i.i.d. processes
with exponential tail on the coding radius. Indeed, they showed that such a k-dependent q-
coloring exists when (k, q) is either (1,5), (2,4) or (3,3). On the other hand, it is believed [8,
9] that when (k, q) is (1,4) or (2,3), no k-dependent q-coloring is a finitary factor of an i.i.d.
process with finite expected coding radius. We mention that optimal tails for the coding radius
of colorings of Zd (which are not necessarily finitely dependent) and shifts of finite type on
Z have been studied in [13].

Our main theorem gives no information about the coding radius beyond its almost-sure
finiteness. Indeed, in light of the above discussion, it would seem that for an arbitrary finitely
dependent process on Z, there is not much hope to obtain a finitary factor with finite expected
coding radius. Still, some information about the coding radius may be extracted from the
proof given here (see Remark 3). For example, for 1-dependent processes on Z, the finitary
factor provided by Theorem 1.1 has a coding radius R satisfying that P(R > r) ≤ 8/r for all
r . In the particular case of the 1-dependent 4-coloring of [12], this improves the power in the
power-law bound shown in [8] (to an optimal power if the prediction above is indeed correct).

To the best of our knowledge, beyond Smorodinsky’s result on Z, there do not exist any
general results on the finitary coding properties of finitely dependent processes. In particular,



2092 Y. SPINKA

Theorem 1.1 and Theorem 1.2 are new for any amenable graph G other than Z, and also for
G = Z in the case when � is the full automorphism group of Z. Finally, we mention that the
situation for nonamenable graphs is still poorly understood, for example, on a regular tree
(of degree at least three), it is not even known whether every automorphism-invariant finitely
dependent process is a (nonfinitary) factor of an i.i.d. process [20].

1.3. Notation. Throughout the paper, G is always assumed to be an infinite, transitive,
locally finite, connected graph on a countable vertex set V, and � is a subgroup of the au-
tomorphism group of G that acts transitively on V. The full automorphism group of G is
denoted by Aut(G). The graph distance in G is denoted by dist(·, ·). For sets U,V ⊂ V, we
write dist(U,V ) := minu∈U,v∈V dist(u, v) and dist(u,V ) := dist({u},V ). For r ≥ 0, denote
V +r := {u ∈ V : dist(u,V ) ≤ r} and V −r := {u ∈ V : dist(u,V c) > r}. The ball of radius r

around v is denoted by �r(v) := {v}+r . The neighborhood of V is N(V ) := V +1 \V and the
edge-boundary of V is ∂V := {{u, v} ∈ E(G) : v ∈ V,u /∈ V }.

All logarithms are taken to be in base 2 and we use the convention that 0 log 0 is 0.

2. Outline of proof. Our goal is to express X, a finitely dependent invariant process,
as a finitary factor of an i.i.d. process Y . The construction of the finitary coding involves
the use of three sources of randomness: a random number of random bits located at each
vertex, a so-called cell process, and a random total order on V. The first of these three will
simply be given by an i.i.d. process, denoted Y bits, while the latter two will be obtained as
finitary factors of different i.i.d. processes, denoted Y cell and Y ord. In turn, Y will be a triplet
Y = (Y bits, Y cell, Y ord) consisting of three mutually independent i.i.d. processes.

To illuminate the main ideas behind our construction, we provide a sketch of the proof
below, explaining separately three ingredients:

1. Constructing a finitary coding: The basic and most essential part of the construction
is how to obtain X as a finitary factor of Y when Y is allowed to have infinite entropy (this is
the setting of Theorem 1.1). In this case, Y bits

v and Y ord
v may be taken to be uniform random

variables in [0,1], and the total order may be taken to be the one induced by the usual order
on Y ord

v .
2. Controlling the entropy: The second part is how to control the entropy of the Y bits

process, requiring only slightly more entropy than that of X. To postpone dealing with the
issue of controlling the entropy of Y ord, we shall assume in this part of the proof outline
that the vertices of G can be deterministically ordered in a �-invariant manner so that Y ord

may be disregarded entirely (e.g., it can be taken to be a constant process). For example,
the lexicographical order is such an ordering when G is the graph Zd and � is the group of
translations.

3. Constructing a random order: The third part is how to allow for graphs G and
groups � which do not admit such a deterministic order. This is of course the case for general
graphs, but it may also be the case for simpler graphs, such as Z or Zd , when � is the full
automorphism group of G. In these cases, we are led to consider random orders with suitable
properties.

Already the first part above relies on the aforementioned cell process. Before introducing
this process, it is convenient to observe that it suffices to prove Theorem 1.1 and Theorem 1.2
for 1-dependent random fields. To see this, let G⊗k denote the graph on vertex set V in which
two vertices are adjacent if their distance in G is at most k. It is immediate from the definitions
that X is k-dependent as a random field on G if and only if it is 1-dependent as a random
field on G⊗k . Since any automorphism of G is also an automorphism of G⊗k , and since G⊗k

is amenable and satisfies (1) whenever G is such, we see that we may indeed assume that X
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is 1-dependent. This assumption, though not at all essential, is convenient as it obviates the
need to work with a different connectivity than the usual connectivity in G.

A cell process is a random sequence A = (A1,A2, . . . ) of subsets of V satisfying the
following properties almost surely:

• A1 ⊂ A2 ⊂ A3 ⊂ · · · .
• A1 ∪ A2 ∪ · · · = V.
• For each n ≥ 1, all connected components of An are finite.

We will obtain a cell process A as a finitary factor of an i.i.d. process Y cell with arbitrarily
small entropy. We do not explain here how this is done and refer the reader to Section 4 for
more details and to Figure 1 for an illustration of the construction.

(1) Constructing a finitary coding: We construct a realization of X as a finitary factor
of Y in infinitely many steps with the idea that at the end of step n ∈ {1,2, . . . }, we will
have defined X on the region An. In the first step, we sample X on the set A1—this is
particularly simple as the cells in A1 are at pairwise distance at least 2, and so, due to the
1-dependence assumption on X, each cell in A1 can be sampled independently. Next, at each
step n ∈ {2,3, . . . }, we sample X on the region An \ An−1, conditioned on the value of X

on An−1, which has already been sampled in the previous steps—the key observation here is
that, due again to the 1-dependence assumption on X, the values of X on different cells in
An are conditionally independent—indeed, if {Vi}i are at pairwise distance at least 2 from
one another, then for any sets Ui ⊂ Vi , given {XUi

}i , one has that {XVi
}i are mutually condi-

tionally independent. Since all the cells of every An are finite, the above steps can be carried
out in a finitary manner, that is, the conditional distribution of X on a given cell depends
only on the previously sampled values within that cell. Since An increases to V, the value at
every given vertex will eventually be sampled, thus producing a realization of X from Y in a
finitary and �-equivariant manner.

Let us be slightly more specific about the way in which we “sample X on a cell.” In each
cell in A1, we distinguish a vertex by choosing the smallest element in the cell according
to the order given by Y ord. We call these distinguished vertices level 1 agents. Similarly, for
each n ≥ 2 and each cell in An that is not contained in An−1, we select a level n agent in
the cell by choosing the smallest element in the cell which is not in An−1. Note that the level
n agents are obtained as a finitary factor of (Y cell, Y ord). With the notion of agents, we may
now say more precisely that, in step n above, if C is a cell of An that is not contained in
An−1, then we sample X on the region C \ An−1 (conditionally on the previously sampled
values of X on C ∩ An−1) by accessing a sample of the desired distribution from the random
variable Y bits

u , where u is the unique level n agent in C, using also the order induced by Y ord

on C \ An−1 to break any symmetries which may be present in the graph structure of this
region (e.g., if G = Z and � includes reflections, then when C \ An−1 is a symmetric interval
around u, the “left” and “right” sides of u cannot be differentiated in a �-equivariant way
without some additional information; ordering all elements in the set is a simple way to get
rid of such problems). In this interpretation, we regard Y bits

u as consisting of independent
samples of P(XU ∈ · | XV = τ) for all finite U,V ⊂ Zd and τ ∈ SV , most of which are never
used in practice.

(2) Controlling the entropy: It is clear from the last observation above that there is plenty
of waste in the above construction (in terms of the process Y bits). The problem is that we
do not know ahead of time which samples of which distributions we will need access to.
The basic solution to this is to place an infinite sequence of random bits at each site, that
is, Y bits

v ∈ {0,1}N, from which we may easily construct samples of any desired distributions
(hence the name of the process Y bits). Of course, this idea alone still does not provide any
control on the entropy of Y bits. For this, we must place a finite (perhaps random) number of
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random bits at each site, and somehow still be sure that we are able to construct the required
samples. By a random number of random bits, we mean a random variable W taking values
in {0,1}∗, the set of finite words over {0,1}, and having the property that, conditioned on the
length |W | of the word, W is uniformly distributed on {0,1}|W |.

Suppose now that there exists a deterministic total order ≤ on V that is �-invariant in
the sense that u ≤ v implies that γ u ≤ γ v for any u, v ∈ V and γ ∈ �. For instance, the
lexicographical order is such an order when G = Zd and � is the translation group (but there
is clearly no such order when � is the full automorphism group of Zd ). For the purpose of
this part of the proof outline, it is convenient to further suppose that every v ∈ V has a ≤-
successor, which we denote by v + 1, as is the case for the lexicographical order on Zd (in
which case v + 1 is simply v + (1,0, . . . ,0)). The existence of such a deterministic order
renders Y ord unneeded, allowing us to focus now only on the task of controlling the entropy
of Y bits.

The idea is to associate to each possible distribution we might require, a “simulation”
which outputs a sample of the distribution in question from an input of unbiased random bits.
The simulation is fed independent unbiased bits one-by-one, until at some point (a stopping
time) it halts and outputs the sample. Such simulations may be done efficiently: the expected
number of input bits read by the simulation is bounded by the entropy of the target distribu-
tion, up to an additive universal constant.

We shall use such simulations whenever we “sample X on a cell.” If the cell C is large,
then the entropy of X on C is also large, and thus the above additive error is negligible. When
the boundary of the cell is small in comparison to the size of the cell, the average entropy of
X on C per site will also be close to h(X), the entropy of X itself. Thus, it will be important
that the cells in A1 are typically large with small boundary.

This already shows that, in some sense, the average number of random bits needed to
generate the samples required throughout the construction is very close to h(X). However,
we must place a finite number of bits at each site (more precisely, we need that h(Y bits) <

h(X) + ε), and even if we have more than h(X) such bits at every site, it still may happen
at some point during the construction that a simulation carried out by an agent u requires
access to many more input bits than are available in Y bits

u . To solve this, we must allow to
“transfer” bits from one location to another. This aspect of our construction is inspired by the
algorithms in [7, 24, 25]. The idea is that whenever an agent u requires access to an additional
bit (beyond those available in Y bits

u ), it may look for an “unused” bit at u+1 (the ≤-successor
of u). If there are no available unused bits at u + 1 at that time, it may then proceed to look
at u + 2, and so on.

One consequence of the above description is that the steps of the construction cannot be
directly related to the levels of the cell process. That is, it will no longer be the case that after
step n of the construction, we will have defined X on the region An. Instead, at any step of
the construction, different regions of G will be at different levels of the cell process. We will
continue to use n to denote the levels of the cell process, and will use t to denote the step of
the construction (which we henceforth also refer to as time).

The way this is done is as follows. Initially, at time t = 0, all level 1 agents are deemed
active. An active level 1 agent attempts to collect unused bits until its associated simulation
halts, at which point in time the agent becomes inactive and is said to have completed level 1.
Once all level 1 agents contained in some level 2 cell C have completed, the level 2 agent
associated to C becomes active. An active level 2 agent proceeds in the same manner as an
active level 1 agent, attempting to read bits in order to complete its associated simulation. In
general, a level n agent becomes active once all level n − 1 agents contained in its associated
cell have completed.

In our actual construction, it is more convenient to employ the following policy which
makes the details simpler to write down: at time t , an agent u may read at most one bit, and
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this bit may only be read from site u + t . This has the advantage that it ensures that no two
agents ever try to read bits from the same location simultaneously.

(3) Constructing a random order: For a general graph G and group �, there need not be
a deterministic total order of V that is �-invariant. Instead, we construct a random total order
≤ on V whose distribution is �-invariant. Moreover, we construct ≤ as a finitary factor of an
i.i.d. process Y ord with arbitrarily small entropy. Here, finitary means that the order induced
on any finite set of vertices is determined by a finite (random) subset of {Y ord

v }v∈V.
In addition, the constructed order ≤ will have the property that its order type is almost

surely the same as that of Z. That is, almost surely, every element v has a successor v + 1 and
a predecessor v −1, and {v +n}n∈Z = V. Though it does not follow from the above definition
of finitary, it will turn out to be the case that determining whether some vertex is the successor
of some other vertex is also a finitary property (i.e., it is almost surely determined by a finite
subset of {Y ord

v }v∈V). Once such an order is at hand, the proof continues as outlined above.

Organization. In Section 3, we introduce some preliminaries. In Section 4, we prove the
existence of a finitary cell process. In Section 5, we prove the existence of a finitary random
total order having the order type of Z. In Section 6, we give the construction of the finitary
coding for the finitely dependent process X. Finally, we end in Section 7 with some remarks
and open problems.

3. Preliminaries. Recall that G is always assumed to be an infinite, transitive, locally
finite, connected graph on a countable vertex set V, and that � is assumed to be a subgroup
of the automorphism group of G that acts transitively on V.

3.1. Entropy. The Shannon entropy of a discrete random variable Z is

H(Z) := −∑
z

P(Z = z) logP(Z = z),

where the sum is taken over z in the support of Z, or alternatively, we interpret 0 log 0 to be 0.
The measure-theoretic entropy (or Kolmogorov–Sinai entropy) of a �-invariant random field
X on an amenable graph G is

h(X) := inf
V ⊂V finite

and nonempty

H(XV )

|V | .

A Følner sequence in G is a sequence (Fn)
∞
n=1 of nonempty finite subsets of V such that

lim
n→∞

|∂Fn|
|Fn| = 0.

It is well known that the entropy of X may be computed along any Følner sequence:

h(X) = lim
n→∞

H(XFn)

|Fn| for any Følner sequence (Fn)
∞
n=1 in G.

It follows that for any ε > 0 there exists δ > 0 such that

(2)
H(XF )

|F | ≤ h(X) + ε whenever F ⊂ V is non empty and finite and |∂F | ≤ δ|F |.
Of course, since entropy is maximized by the uniform distribution, we also have that

(3)
H(XF | E)

|F | ≤ log |S| whenever F ⊂V is non empty and finite and E is an event
with positive probability,

where S is the finite set in which X takes values. We note that if Y is an i.i.d. process, then
its entropy h(Y ) is equal to the entropy of its single-site distribution H(Y0).
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3.2. The mass-transport principle. For u, v ∈ V, denote

�u,v := {γ ∈ � : γ u = v}.
Note that �u,u is the stabilizer of u. We say that � is unimodular if

|�u,uv| = |�v,vu| for all u, v ∈ V.

It is well known (see, e.g., [21, Chapter 8]) that � is unimodular if and only if the following
mass-transport principle holds:

(4)
∑
u

f (u,0) = ∑
v

f (0, v) for any diagonally �-invariant function f : V2 → [0,∞].

By diagonally �-invariant, we mean that f (γ u, γ v) = f (u, v) for all u, v ∈ V and γ ∈ �. We
note the well-known fact that, when G is amenable, any transitive group of automorphisms
� is unimodular.

3.3. Simulating distributions from random bits. We shall use a result about the sim-
ulation of a given distribution from unbiased random bits. Let μ be a distribution on a
countable set 
. A simulation of μ is a pair S = (Stime,Sout) of measurable functions
Stime : {0,1}N →N∪ {∞} and Sout : {0,1}N → 
 with the properties:

• If ω is a sequence of independent unbiased bits, then Sout(ω) has distribution μ.
• If Stime(x) = n for some x ∈ {0,1}N and n ∈ N, then Stime(x′) = n and Sout(x′) = Sout(x)

for any x′ ∈ {0,1}N which coincides with x on {1, . . . , n}.
The first property says that we can use S to simulate the desired distribution from random
bits. The second property may be interpreted as saying that Stime is a stopping time and that
Sout is adapted to the σ -algebra generated by {ωi : 1 ≤ i ≤ Stime}, that is, the simulation reads
one input bit at a time, and once the stopping time is reached, the output is determined only
by the bits that have already been read.

The following theorem follows from a result of Knuth and Yao [18] (see Theorems 2.1
and 2.2 there and the corollary just after).

THEOREM 3.1. Let Z be a discrete random variable. There exists a simulation S
of Z from independent unbiased bits ω satisfying that Stime(ω) < ∞ almost surely and
EStime(ω) ≤ H(Z) + 2.

Knuth and Yao show that the above is in fact optimal in a strong sense (they provide a
simulation whose stopping time is stochastically dominated by that of any other simulation).
A version of this theorem was proved in [7, Theorem 3] via a more concrete construction.
The results in [7, 18] also provide explicit exponential bounds on the probability that the
simulation uses more than n bits, but we shall not need this.

4. The cell process. Recall from Section 2 that a cell process is a random sequence
A = (A1,A2, . . . ) of subsets increasing to V and satisfying that the connected components
of each An are finite. We may identify a cell process A with the N-valued random field
(min{n ≥ 1 : v ∈ An})v∈V. In particular, when we say that A is �-invariant or a finitary factor,
we mean that this latter process is such.

In this section, we show that finitary cell processes with arbitrarily small entropy exist on
any transitive amenable graph.

PROPOSITION 4.1. Let G be a transitive amenable graph and let ε > 0. There exists an
i.i.d. process Y of entropy at most ε and a cell process A which is a finitary Aut(G)-factor
of Y .
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FIG. 1. Constructing the cell process. The cells of A1 are simply the Voronoi cells of a Bernoulli process. To
get from A1 to A2, we consider the Voronoi cells of a lower-density Bernoulli process, and “merge” cells of A1
which are entirely contained in any such Voronoi cell. Repeating this procedure produces the cell process. The
green shade (light and dark) depicts regions belonging to the cell process. The dark green depicts cells of A2
which are not cells of A1.

Let us mention that in the special case of G = Zd , several parts of the argument below
can be skipped or simplified, thereby leading to a shorter proof. In the general case, certain
technicalities arise which make the proof somewhat longer. The reader may therefore wish to
have in mind the case of G = Zd on a first reading.

Before giving the proof, let us explain the idea behind it; see Figure 1 for an illustration.
The main idea of the construction is to use the points of a low-density Bernoulli process to
construct Voronoi cells (determined from the Bernoulli process in a finitary manner), which
are then used as the cells of A1 (after slightly decreasing the Voronoi cells to ensure that
they are well separated). Using another Bernoulli process of even lower density, we again
construct Voronoi cells, which are then used to obtain A2 from A1 by “filling in” some of the
empty space between the cells of A1, taking care not to connect cells of A1 which are not
in the same Voronoi cell (thus ensuring that an infinite cluster is not created). Repeating in
this manner, we obtain an increasing sequence A1 ⊂ A2 ⊂ · · · of sets (each having only finite
cells) as a finitary factor of a small entropy i.i.d. process. It will then only remain to show
that An increases to V. This is where amenability comes into play.

To ensure that An increases to V, we must be careful in how we define the Voronoi cells.
When the graph G has a Følner sequence consisting of balls (as is the case when G has
subexponential growth), the Voronoi cells may be taken with respect to the graph distance
in G. However, for the general case considered here, we must adapt the usual Voronoi cells to
a certain “metric” (which is not necessarily a true metric) given by a suitable Følner sequence.
Since we will need this metric to be diagonally �-invariant, we need to choose a Følner
sequence (Fn)n having the property that each Fn is invariant under the stabilizer of some
fixed vertex 0 ∈ V, that is, Fn = �0,0Fn for all n. It is a simple observation that any graph
G of subexponential growth has such a sequence for any � (since there is a Følner sequence
consisting of balls), and that the Cayley graph G of a finitely generated amenable group
� also has such a sequence (since the stabilizers are trivial). As it turns out, such a Følner
sequence always exists in an amenable (not necessarily transitive) graph, even when � is its
full automorphism group.

The following lemma (which appears to be new) shows that every amenable graph admits
a Følner sequence consisting of sets which are invariant under the stabilizer of some vertex.
The lemma was obtained jointly with Omer Angel.

LEMMA 4.2. Let G be an amenable graph, let � be the full automorphism group of G

and let 0 ∈ V. There exists a Følner sequence (Fn)n in G such that Fn = �0,0Fn for all n.
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Lemma 4.2 easily follows by applying the following lemma to each set of some Følner
sequence, taking �0 to be the stabilizer �0,0 of 0.

LEMMA 4.3. Let G be any graph and let �0 be a group of automorphisms of G un-
der which all orbits of V are finite. For any finite nonempty set F ⊂ V, there exists a finite
nonempty set E ⊂ V such that

|∂E|
|E| ≤ |∂F |

|F | and E = �0E.

PROOF. We show the existence of the desired E via a probabilistic method, that is, we
choose a random subset E of V and show that it satisfies the desired properties with positive
probability. Let {Vi}i be the orbits of V under the action of �0. Thus, {Vi}i is a partition of V
such that each Vi is finite (by assumption) and satisfies Vi = �0Vi .

Let U be a uniform random variable in [0,1] and define

E := ⋃
i:U≤pi

Vi, where pi := |F ∩ Vi |
|Vi | .

Thus, each orbit Vi is included in E with probability pi , where the choices for different i are
positively correlated through the use of the common variable U . Then

E|E| = ∑
i

P(U ≤ pi) · |Vi | =
∑
i

pi |Vi | =
∑
i

|F ∩ Vi | = |F |,

and

E|∂E| = ∑
i,j

P(pj < U ≤ pi) · ∣∣∂(Vi,Vj )
∣∣ = ∑

i,j

max{pi − pj ,0} · ∣∣∂(Vi,Vj )
∣∣,

where ∂(U,V ) denotes the set of edges between two disjoint sets U and V . Let us show that
each term in the second sum is at most |∂(F ∩ Vi,F

c ∩ Vj )|, that is,

pi − pj ≤ |∂(F ∩ Vi,F
c ∩ Vj )|

|∂(Vi,Vj )| whenever pi > pj and ∂(Vi,Vj ) 	= ∅.

To see this, note that the right-hand side is the probability that an edge e = {u, v} that is
uniformly chosen from ∂(Vi,Vj ) belongs to ∂(F ∩ Vi,F

c ∩ Vj ), or equivalently, with the
convention that u ∈ Vi and v ∈ Vj , that u ∈ F and v /∈ F . Since this probability is at least
P(u ∈ F) −P(v ∈ F), it suffices to show that u and v are uniformly distributed in Vi and Vj ,
respectively. This follows from the observation that the bipartite graph (Vi ∪Vj , ∂(Vi,Vj )) is
biregular—each vertex in Vi is adjacent to the same number of vertices in Vj , and similarly,
each vertex in Vj is adjacent to the same number of vertices in Vi . Indeed, for any u, v ∈ Vi

and γ ∈ �0 such that γ u = v, the mapping w �→ γw defines a bijection between N(u) ∩ Vj

and N(v) ∩ Vj .
We thus conclude that

E|∂E| ≤ ∑
i,j

∣∣∂(
F ∩ Vi,F

c ∩ Vj

)∣∣ = |∂F | = α ·E|E|,

where α := |∂F |/|F |. Thus, α|E| − |∂E| is a random variable with nonnegative expectation.
Since α|E|− |∂E| is zero when E is empty, conditioned on E 	= ∅, we still have that α|E|−
|∂E| has nonnegative expectation. In particular, there is positive probability that E 	= ∅ and
α|E| ≥ |∂E|. Finally, since E is finite and satisfies E = �0E almost surely, we see that E

satisfies the desired properties with positive probability. �
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Suppose that (Fn)n is a Følner sequence guaranteed by Lemma 4.2, that is, Fn = �0,0Fn

for all n, and further suppose that F1 � F2 � · · · and F1 ∪ F2 ∪ · · · = V (there is clearly no
loss in generality in doing so). Recall the definition of �u,v from Section 3.2. For u, v ∈ V,
define

ρ(u, v) := min{n ≥ 1 : v ∈ �0,uFn}.
Using that �0,γ u = γ�0,u for any γ ∈ �, one easily checks that ρ is diagonally �-invariant,
that is, ρ(γ u, γ v) = ρ(u, v) for all γ ∈ �. We stress that ρ is not necessarily symmetric
in that ρ(u, v) may not equal ρ(v,u). In particular, we do not claim that ρ is a metric.
Nevertheless, we still think of ρ(u, v) as a measure of distance from v to u. One nice property
of ρ that is easily verifiable and which will be important is that, for any sequence of pairs of
vertices (ui, vi)

∞
i=1, we have

(5) ρ(ui, vi) → ∞ as i → ∞ if and only if dist(ui, vi) → ∞ as i → ∞.

The fact that ρ may not be symmetric presents a certain challenge in the proof, for which
we require the following lemma to address. We note that ρ is indeed symmetric when the
Følner sequence (Fn)n consists of balls, and that it is nearly symmetric when G is a Cayley
graph of � in which case switching the roles of u and v in ρ(u, v) has the same effect as
replacing each Fn with F−1

n . Accordingly, in these cases, it is immediate that the two “ρ-
balls” of radius n around 0, {v : ρ(0, v) ≤ n} and {u : ρ(u,0) ≤ n}, have the same size,
namely |Fn|. The following lemma shows that this is in fact always true in our setting.

LEMMA 4.4. Let G be a transitive amenable graph and let � be the full automorphism
group of G. Let F ⊂ V be invariant under the stabilizer of some vertex 0, that is, �0,0F = F .
Then ∣∣{u ∈ V : 0 ∈ �0,uF }∣∣ = |F |.

PROOF. Define f : V2 → [0,1] by

f (u, v) := 1{v∈�0,uF }.
Since �0,γ u = γ�0,u for any γ ∈ �, it follows that f is diagonally �-invariant. Thus, by the
mass-transport principle (4),∣∣{u ∈ V : 0 ∈ �0,uF }∣∣ = ∑

u

f (u,0) = ∑
v

f (0, v) = |�0,0F | = |F |. �

We are now ready to give the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. Let (εn) be a sequence to be chosen later which satisfies
that 0 ≤ εn ≤ ε2−n. We shall construct a cell process A as a finitary factor of the i.i.d. process
Y = (Yv)v∈V in which Yv = (Yv,n)n≥1 are independent random variables with Yv,n ∼ Ber(εn).
The entropy of Y can be made arbitrary small, since

h(Y ) = H(Yv) =
∞∑

n=1

H(Yv,n) =
∞∑

n=1

(
εn log

1

εn

+ (1 − εn) log
1

1 − εn

)
≤ 10ε log

1

ε
.

As explained, the idea of the construction is to use the points in

Un := {v ∈ V : Yv,n = 1},
for any given n, to construct Voronoi cells, which are then used to define the cells of An.
Precisely, we define the Voronoi cells of a nonempty set U ⊂ V by

C̄U(u) := {
v ∈V : ρ(u, v) < ρ

(
u′, v

)
for all u′ ∈ U \ {u}}, u ∈ U.
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Thus, the Voronoi cell C̄U(u) associated to u consists of all vertices v ∈ V which are closer
(in the distance measured by ρ) to u than to any other u′ ∈ U . In particular, Voronoi cells
associated to different vertices in U are disjoint, but they are not necessarily separated (they
could be adjacent to one another). We therefore define modified Voronoi cells by slightly
shrinking the sets C̄U(u). Precisely, we define

CU(u) := (
C̄U(u)

)−1
.

Using that the Voronoi cells are disjoint, it is straightforward to check that dist(CU(u),

CU(u′)) > 1 for distinct u,u′ ∈ U . We note that CU(u) (in fact, already C̄U(u)) may be empty
and need not be connected.

Before proceeding with the construction of the cell process, let us first show that the
Voronoi cells of U are almost surely finite whenever U is the set of points of an i.i.d. Bernoulli
process. To this end, it suffices to show that the probability that C̄U(0) intersects Fn \ Fn−1 is
summable over n. Indeed, since a fixed vertex v ∈ Fn \Fn−1 belongs to C̄U(0) only if U \ {0}
contains no element of {u : ρ(u, v) ≤ n}, it follows from Lemma 4.4 that the probability of
this is at most p|Fn|−1, where p is the density of the Bernoulli process. Since |Fn| ≥ n, we
see that |Fn| · p|Fn|−1 is summable, and hence that the C̄U(0) is almost surely finite.

We now turn to the construction of the cell process A. The first level set in the cell process
is simply taken to be the vertices in a modified Voronoi cell of U1, that is,

A1 := ⋃
u∈U1

CU1(u).

Since the Voronio cells of U1 are almost surely finite, we see that CU1(u) is almost surely
finite for all u ∈ U1. Since dist(CU1(u),CU1(u

′)) > 1 for distinct u,u′ ∈ U1, it follows that all
connected components of A1 are almost surely finite.

Suppose now that, for some n ≥ 1, An has been defined in such a way that all connected
components of An are almost surely finite, and let us now define An+1. Let A′

n+1 be the union
of the modified Voronoi cells of Un+1, that is,

A′
n+1 := ⋃

u∈Un+1

CUn+1(u),

and recall that (as for A1) all connected components of A′
n+1 are almost surely finite. Intu-

itively, we would like to obtain An+1 from An by adding A′
n+1. However, this might create

infinite clusters, and we must take care to avoid this by instead only adding a suitable subset
of A′

n+1. It will suffice to slightly increase the “forbidden region” (A′
n+1)

c as follows: let
Dn+1 denote the union of the connected components of An that intersect (A′

n+1)
c, and add

D+1
n+1 to the forbidden region. Precisely, we define

An+1 := An ∪ (
A′

n+1 \ D+1
n+1

)
.

It is straightforward to check that all connected components of An+1 are almost surely finite.
Assuming that A1 ∪ A2 ∪ · · · = V almost surely, it is also easy to check using (5) that A is a
finitary Aut(G)-factor of Y , which would complete the proof of the proposition.

It remains only to show that A1 ∪A2 ∪· · · =V almost surely. By Aut(G)-invariance, this is
equivalent to the fact that P(0 ∈ An) → 1 as n → ∞. For n ≥ 1, let Bn denote the connected
component of 0 in An ∪ {0}. For n ≥ 2, define the event

En := {
Bn−1 ⊂ CUn(u) for some u ∈ Un

}
.

Note that

{0 ∈ An \ An−1} = En ∩ {0 /∈ An−1}.
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Thus, it suffices to show that

P(En | 0 /∈ An−1) ≥ c for some c > 0 and all n ≥ 2.

As we now show, this holds when εn is suitably chosen. Since Bn−1 is almost surely finite,
there exists a sufficiently large rn so that

P(Bn−1 ⊂ �rn−1 | 0 /∈ An−1) ≥ 1

2
,

where �r := �r(0). Since (Fs)s is a Følner sequence, there exists sn sufficiently large so that

(6) |Fsn | ≥
2n

ε
and

|∂Fsn |
|Fsn |

≤ 1

2|�rn |
.

Set εn := |Fsn |−1. Then, noting that An−1 (and thus also Bn−1) is independent of Un,

P(En | 0 /∈ An−1) ≥ P
(
Bn−1 ⊂ �rn−1 and �rn−1 ⊂ CUn(u) for some u ∈ Un | 0 /∈ An−1

)
= P(Bn−1 ⊂ �rn−1 | 0 /∈ An−1) · P(

�rn−1 ⊂ CUn(u) for some u ∈ Un

)
.

Since the first term on the right-hand side is at least 1
2 by the choice of rn, it remains to show

that, for some constant c > 0 which does not depend on n, we have

P
(
�rn−1 ⊂ CUn(u) for some u ∈ Un

) ≥ c.

Let us first see how to show this when Fsn is a ball, say ��. In this case, it is not hard to
see that the event in question occurs when Un has a unique point in ��−rn and no other point
in ��+rn , so that

P
(
�rn−1 ⊂ CUn(u) for some u ∈ Un

)
≥ P

(|Un ∩ ��−rn | = |Un ∩ ��+rn | = 1
)

= P
(
Ber

(|��−rn |, εn

) = 1
) · P(

Ber
(|��+rn \ ��−rn |, εn

) = 0
) ≥ c.

We now handle the general case in more detail. Set U := Un. Our goal is to bound from
below the probability that �rn−1 ⊂ CU(u) for some u ∈ U . To this end, we first find a simple
condition that implies the occurrence of this event. For a set F ⊂ V, denote

M(F) := {u ∈V : 0 ∈ �0,uF }.
Set r := rn and s := sn. Let us show that

(7)
∣∣U ∩ M

(
F−r

s

)∣∣ = ∣∣U ∩ M
(
F+r

s

)∣∣ = 1 =⇒ �r−1 ⊂ CU(u) for some u ∈ U.

Suppose that the left-hand side holds. Let us show that �r−1 ⊂ CU(u), where u is the unique
element in U ∩ M(F−r

s ). By the definition of CU(u), this is equivalent to �r ⊂ C̄U(u). Re-
calling the definition of C̄U(u), we see that we must show that ρ(u,w) < ρ(u′,w) for all
u′ ∈ U \ {u} and w ∈ �r . Let u′ ∈ U \ {u} and w ∈ �r . It suffices to show that ρ(u,w) ≤ s

and ρ(u′,w) > s.
Toward showing this, we first note that (γ V )+1 = γ (V +1) and (γ V )−1 = γ (V −1) for

any γ ∈ � and V ⊂ V, due to the fact that γ acts by an automorphism of G. In particu-
lar, (�0,uV )+r = �0,u(V

+r ) and (�0,uV )−r = �0,u(V
−r ), and we may drop the parenthesis

when writing such terms.
Let us now show that ρ(u,w) ≤ s. Since u ∈ M(F−r

s ), we have that 0 ∈ �0,uF
−r
s , or

equivalently, �r ⊂ �0,uFs . Since w ∈ �r , it follows that ρ(u,w) ≤ s. Next, we show that
ρ(u′,w) > s. Note that u′ /∈ M(F+r

s ) since u ∈ M(F−r
s ) ⊂ M(F+r

s ). Thus, 0 /∈ �0,u′F+r
s , or

equivalently, �r ∩ �0,u′Fs = ∅. Thus, w /∈ �0,u′Fs and, using that F1,F2, . . . ,Fs−1 ⊂ Fs , it
follows that ρ(u′,w) > s.
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Using (7), we obtain

P
(
�rn−1 ⊂ CUn(u) for some u ∈ Un

)
≥ P

(∣∣Un ∩ M
(
F−rn

sn

)∣∣ = ∣∣Un ∩ M
(
F+rn

sn

)∣∣ = 1
)

= P
(
Ber

(∣∣M(
F−rn

sn

)∣∣, εn

) = 1
) · P(

Ber
(∣∣M(

F+rn
sn

)∣∣ − ∣∣M(
F−rn

sn

)∣∣, εn

) = 0
)
.

By Lemma 4.4, we have that∣∣M(
F−rn

sn

)∣∣ = ∣∣F−rn
sn

∣∣ and
∣∣M(

F+rn
sn

)∣∣ = ∣∣F+rn
sn

∣∣.
Finally, by (6),

∣∣F−rn
sn

∣∣ ≥ |Fsn | − |∂Fsn | · |�rn | ≥
1

2
|Fsn | and

∣∣F+rn
sn

∣∣ ≤ |Fsn | + |∂Fsn | · |�rn | ≤
3

2
|Fsn |,

so that, by standard estimates for Bernoulli random variables, both probabilities in question
are bounded below by a positive constant. �

The above proposition established the existence of a finitary cell process A. In particular,
An is an invariant set which has high density when n is large. The following proposition
shows that the clusters of a dense invariant set typically have relatively small boundary.

LEMMA 4.5. Let G be a transitive graph of degree d and let � be a transitive unimodular
group of automorphisms of G. Let B ⊂ V be a random set with no infinite clusters and whose
distribution is �-invariant. Let Cv denote the cluster of v in B . Then, for any δ > 0,

P
(|∂C0| ≥ δ|C0|) ≤

(
d

δ
+ 1

)
· P(0 /∈ B).

PROOF. The proof uses the mass-transport principle. Define ψ : V2 → [0,1] by

ψ(u, v) :=
⎧⎪⎨
⎪⎩

|N(u) ∩ Cv|
|Cv| if u /∈ B, v ∈ B

0 otherwise.

Note that, almost surely,

∑
u

ψ(u,0) = 10∈B

|C0| · ∑
u/∈B

∣∣N(u) ∩ C0
∣∣ = |∂C0|

|C0| · 10∈B

and ∑
v

ψ(0, v) = 10/∈B · ∑
v∈B

|N(0) ∩ Cv|
|Cv| = ∣∣N(0) ∩ B

∣∣ · 10/∈B ≤ d · 10/∈B.

The �-invariance of B implies that f (u, v) := Eψ(u, v) is diagonally �-invariant. Thus, the
mass-transport principle (4) yields that

E

[ |∂C0|
|C0| · 10∈B

]
≤ d · P(0 /∈ B).

The proposition now follows from Markov’s inequality. �

REMARK 1. A result of Häggström [5, Theorem 1.6] states that any automorphism-
invariant edge percolation on a d-regular tree (d ≥ 3) with edge-density at least 2/d has
an infinite cluster with positive probability. In particular, automorphism-invariant cell pro-
cesses do not exist on such a tree. Moreover, by Lemma 4.5 (see also the closely related [3,
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Theorem 1.2]), we see that �-invariant cell processes do not exist on any transitive unimod-
ular nonamenable graph. In fact, it is shown in [3, Theorem 5.1] that a closed subgroup � of
Aut(G) is amenable if and only if there is a �-invariant site percolation on G with with no
infinite clusters and density arbitrarily close to 1. It follows that a �-invariant cell process on
G exists if and only if � is amenable. The site percolation constructed in [3] is a factor of an
i.i.d. process, though it is not finitary.

5. Random total orders. In this section, we construct a random total order on V that
has the following properties:

• It is a finitary factor of an i.i.d. process with arbitrarily small entropy.
• It is supported on total orders having the same order type as Z.
• The successor/predecessor of any vertex can be found in a finitary manner.

Let us explain these properties. A random total order on V, or more generally, a random
binary relation on V, may be regarded as a random element in {0,1}V2

. With this viewpoint,
the notion of finitary factor easily applies to such relations. Namely, such a relation is a �-
factor of Y if it has the same distribution as ϕ(Y ) for some measurable function ϕ : T V →
{0,1}V2

satisfying that ϕ(y)(u,v) = ϕ(γy)(γ u,γ v) for all γ ∈ �, u, v ∈ V and y ∈ T V. Such a
factor is finitary if for every u, v ∈ V there almost surely exists a finite (random) set W ⊂ V

such that ϕ(Y )(u,v) is determined by (Yw)w∈W , in the sense that ϕ(y)(u,v) = ϕ(Y )(u,v) for any
y ∈ T V which coincides with Y on W .

A total order ≤ on V has the same order type as Z if there is an order preserving bijection
between the two ordered spaces, that is, a bijection f : V → Z such that f (u) ≤ f (v) if and
only if u ≤ v. This may be equivalently formulated as saying that ≤ has no minimum or
maximum and that there are finitely many elements between any two elements, that is, every
interval of the form {w ∈V : u ≤ w ≤ v} is finite. In particular, in such an order, every vertex
v has a successor (an element w ≥ v such that u ≥ w for all u ≥ v) and a predecessor (an
element w ≤ v such that u ≤ w for all u ≤ v).

Given a factor from Y to a random total order ≤ on V, we say that successors (predeces-
sors) can be found in a finitary manner if for every u, v ∈ V there almost surely exists a finite
(random) set W ⊂ V such that the event that u is the ≤-successor (≤-predecessor) of v is
determined by (Yw)w∈W . We note that, in general, there is no direct relation to the notion
of finitary factor: it may be that such a factor is finitary though successors/predecessors can-
not be found in a finitary manner, or it may that successors/predecessors can be found in a
finitary manner though the factor is not finitary. On the other hand, for a total order having
the order type of Z almost surely, the second implication is easily seen to hold— if succes-
sors/predecessors can be found in a finitary manner, then the factor is necessarily finitary.

A total order which is a finitary factor of an i.i.d. process with infinite entropy is easily
obtained from the order induced by uniform random variables in [0,1] assigned to each ver-
tex. It is easy to see that this order almost surely has the same order type as Q. A total order
(also with the order type of Q) which is a finitary factor (with exponential tails on the coding
radius) of an i.i.d. process with finite entropy was constructed in [6] for any quasi-transitive
graph satisfying a geometric condition similar to (1). The application in [6] did not require
the i.i.d. process to have arbitrarily small entropy and so this was not stated there, though it
easily follows from the proof there that this is possible. Since the proof is short, we give it
here. The following is essentially a reformulation of [6, Lemma 18] for our situation.

LEMMA 5.1. Let G be a transitive nonempty graph satisfying (1). For any 0 < ε ≤ 1
2 ,

there exists a total order on V which is a finitary Aut(G)-factor of an i.i.d. Bernoulli process
with density ε.
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PROOF. Let η = (ηv)v∈V be an i.i.d. Bernoulli process with density ε. For any v ∈ V,
define Zv = (Zv,n)n≥0 ∈ {0,1, . . . }{0,1,... } by

Zv,n := ∑
u∈V:dist(u,v)=n

ηu.

Define a relation ≤ on V in which u ≤ v if and only if Zu � Zv , where � denotes the
lexicographical order on {0,1, . . . }{0,1,... }. Then ≤ is clearly a Aut(G)-factor of η.

It remains to show that ≤ is almost surely a total order on V and that the factor is finitary.
Since ≤ is clearly a preorder, to show that it is a total order, it suffices to show that P(Zu =
Zv) = 0 for distinct u, v ∈ V. It then follows from the definition of the lexicographical order
that the factor is finitary.

Fix u, v ∈V distinct and consider the event

En :=
n⋂

i=1

{Zu,i = Zv,i}.

Since P(En) → P(Zu = Zv) as n → ∞, it suffices to show that P(En | En−1) ≤ 1 − ε for all
n ≥ 1. By (1) and the assumption that the graph is nonempty, we have �n(u) \ �n−1(u) 	⊂
�n(v), as otherwise �3n(u) ⊂ �3n(v), which in turn implies that �3n(u) = �3n(v) by tran-
sitivity. Thus, there exists some wn ∈ �n(u) \ (�n−1(u) ∪ �n(v)). Then

P(En | ηV\{wn}) ≤ max
k∈Z P(ηwn = k) = max{ε,1 − ε} = 1 − ε.

Since En−1 is measurable with respect to ηV\{wn}, it follows that P(En | En−1) ≤ 1 − ε. �

Using Lemma 5.1 and the cell processes constructed in the previous section, we are able
to construct a total order satisfying all three properties described above.

LEMMA 5.2. Let G be a transitive amenable nonempty graph satisfying (1) and let ε >

0. Then there exists an i.i.d. process Y with entropy at most ε, and a random total order ≤ on
V which almost surely has the same order type as Z, such that ≤ is a finitary Aut(G)-factor
of Y for which successors/predecessors can be found in a finitary manner.

PROOF. By Lemma 5.1, there exists a total order � on V that is a finitary factor of an
i.i.d. process Y having entropy at most ε. By Proposition 4.1, there exist a cell process A

that is a finitary factor of an i.i.d. process Y ′ (which we take to be independent of Y ) having
entropy at most ε. We construct the required total order ≤ on V as a finitary factor of (Y,Y ′).

The idea is to use � to order the sites within the cells given by A. More precisely, we will
define an increasing sequence of partial orders ≤1 ⊂≤2 ⊂ . . . such that each ≤n induces a
total order on every cell of An. Since

⋃
n An = V, this will produce a total order ≤ given by

the union
⋃

n ≤n, which we will show has the desired properties.
Precisely, we define ≤1 to be the relation in which u ≤1 v whenever u and v belong to the

same cell of A1 and satisfy that u � v. Then ≤1 is clearly a partial order that induces a total
order on any cell of A1. In fact, it is the union of these total orders on the cells of A1 (i.e., it
only compares vertices that belong to the same cell).

Next, suppose we have defined the partial order ≤n−1 so that it is a union of total orders
on the cells on An−1, and let us define ≤n. Consider a cell C of An and let D := C ∩ An−1 =
D1 ∪· · ·∪Dk be the union of the cells D1, . . . ,Dn of An−1 that are contained in C. We define
≤n in such a way that D ≤n C \ D by requiring that u ≤n v whenever u ∈ D and v ∈ C \ D.
To obtain a total order on C, it remains to order the vertices in D and the vertices in C \ D.
The latter is ordered by defining u ≤n v whenever u, v ∈ C \ D and u � v. The former is
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ordered by giving an order to the cells D1, . . . ,Dk and using the ≤n−1 order within each cell,
that is, we require that ≤n coincides with ≤n−1 on each cell Di , and that either Di ≤n Dj

or Dj ≤n Di for any two cells Di and Dj . Finally, the order of the cells is determined by
requiring that Di ≤n Dj whenever min� Di � min� Dj . That is, the ith cell precedes the
j -cell in ≤n if and only if the �-minimal element in the ith cell is �-smaller than the �-
minimal element in the j th cell. It is straightforward that ≤n extends ≤n−1 and that ≤n is a
union of total orders on the cells of An.

We have thus obtained partial orders ≤1,≤2, . . . such that, for each n, ≤n extends ≤n−1
and is a union of total orders on the cells of An. To show that ≤ has the order type of Z, it
remains to show that, almost surely, every ≤-interval is finite and there is no ≤-minimum and
no ≤-maximum. It follows from the construction that if u is the ≤n-successor of v, then it is
also its ≤n+1-successor. Thus, to conclude that every ≤-interval is finite, it suffices to show
that, for every u, v ∈ V having u ≤ v, there exists n such that u ≤n v and the interval [u, v]≤n

is finite. Indeed, since ≤n only compares vertices within the same cell of An and since all
such cells are finite, all ≤n-intervals are finite. Finally, no minimum or maximum can exist
as this would contradict the invariance of ≤.

We have thus established that ≤ almost surely has the same order type as Z. It is straight-
forward from the fact that the ≤n-successor of a vertex u (if it exists) is also the ≤n+1-
successor of u, that the constructed factor from (Y,Y ′) to ≤ has the property that succes-
sors/predecessors can be found in a finitary manner. As mentioned in the beginning of the
section, this implies that the factor is also finitary. �

6. The finitary coding. In this section, we construct a finitary coding for finitely de-
pendent processes. We present the details of the proof of Theorem 1.2. Theorem 1.1 may be
proved in a similar manner (see Remark 2 in Section 7).

Let X be a �-invariant finitely dependent process taking values in a finite set S. Recall
from the proof outline in Section 2 that we shall construct a finitary factor from an i.i.d.
process Y = (Y bits, Y cell, Y ord) to X. Recall also that A will be a cell process that is a finitary
factor of Y cell and that ≤ will be a random total order on V that is a finitary factor of Y ord, has
the order type of Z, and for which successors/predecessors can be found in a finitary manner.
Given the cell process A and the total order ≤, we will use the additional randomness in Y bits

to construct a realization of X.

6.1. Choosing the parameters. Fix ε > 0. We shall choose the i.i.d. processes Y bits, Y cell,
Y ord to satisfy h(Y bits) < h(X) + 5ε, h(Y cell) ≤ ε and h(Y ord) ≤ ε so that Y has entropy

h(Y ) < h(X) + 7ε.

We let Y bits be any i.i.d. process in which Y bits
v is a random number of random bits satis-

fying

(8) H
(
Y bits

v

)
< h(X) + 5ε and E

∣∣Y bits
v

∣∣ > h(X) + 3ε.

Recall that, by a random number of random bits, we mean a random variable W taking
values in {0,1}∗, the set of finite words over {0,1}, and having the property that, conditioned
on the length |W | of the word, W is uniformly distributed on {0,1}|W |. The desired random
word can be obtained by taking W to be the empty word with probability p or a uniformly
chosen sequence in {0,1}m with probability 1 − p, for some suitably chosen m ≥ 1 and
0 ≤ p < 1. Indeed, in this case, H(|W |) = −p logp − (1 − p) log(1 − p) and E|W | = pm

so that H(|W |) → 0 and E|W | → h(X) + 4ε as m → ∞ when p = 1
m

(h(X) + 4ε). Since
the entropy and length of W are related via H(W) = E|W | + H(|W |), we see that (8) holds
when m is sufficiently large.
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Let δ > 0 be as in (2). By decreasing δ, we may additionally assume that

(9) 2δ < ε.

Recall from Section 2 that we may assume without loss of generality that X is 1-dependent.
By Proposition 4.1, there exists a cell process A and an i.i.d. process Y cell of entropy at
most ε such that A is a finitary factor of Y cell. Since P(0 ∈ An) → 1 as n → ∞, Lemma 4.5
implies that P(|∂An(0)| ≥ δ|An(0)|) → 0 as n → ∞, where An(0) is the cell of 0 in An.
Thus, by replacing (A1,A2, . . . ) with (Am,Am+1, . . . ) for some large m, we may assume
that P(|∂A1(0)| ≥ δ|A1(0)|) is arbitrary small. Specifically, we require that

(10) P
(∣∣∂A1(0)

∣∣ ≥ δ
∣∣A1(0)

∣∣) <
ε

log |S| + 2
.

Let Y ord be an i.i.d. process with entropy at most ε and let ≤ be a total order on V as
guaranteed by Lemma 5.2 (note that if the graph G contains no edges, then X is already an
i.i.d. process so that there is nothing to prove).

6.2. The construction of the finitary coding. Recall that the nth ≤-successor of v is de-
noted by v + n and its nth ≤-predecessor by v − n. In particular, v ± n are random elements
of V which are determined from Y ord is a finitary manner. Recall also that the cell process A

is a finitary factor of Y cell. It may be helpful from this point onward to think of A and ≤ as
given, and that our goal is to use them, together with the random bits of Y bits, to construct a
realization of X.

We shall define, for every time t ≥ 0 and every vertex u ∈V, a random variable

Lt
u ∈ {0,1}.

We shall define these inductively with the t = 0 variables given by

(11) L0
u := 1{u is a level 1 agent and |Y bits

u |>0}.

We think of Lt
u as indicating whether u read a bit at time t . In particular, if Lt

u = 1 for some t

and u, then necessarily u is an agent (of some level). Since at time 0 an agent looks for an
available bit at its own location, (11) says that any level 1 agent reads a bit at time 0 if such a
bit is available.

Before giving the main definitions of the construction, we first set up some auxiliary nota-
tion and definitions. As we have already mentioned, our construction has the property that if
an agent u reads a bit at some time t , then the bit it read is located at u+ t , that is, it is one of
the bits of the word Y bits

u+t . In particular, the total number of bits read from location v by time
t is

Mt
v := L0

v + L1
v−1 + · · · + Lt

v−t .

The bits at any location v are read sequentially – the first agent to read a bit at v will read
Y bits

v (1), the second will read Y bits
v (2) and so on. Precisely, the bit read by u at time t is

Ŵ t
u :=

{
Y bits

u+t

(
Mt

u+t

)
if Lt

u = 1

∅ otherwise
.

For this to be well defined, we must make sure that u does not try to read a nonexistent bit –
we mention already here that this does not occur, that is, our definitions will ensure that

Mt
v ≤ ∣∣Y bits

v

∣∣ for all v ∈ V and all t ≥ 0.

The word read by u by time t is then

Wt
u := Ŵ 0

u ◦ Ŵ 1
u ◦ · · · ◦ Ŵ t

u,
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where ◦ denotes concatenation. That is, Wt
u is the word obtained by concatenating the bits

read by u until time t in the order they were read. In particular, Wt
u is a word in {0,1}∗ of

length |Wt
u| = L0

u + L1
u + · · · + Lt

u. We emphasize that (Mt
u,W

t
u)u∈V is well defined once

(Li
u,N

i
u)u∈V,0≤i≤t is defined, as the former are functions of the latter and of Y bits.

As explained in the proof outline, we use “simulations” to obtain samples of distributions
from random bits. We first equip ourselves with simulations of all the possible distributions
we may require throughout the construction of the finitary coding. The basic distributions we
need are those of XV for a finite set V ⊂ V. As we aim to obtain a �-equivariant factor, we
must take care when dealing with random elements of SV , as these are indexed by subsets of
vertices. It would be more proper to view XV as a random element of S|V | by using the order
≤. Precisely, we proceed as follows. Recall the definition of a simulation from Section 3.3.
By Theorem 3.1, for every ordered sequence v1, . . . , vm ∈ V of distinct vertices, there exists
a simulation S(v1,...,vm) of (Xv1, . . . ,Xvm) ∈ Sm satisfying that

EStime
(v1,...,vm)(ω) ≤ H(XV ) + 2.

Since the distribution of X is �-invariant, we may suppose that S(v1,...,vm) = S(γ v1,...,γ vm)

for all γ ∈ � (e.g., by choosing a simulation for a single representative of each orbit, and
then setting S(v1,...,vm) to equal the simulation of its representative). Now, for a finite set
V ⊂ V, we let v1, . . . , vm be the vertices of V , ordered according to ≤, and set SV to be the
simulation S(v1,...,vm), where, for notational convenience, we interpret Sout

V as an element of
SV (indexed by V ) through the identification Sout

V (ω)vi
= Sout

(v1,...,vm)(ω)i . We stress that SV

implicitly depends on the order ≤.
As we will also encounter situations in which regions of X have already been sampled,

we will also need simulations of the distribution of XV conditioned on XU for some finite
set U ⊂ V which is disjoint from V . Thus, for every such V and U and every τ ∈ SU , we
similarly let SV,U,τ be a simulation of P(XV ∈ · | XU = τ) satisfying that

(12) EStime
V,U,τ (ω) ≤ H(XV | XU = τ) + 2.

For ease of notation later on, we allow V and U to intersect and we allow τ to have any
domain containing U , by interpreting SV,U,τ as SV \U,U,τU

in such a case. We also identify
SV with SV,∅,∅.

Recall that every cell C in An that is not contained in An−1 has an associated level n agent,
and that this agent is “responsible” for generating the output on C \ An−1. We denote by
An(v) the cell of v in An, where An(v) := ∅ if v /∈ An, by Un the set of level n agents and,
for v ∈ An \ An−1, by Un(v) the level n agent associated to the cell An(v).

With the above notation and definitions, we may now proceed to construct the finitary
coding. Our goal is to define a random field Zt = (Zt

v)v∈V, which represents the output at
time t . This output will be a function of (Li

u,M
i
u,W

i
u)u∈V,0≤i≤t (and of course of the cell

process A and the total order ≤). Once Zt is defined for some t , it will then only remain
to inductively define (Lt+1

u )u∈V, as this then also defines (Mi
u,W

i
u)u∈V,0≤i≤t+1 through the

definitions above. This will therefore define Zt+1 as well. We will then take a limit as t → ∞
in order to obtain the output Z = (Zv)v∈V, which is the desired realization of X.

To facilitate the inductive definition of (Lt+1
u )u∈V, we require some more definitions. We

now regard t ≥ 0 as fixed and suppose that (Li
u)u∈V,0≤i≤t , and hence also (Mi

u,W
i
u)u∈V,0≤i≤t ,

are already defined. We define two notions for a level n agent: that of having reached level n

at time t , and that of having completed level n of the simulation by time t . We define these
notions inductively on n. We thus begin with level 1 agents. Given a level 1 agent u ∈ U1, we
say that

• u reached level 1 by time t (always, with no condition).
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• u completed level 1 by time t if the stopping time Stime
A1(u) has been reached on input Wt

u,1.

Once a level 1 agent has completed level 1 of the simulation, the output is known on the
corresponding level 1 cell of the agent. That is, if a level 1 agent u completed level 1 by
time t , then we will have

Zt
v = Sout

A1(u)

(
Wt

u,1
)
v for all v ∈ A1(u).

To be more precise, let us define Zt,1 = (Zt,1
v )v∈V by

Zt,1
v :=

{
Sout

A1(u)

(
Wt

u

)
v if v ∈ A1(u) for some u ∈ U1 and u completed level 1 by time t

∅ otherwise
.

We will soon also define Zt,n = (Zt,n
v )v∈V for n ≥ 2, with the idea that it represents the

known output on all cells of level at most n for which the simulation has completed. In
particular, if Zt,n

v 	= ∅ for some v and n, then it will be the case that Zt,n+1
v = Zt,n

v . Now fix
n ≥ 2 and suppose that we have defined Zt,1, . . . ,Zt,n−1 and the two notions (reached and
completed) for levels less than n, in such a way that the above property holds—namely, if a
level m ∈ {1, . . . , n − 1} agent u completed level m by time t , then the output is known on
Am(u) at time t in the sense that Zt,n−1

v = Zt,m
v 	= ∅ for all v ∈ Am(u). Then, for a level n

agent u ∈ Un, we say that

• u reached level n by time t if every level n − 1 agent u′ ∈ Un−1 ∩ An(u) has completed
level n − 1 by time t .

The idea here is that if u reached level n by time t , then the output is known on An(u)∩An−1
at time t , and we may use this information to start generating the output on the remaining part
of the cell, namely, on An(u) \ An−1. That is, we use the simulation SV,U,τ with V = An(u),
U = An(u) ∩ An−1 and τ = Zt,n−1. We thus say that

• u completed level n by time t if it reached level n by time t and the stopping time

Stime
An(u),An(u)∩An−1,Z

t,n−1

has been reached on input Wt
u.

Putting this together leads to defining Zt,n = (Zt,n
v )v∈V by

Zt,n
v :=

⎧⎪⎨
⎪⎩

Sout
An(u),An(u)∩An−1,Z

t,n−1

(
Wt

u

)
v if v ∈ An \ An−1 and Un(v) = u for some u

and u completed level n by time t,

∅ otherwise.

The output Zt = (Zt
v)v∈V at time t is then defined by Zt

v := limn→∞ Zt,n
v . That is, to deter-

mine Zt
v , we first look at the level n at which v enters the cell process, and then consider

the level n agent u responsible for generating the output on the cell of v in An. If u has
indeed completed level n by time t , then we read the value of Zt

v from the output of the
corresponding simulation.

Finally, we are ready to define (Lt+1
u )u∈V. As mentioned, these numbers are always zero

for nonagents, that is, we set Lt+1
u := 0 for u /∈ U1 ∪ U2 ∪ · · · . Suppose now that u ∈ Un for

some n ≥ 1. We say that u is active at time t + 1 if it has reached, but has not completed,
level n by time t . Thus, if u is active at time t + 1, then ideally it would like to read a bit at
that time, and indeed it may do so as long as there is an available bit at u + t + 1 (recall that
u may only read a bit from location u + t + 1 at time t + 1). This leads us to define

(13) Lt+1
u := 1

(
u is active at time t + 1 and Mt

u+t+1 <
∣∣Y bits

u+t+1

∣∣).
This completes the inductive definition of Lt+1

u for all t ≥ 0 and u ∈ V.
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We note that, by construction, once the output at a vertex is determined at some time, it
remains unchanged at future times, that is, if Zt

v 	= ∅ for some v and t , then Zt+1
v = Zt

v .
Denote by

Tv := min
{
t ≥ 0 : Zt

v 	=∅
}

the time at which the output at v is first determined. The output Z = (Zv)v∈V is then given
by

Zv := lim
t→∞Zt

v =
{
ZTv

v if Tv < ∞
∅ if Tv = ∞ .

This completes the construction of the finitary factor.
We record for later use the following simple property of the construction.

LEMMA 6.1. For any t ≥ 0, we have that (W t
u,Z

t
u)u∈V and (Lt+1

u )u∈V are measurable
with respect to Y cell, Y ord, (|Y bits

v |)v∈V and (Y bits
v (i))v∈V,1≤i≤Mt

v
.

PROOF. The proof by induction on t is straightforward from the definitions. �

6.3. Concluding Theorem 1.2. To conclude the proof of Theorem 1.2, we must establish
two properties of the above construction: that the output it produces has the desired distribu-
tion, and that the output can be determined from (Y bits, Y cell, Y ord) in a finitary manner. The
former is stated in the following proposition whose proof is postponed to Section 6.4 below.

PROPOSITION 6.2. The output Z has the same distribution as X.

PROOF OF THEOREM 1.2. The random field Z is clearly a deterministic and �-
equivariant function ϕ of (Y bits, Y cell, Y ord). Thus, in light of Proposition 6.2, we must only
show that ϕ is finitary. Since Tv is almost surely finite (as Zv 	= ∅ almost surely by Propo-
sition 6.2), it suffices to show that Zt is finitary for every t ≥ 0. This follows rather easily
from the construction. To see this, we explain how to determine the value of Zt

v in a finitary
manner.

We begin by finding the level n in which v enters the cell process, that is, v ∈ An \ An−1,
and then finding the cell An(v) of v in An. Since A is a finitary factor of Y cell, this may be
done in a finitary manner. Next, we find the level n agent Un(v) associated to the cell An(v).
Since this is just the ≤-minimal element in An(v) \ An−1, and since the order ≤ is a finitary
factor of Y ord, this may also be done in a finitary manner.

Let us suppose by induction that all steps of the construction up to time t − 1 are finitary.
Thus, recalling the definition of active, we see that, for any vertex w, we may determine in
a finitary manner whether w is active at time t . Since successors/predecessors in ≤ may be
found in a finitary manner from Y ord, it then also follows that Lt

w may be determined in a
finitary manner. Using again that successors/predecessors may be found in a finitary manner,
we conclude that Wt

w may be found in a finitary manner.
We would now like to check whether u completed level n by time t , and if so, find the

output value. To check this, we start at level 1 and work our way up to level n. Thus, we first
find all level 1 agents which are contained in An(v) (since the cell process and total order
are finitary, this can be done in a finitary manner). Next, for each such agent u, we check
whether u completed level 1 by time t . Recall that the simulation SA1(u) depends on the cell
A1(u) and on the order induced by ≤ on A1(u). Since the input word Wt

u, the cell process
and the order are finitary, we see that we may determine whether u completed level 1 by time
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t in a finitary manner, and if so, also determine the output Zt,1
w for all w ∈ A1(u) in a finitary

manner.
We now proceed to the next levels. Consider some level 2 ≤ m ≤ n. We again begin by

finding all level m agents which are contained in An(v). For each such agent u, we check
whether u reached level m by time t . For this, we must check whether the level m − 1 agents
in Am(u) completed level m − 1 by time t , which, by induction, may be done in a finitary
manner. If u reached level m by time t , we then check whether u completed level m by time t .
Similar to before, the simulation SAm(u),Am(u)∩Am−1,Z

t,m−1 depends on Am(u), Am(u)\Am−1,

the order induced by ≤ on Am(u), and on (Zt,m−1
w )w∈Am(u)∩Am−1 . Since the input word Wt

u,
the cell process and the order are finitary, we see that we may determine whether u completed
level m by time t in a finitary manner, and if so, also determine the output Zt,m

w for all
w ∈ Am(u) in a finitary manner.

Continuing up to level m = n yields that Zt,n
v may be determined in a finitary manner.

Since n is the level in which v enters the cell process, we have by definition that Zt
v = Zt,n

v .
Thus, Zt

v may be determined in a finitary manner, as required. �

6.4. The output has the correct distribution. In this section, we prove Proposition 6.2.
The proof is split up into several steps. The first step is the following lemma which formalizes
the intuition that the simulations used in the construction are “fed” independent unbiased bits.

LEMMA 6.3. Let ω ∈ {0,1}N consist of a sequence of independent unbiased bits. Let
(ωu)u∈V be a collection of i.i.d. copies of ω, independent of (Y bits, Y cell, Y ord). Then, for any
t ≥ 0, conditioned on (Y cell, Y ord), the collection (W t

u ◦ ωu)u∈V has the same distribution as
(ωu)u∈V.

PROOF. We prove the statement by induction on t , taking t = −1 as a trivial base case
(where W−1

u := ∅ for all u ∈ V). Suppose now that we know it for some t ≥ −1 and let us
show it for t + 1. Recall that Wt+1

u = Wt
u ◦ Ŵ t+1

u . Thus, we need to show that, conditioned
on (Y cell, Y ord), the collection (W t

u ◦ Ŵ t+1
u ◦ ωu)u∈V has the same distribution as (ωu)u∈V.

To this end, it suffices to show that, conditioned on (Y cell, Y ord), the collections (W t
u)u∈V and

(Ŵ t+1
u ◦ ωu)u∈V are independent and that the conditional distribution of the latter is that of

(ωu)u∈V. Indeed, the induction hypothesis will then yield the desired result.
We may restate our goal as showing that, conditioned on (Y cell, Y ord) and (W t

u)u∈V, the
collection (Ŵ t+1

u ◦ ωu)u∈V has the same distribution as (ωu)u∈V. Let F be the σ -algebra
generated by Y cell, Y ord, (|Y bits

v |)v∈V and (Y bits
v (i))v∈V,1≤i≤Mt

v
. By Lemma 6.1,(

Wt
u

)
u∈V and Q := {

u : Ŵ t+1
u 	= ∅

} = {
u : Lt+1

u = 1
}

are F -measurable. Since (ωu)u∈V is independent of (Y bits, Y cell, Y ord), and hence also of F ,
it suffices to show that, conditioned on F , the random variables (Ŵ t+1

u )u∈Q are independent
unbiased bits.

Note that Q is the set of vertices (agents) that read a bit at time t + 1, that

Q′ := {
v : Mt+1

v > Mt
v

}
is the set of vertices from which a bit was read at time t + 1, and that u �→ u+ t + 1 defines a
F -measurable bijection from Q to Q′. Recall also that Ŵ t+1

u = Y bits
u+t+1(M

t+1
u+t+1) for u ∈ Q.

Thus, it suffices to show that, conditioned on F , the random variables (Y bits
v (Mt+1

v ))v∈Q′ are
independent unbiased bits.

Indeed, since Q′ and (Mt+1
v )v∈Q′ are F -measurable by Lemma 6.1, since Mt+1

v > Mt
v

for all v ∈ Q′, and since Y bits is an i.i.d. process that is independent of (Y cell, Y ord), we see
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that the random variables (Y bits
v (Mt+1

v ))v∈Q′ are conditionally independent given F , and that,
for any v ∈ Q′, the conditional distribution of Y bits

v (Mt+1
v ) is the same as the distribution of

Y bits
v (Mt+1

v ) given |Y bits
v |. Since Y bits

v is a random number of random bits, the latter is the
distribution of an unbiased bit, and the proof is complete. �

We will use the above lemma for fixed t and then let t tend to infinity. In doing so, we will
encounter the limiting word W∞

u := limt→∞ Wt
u. Since Wt+1

u extends Wt
u, this limit is well

defined and is a word in {0,1}∗ or {0,1}N (we will see that it is in fact a finite word almost
surely).

The next step toward proving Proposition 6.2 is to show that the output at every vertex v

is eventually determined, that is, that Zv 	= ∅ (equivalently, Tv < ∞) almost surely. For this,
we first show that every vertex is eventually inactive.

LEMMA 6.4. Every vertex is almost surely eventually inactive. That is, for any u ∈ V,
there almost surely exists a finite t0 such that u is not active at any time t ≥ t0.

PROOF. Define

ψ(u, v) := 1{v=u+t and Lt
u=1 for some t≥0}.

Note that ψ(u, v) indicates whether u read a bit located at v. Since an agent may read at
most one bit from any location, ψ(u, v) also represents the number of bits read by u from
location v. Thus, recalling that |Wt

u| = L0
u + L1

u + · · · + Lt
u, we have

∑
v

ψ(u, v) =
∞∑
t=0

Lt
u = ∣∣W∞

u

∣∣ and
∑
u

ψ(u, v) =
∞∑
t=0

Lt
v−t = lim

t→∞Mt
v =: M∞

v .

The left-hand side describes the number of bits read by a given site u, while the right-hand
side describes the number of bits read from a given site v. The mass-transport principle (4)
tells us that these quantities are the same in expectation:

(14) E
∣∣W∞

u

∣∣ = EM∞
v .

Let Eu be the event that u is active at infinitely many times t . We wish to show that
P(Eu) = 0. Note that, by (13), the event Eu is contained in the event that for all but finitely
many t ≥ 0, all bits at location u + t have been read by time t , that is,

Eu ⊂ {
Mt

u+t ≥ ∣∣Y bits
u+t

∣∣ for all sufficiently large t
}

= {
M∞

u+t = ∣∣Y bits
u+t

∣∣ for all sufficiently large t
}
,

where the equality follows from the fact that Mt
v ≤ M∞

v ≤ |Y bits
v | for all v ∈ V and t ≥ 0.

Suppose now that P(Eu) > 0. Then by ergodicity, almost surely, Ew occurs for some w ∈ V,
and in particular, there almost surely exists w ∈ V such that M∞

w+i = |Y bits
w+i | for all i ≥ 0.

Since {w + i}i∈Z = V almost surely, it follows by �-invariance that M∞
v = |Y bits

v | for all
v ∈V almost surely. Thus, by (14),

(15) E
∣∣W∞

u

∣∣ = E
∣∣Y bits

v

∣∣.
That is, the expected number of bits read by each site is precisely the expected number of
available bits per site. It remains to show that this is impossible.

Define

φ(u, v) :=
⎧⎪⎨
⎪⎩

|W∞
u |

|An(u) \ An−1| if v ∈ An \ An−1 and Un(v) = u

0 otherwise.



2112 Y. SPINKA

Recall that Un(v) is the level n agent associated to the cell An(v). Since a level n agent u is
responsible for simulating the output on An(u) \ An−1 and does so via the input word W∞

u ,
we may think of φ(u, v) as follows: every level n agent u equally divides a total “cost” of
|W∞

u | among the vertices it ‘serviced’. Observe that

∑
v

φ(u, v) = ∣∣W∞
u

∣∣ and
∑
u

φ(u, v) = |W∞
UNv (v)|

|ANv(v) \ ANv−1| ,

where Nv is the level at which v entered the cell process, that is, v ∈ ANv \ANv−1, and where
we used that An(v) = An(u) whenever Un(v) = u. Thus, by (15) and the mass-transport
principle (4),

(16) E
∣∣Y bits

v

∣∣ = E

[ |W∞
UNv (v)|

|ANv(v) \ ANv−1|
]
.

This relates the expected number of available bits per site to the length of the input words
used by the simulations. We would like to reach a contradiction to the fact that there are many
available bits and that the simulation is efficient.

Suppose that u is a level n agent. It is straightforward from the definitions that the stopping
time Stime

An(u),An(u)∩An−1,Z
t,n−1 is not reached on any prefix of Wt

u that is not Wt
u itself (it may

or may not be reached on the entire word Wt
u). It therefore follows from Lemma 6.3 that,

conditioned on (Y cell, Y ord),∣∣Wt
u

∣∣ is stochastically dominated by Stime
An(u),An(u)∩An−1,Z

t,n−1(ω)

· 1(u reached level n by time t),

where ω ∈ {0,1}N consists of a sequence of independent unbiased bits, independent of Y .
Note that, if u reached level n by time t , then Zt,n−1 coincides with Z on An(u) ∩ An−1.
Thus, taking expectations and t → ∞, we obtain that

E
[∣∣W∞

u

∣∣ | Y cell, Y ord] ≤ E
[
Stime

An(u),An(u)∩An−1,Z
(ω) | Y cell, Y ord]

· 1(u eventually reached level n).

Hence, by (12) and (3), on the event that u ∈ Un, we have

E
[∣∣W∞

u

∣∣ | Y cell, Y ord] ≤ 2 +
{
HX

(
A1(u)

)
if n = 1∣∣An(u) \ An−1

∣∣ · log |S| if n ≥ 2
,

where we denote HX(V ) := H(XV ) for a finite set V ⊂ V. Therefore, by (2) and the choice
of δ,

E

[ |W∞
UNv (v)|

|ANv(v) \ ANv−1| | Y cell, Y ord
]

≤ (
h(X) + ε + 2δ

) · 1E + (
log |S| + 2

) · 1Ec,

where E is the event that Nv = 1 and |∂A1(v)| ≤ δ|A1(v)|. Thus, by (16),

E
∣∣Y bits

v

∣∣ ≤ (
h(X) + ε + 2δ

) · P(E) + (
log |S| + 2

) · P(
Ec).

Using (9) and (10), we see that E|Y bits
v | < h(X) + 3ε, which contradicts (8). We therefore

conclude that P(Eu) = 0 as required. �

We are now ready to show that the output at every vertex is eventually determined.

LEMMA 6.5. For any v ∈V, we have that Tv < ∞ almost surely.
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PROOF. Since An almost surely increases to V, it suffices to show that P(Zv =∅ and v ∈
An) = 0 for all n ≥ 1. We prove this by induction on n, taking n = 0 as a trivial base case by
setting A0 := ∅. Let n ≥ 1 and suppose that P(Zv = ∅ and v ∈ An−1) = 0. By �-invariance,
we actually have that P(Zw = ∅ for some w ∈ An−1) = 0. We may thus assume that Zw 	=∅

for all w ∈ An−1. Suppose now that Zv = ∅ and v ∈ An. Let u be the level n agent Un(v)

associated to the cell An(v). Observe that, by the definition of Zv and Zt,n
v , we have that,

for all t ≥ 0, u did not complete level n by time t . On the other hand, since Zw 	= ∅ for all
w ∈ An−1, there exists a finite t0 ≥ 0 such that u has reached level n by time t0. It follows
that u is active at time t for every t > t0. By Lemma 6.4, almost surely, no vertex is active at
infinitely many times, thus completing the proof that P(Zv = ∅ and v ∈ An) = 0. �

Now that we have established that the output at every vertex is eventually determined, it
remains to show that the distribution of the output is the correct one, namely, that of X. The
following immediately implies Proposition 6.2.

PROPOSITION 6.6. Conditioned on (Y cell, Y ord), Z almost surely has the same distribu-
tion as X, where we regard X as independent of (Y cell, Y ord).

PROOF. Throughout the proof, we regard X as independent of Y cell and Y ord. We also
condition on (Y cell, Y ord) throughout the entire proof, without explicitly mentioning this.
In particular, any statement about distributions or independence should be understood as
conditional on (Y cell, Y ord).

Since every finite subset of V is almost surely contained in some cell of the cell process, it
suffices to show that, for any n ≥ 1 and any cell C of An, ZC has the same distribution as XC .
We prove this by induction on n, taking n = 0 as a trivial base case (where A0 := ∅).

Suppose now that n ≥ 1. Let C be a cell of An and denote C′ := C ∩ An−1. We will show
that

(17) ZC′ d=XC′

and

(18) P(ZC\C′ ∈ · | ZC′ = τ) = P(XC\C′ ∈ · | XC′ = τ) for any feasible τ ∈ SC′
.

By feasible τ , we mean that P(XC′ = τ) > 0. The desired equality in distribution ZC
d=XC fol-

lows immediately from (17) and (18). Both parts require some type of independence, which
we now establish.

Let ω ∈ {0,1}N consist of a sequence of independent unbiased bits. Let (ωu)u∈V be a
collection of i.i.d. copies of ω, independent of Y bits. By Lemma 6.3, for any t ≥ 0, (W t

u ◦ωu)u
has the same distribution as (ωu)u. Taking the limit as t → ∞, we see that (W∞

u ◦ ωu)u also
has the same distribution as (ωu)u.

Observe that, by construction, if C is some cell of the cell process, then Zt
C is a function

of (W t
u)u∈C . Taking the limit as t → ∞, it follows that ZC is a function of (W∞

u )u∈C . It also
follows from the definition of Z and the fact that Tv < ∞ for all v, that Z is unchanged by
concatenating any word to any W∞

u . In particular, ZC is also a function of (W∞
u ◦ ωu)u∈C .

We now show (17). To this end, let C1, . . . ,Cm be the cells in An−1 that are contained

in C, so that C′ = C1 ∪ · · · ∪ Cm. By the induction hypothesis, ZCj

d=XCj
for every 1 ≤ j ≤ m.

Since A is a cell process, we have that dist(Cj ,Cj ′) > 1 for 1 ≤ j < j ′ ≤ m. Hence, using that
X is 1-dependent, we see that {XCj

}1≤j≤m are independent. Thus, it remains to show that
{ZCj

}1≤j≤m are also independent. Since ZCj
is a function of (W∞

u ◦ ωu)u∈Cj
, this follows

from the fact that {W∞
u ◦ ωu}u∈V are independent.
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To complete the proof, it remains to show (18). Let w be the agent associated to C and
recall that w ∈ C \ C′ and that C = An(w). Note that

ZC\C′ = Sout
C,C′,Z

(
W∞

w

) = Sout
C,C′,Z

(
W∞

w ◦ ωw

)
.

Recall that SC,C′,Z is shorthand for SC\C′,C′,ZC′ . Since W∞
w ◦ ωw is independent of (W∞

u ◦
ωu)u	=w , and hence also of ZC′ , we conclude that the conditional distribution of ZC\C′ given
that ZC′ = τ is equal to the distribution of Sout

C\C′,C′,τ (W
∞
w ◦ ωw). Thus, using that W∞

w ◦ ωw

has the same distribution as ω, we see that the distribution in question is that of Sout
C\C′,C′,τ (ω),

which is by definition P(XC\C′ ∈ · | XC′ = τ), as required. �

7. Remarks and open problems.

REMARK 2. We have given the details of the proof of Theorem 1.2. Theorem 1.1 follows
the same lines of proof, with minor modifications, all of which are in fact simplifications.

To obtain a proof of Theorem 1.1 with the least modifications to the existing proof, we
may replace the random total order constructed in Lemma 5.1 with the total order induced by
an i.i.d. process consisting of uniform [0,1] random variables. Using this order in the proof
of Lemma 5.2 yields a random total order with the same properties as in Lemma 5.2 (except
for the bound on the entropy of the i.i.d. process). When X is finite-valued, the proof then
goes through with no further modifications. Otherwise, we let Y bits

v consist of infinitely many
independent random bits, and then the proof goes through after an additional modification to
the proof of Lemma 6.4 (which relied on the fact that the entropy of X is finite to deduce a
bound on the expected number of bits used by the simulation; instead we only rely on the fact
that, almost surely, the simulation uses only finitely many bits; see Theorem 3.1).

It is instructive to note that a shorter and conceptually simpler proof exists when one does
not need to worry about the entropy of the i.i.d. process. This is essentially what is described
in “constructing a finitary coding” in Section 2. One way to implement the described cod-
ing would be to simply replace u ± t with u everywhere in the construction in Section 6.
That is, instead of having an agent u try to read an unused bit from location u + t at time
t , it always reads bits located at u. Since we may place an infinite sequence of bits at every
vertex, it will never run out of available bits. In this way, there is no “moving around” of
bits from one location to another. This could be made conceptually even simpler if instead
of using simulations from random bits to obtain samples of distributions as they are needed,
from the start, each Y bits

v is a collection (WV,U,τ )V,U,τ of independent random variables hav-
ing distribution P(XV ∈ · | XU = τ) for all finite U,V ⊂ V and τ ∈ SU . Either way, a nice
feature of this construction is that the coding radius depends only on the cell process A con-
structed in Section 4. Namely, the coding radius for determining X0 is at most the maximum
of min{r ≥ 0 : A(0) ⊂ �r(0}}, where A(0) is the cell of 0 in Amin{n≥1:0∈An}, the coding radius
for determining the cell A(0) and the coding radius for determining the cell process on A(0),
that is, (An ∩ A(0))n≥1. We elaborate on this in the next remark.

REMARK 3. Our main theorems give no information about the coding radius beyond its
almost-sure finiteness. However, some information about the coding radius may be extracted
from the proof given here. Specifically, Theorem 1.1 may be enhanced to give a universal
bound on the tail of the coding radius for any fixed graph and finite-dependence range. More
precisely, for any transitive amenable graph G and any integer k ≥ 1, there exists a sequence
(cn)

∞
n=1 tending to zero such that any k-dependent invariant random field X on G is a finitary

factor of an i.i.d. process with a coding radius R satisfying that P(R ≥ n) ≤ cn for all n. The
sequence (cn) depends only on the graph G and on the parameter k, and not on the group �

nor on the random field X. Indeed, the sequence (cn) is governed by the properties of the cell
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process (see the last part of the previous remark). In particular, for many concrete choices of
G (and k), an explicit sequence (cn) may be found.

To illustrate this in a simple setting, let us show that for G = Z and k = 1, one may
take cn = 8/n. In this case, instead of using the construction given in Section 4, it is sim-
pler to consider the finitary cell process A given by An := B1 ∪ · · · ∪ Bn, where (Bn)n≥1
are independent random subsets of Z, each being an independent Bernoulli percolation
with parameter 1/2. Then the level N := min{n : 0 ∈ An} at which 0 enters the cell pro-
cess is a geometric random variable with parameter 1/2, conditioned on which, the lengths
L± := min{m ≥ 1 : ±m /∈ AN } of the cell of 0 in AN in the positive/negative directions are
(independent) geometric random variables with parameter 2−N , and the coding radius R for
determining X0 is bounded by max{L+,L−}. Thus,

P(R > r) ≤ 2 ·E[(
1 − 2−N )r ] ≤ 2

∞∑
n=1

2−ne−r2−n ≤ 4

r

∞∑
m=−∞

2me−2m ≤ 8

r
,

where we used the substitution n = �log2 r� − m.
We remark that if one would like to simultaneously control also the entropy of the i.i.d.

process (as in Theorem 1.2), then it is plausible that this can be done by allowing (cn) to
depend on the entropy gap ε (and perhaps on |S|), but we did not pursue this.

REMARK 4. We do not know whether condition (1) is necessary as stated in Theo-
rem 1.2, however, as we now explain, some condition of this form is needed (i.e., the condi-
tion cannot be completely dropped). Let G be an infinite transitive graph on vertex set V and
let H be a finite transitive graph on m ≥ 2 vertices. Let G′ be the graph obtained by replacing
each vertex of G with a copy of H , that is, the vertex set of G′ is V× {1, . . . ,m}, and (u, i)

and (v, j) are adjacent in G′ if and only if u and v are adjacent in G, or u = v and i and j

are adjacent in H . Any graph G′ obtained in this manner is transitive, but fails to satisfy (1).
Indeed, the balls of radius 2 (or even 1 when H is a complete graph) around (v, i) and (v, j)

coincide. A simple case to have in mind is when G = Z and H consists of an edge on two
vertices, so that the vertices of G′ are Z×{0,1} and there is an edge between (u, i) and (v, j)

if and only if |u − v| ≤ 1.
Let G′ be any graph as above and let (Wv)v∈V be independent uniform random variables

on {1, . . . ,m}. Consider the random field X on G′ defined by X(v,i) := 1{Wv=i}. It is clear
that X is 2-dependent and Aut(G′)-invariant. We claim that X is not a Aut(G′)-factor of any
i.i.d. process Y on G′ whose single-site distribution has at least one atom (in particular, Y

cannot have finite entropy). Indeed, for any such process Y , the event Y(v,1) = · · · = Y(v,m)

has positive probability, and on this event there is no Aut(G′)-equivariant way to distinguish
between (v,1), . . . , (v,m). That is, any Aut(G′)-equivariant function ϕ : T V×{1,...,m} →
{0,1}V×{1,...,m} must satisfy ϕ(y)(v,1) = · · · = ϕ(y)(v,m) whenever y ∈ T V×{1,...,m} is such
that y(v,1) = · · · = y(v,m). In particular, the event ϕ(Y )(v,1) = · · · = ϕ(Y )(v,m) has positive
probability, and hence, ϕ(Y ) cannot have the same distribution as X.

We remark that there are transitive subgroups � of Aut(G′) for which the above obstruc-
tion does not exist. For example, let � be the subgroup of Aut(G′) generated by Aut(G)

and Aut(H), both of which are naturally embedded in Aut(G′). Simple modifications to the
proofs of Lemma 5.1 and Lemma 5.2 yield a �-invariant random total order with the desired
properties. The rest of the proof then goes through unchanged showing that our main result
holds in this case: any finitely dependent �-invariant process on G′ is a finitary �-factor of
an i.i.d. process with slightly larger entropy. We believe that our main result holds in many
similar situations, where condition (1) is replaced by a suitable condition on �. We did not
pursue this direction.
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Open problems.

1. One may wonder about the situation on nonamenable graphs such as a regular tree (of
degree at least three). Namely, is every automorphism-invariant finitely dependent process
on a tree a finitary factor of an i.i.d. process? In fact, even the more fundamental question of
whether such a process is a factor of i.i.d. (without the finitary condition) is still open; see [20,
Question 2.2]. The same questions may be asked on any transitive nonamenable graph.

2. Does there exist a stationary finitely dependent process on Z (or, more generally, on
some transitive amenable graph) that cannot be expressed as a finitary factor of an i.i.d.
process with finite expected coding radius? As mentioned, the 1-dependent 4-coloring and
2-dependent 3-coloring of [12] are believed to be examples of such processes, but this is still
unproved.

3. A finitary isomorphism is a finitary factor that is invertible and whose inverse is also
finitary. Somorodinky [23] showed that every stationary finitely dependent process on Z is
finitarily isomorphic to an i.i.d. process. Is this true in higher dimensions? Namely, is every
stationary finitely dependent process on Zd finitarily isomorphic to an i.i.d. process?
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