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We study the algorithmic thresholds for principal component analysis of
Gaussian k-tensors with a planted rank-one spike, via Langevin dynamics and
gradient descent. In order to efficiently recover the spike from natural initial-
izations, the signal-to-noise ratio must diverge in the dimension. Our proof
shows that the mechanism for the success/failure of recovery is the strength
of the “curvature” of the spike on the maximum entropy region of the ini-
tial data. To demonstrate this, we study the dynamics on a generalized family
of high-dimensional landscapes with planted signals, containing the spiked
tensor models as specific instances. We identify thresholds of signal-to-noise
ratios above which order 1 time recovery succeeds; in the case of the spiked
tensor model, these match the thresholds conjectured for algorithms such as
approximate message passing. Below these thresholds, where the curvature of
the signal on the maximal entropy region is weak, we show that recovery from
certain natural initializations takes at least stretched exponential time. Our ap-
proach combines global regularity estimates for spin glasses with pointwise
estimates to study the recovery problem by a perturbative approach.

1. Introduction. Optimization in high-dimensional landscapes can be computationally
hard. This difficulty is often attributed to the topological complexity of the landscape. We
show here that for planted signal recovery problems in high dimensions, there is another
key obstruction to local optimization methods. Indeed, we find that a crucial factor in these
settings is the competition between the strength of the signal and the entropy of the prior.
We focus on a well-known optimization problem from high-dimensional statistics which is
known to be NP hard [20], namely, maximum likelihood estimation for tensor principal com-
ponent analysis (PCA) [33].

Suppose that we are given M i.i.d. observations, Y �, of a k-tensor of rank 1 which has
been subject to Gaussian noise. That is,

Y � =√
Nλv⊗k +W�,

where v ∈ S
N−1(1) is deterministic, W� are i.i.d. Gaussian k-tensors with W�

i1,...,ik
∼N (0,1)

and λ ≥ 0 is the signal-to-noise ratio. Our goal is to infer the “planted signal,” or “spike,” v,
by maximum likelihood estimation.

Observe that maximum likelihood estimation for this problem boils down to optimizing an
empirical risk of the form

(1.1) R̂(x)= 1

M

∑
�≤M

(
W�,x⊗k)+√

Nλ(v, x)k,

where (·, ·) denotes the usual Euclidean inner product. Note further that in this setting, op-
timizing this risk is equivalent (in law) to optimizing the same risk for a single observation
upon making the change λ �→√

Mλ. We therefore restrict our analysis to the case M = 1.
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When k = 2, this is the well-known spiked matrix model [24]. In this setting it is known
[30] that there is an order 1 critical signal-to-noise ratio, λc, such that below λc, it is
information-theoretically impossible to detect the spike, and above λc, the maximum like-
lihood estimator is a distinguishing statistic. This transition is commonly referred to as the
BBP transition [4]. In this setting the maximum likelihood estimator is the top eigenvector
which can be computed in polynomial time by, for example, power iteration. Much more
detailed information is known about this transition for spiked matrix models, including uni-
versality, fluctuations and large deviations. See, for example, [10, 12, 28] for a small sample
of these works.

When k ≥ 3, this is the spiked tensor model [33]. In this case there is a regime of signal-
to-noise ratios for which it is information theoretically possible to recover the signal but for
which there is no known algorithm to efficiently approximate it. This is called a statistical-
to-algorithmic gap. In particular, it was shown in [29, 31, 33] that the minimal signal-to-
noise ratio above which it is information-theoretically possible to detect the signal—called
the information-theoretic threshold—is of order 1. See also [13, 27, 31, 32] for similar re-
sults with different priors. On the other hand, the minimal signal-to-noise ratio above which
one can efficiently detect the signal—called the algorithmic threshold—has been proved or
predicted to scale like λ = Nα for some α > 0 for every studied algorithm. (By the corre-
spondence mentioned above, the regime of diverging λ can be translated to the regime of λ

of order 1 with a diverging number of observations M = Nα/2, so that this regime is also
of practical interest.) In [33], two local optimization methods, approximate message passing
and tensor power iteration, were shown to have critical exponents α at most (k − 1)/2 with
predicted thresholds at α = (k − 2)/2. Semidefinite relaxation approaches have also been
analyzed. Tensor unfolding was shown [33] to have a critical exponent of at most 
k/2�−1

2
and, conjecturally, (k − 2)/4. It was also shown that the degree 4 sum-of-squares algorithm
[22] and a related spectral algorithm [21] (in the case k = 3) have sharp critical thresholds of
(k − 2)/4. See also [25] for a similar analysis in the case k = 4. We remark that statistical-
to-algorithmic gaps, often diverging in the underlying dimension, have also been observed in
myriad other problems of interest [1, 5, 6, 11, 15, 39].

Let us also discuss the complexity of the landscape R̂(x) given by (1.1). The complexity
in the absence of a spike (the case where λ = 0) has been extensively studied [2, 3, 37];
see also [16] for a related line of work. When adding in the signal term so that λ > 0, it was
proved [9] that the expected number of critical points of R̂(x), called the annealed complexity,
is exponentially large in N and has a topological phase transition as one varies λ on the order
1 scale.

One might wonder why the statistical-to-algorithmic gap is diverging when k ≥ 3. We
investigate this issue for algorithms, which directly perform maximum likelihood estima-
tion, by analyzing the behavior of a family of “plain vanilla” algorithms, called Langevin
dynamics, as well as gradient descent. We find that, for natural initializations, the statistical-
to-algorithmic gap for Langevin dynamics and gradient descent diverges like λ ∼ Nα . One
may expect that this issue is due to the topological complexity of R̂(x). Our proof, however,
suggests that this gap is actually due to the weakness of the signal in the region of maximal
entropy for the uninformative prior.

To clarify this point, we study these dynamics on a more general family of random land-
scapes. For convenience, let us rescale our problem to be on SN = S

N−1(
√

N), the sphere in
R

N of radius
√

N . We consider a function H : SN →R of the form

(1.2) H(x)=H0(x)−Nλφ(x),

where φ is a deterministic, nonlinear function and H0 is a noise term. To put ourselves in a
general setting, we only assume that H0 is a mean-zero Gaussian process with a rotationally
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invariant law that is well defined in all dimensions. That is, for every N , H0 has covariance
of the form

(1.3) Cov
(
H0(x),H0(y)

)=Nξ

(
(x, y)

N

)

for some fixed function ξ , where (·, ·) denotes the Euclidean inner product.1 For simplicity,
we take the function φ(x) to be a function of the inner product of x with some “unknown”
vector v ∈R

N . As H0 is isotropic, without loss of generality, we assume that v = e1, the first
canonical Euclidean basis vector, so that φ(x) is a function of

(1.4) mN(x)= (x, e1)√
N

= x1√
N

,

which we call the correlation. In particular, we take φ of the form

(1.5) φ(x)= (
mN(x)

)k
,

where k ≥ 1 is not necessarily integer. The case ξ(t) = tk and the integer k ≥ 2 correspond
to the setting of (1.1). The case where ξ(t)= tp corresponds to the (p + k)-spin glass model
from [18], whose topological phase transitions have been precisely analyzed in [34] via a
computation of the quenched complexity using a novel replica Kac–Rice approach.

We analyze here the performance of Langevin dynamics and gradient descent in achieving
order 1 correlation as one varies the initialization, the nonlinearity of the signal, k and the
signal-to-noise ratio, λ. If k > 2, we find that the critical threshold for algorithmic recovery
via Langevin dynamics diverges like λalg ∼ Nα , with α > 0, for a natural class of initializa-
tions. On the other hand, we find that if k < 2, this algorithmic threshold is of order 1. In the
former regime the second derivative of the signal is vanishing in the maximum entropy re-
gion of the uninformative prior, whereas in the latter it is diverging, matching the mechanism
proposed above.

Our analysis has two main thrusts, efficient recovery above critical thresholds and refuta-
tion below them. In both of these settings, we find that the obstacle to recovering the signal e1
via Langevin dynamics is escaping the equator, that is, the region where mN(x)=O(N−1/2),
which corresponds to the maximum entropy region of the uninformative prior.

For the recovery problem we prove that as soon as α > αc(∞) := (k − 2)/2, Langevin
dynamics and gradient descent solve the recovery problem in order 1 time when started uni-
formly at random; see Theorem 2.1. To isolate the importance of the initialization in this
problem, we provide a hierarchy of sufficient conditions on the initial data that imply that
Langevin dynamics with λ = Nα will efficiently solve the recovery problem down to a hi-
erarchy of thresholds αc(n), the lowest of these thresholds being αc(∞); see Section 2.2. In
Section 2.3 we give examples of initial data that satisfy these conditions at different levels;
the case of the volume measure is discussed in depth in Section 2.1. To prove these results,
we build on the “bounding flows” strategy of [7]. In particular, we show that on O(1) times,
we can compare the evolution of the correlation, m(Xt), to the gradient descent for the prob-
lem with no noise H0 = 0. This follows by a stochastic Taylor expansion upon combining
the Sobolev-type G-norm estimates developed in [7] for spin glasses, with estimates on the
regularity of the initial data developed here. This is discussed in more detail in Section 2.5.

For the refutation problem, the threshold αc(∞) also has a natural (heuristic) interpreta-
tion: if α < αc(∞), then Langevin dynamics started uniformly at random would take expo-
nential time to solve the recovery problem when given a pure signal, that is, H0(x) = 0. We

1It is classical [35] that the largest class of such ξ is of the form ξ(t) =∑
p a2

ptp with ξ(1 + ε) < ∞ for some
ε > 0.
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conjecture that this is also the case when H0 is added back, so that αc(∞) is sharp for uni-
form at random initialization. As added motivation for this conjecture, we prove that indeed
αc(∞) is sharp for a natural Gibbs class of initial data: from such initializations, the dynam-
ics efficiently recover the signal for α > αc(∞) but take at least stretched exponential time to
do so for α < αc(∞). To prove this refutation theorem below αc(∞), we formalize the notion
of free energy wells (see Definition 2.12), whose existence implies exponential lower bounds
on the exit time of the well from a restriction of the corresponding Gibbs measure. We find
that below the critical αc(∞) there is a free energy well around the equator and use this to
deduce hardness of recovery for Gibbs initializations. For more on this, see Section 2.4.

2. Statements of main results. We focus on a canonical class of optimization algo-
rithms called Langevin dynamics and gradient descent with Hamiltonian H . The Langevin
dynamics interpolate between Brownian motion and gradient descent via a parameter β > 0,
usually called the inverse temperature, with the case β = 0 corresponding to Brownian mo-
tion and the case β =∞ corresponding to gradient descent. More precisely, for 0 ≤ β < ∞,
let X

β
t solve the stochastic differential equation (SDE)

(2.1)

{
dX

β
t =√

2dBt − β∇H
(
X

β
t

)
dt,

X
β
0 = x,

where Bt is Brownian motion on SN , ∇ denotes the covariant derivative on SN , and H is
called the Hamiltonian which is given here by (1.2). As H is C1, this martingale problem is
well posed so that X

β
t is well defined [14, 36]. (When k is an integer, H is smooth so that one

can solve this in the strong sense as well [23].) When β =∞, let X∞
t denote the solution to

the ODE

(2.2)

{
dX∞

t =−∇H
(
X∞

t

)
dt,

X∞
0 = x.

Note that on the complement of the set mN(x) = 0, ∇H is locally Lipschitz so that X∞
t

is locally well posed (in time) by the Picard–Lindelof theorem. Note that the infinitesimal
generators of these processes are given by

(2.3) Lβ =
{
	− β〈∇H,∇·〉 β ∈ (0,∞),

−〈∇H,∇·〉 β =∞,

where 	 is the Laplacian on SN and 〈·, ·〉 is the metric tensor. Whenever β is clear from
context, we will write Xt =X

β
t and L= Lβ .

We aim to determine the minimal λ for which efficient recovery of the signal, e1, is possible
via these dynamics and understand the role that the initialization plays. There are, of course,
multiple notions of recovery. The main ones in which we are interested are weak recovery
and strong recovery. For fixed ξ , β , k, sequence λN and sequence of initial data xN , we say
that the Langevin dynamics weakly recovers the signal in order 1 time if it attains order 1
correlation in O(1) time with high probability. On the other hand, we say that the dynamics
strongly recovers the signal in order 1 time if it attains 1−o(1) correlation in O(1) time with
high probability. In the diverging signal-to-noise ratio regime, weak and strong recovery are
equivalent (see Lemma 4.1). A more complete discussion of their relationship is provided in
Section 4.
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2.1. Recovery initialized from the volume measure. Perhaps the most natural initializa-
tion is a completely uninformative prior, that is, the (uniform) volume measure on SN . This
is particularly motivated from the algorithmic perspective as it is easy to sample from the
volume measure on SN in order 1 time. In order to focus on the key issues and deal with all k

in a comprehensive manner, we restrict to the upper hemisphere: {x1 > 0}. Of course, a point
sampled from the volume measure on SN is in the upper hemisphere with probability 1

2 .
We obtain the following recovery guarantees starting from the volume measure on the

upper hemisphere.2 Let dx be the volume measure on SN , and let P denote the law of the
noise H0. In the following, denote the law of X

β
t started at x by Qx , and in the case of

gradient descent, referred to as β =∞, interpret Qx as a Dirac mass on the trajectory of X∞
t

started from x.

THEOREM 2.1. Fix any ξ , any β ∈ (0,∞)∪ {∞} and any k ∈ [1,∞):

1. If k > 2 and λ = Nα for α > k−2
2 , then for every ε > 0, there exists T0 such that for

every T ≥ T0,

lim
N→∞

∫
x1>0

Qx

(
min

t∈[T0,T ]
mN

(
X

β
t

)≥ 1 − ε
)
dx = 1, P-a.s.

2. If k < 2, β < ∞ and λ is a large enough constant, there exists T0 such that for all
T ≥ T0,

lim
ε→0

lim
N→∞

∫
x1>0

Qx

(
min

t∈[T0,T ]
mN

(
X

β
t

)≥ ε
)
dx = 1, P-a.s.

We first pause to comment on the special case of ξ(t) = tk with k integer, corresponding
to maximum likelihood estimation for tensor PCA. The thresholds of Theorem 2.1 improve
upon the rigorously known threshold for approximate message passing and tensor power
iteration, and the (k − 2)/2 threshold matches the conjectured threshold for those algorithms.

These thresholds correspond to the signal-to-noise ratios for which the second derivative

of Nλφ diverges at points of correlation mN(x) = 
(N− 1
2 ) (the asymptotic support of dx).

We predict that these thresholds are sharp for efficient algorithmic recovery of e1 via local
optimization so that, when the second derivative is o(1) at these correlations, efficient recov-
ery is not possible. When H0 ≡ 0, it is easy to see that for k < 2 and λ order 1, or k > 2 and
λ=Nα with α < k−2

2 , the Langevin dynamics takes an exponential time to correlate with e1
with this initialization; it would be expected that this persists with the addition of noise; see
the in-depth discussion in Section 2.5.

We are able to prove sharpness of these thresholds for a high-temperature Gibbs-type ini-
tialization that approximates the volume measure as β → 0, that is, that below these thresh-
olds, the corresponding dynamics fails to recover in stretched exponential time whereas above
the thresholds the dynamics recover as above. In the next section we define general condi-
tions, Condition 1 and Condition 2, on the initial data that guarantee recovery above these
thresholds.

2.2. General thresholds for recovery. Theorem 2.1 is a particular case of more general
recovery results that translate a natural hierarchy of conditions on the initial data to thresholds
in λ above which we guarantee recovery of e1. Let M1(SN) denote the space of probability
measures on SN . A choice of initial data corresponds to a choice of measure μN ∈M1(SN).

2In the first preprint of this article, a suboptimal version of this result for initialization from the uniform measure
was stated; the current formulation of Theorem 2.1 resolves what was there labeled as Conjecture 1.
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Our main recovery guarantees apply to any initial data which satisfy the following two natural
conditions.

The first condition is on the regularity of the initial data. For β ∈ (0,∞)∪ {∞}, define L0
as

(2.4) L0,β =
{
	− β〈∇H0,∇·〉 β ∈ (0,∞),

−〈∇H0,∇·〉 β =∞,

that is, the generator of Langevin dynamics and gradient descent with respect to H0. Corre-
spondingly, let etL0,β refer to the semigroup induced by L0,β . For every δ > 0, n≥ 1 and N ,
let

E
β
n,δ,N =

n−1⋂
�=0

{
x : ∣∣L�

0,βmN(x)
∣∣≤N− 1

2+δ},
and for every δ, T > 0 and N , let

Ẽ
β
T ,δ,N =

{
x : sup

t≤T

∣∣etL0,βL0,βmN(x)
∣∣≤N− 1

2+δ
}
.

Again, when understood from context, we drop the dependence on β in the notation.

DEFINITION 2.2. We say that a sequence of random probability measures μN ∈
M1(SN) satisfies Condition 1 at level n for inverse temperature β ∈ (0,∞) ∪ {∞} if for
every δ > 0,

(2.5) lim
N→∞μN

((
E

β
n,δ,N

)c)= 0 P-a.s.

We say that a sequence of random probability measures μN ∈M1(SN) weakly satisfies Con-
dition 1 at level ∞ for inverse temperature β ∈ (0,∞)∪ {∞} if for every δ, T > 0,

(2.6) lim
N→∞μN

((
Ẽ

β
T ,δ,N

)c)= 0 P-a.s.

Let us pause for a moment to interpret Condition 1 intuitively. Let us call Langevin dynam-
ics or gradient descent with Hamiltonian H0 the “pure noise” dynamics. Recall that etL0f (x)

is the expected value of f with respect to the pure noise dynamics at time t started at x.
The set ẼT ,δ,N is then the set of initializations for which the pure noise dynamics does not
have an atypically strong push in the (opposite) direction of the spike before time T . Since
the landscape is isotropic, one should expect that if one runs the pure noise dynamics started
from any initial data that is agnostic to the spike, then correlations of observables with the
spike will stay on their central limit theorem scales for a long time. Weakly satisfying Con-
dition 1 at level ∞ states that the probability of such initializations with respect to the initial
data tends to one. On the other hand, Condition 1 at level n says that the first n coefficients
in the Taylor expansion of etL0m are all on this typical scale. Clearly, E∞,δ,N is contained
in ẼT ,δ′,N for every δ′ > δ, hence the qualifier “weak.” The implication in the other direction
does not obviously hold due to possible cancellations.

The second condition ensures that the initial correlation is on the typical 
(N− 1
2 ) scale so

that the drift from gradient descent for the signal is not negligible at time zero.

DEFINITION 2.3. A sequence of random probability measures, μN ∈M1(SN), satisfies
Condition 2 if

lim
ε→0

lim
N→∞μN(x1 < ε)= 0 P-a.s.
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A sequence of random probability measures μN ∈M1(SN) satisfies Condition 2 if for every
δ > 0,

lim
N→∞μN

(
x1 ≤N−δ)= 0 in prob.

We emphasize that neither of these conditions involve the parameters k (the nonlinearity
of the signal) or λ (the signal-to-noise ratio). The conditions can be shown to hold for various
natural choices of initial data, such as the volume measure on the upper hemisphere, imply-
ing Theorem 2.1, as well as certain “high-temperature” Gibbs measures. For more on this,
see Section 2.3.

Let us now turn to our main results under Condition 1 and Condition 2. We begin with the
supercritical regime, k > 2, where one will need λ to diverge with N to efficiently recover, as
the curvature of the signal in the region where mN(x) = 
(N−1/2) is negligible. For every
n≥ 1, let

(2.7) αc(n)= k − 1

2
− n− 1

2n
and αc(∞)= k − 2

2
.

We then have the following result regarding strong recovery.

THEOREM 2.4. Fix any ξ , any β ∈ (0,∞) ∪ {∞} and any k > 2. Let λ = Nα , and con-
sider a sequence of initializations μN ∈ M1(SN). If μN satisfies Condition 2, then we have
the following:

1. If μN weakly satisfies Condition 1 at level ∞ for inverse temperature β , then, for every
α > αc(∞) and every ε > 0, there exists a T0 such that for every T > T0,

lim
N→∞

∫
Qx

(
min

t∈[T0,T ]
mN

(
X

β
t

)≥ 1 − ε
)
dμN(x)= 1 P-a.s.

1. If μN satisfies Condition 1 at level n for inverse temperature β , then the above holds
for every α > αc(n).

If instead μN satisfies Condition 2, then the above convergence holds in probability.

The above theorem shows that, in the regime k > 2, we need λ to diverge for Langevin
dynamics and gradient descent to recover the signal in order 1 time. Observe that for such k,
the second derivative of Nφ in the region mN(x) = O(N−1/2) is vanishing as N →∞. Let
us now show, conversely, that in the subcritical regime k < 2, that is, the regime where the
second derivative of Nφ is diverging when mN(x)=
(N−1/2), order 1 time weak recovery
holds for large but finite signal-to-noise ratios. That is, the statistical-to-algorithmic gap (if
one exists) is at most order 1 for k < 2. In this regime one cannot hope for strong recovery
(see Remark 2.11). If we let

(2.8) kc(n)= 2 − 1

n
and kc(∞)= 2,

then we have the following weak recovery guarantee. In the following, in the cases β =∞
and 1 < k < 2, we interpret Qx to be the zero measure (i.e., Qx = 0) when x1 = 0 to avoid
issues related to well posedness. For more on this, see Remark 5.6.

THEOREM 2.5. Fix any ξ and any β ∈ (0,∞) ∪ {∞}. There exists λ0(β, ξ, k) > 0 such
that for all λ > λ0 the following holds. If μN satisfies Condition 2, then we have the follow-
ing.
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1. If μN weakly satisfies Condition 1 at level ∞ for inverse temperature β , then, for every
1 ≤ k < kc(∞) and every η > 0, there exists ε > 0 and T0 > 0, such that for any T > T0

(2.9) lim
N→∞

∫
Qx

(
min

t∈[T0,T ]
mN

(
X

β
t

)≥ ε
)
dμN(x) > 1 − η P-a.s.

2. If instead, μN ∈ M1(SN) satisfies Condition 1 at level n for inverse temperature β ,
then the same result holds for every 1 ≤ k < kc(n).

The main ideas behind Theorems 2.4 and 2.5 are essentially the same. We will explain the
intuition behind their proofs presently (see Section 2.5 below). We end this section with the
following remark on possible relaxations of Condition 1.

REMARK 2.6. One could not decrease the sets En,δ,N and ẼT ,δ,N , since measures that
don’t contain information about the planted signal, for example, the volume measure on SN ,
have mN(x)=
(N−1/2).

2.3. Examples of initial data satisfying Condition 1 and Condition 2. Let us now turn to
some examples of initial data that satisfy the conditions of our theorems. When considering
initial data for such problems there are a few natural choices:

EXAMPLE 1. Let us begin by observing that P-a.s., any initial data which is concentrated
on the region mN(x) = 
(N−1/2), for example, δx for any x having mN(x) = 
(N−1/2),
satisfies Condition 1 at level 1 for every β ∈ (0,∞)∪ {∞} and Condition 2 tautologically.

EXAMPLE 2. Initialization from the volume measure was discussed at length in Sec-
tion 2.1. Theorem 2.1 is an immediate corollary of Theorems 2.4–2.5 combined with the
following theorem:

THEOREM 2.7. The normalized volume measure on SN ∩{x1 > 0} weakly satisfies Con-
dition 1 at level ∞ at every β ∈ (0,∞)∪ {∞} and satisfies Condition 2.

At an intuitive level, Theorem 2.7 is saying that for the Langevin dynamics or gradient
descent with respect to the pure-noise environment H0, initialized from the normalized vol-

ume measure, the observable L0m does not leave its typical scale of O(N− 1
2 ) in order 1

timescales. This is very natural to expect as L0m consists of the correlation with e1 and the
gradient of H0 in the direction of e1, while the volume measure and H0 are both isotropic and
have no sense of the direction e1. While a similar intuition should hold for a broad set of ini-
tializations, the proof of Theorem 2.7, found in Section 6.1, relies crucially on the rotational
invariance of the volume measure.3

EXAMPLE 3. Another natural class of initializations are Gibbs-type initializations in the
“pure noise” environment. Let dπ0,β(x) ∝ exp(−βH0(x)) dx be the Gibbs measure on SN

corresponding only to the noise H0 at inverse temperature β , and let π+
0,β be π0,β conditioned

on {x1 > 0}, that is,

(2.10) π+
0,β = π0,β(· | x1 > 0).

One can show that such measures satisfy Condition 1 at level n for every n.

3In a previous version of this paper, the suboptimal version of Theorem 2.1 followed from checking Condi-
tion 1 at level 4 by hand in the absence of weak Condition 1 at level ∞.
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THEOREM 2.8. Let ξ be even. There exists β0 > 0 such that, for all β < β0, the measure
π+

0,β satisfies Condition 1 at level n for β , for every n ≥ 1. Moreover, π+
0,β satisfies Condi-

tion 2′.

COROLLARY 2.9. Let ξ be even and k > 2. If β < β0, for every β > 0, if λ = Nα with
α > αc(∞), the Langevin dynamics starting from π+

0,β strongly recovers the signal in order
1 time in P-prob.

Notice, in particular, that, like the volume measure, the measure π0,β is completely inde-
pendent of the noise φ as well as the signal-to-noise ratio λ. Moreover, as β → 0, the measure
π0,β approximates the volume measure. We end this section with the following conjecture re-
garding the measure π0,β . This result would imply an almost sure recovery result for k > 2
and α > αc(∞) as well as the matching weak recovery result for k < 2. We also believe that
it is of independent interest in the statistical physics community.

CONJECTURE. For every β > 0, if γ (·) is the law of a standard Gaussian,

π0,β(x1 ∈ ·)−−−−→
N→∞ γ (·)

weakly as measures P-a.s. In particular, π+
0,β satisfies Condition 2.

2.4. Refutation below αc(∞). The Gibbs initialization introduced in the previous sec-
tion, π+

0,β , is of further importance to us as it is an initialization for which we are able to
prove the sharpness of the threshold αc(∞). For any ε > 0, let τε be the hitting time

τε = inf
{
t > 0 :mN(Xt)≥ ε

}
,

and let π+
0,β be as in (2.10).

THEOREM 2.10. Fix any ξ , any β ∈ (0,∞) and k > 2, and let λN =Nα . If α < αc(∞),
there exists c > 0 such that for every ε > 0 sufficiently small,

lim
N→∞

1

N2ε
log

∫
Qx

(
τ

2N
− 1

2+ε
≤ ecNε )

dπ+
0,β(x) <−c, P-a.s.

Motivated by the fact that in the limit as β → 0, π+
0,β approximates the volume measure on

SN ∩ {x1 > 0}, we believe that a similar refutation result also holds for initialization from the
volume measure whenever α < αc(∞); this would make the thresholds αc(∞) and kc(∞)

sharp for initialization from the volume measure.

2.5. Ideas of proofs. We now sketch some of the key ideas underlying the above recovery
and refutation results and their proofs.

2.5.1. Ideas of proofs of Theorem 2.4 and Theorem 2.5. We first discuss the intuition
behind the proofs of Theorems 2.4–2.5. Our interest is in understanding the transition for
signal recovery in short times. It turns out that the subcritical and supercritical problems
are essentially the same. To see why, consider, for the moment, the recovery question for
Langevin dynamics in the simpler setting where there is only a signal, H = −Nλφ and
H0 ≡ 0.

By rotation invariance, the question of escaping the equator for the problem with pure
signal is effectively the same as studying the escape from the origin for a one-dimensional
Langevin dynamics with Hamiltonian,

(2.11) V (m)= βλmk + 1

2
log

(
1 −m2)≈ βλmk − 1

2
m2,
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in the small noise regime (noise of order N−1/2); the term 1
2 log(1−m2) is the entropy of the

set SN ∩ {m(x)≈m}. Evidently, this amounts to studying the ODE,

(2.12) ṁ= βλkmk−1 −m,

where m(t) =mN(Xt). The second term reverts to the origin. To escape, we must then hope
that the first term dominates at the initial point. In particular, if m is positive and small and λ

is large, one hopes to compare this ODE to the simpler system

(2.13) ṁ≈ βλkmk−1.

In this setting one may then apply a standard comparison inequality (see Lemma 5.1) which
compares solutions of this ODE to certain power laws.4 Evidently, the order of growth of
the second derivative of mk is the essential ingredient in resolving the tradeoff above. Indeed,
under Condition 2, which places mN(0)=
( 1√

N
), if k < 2 and λ is order 1, then mk−1 �m,

and, similarly, if k > 2, then λmk−1 � m, provided λ grows sufficiently fast (α > αc(∞)).
Notice also that if α < αc(∞), then Langevin dynamics with β <∞ from mN(0)=O( 1√

N
)

would not efficiently recover the signal even in this trivial pure spike problem.
When adding back H0, we consider the evolution equation for m given by

dm= (
βλkmk−1(1 −m2)+L0m

)
dt + dMm

t ,(2.14)

where L0, given by (2.4), is the infinitesimal generator for Langevin dynamics with respect
to H0, and Mm

t is a martingale. We will see that Mm
t = O(

√
t/N), so that, on short times,

this is not far from the situation of (2.13). The remaining discrepancy, evidently, is to ensure
that |L0m| starts and remains smaller than λmk−1. To this end, we use the G-norm estimates
from [7] to show that provided L0m(X0) is suitably localized, that is, provided Condition 1
holds at level n, then L0m(Xt) remains localized on the relevant timescale needed to recover
the signal above αc(n) (see Theorem 5.3). The main result then follows by combining this
localization, or its weaker version at level ∞, with the comparison inequality of Lemma 5.1:
this is developed in Section 5.

The proof of the recovery result for β =∞ follows mutatis mutandis as that of β < ∞.
For an explanation of the relevant modifications, see Section 5.4.

REMARK 2.11 (Strong recovery is impossible for finite λ). When λ is order 1, one can-
not hope to obtain a strong recovery result. Indeed, if we start from any point sufficiently
close to the north pole, correlation mN(x) ≥ 1 − ε for ε > 0 sufficiently small, then mN(t)

will decrease in correlation in order 1 time. To see this, we examine the drift in (2.14) and
expand L0 as

L0m=−m− β〈∇H0,∇m〉 :
if ε is sufficiently small, then −m will dominate βλkmk−1; furthermore, the maximum of
|〈∇H0,∇m〉| on the spherical cap {mN(x) ≥ 1 − ε} can be shown to scale down to zero as
ε goes to zero. Putting these together with the types of arguments found in Section 4 would
imply the desired.

4In the critical regime, k = 2, this is the classical Gronwall inequality which is, of course, not of power law
type.
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2.5.2. Ideas of proofs of Theorem 2.10. The underlying idea behind our refutation result
is the presence of what we call a free energy well for the correlation which is defined as
follows. Define the Gibbs measure for H by

dπβ(x)∝ exp
(−βH(x)

)
dx,

which is normalized to be a probability measure, where dx is the normalized volume measure
on SN . In the following, for a real number a, we let Bε(a)= {x : |x − a|< ε} denote the ball
of radius ε around a. For any function f : SN →R, we define the entropy

If (a; ε)=− logπ
({

x : f (x) ∈ Bε(a)
})

.

We can now define free energy wells for Lipschitz functions.

DEFINITION 2.12. A Lipschitz function, f : SN → R, has an ε-free energy well of
height h in [a, b] if the following holds: there exists c ∈ (a, b) and η > 0 such that
Bε(a)∩Bε(b)∩Bη(c)=∅ and

min
{
If (a, ε), If (b, ε)

}− If (c, η)≥ h.

Such free energy wells are the exit time analog of the of free energy barriers formalized
in [8] for spectral gap estimates. We show in Theorem 7.4 that free energy wells confine the
dynamics on timescales that are exponential in the height, h, when started from this Gibbs
measure πβ restricted to the well. We then show that, for α < αc(∞), there is a free energy
well for the correlation, namely, the function f (x)= (x, e1) has a free energy well of height
Nε in [−Nε,Nε] (see Proposition 7.1). Theorem 2.10 then follows by combining this with
the facts that πβ and π0,β are comparable when restricted to this band of correlations, and
π0,β is asymptotically supported in this region.

We conclude with a remark regarding exceptional points which facilitate recovery at order
1 λ.

REMARK 2.13 (Equatorial passes). In light of the free energy well for the correlation,
one might hope to prove an even stronger refutation theorem. It may be tempting to be-
lieve that when k > 2 and λ is order 1, the Langevin dynamics cannot recover the signal in

subexponential times, uniformly, over all initial X0 with mN(X0) = O(N− 1
2 ). Indeed, this

is the case for the simpler “pure signal” problem where H0 = 0. As a consequence of (2.14)
and lower bounds on ‖∂1H0‖∞ (see, e.g., [2]), however, this guess does not hold. One can
show the following: for every ξ , k and λ > λ0(ξ, k), there exist initial data X0 such that

mN(X0) = O(N− 1
2 ) and such that Langevin dynamics started from X0 weakly recovers in

order 1 time.

3. Preliminaries: Regularity theory and stochastic analysis in high dimensions.
Throughout the paper we will make frequent use of certain uniform Sobolev-type estimates
for H0, developed in the context of spin-glass dynamics, as well as properties of solutions to
certain Langevin-type stochastic differential equations. We recall these results in this section.
In what follows, for functions f , g we say that f � g if there is a constant C > 0 such that
f ≤ Cg.

3.1. Regularity theory of spin glasses and the G-norm. As is often the case in such prob-
lems, it will be important to understand the regularity of the related Hamiltonians. It turns
out that, in high-dimensional analysis problems, one needs to define these Sobolev spaces
carefully, as the scaling of the norms in the dimension is often crucial to the problem at hand.
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With this in mind, let us recall the Gk-norm, which provides a (topologically) equivalent
norm on the usual Sobolev space, Wk,∞, but which is better suited to high-dimensional prob-
lems as well as the related G-norm regularity of H0, established in [7] which will be crucial
to our analysis.

DEFINITION 3.1. A function f : SN →R is in the space Gk
K(SN), if

‖f ‖Gk
K
:= ∑

0≤�≤k

K�/2∥∥∣∣∇�f
∣∣
op

∥∥
L∞(SN) <∞.

Here, |∇kf |op(x) denotes the natural operator norm when ∇kf is viewed as a k-form acting
on the k-fold product of the tangent space TxSN . Throughout the paper, unless otherwise
specified, |∇kf | will denote this norm.

REMARK 3.2. By the equivalence of norms on finite dimensional vector spaces, for fixed
N , this space is equivalent to the canonical Sobolev space Wk,∞, which is defined using
Frobenius norms. We use the operator norm instead for the following reason. For n ≥ 2, we
need to bound the operator norms of random tensors. It is well known that, for such random
tensors, there is a marked difference in the scaling of the Frobenius and operator norms in the
dimension (see, e.g., [38]).

We let Gn(SN)= Gn
N(SN) denote the special case K =N which is chosen precisely such

that the scaling in N of the Gn-norm is independent of n. Namely, in [7] it was shown that,
for every n, the Gn-norm of H0/N is order 1 in N . Recall ξ(t)=∑

aptp from (1.3) and that
ξ(1 + ε) <∞ implies that H0 ∈ C∞(SN).

THEOREM 3.3 ([7], Theorem 3.3). For every n, there exist K(ξ,n), c(ξ, n) > 0 such that
H0/N is in Gn uniformly in N with high probability: for every r > 0,

(3.1) P
(‖H0‖Gn ≥KN + r

)
� exp

(−cr2/N
)
.

REMARK 3.4. The result was stated there for H0 with only one nonzero ap , that is, the
p-spin model; however, as observed in [7], Remark 3.4, it easily extends to this setting by
Borell’s inequality and the fact that, in that case, the corresponding K(p,n) is of at most
polynomial growth in p.

As further motivation for the definition of the norm G, specifically with K = N , we note
here the following easy observations which are useful in bounding the regularity of observ-
ables with respect to Langevin-type operators; we call these the ladder relations for G:

LEMMA 3.5 (Ladder relations). For every n≥ 1, there exists c(n) such that for every N ,

(3.2) ‖	‖Gn→Gn−2 ≤ 1, and
∥∥〈∇g,∇·〉∥∥Gn→Gn−1 ≤ c

N
‖g‖Gn .

In particular, if L=	+〈∇g1,∇·〉 and A= 〈∇g2,∇·〉 for some gi that satisfy ‖g1‖G2� ≤ c1N

and ‖g2‖G1 ≤ c2N , then there are c̃1(n, c1) > 0 and c̃2(n, c1, c2) > 0 such that∥∥L�
∥∥
Gn+2→Gn ≤ c̃1, and

∥∥AL�
∥∥
G2�+1→L∞ ≤ c̃2.(3.3)

PROOF. The first result in (3.2) follows from the fact that traces commute with covariant
derivatives. Indeed, for f smooth observe that∣∣∇k	f

∣∣= ∣∣tr(∇k+2f
)∣∣≤N

∣∣∇k+2f
∣∣

so that ‖	f ‖Gn ≤ ‖f ‖Gn+2 .
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To see the second inequality in (3.2), observe that for every h ∈ Gn,∥∥〈∇g,∇f 〉∥∥Gn−1 =
∑

0≤k≤n−1

Nk/2∥∥∣∣∇k〈∇g,∇h〉∣∣op∥∥L∞

≤ ∑
0≤k≤n−1

Nk/2
∑

0≤�≤k

(
k

�

)∥∥∣∣〈∇�+1g,∇k−�+1h
〉∣∣

op

∥∥
L∞

≤ ∑
0≤�≤k≤n−1

Nk/2
(
k

�

) ‖g‖Gn

N(�+1)/2

‖h‖Gn

N(k−�+1)/2 ≤ c(n)

N
‖g‖Gn‖h‖Gn,

where the third inequality follows by Cauchy–Schwarz and the definition of Gn. Equa-
tion (3.3) then follows directly from (3.2). �

As a result of the above and explicit calculation, one also sees the following:

COROLLARY 3.6. For every n, there exist K(ξ,n) and c(ξ, n) > 0 such that for every
r > 0,

P
(‖	H0‖Gn ≥KN + r

)≤ exp
(−cr2/N

)
and

P
(∥∥|∇H0|2

∥∥
Gn ≥KN + r

)≤ exp(−cr/N).

Finally, an explicit computation also shows that φ = φk always lives in the space Gm for
any m. In particular, for every k and every n, there exists K(n, k) > 0 such that

(3.4) ‖mN‖Gn ≤ n and ‖φ‖Gn ≤K.

3.2. The Langevin operator and existence of the martingale solution. Let us now recall
some elementary results from stochastic analysis. For a function g(x), we always let g(t) =
g(Xt) denote its evolution under the Langevin dynamics (2.1). We also let M

g
t denote the

martingale part of this evolution,

M
g
t = g(t)− g(0)−

∫ t

0
Lg(s) ds.

Observe that M
g
t is well defined as the martingale problem for L given by (2.3) is well posed.

Moreover, its quadratic variation satisfies [Mg
t ] ≤ t‖∇g‖2

L∞ ≤ t
N
‖g‖2

G1 .
Let us now recall the following elementary estimate. Suppose that g is smooth and ‖g‖G1 ≤

K , then the exponential moment of M
g
t satisfies EQx [exp(λM

g
t )] ≤ exp(Kλ2t/(2N)). Thus,

by Doob’s maximal inequality and optimization in λ yields

(3.5) sup
x

Qx

(
sup
t≤T

∣∣Mg
t

∣∣≥ ε
)
� exp

(
− Nε2

2K2T

)
.

As we will frequently use the following estimate, we note that, in the case that m(x) =
x1/

√
N , one has by (3.4) and Doob’s maximal inequality, that there is a universal K such

that for every γ,T > 0, and every N ,

(3.6) sup
x

Qx

(
sup
t≤T

∣∣Mm
t

∣∣≥ γ√
N

)
≤K exp

(
− γ 2

KT

)
.

We also define here the following notation which is used throughout the paper. Let F1 be
given by

(3.7) F1 = Lm= βλkmk−1(1 −m2)+L0,βm,

and recall that L0,βm=	m− β〈∇H0,∇m〉 = −m− β〈∇H0,∇m〉.
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4. On weak and strong recovery. As mentioned in the Introduction, there are two main
notions of recovery that we study in this paper, weak and strong recovery. In this section we
discuss the relationship between these. We prove that weak recovery implies strong recovery
in the diverging λ regime. We then show that, depending on the rate of divergence in λ,
there is a certain related radius of correlations, rN , which is o(1), such that one can weakly
recover in order 1 time from every initial point with correlation greater than rN . This reduces
the difficulty of proving our recovery theorems to showing that the dynamics “escapes the
equator.” We end the section observing the stability of weak recovery.

4.1. Weak recovery implies strong recovery. We show that, as long as λ is diverging,
weak recovery with Langevin dynamics implies strong recovery. In the following we let � >

0 be such that ‖H0‖G1 ≤ �N eventually P-almost surely. Recall that such a � exists by
Theorem 3.3. In this section, for any θ ∈ [−1,1], we let τθ denote the first hitting time for the
set {

x ∈ SN :mN(x)= θ
}
.

LEMMA 4.1. Fix k and β > 0. For every ε > 0 and every sequence λN → ∞, there
exists T0 > 0 such that for all T ≥ T0,

lim
N→∞ inf

x:m(x)≥ε
Qx

(
inf

t∈[T0,T ]
m(t)≥ (1 − ε)

)
= 1 P-a.s.

PROOF. Fix ε > 0, and suppose that λN is any diverging sequence. Let τε/2 be the first
hitting time of {m(x)= ε/2}. We wish to show that there exists T0 such that, uniformly over
all mN(X0) ∈ (ε,1 − ε/2), we have that τ1−ε/2 ≤ T0 and for every T , τε/2 ≥ T with Qx-
probability 1− o(1). For such initial data, eventually, P-almost surely, F1 from (3.7) satisfies

F1(t)≥ 2−k+1βλkεk−1(ε − ε2/4
)− ‖L0,βm‖L∞ ≥ 2−k+1βλkεk−1(ε − ε2/4

)− 1 − β�,

for all t ≤ τε/2∧τ1−ε/2. Thus, for any ε, k,β > 0, there is a λ0 > 0 such that for every λ > λ0,
F1(t) ≥ cλ > 0 for all t ≤ τε/2 ∧ τ1−ε/2. Applying (3.6) with γ =√

Nε/2, we see that, for
every T ,

inf
x:m(x)∈(ε,1−ε/2)

Qx

(
m(t)≥ ε

2
+ cλt for all t ≤ τ1−ε/2 ∧ T

)
≥ 1 −Ke−Nε2/KT ,

for some universal K > 0. As a consequence, for, say, T0(ε, β,λ) = c−1
λ > 0, we have that

τ1−ε/2 ≤ T0. By similar reasoning, for every T ,

inf
x:m(x)≥1−ε/2

Qx

(
m(t)≥ 1 − ε for all t ≤ T

)≥ 1 −Ke−Nε2/KT .

The strong Markov property and a union bound over the above two estimates then implies
the desired. �

4.2. Weak recovery from microscopic scales. By a similar argument to the preceding,
one can show that, in this regime, weak recovery occurs as soon as Xt has crossed a certain
microscopic correlation. More precisely, we obtain the following:

THEOREM 4.2. Fix k,β > 0 and λN →∞. There exist γ0,C > 0 such that if rN → 0
satisfies

λNrk−1
N = γ and rN ≥ C

N1−δ
,
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for some δ > 0 and some γ ≥ γ0, then for every η > 0, there is a T0 > 0 such that for all T ,

lim
N→∞ inf

x:mN(x)≥rN
Qx

(
inf

t∈[T0,T ]
mN(t)≥ (1 − η)

)
= 1 P-a.s.

The proof of Theorem 4.2 follows from Lemma 4.1 and the following lemma showing that
the initial boost when mN(X0)≥ rN is sufficiently large to ensure weak recovery.

LEMMA 4.3. Fix k, β . Suppose that rN → 0 with λNrk−1
N = γ > 0 and that γ , θ , and

rN satisfy

−θ + k

2k−1 γβ
(
1 − θ2)− β�=: cγ > θ, and cγ rN ≥ 1

N1−δ

for some δ ∈ (0, 1
2). Then, P-almost surely,

lim
N→∞ inf

x:m(x)∈(rN ,θ)
Qx(τθ ≤ 1)= 1.

PROOF. Let τrN/2 be the first hitting time of the set {x :m(x)= rN/2}. We wish to show
that for all X0 with m(X0) ∈ (rN, θ), we have τrN/2 ≥ τθ and moreover, τθ ≤ 1. We first
claim that τrN/2 ≥ τθ ∧ 1. To see this, observe that eventually P-almost surely, F1 from (3.7)
satisfies

F1(t)≥−θ + k

2k−1 γ · β(1 − θ2)− β�= cγ > 0,

for t ≤ τrN/2 ∧ τθ . By (3.6), applied with γ = √
NrN/2, it follows that for some universal

K > 0,

(4.1) inf
x:m(x)∈(rN ,θ)

Qx

(
m(t)≥ rN

2
+ cγ t for all t ≤ τrN/2 ∧ τθ ∧ 1

)
≥ 1 −Ke−N2δ/4K.

Since rN is positive and cγ > θ , we deduce that

inf
x:m(x)∈(rN ,θ)

Qx(τθ ≤ τrN/2 ∧ 1)≥ 1 −Ke−N2δ/4K

which implies the desired. �

PROOF OF THEOREM 4.2. Let θ > 0 be sufficiently small. We will first show that from
any initial data satisfying mN(X0) ∈ (rN,1 − θ), we have τ1−θ ≤ T0 for some T0 with high
Qx -probability. Suppose first that rN ≤ mN(0) < θ . In this case, Lemma 4.3 implies that
P-a.s.,

lim
N→∞ inf

x:m(x)∈(rN ,θ)
Qx(τθ ≤ 1)= 1.

By the strong Markov property for Xt , it remains to consider the case that mN(0) ≥ θ for
some θ > 0 sufficiently small. By Lemma 4.1 we see that for every θ > 0, there exists T0

such that for every T ≥ T0, P-a.s.,

lim
N→∞ inf

x:m(x)≥θ
Qx

(
inf

t∈[T0,T ]
m(t)≥ (1 − θ)

)
= 1,

yielding the result. �
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4.3. Stability of weak recovery. Lemma 4.1 showed that, for λN diverging and every
ε > 0, if m(t) ever exceeds 1 − ε, then it will remain above 1 − 2ε for all sufficiently large
(but order 1) times. Here, we show an analogous result in the weak recovery regime when
λ is order 1 in N . These results can be used to establish “certificates” for recovery via the
Langevin dynamics.

LEMMA 4.4. Fix k,β > 0. For every ε ∈ (0, 1
2), there exists a λ0 > 0 such that for all

λ≥ λ0 and every T , P-almost surely,

lim
N→∞ sup

x:m(x)≥2ε

Qx

(
inf

t∈[0,T ]mN(t)≤ ε
)
= 0.

PROOF. The proof follows by an analogous strategy Lemma 4.1. Fix k, β > 0, ε > 0 and
any T > 0. Let τε and τ1−ε be the first hitting times of {x :m(x)= ε} and {x :m(x)= 1− ε},
respectively, and notice that for every x such that mN(x) ∈ (ε,1 − ε),

F1(x)≥−1 + kβλεk−1(2ε − ε2)− β�.

Clearly, there exists a λ0 sufficiently large such that for all λ > λ0, the above is positive.
Then, by (3.5), there exists K > 0 such that for every s,

sup
x

Qx

(
sup
t≤T

∣∣Mm
t

∣∣≥ s
)
≤Ke−Ns2/KT .

Setting s = ε/2 and using the fact that Lm(x) = F1(x), we see that, for every T , we obtain
the desired inequality. �

5. Recovery for Langevin dynamics under Conditions 1 and 2. We turn now to the
proof of the main results of this paper, namely, those from Section 2.2.We first recall an
elementary comparison inequality which will be at the heart of our comparison between
mN(Xt) and the related gradient flow. We then provide a stochastic Taylor-type bound that
allows us to propagate the regularity of the initial data on order 1 time scales. We then end
this section with the proofs of the main theorems.

Observe the following elementary comparison inequality:

LEMMA 5.1. Let γ > 0 with γ �= 1, c > 0, and f ∈ Cloc([0, T )) with f (0) > 0. Suppose
there exists T such that f satisfies the integral inequality,

f (t)≥ a +
∫ t

0
cf γ (s) ds,

for every t ≤ T and some a > 0. Then, for t ≥ 0 satisfying (γ − 1)caγ−1t < 1, we have

f (t)≥ a
(
1 − (γ − 1)caγ−1t

)− 1
γ−1 .

If the integral inequality holds in reverse, then the corresponding upper bound holds. If γ > 1,
then T ≤ t∗∗, where t∗∗ = [(γ − 1)caγ−1]−1 is called the blow-up time.

REMARK 5.2. Observe that the case γ = 1 is excluded. This case is the well-known
Gronwall’s inequality. In our setting this corresponds to the critical regime where k = 2.

PROOF. We prove the lower bound, as the upper bound is identical. Furthermore, it suf-
fices to take f ∈ C1

loc([0, T )), as otherwise it suffices to bound g(t) = f (0) + ∫ t
0 cf γ ds.

Since γ > 0, F(x)= xγ is locally Lipschitz on (ε,∞) for any ε > 0. Thus, the equation{
ḣ= chγ ,

h(0)= a
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has as unique solution

h(t)= f (0)
(
1 − (γ − 1)cf γ−1(0)t

)− 1
γ−1

until a blow up time t∗ given by the solution to (γ −1)cf (0)γ−1t∗ = 1. We use the convention
that if t∗ < 0, then we take t∗ = ∞, and the solution is global-in-time. Thus, since f (0) ≥
h(0), f satisfies f (t)≥ h(t) as desired. �

5.1. A growth estimate for Langevin dynamics under gradient-type perturbations. In this
section we seek to estimate the growth of well-behaved observables under the evolution of
some Markov process whose infinitesimal generator is a perturbation of Langevin dynamics

for a sufficiently regular Hamiltonian. For every δ > 0, we let Bδ = [−N− 1
2+δ,N− 1

2+δ].

THEOREM 5.3. Let E ⊂ SN , L be the infinitesimal generator of an Ito process Xt , f

be smooth and x0 ∈ E with exit time τEc . Suppose that these satisfy the following for some
n≥ 1:

1. L is a differential operator of the form L= L0 + a(x)A where:

(a) A is of a gradient type: A= 〈∇ψ,∇·〉 for some ψ ∈ C∞ with ‖ψ‖G2n ≤ c0N ,
(b) a ∈C(SN), with ‖a‖∞ ≤ c1,
(c) L0 =	+ 〈∇U,∇·〉 for some U ∈ C∞ with ‖U‖G2n ≤ c2N .

2. f is smooth with ‖f ‖G2n ≤ c3.
3. There exist δ > 0 such that the initial x0 satisfies L�

0f (x0) ∈ Bδ for every 0 ≤ �≤ n− 1.
4. There is an ε ∈ (0,1) and a t0, possibly depending on ε, such that for any t ≤ τEc ∧ t0,∫ t

0

∣∣a(Xs)
∣∣ds ≤ ε

∣∣a(Xt)
∣∣.

Then, there exists K > 0 depending only on ci and δ such that, for every T0,

(5.1)
∣∣f (Xt)

∣∣≤K

(
Nδ

√
N

n−1∑
�=0

(
1 + t�

)+ tn + 1

1 − ε

∫ t

0

∣∣a(Xs)
∣∣ds

)

for all t ≤ τEc ∧ t0 ∧ T0 with Qx0 -probability 1 −O(exp(−N2δ/(KT0))).
If instead they satisfy the above with item (3) replaced by

(3′) There exists t1, δ > 0 such that the initial x0 satisfies etL0f (x0) ∈ Bδ for every t < t1,

then the same (5.1) would hold for every for all t ≤ τEc ∧ t0 ∧ t1 ∧ T0.

PROOF. For any function g, let g(t)= g(Xt). We begin by claiming that f has expansion

f (t)= f (0)+M
f
t +

n−1∑
�=1

∫ t

0
. . .

∫ t�−1

0
L�

0f (0)+M
L�

0f

t�
dt� . . . dt1

+
∫ t

0
. . .

∫ tn−1

0
Ln

0f (tn) dtn . . . dt1

+
n∑

�=1

∫ t

0
. . .

∫ t�−1

0
a(t�)AL�−1

0 f (t�) dt� . . . dt1.

(5.2)
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The proof is by induction. The base case, n= 1, is simply the definition of M
f
t . Assume that

the result holds in the nth case. Then, for the n+ 1st case we may expand the second-to-last
term as ∫ t

0
· · ·

∫ tn−1

0
Ln

0f (tn) dtn . . . dt1

=
∫ t

0
· · ·

∫ tn−1

0
Ln

0f (0)+M
Ln

0f

tn dtn . . . dt1

+
∫ t

0
. . .

∫ tn

0
Ln+1

0 f (tn+1)+ a(tn+1)ALn
0f (tn+1) dtn+1 . . . dt1

by the definition of MLn
0f and the splitting L=L0 + a(x)A. Combining the terms yields the

desired expression, by induction.
To obtain (5.1) under assumptions (1)–(4), bound the absolute values, term-by-term,

in (5.2). We first observe that by the second assumption and the ladder relations (3.3),∥∥L�
0f

∥∥
G2n−2� ≤ ‖f ‖G2n ≤ c3.

In particular, ‖∇L�
0f ‖∞ ≤ c3/

√
N . Thus, by (3.5), with Qx0 -probability 1 −O(exp(−N2δ/

(KT0))),

sup
t≤T0

∣∣ML�
0f

t

∣∣≤ Nδ

√
N

.

Meanwhile, by the third assumption we can bound |L�
0f (0)| for every 0 ≤ � ≤ n − 1 by

N− 1
2+δ . Integrating these two inequalities implies that the first line of (5.2) is upper bounded

in absolute value by the first sum in (5.1). The second term in (5.1) bounds the integral of
Ln

0f (tn) by the ladder relation (3.2). For the last term in (5.1), note that, by Lemma 3.5,
|AL�

0f | ≤ c for some c > 0; thus, the bound follows by applying the fourth assumption to
obtain ∫ t

0
. . .

∫ t�−1

0

∣∣a(Xt�)
∣∣dt� . . . dt1 ≤ ε�

∣∣a(Xt)
∣∣.

To replace assumption (3) by (3′), the same argument applies except we bound the third
term in the first line of (5.2) instead as follows. By Taylor expanding and applying (3.2) again,∣∣∣∣∣etL0f (x0)−

n−1∑
�=0

L�
0f (x0)

t�

�!
∣∣∣∣∣≤ ∥∥Ln

0f
∥∥∞tn ≤ c3t

n.

Combining this with assumption (3′), gives the desired bound. �

5.2. Proof of Theorem 2.5 for finite β . Fix n ≥ 1 and T0 > 0. For any ε > 0, let τε

denote the hitting time of {x :m(x)≥ ε}. For a fixed μN , every ε, γ > 0, and every sequence
AN ⊂ SN ,∫

Qx(τ2ε ≥ T0) dμN

≤ μN

(
Ac

N

)+μN(x1 < γ )+
∫

Qx(τ2ε ≥ T0)1
(
AN ∩ {x1 ≥ γ })dμN.

(5.3)

If we take the limit superior in N , the first term vanishes almost surely by Condition 1 at
level n upon choosing AN = En,δ,N and by the weak form of Condition 1 at level ∞, upon
choosing AN = ẼT ,δ,N for any order 1 T . For any fixed η > 0, it follows by Condition 2
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that there is a γ sufficiently small such that the second term is less that η/2. Finally, by the
following theorem, for any such choice of γ sufficiently small there is an ε0 > 0 such that for
every ε < ε0, the third term is less that η/2 as well. Thus, the process reaches mN(Xt) ≥ 2ε

in time T0 with probability at least 1 − η. To conclude the proof, note that by Lemma 4.4,
after τ2ε , mN(Xt) remains above ε. �

THEOREM 5.4. Let k < 2. For any ε > 0, let τε denote the hitting time of the set {x :
m(x)≥ ε}. For every β > 0 and n≥ 1, there exist λ0, ε0, c,K > 0 such that for every λ > λ0,
every γ ∈ (0,1) and every sequence μN ∈M1(SN), the following holds:

• if k < kc(n) and ε < ε0, then for every δ > 0 sufficiently small,∫
Qx

(
τε ≥ cλ−1ε2−k)1(En,δ,N ∩ {x1 ≥ γ })dμN(x)≤K exp

(
− λγ 2

Kε2−k

)
,

eventually P-almost surely.
• if k < kc(∞) and ε < ε0, then for every T > cλ−1ε2−k and sufficiently small δ > 0,∫

Qx

(
τε ≥ cλ−1ε2−k)1(ẼT ,δ,N ∩ {x1 ≥ γ })dμN(x)≤K exp

(
− λγ 2

Kε2−k

)
,

eventually P-almost surely.

PROOF. The proofs of the two statements are identical up to minor modifications. We
will focus on the proof of the first and explain the modifications necessary for the second
throughout the proof wherever the two proofs differ. Throughout the following, for the second
statement we let n denote the smallest n such that k < kc(n). In particular, if k = kc(�), then
n= �+ 1.

Let δ > 0, later to be chosen sufficiently small, and let A′ =A′(γ, δ) denote the event that
the initial data, x ∼ μN , is in En,δ,N ∩ {x1 ≥ γ } (resp., in ẼT ,δ,N ∩ {x1 ≥ γ }). Let θ = 2− k,
so that, by assumption, θ > 1

n
. Finally, without loss of generality take ε < 1/2.

Let TL be the first hitting time of the bad set{
x : ∣∣L0m(x)

∣∣ > 1

2
βkλmk−1(x)

}
.

On the event A′, by continuity of Xt , TL > 0. Furthermore, by (3.6) it follows that there is a
K0 such that for every γ and T ,

Qx

(
sup
t≤T

∣∣Mm
t

∣∣ > γ

2
√

N

)
≤K0 exp

(
− γ 2

K0T

)
.

For T0 positive, to be chosen later (see (5.6) proportionally to ε2−k/λ, let

A=A(γ, δ, T0)=A′(γ, δ)∩
{

sup
t≤T0

∣∣Mm
t

∣∣≤ γ

2
√

N

}
.

For the remainder of the proof, we restrict our attention to the event A. By definitions of
F1 (3.7) and TL, for every t ≤TL ∧ τε ,

1

2
λβkm1−θ (t)≤F1(t)≤ 3

2
λβkm1−θ (t).

Then, m(t) satisfies the integral inequality

(5.4)
1

2
m(0)+

∫ t

0
λc2m

1−θ (s) ds ≤m(t)≤ 3

2
m(0)+

∫ t

0
λc1m

1−θ (s) ds,
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for t ≤ τε ∧TL ∧ T0, uniformly in λ, for some c1, c2 > 0 which depend on β and k. Thus, by
Lemma 5.1 we have that

(5.5) g2(t) :=
[(

1

2
m(0)

)θ

+ θλc2t

]1/θ

≤m(t)≤
[(

3

2
m(0)

)θ

+ θλc1t

]1/θ

=: g1(t),

for all t ≤TL ∧ τε ∧ T0.
As a consequence of this comparison inequality, it suffices to show that TL > T0, where

we choose T0 to solve the equation

(5.6) ε = 1

2
(θc2λT0)

1/θ , so that T0 = (2ε)2−k

(2 − k)c2λ
.

To this end, let us first check that f (t) = L0m(t) satisfies the conditions of Theorem 5.3.
Indeed, if we let U =H0, ψ(x)=√

Nx1, and a(x)= βkλmk−1(x), then item (1) is satisfied
eventually P-a.s. for every n ≥ 1 by Theorem 3.3 and (3.4). Item (2) is satisfied by (3.2)
combined with (3.4). Item (3) (resp., (3′) with the choice t1 = T ) follows by assumption on
the initial data, namely, the event A′(γ, δ). It remains to check the fourth condition. Note that
by the integral inequality, (5.4), and the comparison (5.5), whenever t ≤TL ∧ τε ∧ T0,∫ t

0

∣∣a(Xs)
∣∣ds ≤ 1

c2
m(t)≤ 1

c2

[(
3

2
m(0)

)θ

+ θλc1t

]1/θ

.

Observe now that, if we let T1 = (θλc2)
−1(c2/(2c1))

−1/θ , then for every t < T1, as long as
βkλ≥ 1,

1

c2

(
θλc1t +

(
3

2
m(0)

)θ) 1
θ

<
βkλ

2

(
θλc2t +

(
1

2
m(0)

)θ) 1−θ
θ ≤ 1

2
a(t),

where the second inequality follows from (5.5). Thus, the fourth condition is satisfied for
every t ≤TL ∧ τε ∧ T0 ∧ T1.

As a consequence, applying Theorem 5.3 on the event A, for every δ > 0

(5.7)
∣∣f (t)

∣∣≤K

(
Nδ

√
N

n−1∑
�=0

(
1 + t�

)+ tn + 2
∫ t

0

∣∣a(Xs)
∣∣ds

)
,

for t ≤ τε ∧ TL ∧ T0 ∧ T1 with Qx-probability at least 1 − 2K exp(−N2δ/KT0), for some
K > 0, depending only on k, n and δ.

With this in hand, we aim to show the desired lower bound on TL, namely, that TL ≥
2εθ/(θc2λ). It suffices to show that for all t ≤ T0, each term in (5.7) is bounded above by
βkλmk−1(t)/(4n+ 2). Begin by observing that for every 0 ≤ s ≤ n− 1, for large enough N ,

KNδ

√
N

(
1 + t s

)≤ βkλ

4n+ 2
m1−θ (0) <

βkλ

4n+ 2
g1−θ

2 (t),

provided 1 + t s = o(N
θ
2−δ), which certainly holds for all t ≤ T0 ∧ T1, provided δ is small

enough since T0, T1 are order 1 in N . Similarly, there exists an ε0 > 0 (depending only on n,
θ , K , c2, and not λ) such that if λ≥ 1, then for every ε < ε0 an for every t ≤ τε ,

2K

∫ t

0

∣∣a(s)
∣∣ds ≤ 2K · βk

c2
m(t)≤ βkλ

4n+ 2
mk−1(t).

Finally, h(t)=Ktn satisfies

d�

dt�
h(0)= 0 ≤ d�

dt�
g2(0) for �≤ n− 1, and,

dn

dtn
h(t)=K · n!< Cλn+1

(
θλc2t +

(
1

2
m(0)

)θ)(1−nθ)/θ

= dn

dtn

(
βkλ

4n+ 2
g2(t)

)
,
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for some C which depends on β , k, θ , n, and c2, provided

t ≤ 1

2θλc2

(
Cλn+1

n!K
)θ/(nθ−1)

= T2,

since nθ > 1 and m(0) = o(1). Thus if we let t1 = T1 ∧ T2, we see that on the event that
A holds, t1 ∧ τε ∧ T0 ≤ TL. For λ sufficiently large, depending only on θ , β , we see that
t1 = T1 < T2 and that T1 = c(θ,β, k)/λ for some such c. Consequently, there is an ε0(θ, β, k)

(independent of λ) such that if ε ≤ ε0 and T0 satisfies (5.6), then T0 ≤ T1 and as a result,
τε ≤ T0 as desired. �

5.3. Proof of Theorem 2.4 for finite β . Fix n≥ 1 and C,T > 0. For any sequence rN , let
τCrN is the hitting time for the set {x : m(x) ≥ CrN }. For any sequence μN ∈ M1(SN), any
sequence of events AN ⊂ SN and any sequence rN it follows that∫

Qx(τCrN ≥ T0) dμN(x)≤ μN

(
Ac

N

)+μN

(
x1 < N−δ)

+
∫

Qx(τCrN ≥ T0)1
(
AN ∩ {

x1 ≥N−δ})dμN(x).

We take the limit superior in N on both sides and bound these terms one-by-one.
If μN satisfies Condition 1 at level n, then the first term goes to zero P-a.s. by taking

AN = En,δ,N . Otherwise, if μN weakly satisfies Condition 1 at level ∞, then the same is
true upon taking AN = ẼT ,δ,N . If Condition 2 holds, then the second term goes to zero P-a.s.
as well. Otherwise, if Condition 2′ holds, then it goes to zero in probability. The third term
goes to zero P-a.s. by the following theorem upon taking rN =N− α

k−1 and C > 0. The result
will then follow upon taking C > 0 sufficiently large so that we may apply Theorem 4.2 and
applying the strong Markov property. �

THEOREM 5.5. Let k > 2, λ = Nα , rN = N− α
k−1 and C,β > 0. Take a sequence μN ∈

M1(SN), and let τCrN denote the hitting time of the set {x : m(x) ≥ CrN }. The following
hold:

• For every n≥ 1, if α > αc(n), then for δ sufficiently small,∫
Qx(τCrN > 1)1

(
En,δ,N ∩ {

x1 ≥N−δ})dμN(x)≤ exp
(−cNδ),

eventually, P-almost surely.
• If α > α0, then for δ sufficiently small and T > 1,∫

Qx(τCrN > 1)1
(
ẼT ,δ,N ∩ {

x1 ≥N−δ})dμN(x)≤ exp
(−cNδ),

eventually, P-almost surely.

PROOF. The proofs of the two statements are identical up to minor modifications. We
will focus on the proof of the first and explain the modifications necessary for the second in
parentheses throughout the proof wherever the two proofs differ. Throughout the following
for the second statement, we let n denote the smallest n such that α > αc(n). In particular, if
α = αc(k), then n= k + 1.

Let A′ = A′(δ); denote the event that the initial data X0 is in En,δ,N ∩ {x1 ≥ N−δ} (resp.,
in ẼT ,δ,N ∩ {x1 ≥N−δ}). Let TL denote the hitting time of the bad set{

x : ∣∣L0m(x)
∣∣ > 1

2
βkλmk−1

}
.

By our assumptions and continuity of Xt , on A′ both TL > 0.
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By (3.6) it follows that, for every ι > 0 and T < N−ι,

(5.8) inf
x

Qx

(
sup
t≤T

∣∣Mm
t

∣∣≤N−ι/4N−1/2
)
≥ 1 −K exp

(−Nι/2/K
)
.

Recalling (3.7) and setting ι = 5δ, it follows that on the intersection of this event and A′,
mN(t) satisfies the integral inequality

(5.9)
1

2
m(0)+

∫ t

0
F1(s) ds ≤m(t)≤ 3

2
m(0)+

∫ t

0
F1(s) ds,

for all t < N−5δ , eventually, P-a.s. Let us call the intersection of these events A = A(δ). In
the following we restrict our attention to this event.

By definition of TL, there are c1, c2 positive which depend only on β and k, such that

(5.10) λc2m
k−1(t)≤F1(t)≤ λc1m

k−1(t),

for t ≤TL. By (5.9), (5.10) and Lemma 5.1, we then obtain upper and lower bounds on m(t)

of the form

(5.11) g2(t)≤m(t)≤ g1(t),

for any t ≤TL ∧N−5δ , where

gi(t)= aN,i

(
1 − t

t i∗∗

)− 1
k−2

.

Here, aN,1 =N− 1
2+δ , aN,2 = 1

2N− 1
2−δ and gi have blow-up times

t i∗∗ =
[
(k − 2)λcia

k−2
N,i

]−1 for i = 1,2.

Since k > 2, these blow-up times satisfy t1∗∗ ≤ t2∗∗ <∞. In particular, it must be that

TL ∧N−5δ ≤ t2∗∗

since m ≤ 1. Furthermore, if we let θ = (k − 1)/2 − α, then, since t2∗∗ = O(N− 1
2+θ+δ(k−2))

and θ < 1
2 , we have that t2∗∗ < N−5δ provided δ < δ0(k,α) for some δ0(k,α).

With the above in hand, we aim to show that τCrN ≤ TL on A. Indeed, if this were the
case, then we would have, on N , the desired

τCrN ≤ t2∗∗ < 1.

Suppose, by way of contradiction, that τCrN > TL. It would suffice to show that

t∗ = (
1 − (2C)−(k−2)N−(k−2)( θ

k−1+δ))t2∗∗ < TL,

as we would then arrive at a contradiction since, by design, g2(t∗)= CrN .
To this end, let us observe the following. First, there is a δ0(k,α) such that for every ε > 0,

δ < δ0 and N sufficiently large, on the event A=A(δ),

(5.12)
∣∣m(t)

∣∣≤ εβkλmk−1(t) for all t ≤TL,

since, by (5.11), m(t) is lower bounded by an increasing function for which the inequality
holds at time zero.

Second, let us observe that f (t)= L0m satisfies the conditions of Theorem 5.3. Indeed, if
we let U =H0, ψ(x)=√

Nx1 and a(x)= βkλmk−1(x), then item (1) is satisfied, eventually,
P-a.s. for any n≥ 1 by Theorem 3.3. Item (2) for f follows by Theorem 3.3 again, eventually,
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P-a.s. for any n ≥ 1. Item (3) (respectively, item (3′) with t1 = T ) follows, by definition, on
the event A′. To see the fourth condition, observe that by the lower bound in (5.9) and (5.12),∫ t

0

∣∣a(s)
∣∣ds ≤ 1

c2
m(t)≤ 1

2
βkλmk−1(t)

for t ≤ TL provided N is sufficiently large, yielding the fourth condition. Thus, by Theo-
rem 5.3 (choosing T0 = 1 � t2

��) there exists K > 0, such that for some c > 0,

(5.13)
∣∣f (t)

∣∣≤K

(
Nδ

√
N

n−1∑
�=0

(
1 + t�

)+ tn + 2
∫ t

0

∣∣a(Xs)
∣∣ds

)
,

for t ≤TL∧1 (in the second case, one should also take the minimum with T ), on A, with Qx-
probability 1 −O(exp(−cNδ)), eventually, P-a.s. provided δ < δ0(k,α). (We note here that
for the second case this inequality still holds at t > 0.) Now, in order to show that TL > t∗,
thereby concluding the proof, it suffices to show that every term in the sum (5.13) is less than
βkλmk−1(t)/(4n+ 4) for t ≤TL.

To this end, suppose first that for some t ≤TL, some s ≤ n− 1 and some K > 0,

βkλm(t)k−1 ≤ (4n+ 4)K
Nδ

√
N

(
1 + t s

)
.

Because g2(t)≤m(t) by (5.11) and g2 is increasing, it would follow that

N−θ−δ(k−1) = λg2(0)k−1 ≤ λg2(t)
k−1 ≤ 2(4n+ 4)K

βk
N− 1

2+δ,

where we use here that TL ≤ N−5δ < 1. If we choose δ sufficiently small, this is impossible
for N sufficiently large. Suppose instead that for some t ≤TL and some K > 0,

βk

2
λm(t)k−1 ≤ 2K(4n+ 4)

∫ t

0

∣∣a(s)
∣∣ds.

Since t ≤TL, the comparisons (5.9) and (5.10) imply that

2
∫ t

0

∣∣a(s)
∣∣ds = 2

∫ t

0
βkλmk−1(s) ds ≤ 2

c1
m(t).

Thus, for some t ≤TL, it would have to be that

βkλmk−2(t)≤ 2(4n+ 4)

c1
K.

Applying the comparison inequality, (5.11), again yields that on t ≤ t2
��,

βkλg2(t)
k−2 ≤ 2(4n+ 4)

c1
K.

Since g2(t) is increasing, this would imply that

βkN
1
2−θ−δ(k−2) = βkλg2(0)k−2 ≤ 2(4n+ 4)

c1
K.

As θ < 1
2 , this cannot happen either for δ sufficiently small (depending on α and k).

Thus, the only remaining way for TL < t∗ would be that, for some t < t∗,

G(t) := βkλg2(t)
k−1 ≤ 2(4n+ 4)Ktn =: h(t).
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Observe that for N sufficiently large and t ≤ t∗,

d�

dt�
h(0)= 0 <

d�

dt�
G(0) for �≤ n− 1, and

dn

dtn
h(t)= 2(4n+ 4)K · n! ≤ dn

dtn
G(t),

where the second inequality follows by an explicit calculation and the fact that θ < 1
2

n−1
n

as
α > αc(n), as long as δ is sufficiently small. This again yields a contradiction.

Thus, as long as δ was sufficiently small and N sufficiently large, then on the event A, t� ≤
TL and, in particular, τCrN ≤ TL ≤ 1 with Qx -probability 1 − O(exp(−cNδ)) as desired.

�

5.4. Proofs of Theorem 2.4–2.5 for β =∞. In this section we demonstrate that the above
proofs go through with the appropriate modifications in the setting of gradient descent instead
of Langevin dynamics. Before we begin this proof we note the following useful remark re-
garding the local well posedness of X∞

t under Condition 2.

REMARK 5.6. We note that in the case 1 < k < 2 for gradient descent, the equation
for X∞

t is ill posed on SN , as ∇H is only (k − 1)-Hölder for such k. That being said, on
{x1 ≥N−δ}, ∇H is locally Lipschitz so that it is locally well defined by the Picard–Lindelof
theorem wherever we work. (In fact, by virtue of the proof one also obtains global in time ex-
istence.) Consequently, by the assumption that Condition 2 holds, this subtlety can be avoided
since we have interpreted Qx to be zero on the set x1 = 0 so that the inequality (5.3) still
holds.

Recall that in this setup we replace the infinitesimal generator L with L∞ =−〈∇H,∇·〉
and replace L0 with L0,∞ = −〈∇H0,∇·〉. As a consequence, the drift F1 for mN(x) is re-
placed by

F̃1 =L∞m= λkmk−1(1 −m2)+L0,∞m.

Since L0,∞m ≥ L0,1m, as long as mN(x) ≥ 0, we see that F̃1 will satisfy the same lower
bounds satisfied by F1 when β = 1 and the proofs of Lemma 4.1 and Theorem 4.2 go through
(but now with no martingale terms to control), and we have that, eventually, P-a.s., for every
ε > 0, if λ, rN are taken as in Theorem 4.2, there exists T0 > 0 such that

inf
X∞

0 :mN(X∞
0 )≥rN

inf
t≥T0

mN

(
X∞

t

)≥ (1 − ε)(5.14)

for all N large enough. We then notice that the stochastic Taylor expansion in Theorem 5.3 is
only simplified if the Ito process Xt is replaced by the gradient descent process X∞

t , where L0
is replaced by L0,∞; in particular, the bound (5.1) holds deterministically for |f (X∞

t )|. From
there it is evident that following the proof of Theorem 5.4 and 5.5, making the appropriate
modifications and omitting the L∞ bounds on Mm

t , will yield its desired analog for X∞
t .

Combined with (5.14) and the assumptions on μN satisfying Condition 1 at level n, or weakly
satisfying Condition 1 at level ∞, at inverse temperature β = ∞ and Condition 2 (resp.,
Condition 2′) then allows one to conclude the proof of Theorems 2.4–2.5.

6. Checking Conditions 1 and 2: Regularity of initial data. In this section we provide
some natural examples of initial data satisfying Condition 1 at different levels as well as Con-
dition 2 or Condition 2′. Both of these examples are completely independent of the planted
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signal, so they can be viewed as uninformative while facilitating recovery of the planted sig-
nal. The first of these examples, the volume measure on SN , is handled in Section 6.1, which
we show weakly satisfies Condition 1 at level ∞ for every β ∈ (0,∞)∪ {∞}. The second of
these examples, the high-temperature Gibbs measure for H0, is handled in Section 6.2 and
shown to satisfy Condition 1 at level n for every n. Both of these imply recovery thresholds
of exactly αc(∞)= (k − 2)/2 and kc(∞)= 2.

6.1. Regularity of the initial data under the volume measure. In this section we show
Theorem 2.7 holds. Let us begin first by recalling the following result which usually goes by
the name of the Poincaré lemma (see, e.g., [38]). This lemma and related concentration and
anticoncentration estimates will appear frequently in the following. Their proofs are standard
and follow from explicit computation of volumes of spherical caps. We summarize them here.

LEMMA 6.1. The normalized volume measure dx or d vol on SN satisfies the following:

• (Poincaré lemma) if X is drawn from dx, then

(6.1)
√

NmN(X)
(d)→Z,

where Z is a standard Gaussian random variable.
• (Concentration) There exists a universal constant C > 0 such that for every t > 0,

vol
(∣∣mN(X)

∣∣ > t
)≤ C exp

(−t2N/C
)
.

• (Anticoncentration) There exists a universal C > 0 such that for every ε > 0,

(6.2) vol
(∣∣mN(X)

∣∣≤N− 1
2−ε)≤ CN−ε.

We now wish to check that the normalized volume measure vol+ on SN ∩{x1 > 0} weakly
satisfies Condition 1 at level ∞. Specifically, we wish to prove the following concentration
estimate:

THEOREM 6.2. For every β ∈ (0,∞) ∪ {∞} and T > 0, there exists C > 0 so that for
every δ > 0,

vol+
(
sup
t≤T

∣∣etL0,βL0,βmN(X)
∣∣≥N− 1

2+δ
)
≤Ce−Nδ/C, eventually, P-a.s.

Notice, first of all, that it suffices to prove Theorem 6.2 under the law d vol instead of
d vol+ as vol+(A) ≤ 2 vol(A) for every set A ⊂ SN . Though it should be the case that any
reasonable initialization that is independent of H0 and the direction e1 weakly satisfies Con-
dition 1 at level ∞, our proof relies in an essential way on the rotational invariance of the
uniform measure on SN .

PROOF OF THEOREM 2.7. The fact that the normalized volume measure vol on SN ∩
{x1 ≥ 0} satisfies Condition 2 follows from Lemma 6.1, namely, (6.1). For every β ∈ (0,∞)∪
{∞}, the fact that the normalized volume measure weakly satisfies Condition 1 at level ∞ at
inverse temperature β follows from Theorem 6.2. �

Toward the proof of Theorem 6.2, it will help to treat the gradient descent case of β =
∞ distinctly from the β ∈ (0,∞) situation where there is an additional martingale noise
driven by the Brownian motion under Qx . Toward this, let X̂t denote the Langevin dynamics
generated by L0,β when β ∈ (0,∞), and let Ŷt be the gradient descent flow generated by
L0,∞.
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We will need several preliminary estimates on the gradients ∇H0(X̂t ) and ∇H0(Ŷt ). It
will be important to ensure that for most initial conditions and realizations of H , the norm of

the gradient stays bounded away from zero, so that ∇H0(X̂t )

|∇H0(X̂t )| and ∇H0(Ŷt )

|∇H0(Ŷt )| make sense and

their regularity in t can be controlled by ‖H0‖Gk . In this section we let μN = dx denote the
uniform measure on SN .

LEMMA 6.3. There exists c,� > 0 (independent of N ) such that with P-probability 1−
O(e−cN), ∣∣∇H0(Ŷt )

∣∣≥ ∣∣∇H0(Ŷ0)
∣∣e−�t for every Ŷ0 and every t > 0.

In particular, if Ŷ0 ∼ μN , then with μN ⊗ P-probability 1 − O(e−cN ), we have for every
C > 0,∣∣∇H0(Ŷt )

∣∣≥ c
√

Ne−�t for all t > 0, and inf
t≤C

�
logN

∣∣∇H0(Ŷt )
∣∣≥ cN−C+ 1

2 .

PROOF. By Theorem 3.3, there exists c,�(ξ) > 0 such that with P-probability 1 −
O(e−cN), we have ‖|∇2H0(x)|op‖∞ < �. Differentiating in time, we have

d

dt

∣∣∇H0(Ŷt )
∣∣2 =− 2∇2H0(∇H0,∇H0)(Ŷt )≥−2�

∣∣∇H0(Ŷt )
∣∣2,

so that by Gronwall’s inequality we obtain∣∣∇H0(Ŷt )
∣∣2 ≥ ∣∣∇H0(Ŷ0)

∣∣2e−2�t ,

as desired. The second claim follows from the fact that there exist c1, c2 > 0 such that

μN ⊗ P
(∣∣∇H0(Ŷ0)

∣∣≤ c1
√

N
)≤e−c2N.(6.3)

Specifically, by the rotational invariance of μN and the law of H0(x), for any fixed x ∈ SN ,

μN ⊗ P
(∣∣∇H0(Ŷ0)

∣∣ < c1
√

N
)= P

(∣∣∇H0(x)
∣∣ < c1

√
N
)
< e−c2N

for some c1, c2 > 0, as ∇H0(x) is distributed as an i.i.d. Gaussian vector in dimension N

with entries of order one variance σp > 0. �

REMARK 6.4. One could prove a corresponding bound for the Langevin dynamics by
controlling the effect of the noise in the dynamics via standard martingale estimates. For our
purposes, toward Theorem 6.2, we only need a lower bound on |∇H0(X̂t )| for order one
timescales, and therefore it suffices to use the bounds of the prequel [7]: one can read off
from (6.3) and Theorems 1.2 and 1.4 of [7] that for every β and T > 0, there exists c > 0
such that

μN ⊗ P⊗Qx

(
inf

t∈[0,T ]
∣∣∇H0(X̂t )

∣∣ < c
√

N
)
≤ 1 −O

(
e−cN )

.(6.4)

We also rely on the rotational invariance of the gradient when Ŷ0 ∼ μN . Note that as a
corollary of the preceding, ∇H0(Ŷt )/|∇H0(Ŷt )| is well defined modulo a measure zero set of
μN ⊗ P and likewise for X̂t under μN ⊗ P⊗Qx .

LEMMA 6.5. For every t ∈ [0,∞), if Ŷ0 ∼ μ, then the laws of 1√
N

Ŷt and ∇H0(Ŷt )

|∇H0(Ŷt )| un-

der μ ⊗ P are distributed as Unif(SN−1(1)). Similarly, if X̂0 ∼ μ, and X̂t is the Langevin
dynamics for H0 at inverse temperature β , then, for every t ∈ [0,∞), the laws of 1√

N
X̂t and

∇H0(X̂t )

|∇H0(X̂t )| under μ⊗ P⊗Qx are distributed as Unif(SN−1(1)).
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PROOF. It suffices for us to show that the law of Ŷt and ∇H0(Ŷt )

|∇H0(Ŷt )| are invariant under

rotations. To this end, fix a rotation O ∈O(N). Let

Ỹ0 =OŶ0 and H̃0(x)=H0
(
O−1x

)
,

and let Ỹt be the gradient descent on H̃0 started from Ỹ0. Since Ỹ0 is equidistributed with Ŷ0
and (H̃0(x))x is equidistributed with (H0(x))x , ∇H̃0(Ỹt ) is equal in distribution to ∇H0(Ŷt )

for all t ≥ 0. Since Ỹt =OŶt , we then see that Ŷt is equal in distribution to OŶt as desired.
Plugging in, it also implies that

∇H̃0(Ỹt )=O∇H0
(
O−1Ỹt

)=O∇H0(Ŷt ).

From this we deduce that for every t ∈ [0,∞) and every rotation O,

∇H0(Ŷt )
(d)=O∇H0(Ŷt ).

Since |∇H0(Ŷt )|> 0 holds μN ⊗ P-almost surely, it follows that the distribution of ∇H0(Ŷt )

|∇H0(Ŷt )|
is uniform on the (N − 1)-dimensional unit sphere.

In the case where X̂t and X̃t are the Langevin dynamics, a similar argument applies upon
coupling the driving Brownian motions as B̃t = OBt , and then the facts that X̃t is equidis-
tributed to X̂t and ∇H̃0(X̃t ) is equidistributed to ∇H0(X̂t ) hold as before, yielding the de-
sired. �

With the above two lemmas in hand, we are now in position to prove that the volume
measure weakly satisfies Condition 1 at level ∞. In particular, it holds on timescales that are
O(logN) for gradient descent and, due to the sub-optimality of Remark 6.4, the Langevin
dynamics for timescales that are O(1). We begin with the proof for the gradient descent, then
we modify the proof to carry it over to the Langevin dynamics.

PROOF OF THEOREM 6.2 AT β =∞. By definition of the semigroup

etL0L0m(Ŷ0)= L0m(Ŷt ),

and therefore it suffices for us to study L0m(Ŷt ). Now, by definition,

L0m=−〈∇H0,∇m〉 = − 1√
N
〈∇H0,∇x1〉.

For each r ∈ [−1,1], define Cap(e1, r) := {y ∈ S
N−1(1) : 〈y, e1〉 ≥ r}. Taking r := N− 1

2+δ ,
by Lemma 6.5, and (6.1) of Lemma 6.1, at every fixed time t > 0,

μ⊗ P

(〈 ∇H0(Ŷt )

|∇H0(Ŷt )|
, e1

〉
≥N− 1

2+δ

)
= vol

(
Cap

(
e1,N

− 1
2+δ))≤ e−cN2δ

.(6.5)

Our goal is to union bound over T = C logN many discrete times to show that, with high
probability, L0m(Xt) is small for all t ≤ T . However, since this is a continuous time process,
we define a series of bad events, on the complement of which we can push our union bound
through. For constants � and ε > 0, let

B1 := {‖H0‖G2 ≥�N
}
, B2 := {

X0 :
∣∣∇H0(X0)

∣∣≤ ε
√

N
}
.

On the event Bc
1 , for every t ≥ s ≥ 0,

∣∣∇H0(Ŷt )−∇H0(Ŷs)
∣∣≤ ∫ t

s

∣∣∇2H0(∇H0, ·)(u)
∣∣du≤�2

√
N(t − s).
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As a consequence, under Bc
2 , for every C > 0 and t ≤ C logN , by Lemma 6.3,∣∣∣∣ ∇H0(Ŷt )

|∇H0(Ŷt )|
− ∇H0(Ŷs)

|∇H0(Ŷs)|
∣∣∣∣≤ ε−2N2C−1∣∣∣∣∇H0(Ŷs)

∣∣∇H0(Ŷt )−
∣∣∇H0(Ŷt )

∣∣∇H0(Ŷs)
∣∣

≤ ε−2N2C−1(∣∣∇H0(Ŷs)
∣∣∣∣∇H0(Ŷt )−∇H0(Ŷs)

∣∣
+ ∣∣∇H0(Ŷs)

∣∣∣∣∇H0(Ŷs)
∣∣−∣∣∇H0(Ŷt )

∣∣|),
which in turn, additionally under Bc

1 , is at most

ε−2N2C−1�2
√

N(t − s)
∥∥|∇H0|

∥∥∞ ≤ ε−2�3N2C(t − s).(6.6)

Now, fix any T ≤ C logN , and partition the interval [0, T ] into 
T N4C� intervals of size
1

N4C , t1 := 0, . . . , t
T N4C� := T . Since r =N− 1
2+δ ,

d

(
Cap

(
e1,

r

2

)
,Cap(e1, r)

c

)
≥ 1

2
N− 1

2+δ,

whence in order for ∇H0(Ŷt )

|∇H0(Ŷt )| ∈ Cap(e1,
r
2) for some t ≤ T , by (6.6) either it must have been

in Cap(e1, r) for one of {t1, . . . , t
T N4C�} or one of B1 or B2 must have occurred. Therefore,
by a union bound and (6.5), we have

μ⊗ P

(
sup
t≤T

〈 ∇H0(Ŷt )

|∇H0(Ŷt )|
, e1

〉
≥ 1

2
N− 1

2+δ

)
≤ ⌈

T N4C⌉e−cN2δ + P(B1)+μ⊗ P(B2).

By Theorem 3.3 and Borrell’s inequality, an upper bound of O(e−cN) on P(B1) follows for
� large enough. The matching bound on μ⊗ P(B2) follows from (6.3) for any ε < c1 there.

�

PROOF OF THEOREM 6.2 FOR β ∈ (0,∞). Let EQx denote expectation with respect
to the law of X̂t , the Langevin dynamics on H0. Recall that, by definition of the Markov
semigroup etL0 ,

etL0L0m(x)=EQx

[
L0m(X̂t )

]
.

Let us break up L0m into its two constituent parts,

L0m=
[
−1

2
	− 〈∇H0,∇·〉

]
m=−1

2
m− 1√

N
〈∇H0,∇x1〉.

(Note that since ∇H0 is in T SN and that for x ∈ SN we have ∇x1 = e1 − (x1/
√

N)x, it
follows that 〈∇H0,∇x1〉 = 〈∇H0, e1〉.) By Lemma 6.5 and Lemma 6.1, the quantities m(X̂t )

and 〈 ∇H0(X̂t )

|∇H0(X̂t )| , e1〉 satisfied the sub-Gaussian tail bounds that for every r > 0,

μ⊗ P⊗Qx

(∣∣m(X̂t )
∣∣≥ r

)=vol
(
Cap(e1, r)

)≤ Ce−r2N/C and

μ⊗ P⊗Qx

(∣∣∣∣
〈 ∇H0(X̂t )

|∇H0(X̂t )|
, e1

〉∣∣∣∣≥ r

)
=vol

(
Cap(e1, r)

)≤ Ce−r2N/C.

Integrating out the Brownian motion, it is straightforwardly seen that the sub-Gaussian tail

bounds transfer to EQx [m(X̂t )] and EQx [〈 ∇H0(X̂t )

|∇H0(X̂t )| , e1〉] under μ⊗ P.

For constants �, T and ε > 0, define the bad events,

B1 := {‖H0‖G3 ≥�
√

N
}
, B2 :=

{
x : inf

t≤T
EQx

∣∣∇H0(X̂t )
∣∣≤ ε

√
N
}
.
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We can now express on Bc
1 ∩Bc

2 , by Lemma 3.5,

∣∣EQx

[
m(X̂t )−m(X̂s)

]∣∣≤ 2
∣∣∣∣EQx

[∫ t

s
L0m(X̂u)du

]∣∣∣∣+ 2EQx

[∣∣〈Bt −Bs, e1〉
∣∣]

≤ 2(t − s)‖L0m‖∞ +√
t − s ≤ 2(t − s)(1 +�)+ 2

√
t − s.

At the same time, by the Cauchy–Schwarz inequality,∣∣∣∣EQx

[〈 ∇H0(X̂t )

|∇H0(X̂t )|
, e1

〉
−

〈 ∇H0(X̂s)

|∇H0(X̂s)|
, e1

〉]∣∣∣∣
=

∣∣∣∣EQx

[ 〈∇H0(X̂t )|∇H0(X̂s)| − |∇H0(X̂t )|∇H0(X̂s), e1〉
|∇H0(X̂t )||∇H0(X̂s)|

]∣∣∣∣
≤EQx

[ |〈∇H0(X̂t ), e1〉 − 〈∇H0(X̂s), e1〉|
|∇H0(X̂t )|

+ ||∇H0(X̂t )| − |∇H0(X̂s)||
|∇H0(X̂t )|

]

≤ 2

√√√√EQx |〈∇H0(X̂t ), e1〉 − 〈∇H0(X̂s), e1〉|2 ∨EQx ||∇H0(X̂t )| − |∇H0(X̂s)||2
EQx |∇H0(X̂t )|2

.

On the event Bc
1 ∩Bc

2 , this is at most

ε−1N− 1
2
{
EQx

[∣∣〈∇H0(X̂t ), e1
〉− 〈∇H0(X̂s), e1

〉∣∣]2 ∨EQx

[∣∣∣∣∇H0(X̂t )
∣∣− ∣∣∇H0(X̂s)

∣∣∣∣]2}1/2

≤ 2ε−1N− 1
2
[
(t − s)

(∥∥L0〈∇H0, e1〉
∥∥∞ ∨ ∥∥L0|∇H0|

∥∥∞)+√
(t − s)‖|∇2H0|‖∞]

≤Kε−1N− 1
2
[
(t − s)�+√

t − s�
]
,

for some constant K > 0 by (6.4). Fixing any finite T and partitioning [0, T ] in to 
T N4�
intervals of width N−4 and arguing as in the proof of the gradient descent estimate,

we see that in order for etL0L0m to have been at least 1
2N− 1

2+δ , either B1 or B2 oc-

curred, or one of |EQx [m(X̂t )]| ≥ 1
4N− 1

2+δ or |EQx [〈 ∇H0(X̂t )

|∇H0(X̂t )| , e1〉]| ≥ 1
4N− 1

2+δ for some

t ∈ {0,N−4, . . . , T }. By a union bound and the above,

μ⊗ P

(
sup
t≤T

∣∣etL0L0m(x)
∣∣≥N− 1

2+δ
)
≤⌈

T N4⌉e−cN2δ + P(B1)+μ⊗ P(B2).

By Theorem 3.3 and Borrell’s inequality, an upper bound of O(e−cN) on P(B1) follows for
� large enough. The matching bound on μ⊗ P(B2) follows from (6.4) for any ε < c there.

�

6.2. Regularity of the initial data under the high-temperature Gibbs measure. Recall
from the Introduction that dπ0,β(x)∝ e−βH0(x) dx denotes the Gibbs measure corresponding
to the pure noise Hamiltonian, H0(x), at inverse temperature β > 0, and π+

0,β is the same
Gibbs measure conditioned on {x1 ≥ 0}. Observe the following consequence of (6.2) and the
isotropy of H0:

LEMMA 6.6. For every ξ , every β > 0 and every δ > 0,

π+
0,β

(
x1 ≤N−δ)→ 0 in prob.

In particular, π+
0,β satisfies Condition 2′ for every δ > 0.
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PROOF. By isotropy of the law of H0 and (6.2), we have

E
[
π+

0,β

(
x1 ≤N−δ)]= vol

(|x1| ≤N−δ)≤ CN−δ/2,

which after an application of Markov’s inequality, implies the desired. �

We now turn to the main estimate in this section.

LEMMA 6.7. For every ξ , there exists a β0 > 0 such that, eventually, P-almost surely,
for every β < β0, the measure π0,β satisfies Condition 1 at level n at inverse temperature β ,
for every n. Consequently, if ξ is even, the measure π+

0,β satisfies Condition 1 at level n for
every n as well.

PROOF. We wish to show that there exists K(ξ,β) > 0 such that for every � ≥ 0, even-
tually, P-a.s.,

π0,β

(∣∣L�
0mN(x)

∣∣≥N− 1
2+δ)≤Ke−N2δ/K,(6.7)

as long as β is sufficiently small. Recall that there is an important implicit dependence on
β in L0 = L0,β . A union bound over the first n such events would then imply π0,β satisfies
Condition 1 at level n. For the case �= 0, it suffices to check

E
[
π0,β

(|x1| ≥Nδ)]≤ e−N2δ

.

This holds for every β > 0 from the fact that E[π0,β(A)] = vol(A) and the concentration
of (X, e1) under the volume measure dx. This then implies (6.7) with � = 0 by Markov’s
inequality.

We now proceed to the cases � ≥ 1. Recall that for every β , the generator L0 = L0,β is
essentially selfadjoint in C∞(SN)⊂ L2(dπ0,β).

Furthermore, it was shown in [17] that there exists β0 > 0 such that for every β < β0,
the measure π0,β satisfies a log-Sobolev inequality with constant c(ξ,β) > 0, eventually,
P-almost surely.

By Herbst’s argument [26], it then follows that for every smooth, 1-Lipschitz function F ,
we have

π0,β

(∣∣F(x)− π0,β [F ]∣∣≥ r
)
� e−r2/(2

√
c),

where π0,β [F ] is the expectation of F(x) under π0,β . Now, fix any � ≥ 1, and let F(x) =√
NL�

0mN(x): by essential selfadjointness of L0,β with respect to π0,β and smoothness of
mN(x), we see that∫ (

L�
0m

)
(x) dπ0,β(x)= 〈

1,L�
0m

〉
L2(π0,β ) =

〈
L�

01,m
〉
L2(π0,β ) = 0.

At the same time, we claim that∥∥L�
0mN

∥∥
Lip ≤

∥∥|∇L�
0mN |

∥∥∞ ≤ Cξ,β,�√
N

,

for some Cξ,β,� > 0. Recall from (3.4) that ‖mN‖Gk ≤ k for all k. On the other hand, by (3.1)–
(3.3), for every n and � there exists Cξ,β,� > 0 such that, eventually, P-almost surely,∥∥L�

0

∥∥
Gn �→Gn−2 ≤ Cξ,β,�.

Thus, for every k, eventually, P-almost surely we have ‖L�
0mN‖Gk ≤ Cξ,β,� for some other

Cξ,β,�, and it then follows that ‖|∇L�
0mN |‖∞ ≤ Cξ,β,�√

N
. Combining these, we see that for every

�≥ 1,

π0,β

(∣∣L�
0m(x)

∣∣≥ rN− 1
2
)
� e−r2/2,

eventually, P-a.s., which implies the desired concentration estimate when plugging in r =Nδ .
�
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7. Free energy wells and obstructions to recovery. In Section 7.1 we formalize the
notion of free energy wells and obtain an elementary exit time lower bound that is exponential
in the height of the well, started from the natural Gibbs initialization in the well. Recall from
Remark 2.13 that imposing such an initialization is necessary to have such an exit time lower
bound.

We then show that the measure dπ ∝ exp(−βH)dx has a free energy well around the
equator.

PROPOSITION 7.1. Fix ξ , k and β > 0. If α < k−2
2 , then for ε ∈ (0, 1

2) sufficiently small,
eventually, P-a.s., the function f (x)= (x, e1) has a (1

2Nε)-free energy well of height N2ε at
[−3

2Nε, 3
2Nε].

We end the section by combining this with a crude comparison between π and π0 near the
equator to deduce Theorem 2.10.

7.1. Free energy wells and hitting time lower bounds. The existence of free energy wells
is closely related to the behavior of both equilibrium and off-equilibrium Langevin dynam-
ics. In particular, free energy barriers govern the eigenvalues of the Dirichlet problems on
domains and, in turn, the exit times of sets from their interiors as well as spectral gaps. Im-
portantly, though, these relationships are, in a sense, with respect to worst possible initial
starts or with respect to Gibbs, typical initializations.

For the recovery problem in our setting, what will be relevant are free energy barriers
between the equator, or volume-typical latitudes, and the signal.

In this section we will work in full generality of Langevin dynamics on SN with re-
spect to some Hamiltonian VN . Let f : SN → R be some smooth, say C∞(SN), observ-
able. The Langevin dynamics has invariant measure which we denote (abusing notation)
dπ(x) ∝ exp(−βVN). For the purposes of the recovery problem, one should have in mind
the example VN =H and f (x)= (x, e1).

For any function f : SN →R, we can define the following “rate function:”

If (a; ε)=− logπ
({

x : f (x) ∈ Bε(a)
})

.

DEFINITION 7.2. The function f has an ε-free energy well of height h in [a, b] if the
following holds: there exists c ∈ (a, b) and a pair ε, η such that Bε(a), Bε(b), Bη(c) are
disjoint, and

min
{
If (a, ε), If (b, ε)

}− If (c, η)≥ h.

REMARK 7.3. It will sometimes be useful to consider one-sided energy wells. To do so,
we may take either a =−∞ or b =∞ in which case, for every ε, we would set

If (±∞, ε)=∞.

THEOREM 7.4. There is a universal constant C > 0 such that the following holds. Sup-
pose that f is a smooth function with no critical values in an open neighbourhood of [a, b].
If f has an ε-free energy well of height h in [a, b] with

ε2

h
≤ C‖∇f ‖2

L∞(Aε)

N +√
Nβ‖∇V ‖L∞(Aε)

,

where Aε = f−1([a, b]), then the exit time of Aε , denoted τAc
ε
, satisfies∫

Qx(τAc
ε
≤ T )dπ(x |Aε)�

(
1 + ε−4hT ‖∇f ‖4

L∞(Aε)

)
exp(−h).
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PROOF. For ease of notation, let Aε = f−1([a, b]), A = f−1([a, b] \ (Bε(a) ∪ Bε(b)))

and Bε = Aε \ A. Since [a, b] consists of only regular points, f−1([a, b]) is a submanifold
with smooth boundary by the preimage theorem [19]. Therefore, Langevin dynamics reflected
at the boundary of Aε is well defined in the sense of the martingale problem [36]. Call this
process X̄t , and denote its law by Q̄x . Recall that it is reversible, with stationary measure

ν = π(· |Aε).

By definition, Xt and X̄t are equal in law conditionally on t ≤ τ∂Aε . As a result,∫
Qx(τ∂Aε < T )dν(x)=

∫
Q̄x(τ∂Aε < T )dν(x).

Let us estimate the right-hand side above. Let s0 be a positive number, to be chosen later,
and let ti = (i · s0)∧ T for each i = 0, . . . , 
T/s0�. Then,∫

A
Q̄x(τ∂Aε < T )dν(x) ≤

∫
Aε

Q̄x(∃i : X̄ti ∈ Bε)dν(x)

+
∫
A

Q̄x(τ∂Aε < T , X̄ti∧τ∂Aε
∈A∀i) dν(x).

Call the first term above I and the second term II , and bound them separately. By a union
bound and reversibility with respect to ν,

I ≤ T

s0
ν(Bε).

On the other hand, by the Markov property, the equality in law of Xt∧∂Aε and X̄t∧∂Aε and a
union bound,

II ≤
∫
A

Q̄x(∃i : ti < τ∂Aε < ti+1, X̄ti ∈A)dν(x)

=
∫
A

Qx(∃i : ti < τ∂Aε < ti+1,Xti ∈A)dν(x)

≤ T

s0
sup
x

Qx

(
sup
t≤s0

d(X̄t , x)≥ ε/
∥∥|∇f |∥∥∞)

.

To bound this last term, observe that for any x0 ∈ SN , the function g(x) = |x − x0|2 is
smooth and, by an explicit calculation,

‖	g‖L∞(SN) ≤ CN and
∥∥|∇g|∥∥L∞(SN) ≤ C

√
N,

for some universal constant C > 0. In particular,

‖Lg‖L∞(Aε) ≤ C
(
N + β

√
N‖∇V ‖L∞(Aε)

)
.

Thus, provided C(N +√
Nβ‖∇V ‖L∞(Aε))s0 ≤ ε2/(2‖∇f ‖2

L∞(Aε)
), we obtain

Qx

(
sup
t≤s0

d(Xt , x)≥ ε

‖∇f ‖L∞(Aε)

)
≤Qx

(
sup
t≤s0

∣∣Mg
t

∣∣≥ ε2

2‖∇f ‖2
L∞(Aε)

)

≤K exp
(
− ε4

K‖∇f ‖4
L∞(Aε)

s0

)
,

for some universal K > 0 by Doob’s maximal inequality (3.5). If we choose

s0 = 1

Kh

(
ε2

‖∇f ‖2
L∞(Aε)

)2
,
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then, by assumption, s0 satisfies this inequality from which it follows that the right-hand side
of the preceding display is bounded by K exp(−h).

By the assumption of f having an ε-free energy well of height h, we know that ν(Bε) ≤
exp(−h). Combing these estimates yields∫

Qx(τ∂Aε < T )dν �
(

1 + T

s0

)
exp(−h)

which yields the desired bound, after plugging in for s0. �

7.2. Spin-glass free energies. We now turn to the specific case of an equatorial free
energy well for πβ . Define the following restricted spin-glass free energy: for a Borel set
A⊂ SN define

F0(A)= F0,N (A;β)= 1

N
log

∫
A

e−βH0(x) dx.

Similarly, define the restricted free energy

F(A)= 1

N
log

∫
A

e−βH(x) dx,

and define F(A) analogously. Finally, let

(7.1) AδN
= {

x :mN(x) ∈ (−δN, δN)
}

denote the equatorial band of correlation at most δN . We begin by showing the following
estimate for the spin-glass free energy.

LEMMA 7.5. Fix any ξ , and β, ε > 0. Letting δN =N− 1
2+ε , there exists C > 0 such that,

eventually, P-almost surely,

F0(AδN
)− F0(A2δN

\AδN
)≥ CN−1+2ε.

PROOF. We will in fact show the stronger

F0(AδN
)− F0

(
Ac

δN

)≥CN−1+2ε,(7.2)

which would imply the desired, since A2δN
\AδN

⊂Ac
δN

and thus F0(A2δN
\AδN

)≤ F0(A
c
δN

).
Since for any A,

F0(A)− F0
(
Ac)= 1

N
log

Z0(A)

Z0(Ac)
= 1

N
log

(
1

π0,β(Ac)
− 1

)
,

it suffices to show that P-eventually almost surely,

π0,β

(
Ac

δN/2
)
� exp

(−cN2ε)
for some c(ξ,β) > 0.

In order to upper bound π0,β(Ac
δN

), notice that for any fixed A⊂ SN ,

E
[
π0,β(x ∈A)

]= vol(A),

by isotropy of the law of H0. On the other hand, the concentration estimate in Lemma 6.1
shows that Vol(AδN

)≤ e−N2ε/2 so that, by Markov’s inequality,

P
(
π0,β

(
x ∈Ac

δN

)≥ e−
N2ε

4
)≤ e−

N2ε

4 .

Combining the above, we obtain the desired inequality. �
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PROOF OF PROPOSITION 7.1. Let δ = δN =N− 1
2+ε for some ε to be chosen sufficiently

small. Define Aδ as in (7.1), and let Bδ =A2δ −Aδ . First of all,

F(Aδ)= 1

N
log

∫
Aδ

e−β(H0(x)−λNφ(x)) dx

≥ 1

N
log

∫
Aδ

e−βH0(x)−λNδk
N dx = F0(Aδ/2)− βλδk

N,

while, on the other hand,

F(Bδ)≤ F0(Bδ)+ βλδk
N .

Thus, by Lemma 7.5 and the above inequalities, P-eventually almost surely,

If

(
3

2
Nε; 1

2
Nε

)
− If

(
0;Nε)= F(Bδ)− F(Aδ)≤− C

N1−2ε
+ 2βλδk

N,

for some C(ξ,β, k) > 0. But by the assumption that α < (k − 2)/2, if we choose ε > 0
sufficiently small, namely 0 < ε < 1

k
( k−2

2 − α), we see that the above satisfies

If

(
3

2
Nε; 1

2
Nε

)
− If

(
0;Nε) <− C′

N1−2ε

for some C′(ξ, β, k) > 0. When k is even, by symmetry, we similarly have

If

(
−3

2
Nε; 1

2
Nε

)
− If

(
0;Nε) <− C′

N1−2ε
,

and when k is odd, we would have

If

(
−3

2
Nε; 1

2
Nε

)
− If

(
0;Nε)≤− C

N1−2ε
− βλδk

N

which is negative regardless of the choice of α. By Definition 7.2, this concludes the proof.
�

7.3. Proof of Theorem 2.10. We begin by combining Proposition 7.1 and Theorem 7.4
to obtain an exit time lower bound for the Gibbs measure π restricted to the equatorial free
energy well. Fix β > 0, and take VN =HN , εN = 1

2Nε , [a, b] = [−3
2Nε, 3

2Nε] and hN =N2ε

for any ε sufficiently small. By (3.4), ‖|∇f |‖∞ ≤ 1, and so we end up with∫
Qx(τ|x1|≥2Nε ≤ T )dπ

(
x | |x1| ≤ 3

2
Nε

)
� T · exp

(−N2ε).(7.3)

We now wish to boost this to an estimate on initialization from π0 = π0,β . As before, let

ν = π

(
· | |x1| ≤ 3

2
Nε

)
, and ν0 = π0

(
· | |x1| ≤ 3

2
Nε

)
.

We begin by bounding the Radon–Nikodym derivative

exp
(
−β

(
3

2

)k

N− k−2
2 +α+εk

)
≤ max

x:|x1|≤ 3
2 Nε

dν(x)

dν0(x)
≤ exp

(
β

(
3

2

)k

N− k−2
2 +α+εk

)
,

but, as soon as ε is sufficiently small, the power of N is negative since α < αc(∞) and thus,
for N sufficiently large, the Radon–Nikodym derivative satisfies 1/2 ≤ ‖dν/dν0‖∞ ≤ 2. As
a result, ∫

Qx(τ|x1|≥2Nε ≤ T )dν0(x) � 2T exp
(−N2ε).
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Now, notice that for some universal C > 0,

π0

(
|x1| ≥ 3

2
Nε

)
≤ C exp

(−N2ε/C
);

this follows as in the � = 0 case of π0 satisfying Condition 1 at level n, namely, by concen-
tration of x1 under dx, and Markov’s inequality. Thus, writing∫

Qx(τ|x1|≥2Nε ≤ T )dπ0(x)≤ π0

(
|x1| ≥ 3

2
Nε

)
+ 2

∫
Qx(τ|x1|≥2Nε ≤ T )dν0(x)

and plugging in the two inequalities above, we obtain the desired inequality by choosing
T = ecNε

for c > 0 sufficiently small.

Acknowledgments. We thank the anonymous referee for helpful comments and sugges-
tions. We also thank Giulio Biroli, Chiara Cammarota, Florent Krzakala, Lenka Zdeborova,
Afonso Bandeira and David Gamarnik for inspiring discussions. This research was conducted
while A.J. was supported by NSF OISE-1604232. R.G. thanks the Miller Institute for Basic
Research in Science for its support.

REFERENCES

[1] ABBE, E. and SANDON, C. (2018). Proof of the achievability conjectures for the general stochastic block
model. Comm. Pure Appl. Math. 71 1334–1406. MR3812075 https://doi.org/10.1002/cpa.21719

[2] AUFFINGER, A. and BEN AROUS, G. (2013). Complexity of random smooth functions on the high-
dimensional sphere. Ann. Probab. 41 4214–4247. MR3161473 https://doi.org/10.1214/13-AOP862
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