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We study random two-dimensional spanning forests in the plane that can
be viewed both in the discrete case and in their appropriately taken scaling
limits as a uniformly chosen spanning tree with some Poissonian deletion of
edges or points. We show how to relate these scaling limits to a stationary
distribution of a natural coalescent-type Markov process on a state space of
abstract graphs with real-valued edge weights. This Markov process can be
interpreted as a renormalization flow.

This provides a model for which one can rigorously implement the for-
malism proposed by the third author in order to relate the law of the scaling
limit of a critical model to a stationary distribution of such a renormaliza-
tion/Markov process. When starting from any two-dimensional lattice with
constant edge weights, the Markov process does indeed converge in law to
this stationary distribution that corresponds to a scaling limit of UST with
Poissonian deletions.

The results of this paper heavily build on the convergence in distribution
of branches of the UST to SLE2 (a result by Lawler, Schramm and Werner)
as well as on the convergence of the suitably renormalized length of the loop-
erased random walk to the “natural parametrization” of the SLE2 (a recent
result by Lawler and Viklund).

1. Introduction. Thanks to numerous important works in these last 70 years, phase tran-
sitions and critical phenomena are now considered from the physics point of view to be a
fairly settled issue. On the mathematical side, there now exist a couple of important dis-
crete two-dimensional models for which one can really prove that the discrete critical sys-
tem converges to a continuous scaling limit (that turns out to be conformally invariant), but
many fundamental questions remain unsolved. This includes the existence and the descrip-
tion of scaling limits for three-dimensional models and the understanding of the universality
question (for instance, how can one prove that for a given model at criticality—say critical
percolation—and a given dimension, it does behave in the same way in the scaling limit,
independently of the chosen lattice?).

One of the arguments used successfully by physicists to tackle this universality question
is that of the renormalization group (see, e.g., [32] and the references therein). The under-
lying idea is that, in the scaling limit, a critical system should give rise to a scale-invariant
random continuous model. Then, if one manages to give a rigorous meaning to the change-of-
scale operation as acting on these random configurations in the continuum (and each type of
discrete model should then correspond to a different renormalization operation), it has been
argued that, in fact, for every given spatial dimension d and any critical model that gives
rise to a random scaling limit, there should exist a unique nontrivial probability measure on
continuous configurations that is invariant under this renormalization operation. Then, if one
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starts from the discrete model on any given d-dimensional lattice and iterates this renormal-
ization map (which corresponds to zooming out), one should converge to this unique critical
continuous model.

While this line of thought has sparked a number of important works on the field-
theoretical description of these scaling limits, including mathematically rigorous ones, one
major issue that mathematicians have not been able to circumvent is to make rigorous sense
of the renormalization operation as acting on some concrete geometrically-flavored state
space.

The present paper’s contribution is to implement, in one very special case, the renormal-
ization formalism that has been described and proposed in [29] for all critical FK-percolation
models and in any dimension. Recall (see, for instance, [12]) that the critical FK-percolation
models form a family of models indexed by q ≥ 0 closely related to the Ising and Potts
models, and that the cases q = 0 and q = 1 correspond, respectively, to the uniform span-
ning tree/forest model and to Bernoulli percolation. The general idea proposed in [29] is to
consider certain Markov processes living on the state space of discrete-weighted graphs. For
each value of q , one can define one such Markov process in rather simple terms; it is a jump
process, where jumps correspond to merging of neighboring sites (and the rate at which this
happens depends on the graph and on q). Then, one can relate the existence of the scaling
limit and universality question to some conjectural properties of these Markov chains and,
more precisely, to the existence of probability measures on such weighted graphs that are
invariant under (a variant of) this Markov chain. We are not going to repeat here the descrip-
tion of this framework in the general case, and we refer the reader to [29] for details. As
mentioned in [29], in the special case of two-dimensional Bernoulli percolation the detailed
results of Garban, Pete and Schramm [9–11] on the phase transition and the near-critical be-
havior (which in turn partially build on Smirnov’s conformal invariance results and/or the
SLE6 description of the critical interfaces; see [26, 27]) does provide a construction of such a
nontrivial invariant probability measure for d = 2 and the Markov process corresponding to
Bernoulli percolation.

In the present paper we will focus of the special critical FK model for which one arguably
has currently the most mathematical control on, namely, the two-dimensional uniform span-
ning tree (UST) corresponding to q = 0. Indeed, in this case all the following features are
known: Existence of the scaling limit, its description (via SLE curves), universality (i.e.,
USTs on different lattices have the same scaling limit) [18], and some very precise asymp-
totic estimates on probabilities. In particular, this is the only model for which the appropri-
ately renormalized lengths of interfaces in the discrete models are known to converge to the
natural parametrization of its SLE scaling limit (see [20] and the references therein; this is,
in particular, closely related to Kenyon’s results [13]). We will make an extensive use of all
these features.

Let us first quickly describe the corresponding Markov process when started from a given
infinite graph (one can, for instance, choose the starting point of the Markov process to be
a two-dimensional lattice, but the set-up can be adapted to any dimension). First, imagine
that one samples a UST on this graph and then discovers its edges in a uniformly chosen
random order (for instance, each edge that is eventually in the UST appears independently
at some random exponential time). In this way, at a given time t , one has already some
partial information about the UST. More precisely, the configuration is that of a forest F(t)

(a collection of trees that will all eventually be part of the infinite UST at time t = ∞).
We can then consider, for each time t , the graph S(t) obtained by contracting all edges that
are present at time t and that we will refer to as the structure graph S(F (t)) of F(t). More
precisely, to each forest F in our original lattice, S(F ) is a graph with integer edge weights
defined as follows (see Figure 1):
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FIG. 1. From the forest to the structure graph (sketch).

• Clusters c of F correspond in a one-to-one way to sites s(c) of S(F ).
• When two clusters c and c′ are not adjacent, there is no edge joining s(c) and s(c′) in

S(F ).
• When two clusters c and c′ are adjacent, then s = s(c) and s′ = s(c′) are joined in S(F )

by an edge (s, s′) with weight w(s, s′) equal to the number of edges of the original lattice
that connect c to c′.

It is easy to check that the process (F (t), t ≥ 0) is a Markov process (loosely speaking, the
conditional distribution of the UST given F(t) is just “a UST conditioned to contain F(t)”).
A first key observation is that (when defined on an appropriate state of infinite weighted
graphs) the process (S(t) := S(F (t)), t ≥ 0) is Markovian as well (this is just because the
only information about F(t) that is used to describe the future evolution of the structure
graph is encapsulated in S(t)). The time evolution for S(t) then corresponds to the merging
of neighboring sites s ′ and s (i.e., collapsing of the edge (s, s′) between them) that occurs
at a certain rate depending on all the weights w (i.e., it depends on the entire graph S(t)).
When one collapses s and s′ into a site ss′, then the new edge weights w̃ are simply given
by w̃(ss′, s′′) = w(s, s′′) + w(s ′, s′′), while the edge weights corresponding to edges that are
not adjacent to ss′ are left untouched.

A second observation is that if one multiplies all edge numbers by the same constant factor,
then the only effect on the evolution of the Markov process is that it gets speeded up by a
constant factor as well. This leads naturally to consider the generalization of the Markov
process on a space weighted graphs S, where the weights c are nonnegative reals (instead of
integers). It is then also natural, for each positive λ, to consider the same Markov process but
where all the weights decrease continuously at constant rate λ, in order to balance the general
increase of edge weights due to the constant contraction of edges.

We can now describe in loose words the content of the main results (Theorems 5 and 6) of
the present paper:

1. We will first see that the definition of our Markov process (S(t), t ≥ 0) on discrete
structure graphs can be extended to a space of graphs with unbounded degrees. Here, a site
s of S can have infinitely many neighbors, but the sum of all weights w(s, s′) over all the
neighbors s′ has to be finite.

2. Using the continuous SLE-based description of the scaling limit of the two-
dimensional UST, we will exhibit a nontrivial probability measure that is invariant for this
Markov process for some positive value of λ. This will build on the description of the scaling
limit of UST via SLE and on the convergence of the renormalized length of these branches
to their continuous counterparts.

3. Hence, in the case of the two-dimensional UST, this implies that the conjectures for
the formalism introduced in [29] hold. When one starts from any two-dimensional lattice and
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FIG. 2. Simulation of part of the uniformly cut UST.

runs the Markov process (for this value of λ), it converges in distribution to this particular
fixed point of this Markov process (up to multiplication of the weights of all edges by some
lattice-dependent constant).

In order to describe the invariant probability measure under the Markov process and also
to get a feeling about the strategy of the proofs, it is useful to look at the dynamics “back-
wards.” One first samples the whole UST, and then, for each time t , one creates the uniformly
cut uniform spanning tree by erasing some of its edges uniformly at random, in a Poissonian
way where each edge is removed with a probability e−t (we do this in a consistent way, so
that an edge erased at time t is also erased at all times t ′ ≤ t); see Figure 2. So, at t = 0,
one has isolated points, and, at t = ∞, one has the entire UST. Using the known convergence
of the UST (in the scaling limit) to the continuous UST described in terms of SLE2 and the
convergence of the lengths of branches, one can argue that, when t is very large, the picture
(in the appropriate scaling) will be very close to that of the continuous UST (constructed via
Schramm–Loewner evolutions of parameter 2) where the branches of the tree are cut in a
Poissonian way with respect to their natural length. An invariant probability measure under
the dynamics will be the law of this uniformly cut continuous UST, or, more precisely, the
law of the weighted structure graph obtained by considering as sites s the connected com-
ponents of this uniformly cut continuous UST and as weight w(s, s′) of the edge between
two neighboring components the “natural length” of the interface between s and s ′. The fol-
lowing feature (that also appears in the work on near-critical percolation) of the stationary
measure is worth stressing, as it illustrates the type of problems that one is facing. Consider a
uniformly cut continuous UST and two of its adjacent trees. Then, the appropriately defined
5/4-dimensional length of the intersection between the boundaries of these two tree is com-
parable to (i.e., of the same order of magnitude as) the outer boundary of these trees, but this
interface is, in fact, totally disconnected. There will be a dense collection of other small trees
that are squeezed in between the two.

Here is a list of some of the main technical features and tools that we shall use:

• We will use the framework introduced by Schramm [25] in order to describe the set in
which our discrete geometric objects (the UST, the uniformly cut USTs) and their scaling
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limits live. One encodes the limit of these forests to be the (countable) family of its “con-
tinuous backbone branches” (corresponding to the limit of the macroscopic branches of
the cut UST).

• On this set of continuous forests, we will then define the dynamics. While the discrete
dynamics are clearly Markovian, it is not obvious at all that the continuous process is
Markovian as well (as some information may have disappeared in the scaling limit). This is
the same key problem as in the case of near-critical percolation studied in [9–11]. In order
to prove this, we need a careful analysis of the discrete to continuous limiting procedure,
and we shall use some stochastic comparisons between the evolutions of various graphs
under our dynamics.

• We rely on the convergence of the branches of the UST (i.e., loop-erased random walks
converge to SLE2, as proved in Lawler, Schramm and Werner [18]), but one also needs to
control the clocks of our dynamics, that is, the number of edges on these branches as they
control the time evolution. For this, we will in fact use the convergence of the loop-erased
random walk to SLE2 in this “natural parametrization” for the uniform topology (this result
will be recalled in the next section), due to Johansson Viklund and Lawler [20] (and that
builds on earlier work of these authors with Benes [5]).

Note that results about the scaling limit of loop-erased random walks (and therefore of the
UST) in three dimensions are available [14] and that it conjecturally should also be possible
to implement the Markovian formalism described above, but to prove that it is indeed the
case, one would need a number of much stronger estimates and results.

The present paper is structured as follows:

• In Section 2 we first recall some features of uniform spanning trees, briefly define
Schramm’s framework for scaling limits and investigate the scaling limit of the cutting
process of USTs in bounded domains.

• In Section 3 we study the time reversal of the cutting dynamics seen on “structure graphs”
and state our first main result, that is, that this time reversal is Markovian. We then explain
why the whole-plane version of these results can be interpreted in terms of a renormaliza-
tion flow fixed point.

• In Section 4 we prove the technical lemmas on discrete UST events that are needed in the
previous proofs.

• In the Appendix we use the results of [20] in order to derive the actual facts about conver-
gence of length to natural parametrization in the settings that we need.

Let us conclude this introduction with a few words about “near-critical” models and stress
that the uniformly cut USTs that we are working with here are not part of the FK-percolation
family (this feature also appears in the general setup described in [29]). Recall that the ter-
minology “criticality” usually refers to the fact that one considers a one-parameter family of
lattice models and that there is a phase transition at this special value of the parameter that
one chooses. However, there are often more than one parameters that one can play with in
the discrete model, and, therefore, in the scaling limit one obtains many possible directions
in which one can perturb the continuous critical model as well.

On a finite graph, it is well known that the law P 0 of the uniform spanning tree can be
viewed as the limit when p → 0+ and q = o(p) of the random cluster (or FK)-measure
Pp,q (indeed, the fact that q → 0 faster than p ensures that most of the mass of Pp,q sits on
the configurations with just one connected component, and the fact that p → 0 ensures that
the system uses the minimal amount of edges). When q → 0 and p > 0 remains fixed, the
measure becomes simply Pp,0+, which is a percolation of density parameter p, conditioned
to have exactly one connected component. On the other hand, when q → 0 and p is of the
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same order as q , then the limit will be supported on forests (i.e., collections of trees). More
precisely, when p = q , the q → 0 limit is the uniform measure on forests, and, when p = αq ,
the limit measure is the percolation measure of parameter α/(1 + α) conditioned on the
nonexistence of open circuits. This leads (via finite-site scaling, tuning α(N) appropriately,
and letting q → 0 and N → ∞) to a continuous model, which corresponds to a model of a
near-critical continuous uniform spanning forest, which is a perturbation of the continuous
UST. However, the object obtained via such a construction will differ from the one that we
study in the present paper. One way to see this is to notice that a discrete measure Pα0+,0+
assigns the same probability to different forests that have the same number of trees, whereas
in the uniformly cut UST the weight of a configuration depends in a nontrivial way on the
lengths of the boundaries between the trees in the forest (as they indicate how many possible
ways there were to construct the forest by cutting the tree at random).

2. UST and UST limits.

2.1. General UST background. Let us very quickly browse through some of the standard
UST features and definitions that we will use.

The uniform spanning tree (UST) T (G) on a finite connected graph G is a random sub-
graph of G that has been uniformly chosen among those connected subgraphs that contain
all vertices of G and are cycle free. If G is an infinite graph, one can define a similar object
T (G), the free uniform spanning forest or free USF (see, e.g., [6]), as the weak limit of USTs
on Gn, where Gn is any increasing exhaustion of G by finite connected subgraphs. Depend-
ing on the infinite graph, this uniform spanning forest can be almost surely a tree, or not. In
Z

d for d ≤ 4, the free uniform spanning forest is actually a.s. a tree (and called a UST as
well).

The notion of UST can be extended to weighted graphs. Let G = (V ,E) be a finite graph,
and let c : E → R+ denote its weights. Then, the weighted spanning tree is the probability
measure on the set of all spanning trees such that the probability to choose a tree T is propor-
tional to

∏
e∈T c(e). If G is an infinite weighted graph, one can define the weighted free span-

ning forest, a probability measure on the subgraphs of G, as the weak limit of the weighted
spanning tree on Gn (where Gn is any connected exhaustion of the weighted graph G). This
definition in fact works even if the graph is not locally finite (i.e., sites are allowed to have in-
finitely many neighbors, and the sum of the incoming weights is even allowed to be infinite).
Depending on G, this weighted free spanning forest can almost surely be a tree or not.

Suppose now that T is a spanning tree of the graph G and that V is a finite set of vertices G.
We will denote by TV the minimal connected subgraph of T containing V . If F is a forest (a
disjoint union of trees) of G, then we define FV as the union of the subtrees generated by V

on all the connected components of F .
Wilson [31] provided an algorithm to sample from the UST measure on a finite graph G,

by iteratively generating branches as loop-erased random walks on the graph G as follows
(see also [16, 23]): Enumerate the vertices of the graph G as x0, x1, . . . , xN . Start with a
single point T0 = x0. For each n ∈ {1, . . . ,N}, in order to build Tn, run a simple random walk
Xn on G started from xn and stopped upon hitting Tn−1. Consider the (chronological) loop
erasure γn of Xn, and let Tn = Tn−1 ∪ γn. Then, the final tree TN has the law of a UST on G.

It is well-known that Wilson’s algorithm can be extended to (locally finite) infinite graphs,
such as Z

d , as well as to weighted graphs (one just needs to replace the simple random
walk by a random walk with nonconstant conductances). This generates a random infinite
forest, known as the wired spanning forest. In Z

d or in graphs that are obtained from Z
d by

contracting or erasing some edges, the free USF and the wired USF coincide; see [6, 23].
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At some points in the paper, we will use coupling results between USTs in various domains
(this type of result is in fact instrumental in deriving the existence and properties of some of
the objects mentioned above, such as the free USF).

Let us first recall ([6], Corollary 4.3(a)) that if one considers two connected graphs G and
G′ with the same vertex sets, but where the set of edges of G contains the set E′ of edges
of G′, then it is possible to couple the UST in G with the UST in G′ in such a way that
T (G) ∩ E′ ⊂ T (G′) almost surely.

Suppose now that I is a collection of edges of a finite graph G, and let I1 ⊂ I2 be two
subsets of I that can be both completed into spanning trees of G by adding edges that are not
in I . Let T1 (resp. T2) be the uniform spanning tree T (G) on G, conditioned on T ∩ I = I1
(resp. on T ∩ I = I2). It is then possible to couple T1 and T2 in such a way that T2 ∩ Ic ⊂
T1 ∩ Ic almost surely.

Indeed, one can first condition both USTs to contain all edges in I1 and no edge in I \ I2
(and this corresponds to just removing the edges of I \ I2 from the graph and to collapse all
edges of I1). Hence, one needs only to treat the case where I1 is empty and I2 = I which
can be deduced from the previously mentioned result by conditioning on I ∩ T1.

Again, these results have fairly obvious generalizations to the case of weighted graphs (we
safely leave their proofs to the readers).

2.2. Schramm’s framework. In order to describe the scaling limits of our forests, we will
use the framework introduced by Oded Schramm [25]; let us briefly review its basic features
(we refer to Section 10 of [25] for details).

For a compact topological space X, let us call H(X) the set of compact subsets of X

equipped with the Hausdorff topology; recall that H(X) is itself a compact space.
We call Schramm space OS in the Riemann sphere Ĉ the set H(Ĉ× Ĉ×H(Ĉ)) equipped

with its Hausdorff topology. Similarly, when � is a simply-connected bounded domain of the
plane with C1 boundary, we define OS� = H(� × � × H(�)) ⊂ OS . The distance of this
Hausdorff topology on OS or OS� is denoted by dH. Note that the notion of convergence
is the same for the spherical or Euclidean distance in � when � is bounded, and so we can
work with either in this case. All these spaces are compact, so that any sequence of probability
measures on those spaces possesses subsequential limits.

In the framework of uniform spanning trees and their scaling limits, one considers very
special elements in OS (in particular elements G in OS with the property that if (a, b,K) ∈
G, then K is a continuous path from a to b and (b, a,K) ∈ G; furthermore, if x and y lie
on this continuous path K and ω denotes the part of K from x to y, then (x, y,ω) ∈ G as
well. A discrete graph embedded continuously in the plane (in such a way that the edges
correspond to actual paths in the plane) can be encoded by its path ensemble, that is, by a
point G in the Schramm space such that G = ⋃{(a, b, γ )} where a, b run over all pairs of
points in the continuous embedding of the graph (so that a and b could lie on its “edges”)
and γ runs over all simple (continuous) paths joining a to b in this embedded graph). In
particular, when a or b does not belong to the embedded graph or if a and b are in different
connected components of this embedding, then there is no triplet of the form (a, b, γ ) in the
corresponding path ensemble.

The UST on a discrete graph embedded in the plane can then be viewed as a probability
measure on OS , and, by compactness, it has subsequential limits when one lets the mesh of
the lattice go to zero. As we shall now recall, this subsequential limit is in fact a limit.

From now on and until further notice, � will denote either the entire plane or a simply-
connected bounded domain of the plane with C1 boundary. We set �δ a simply connected
discretization of it at mesh size δ of the same type as in [20] (“union of squares” domain,
paragraph 2.1). We first consider the subgraph A of δZ2, whose edges are exactly the edges
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of δZ2 that are included in �. We then fix ξ ∈ � and let �δ be the connected component
of A that surround ξ . The boundary ∂�δ of �δ will be the set of vertices of �δ that have a
neighbor that does not belong to �δ . As an illustration of discretizations, when � is the entire
plane, we just take �δ to be δZ2.

Let us consider the UST T (�δ) and its path ensemble denoted by Gδ(0) ∈ OS� (we will
soon run a dynamics starting from the UST at time 0). The branches of uniform spanning
trees are loop-erased random walks (LERW), which have been shown by Lawler, Schramm
and Werner to converge to SLE2 paths in the scaling limit (this convergence holds for paths
parametrized by “Loewner capacity” which yields in particular convergence for paths up to
monotone reparametrization), [18], Theorem 1.1.

As explained in [25], the convergence of LERW to SLE2, together with estimates build-
ing on Wilson’s algorithm, yield the convergence of the UST to its continuous limit in the
Schramm space (we will refer to results and statements that are proved in other papers or
preprints as “results” in order to make the distinction with the lemmas and propositions that
are proved in the present paper):

RESULT A ([18] and [25], Theorem 11.3, Corollary 1.2). When δ → 0, Gδ(0) converges
in distribution (in OS�) to a continuous random element G(0).

There exists other possible descriptions of the scaling limits of USTs (for instance, via
the contour process of the tree, which converges to SLE8, or via a consistent collection of
subtrees [1]), but we will not use them here. We will just call the random object G(0) the
continuous UST in �. Theorem 1.5 of [25] lists various properties of G(0) (that, for instance,
explain why one can call it a random tree). In particular, for every given x, y ∈ �, there exists
almost surely a unique ω ∈ H(�) such that (x, y,ω) ∈ G(0). Moreover, if x �= y, then ω is
almost surely a simple path, and if x = y, then ω is almost surely a single point. There are
some random exceptional points for which this uniqueness statement does not hold (these
points are nonetheless well-understood, in terms of the dual tree). However, existence almost
surely never fails, that is, almost surely, for any x and y there exists at least one ω ∈ H(�)

such that (x, y,ω) ∈ G(0).
There are several ways to approximate the continuous UST in the Schramm space by

somewhat simpler (continuous) objects. It is, for instance, natural to consider a dense deter-
ministic sequence of points z1, z2, . . . in � and to define for each n the finite subtree Tz1,...,zn

consisting of just the branches that join z1, . . . , zn (we have seen that they are almost surely
unique). When dealing with such a tree in the Schramm space, we will implicitly consider the
collection of all its subarcs (so, in particular, for all x and y that lie on a branch of the tree,
if ω denotes the branch of the tree from x to y, then (x, y,ω) does belong to this typically
uncountable collection). One key property derived in [25] is that when n → ∞, this finite
tree almost surely converges to the continuous UST in OS . This statement holds in a strong
way. The finite trees approximate well the entire tree in the sense that for all ε > 0, with
probability that goes to 1 as n → ∞, the whole tree is formed of the finite tree Tz1,...,znε

plus
some paths of diameter smaller than ε with respect to the spherical metric in the plane. Let
us state this more precisely.

In what follows, when � is the entire plane, we will use the spherical distance (when �

is bounded, one can safely use the Euclidean distance). We say that a subset Gε of some G ∈
OS� is a strong ε-approximation of G if for any point (a, b,ω) ∈ G, we can find aε , bε , ωa ,
ωb and ω′ such that d(a, aε) ≤ ε, d(b, bε) ≤ ε, (aε, bε,ω

′) ∈ Gε , ωa ⊆ B(a, ε), ωb ⊆ B(b, ε)

and ω = ωa ∪ω′ ∪ωb (see Figure 3). When G encodes the branches of a tree, approximations
of this kind can be found by somehow removing the part of the branch (a, b, γa,b) in an
“ε-neighborhood” of a and b; in [25], Schramm defined the ε-trunk as a subtree of the UST,
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FIG. 3. An approximation of the branch ω between a and b by the branch ω′ from aε to bε in G.

where the part of the branches that are ε close to the leaves are removed. It is then obvious that
the ε-trunk is a strong approximation of G(0). Note that in particular the distance between
Gε and G is smaller than ε. The following result is a key step in [25] toward the proof of
Result A:

RESULT B ([25], Theorem 10.2). For any cut-off ε > 0, we can find a scale δε > 0, such
that for any mesh size δ < δε and for all set of vertices (z1, . . . , zn) being a δε-net of � (i.e.,
every point in � is within distance δε of one of the zi ), then the collection of all subarcs of
the finite tree Tz1,...,zn(�

δ) generated by z1, . . . , zn, viewed in the Schramm space OS�, is a
strong ε-approximation of Gδ(0) with probability greater than 1 − ε.

As a consequence (see [25], Corollary 10.3), for all ε > 0, there exists n such that the
subtree Tz1,...,zn of the continuous UST G(0) on � is a strong ε-approximation of G(0) with
probability greater than 1 − ε.

Dual trees and boundary conditions. It is well known that for a planar graph (i.e., em-
bedded in the plane so that no two edges cross) one can associate to each spanning tree T

on the graph G a dual spanning tree on the dual graph, and that if T is sampled according
to the UST measure, then the dual tree is sampled according to the UST measure in the dual
graph. When G is a portion of the lattice Z

2, then the dual graph is a portion of the lattice
(Z + 1/2)2 with the boundary vertices identified (this corresponds to wired boundary con-
ditions). In the discrete case, one can define Gδ(0)� in the Schramm space as being the dual
tree of Gδ(0) (i.e., the element in the Schramm space corresponding to the dual of the tree
T (�δ)). By taking subsequential limits, one can then have convergence in distribution of the
couple (Gδ(0),Gδ(0)�). It is explained in [25] that, in fact, the limit of Gδ(0)� is a deter-
ministic function of the limit of Gδ(0). We again refer to [25] for details (in particular about
boundary conditions for the USTs) and for the fact that Result B holds also for USTs with
wired boundary conditions.

REMARK 1. Building on Wilson’s algorithm, it is fairly easy to compare USTs with
different boundary conditions and to deduce the convergence (when the mesh size goes to 0)
of the UST in the entire plane from the convergence in bounded domains. For instance, if
one considers n points y1, . . . , yn in the plane, and the law of the finite tree T δ

n obtained
by sampling the smallest subtree of the UST in δZ2 that contains n points on this grid that
are at distance smaller than δ from y1, . . . , yn, then, for all ε and R large enough and δ

small enough, T δ
n is equal to the corresponding subtree T̂ δ

n of the wired UST in the domain
{z : |z| < R} with probability greater than 1 − ε. However, the law of the tree T̂ δ

n converges
(when we let δ → 0 first and then R → ∞) to a finite continuous tree Tn joining y1, . . . , yn
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(thanks to [18], Theorem 1.1, which holds for any simply connected domain). It follows that
the tree T δ

n converges in law as δ → 0 to Tn. We will use this approach later in the Appendix
to get the strong convergence of UST for various boundary conditions.

2.3. UST and lengths of branches. We now want to extend the previous convergence in
distribution of the discrete UST to the continuous one, when one adds also the information
about the lengths of the branches of tree. It is known since Rick Kenyon’s paper [13] that the
mean number of steps of a LERW grows like δ−5/4+o(1) as the mesh-size δ goes to 0 (see
also [5, 24] for closely related sharper estimates and results). Note that the actual length of
the LERW with mesh-size δ will grow like δ−1/4+o(1) because each edge has length δ.

On the other hand, it is also known (see [4]) that the scaling limit of LERW (i.e., SLE2) is a
random simple curve with Hausdorff dimension 5/4. In fact, it has been recently shown [17]
that SLE2 can be parametrized by its 5/4-dimensional Minkowski content (often referred to
as the natural parametrization). Recall that the d-dimensional Minkowski content of a curve
γ is defined as

Contd(γ ) = lim
ε→0

εd−2 Area
{
z : d(z, γ ) ≤ ε

}
,

provided that the limit exists.
It is natural to expect that the suitably renormalized discrete length of the LERW should

converge to the 5/4-dimensional content of the limiting SLE2. This nontrivial fact turns out
to be correct: Let � be a bounded simply connected domain with analytic boundary such
that 0 ∈ �, and, for each δ, recall that �δ is a lattice approximation of � in δZ2. Consider a
loop erased random walk starting at 0 in �δ (i.e., the loop erasure of a simple random walk
stopped at the time τ δ at which it hits ∂�δ), which we view as a continuous curve that takes
one unit of time to cross an edge, and denote by γ δ its time reversal.

The following result of [21] will be an essential building block in our paper which en-
ables us to fine-tune the scale and control the cutting procedure. Here and in the rest of the
paper, ι will denote a particular absolute constant (that can be viewed as a lattice-dependent
constant—it is here the constant associated to Z

2; with other planar lattices the same result
would hold but with a different constant ι).

RESULT C ([21], Theorem 1.1). Let τ δ be the total length of the path γ δ . The curve
t → γ δ(ιδ−1/4 min(t, τ δ)) converges in distribution to radial SLE2 curve t → γ (min(t, τ ))

in � (starting from a point chosen with respect to the harmonic measure on ∂� seen from
0) in its natural parametrization (where τ denotes its total natural length) for the topology of
supremum norm.

In the Appendix, we will combine Result C with Wilson’s algorithm to derive the following
results:

• The convergence of the wired UST in a bounded domain � and in its (properly renormal-
ized) arc-length parametrization (Proposition 11).

• The convergence, with their properly renormalized arc-length parametrizations, of the
plane UST (Proposition 13) and the free UST (Proposition 14), the main difficulty lies
in the proof of the statement for the free UST.

• The convergence of the joint law of the UST and its dual with their properly renormalized
length parametrization (Corollary 16).

In the remainder of this paper, when we refer to the appropriately rescaled lengths of
branches of discrete trees on δZ2 (or subgraphs of it), it will always mean that one uses
δ1/4/ι times the Euclidean length parametrization (so that this appropriately rescaled length
is the one that converges to the natural parametrization).
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2.4. Scaling limit of the cutting dynamics. Recal that � is either the entire plane or a
simply connected bounded domain with C1 boundary, and �δ denotes its discretization at
mesh size δ.

Let us now define the discrete cutting procedure. Let (−τe) be a family of i.i.d random
exponential times with mean ιδ−5/4, indexed by the set of (nonoriented) edges e of �δ . We
start at time t = 0 with a UST Gδ(0) on �δ independent of the family (τe). For a fixed
time t < 0, we define Gδ(t) ⊆ Gδ(0) to be the spanning forest that is obtained from Gδ(0)

by removing all the edges e with τe ∈ (t,0] (viewed in the Schramm space, we remove all
the paths that go through at least one of these edges). This defines a nested family of forests

FIG. 4. Simulations of Gδ(−3) and Gδ(−4) (different clusters are indicated in different shades): the latter is
obtained from the former by cutting, while the former is obtained from the latter via the gluing Markov process.
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(Gδ(t))t≤0; see Figure 4. Note that the limit point Gδ(−∞) is a graph without edges (encoded
in the Schramm space by the collection {(v, v, {v}) : v ∈ �δ}).

Let us now define the continuous counterpart of this discrete cutting procedure. We first
sample (for a given �) the continuous UST T = G(0). For any fixed z1, . . . , zn, the 5/4-
Minkowski content of the tree Tz1,...,zn is almost surely finite (this follows from Result C and
our description of the scaling limit of the law of subtrees of the free UST in the Appendix as
being absolutely continuous with respect to those of the wired UST scaling limit). We then
sample a Poisson point process on this finite tree, so that marked points appear at negative
times with an intensity given by the 5/4-Minkowski content. As we do this simultaneously
for any finite set of points zi , we in fact are having marks appearing on the “backbone” of the
continuous UST. We then define the continuous forest G(t) that corresponds to the continuous
tree by cutting all marked points that have appeared in the time-interval (t,0].

Note that when � is the entire plane, the underlying metric used to define the Schramm
space is the spherical metric, but the cutting procedure uses the 5/4-dimensional content
associated to the Euclidean metric, as it should correspond to the limit of the discrete length
of the LERW on the graph.

PROPOSITION 2. The process (Gδ(t))t≤0 converges in distribution (in the sense of finite-
dimensional distributions in OS�) to the process (G(t))t≤0.

Note that the following proof will in fact establish a slightly stronger Skorokhod-type
convergence on càdlàg processes.

PROOF. We fix ε, η > 0 and t0 < 0, and our goal is to show that, when δ is small enough,
one can couple the processes (Gδ(t)) and (G(t)) in such a way that on a set of probability at
least 1 − 3η for all t ∈ [t0,0], dH(Gδ(t),G(t)) ≤ 3ε.

We first find (using Result B) a finite net z1, . . . , zn such that with probability greater than
1 − η, the finite subtree Tn := Tz1,...,zn generated by z1, . . . , zn is a strong ε-approximation
of G(0), that is, it differs from it by appending little trees of diameter less than ε (by a slight
abuse of notation, Tn will represent the tree both as a union of branches and as a point in
Schramm space) and that for all δ small enough, with probability greater than 1 − η, the
finite subtree T δ

n := T δ
z1,...,zn

generated by z1, . . . , zn is a strong ε-approximation of Gδ(0). In
particular, to understand the cut forests G(t) (respectively (Gδ(t))) up to a distance smaller
than ε and on an event of probability at least 1−η, it will be sufficient to look at how Tn (resp.
T δ

n ) is being cut (the effect of additional cuts outside of Tn or T δ
n would not move things in

the Schramm space by more than ε).
Let us denote by Tn(t) the cutting process of the tree Tn, that is, the graph Tn∩G(t) ∈ OS�.

We similarly define T δ
n (t) the discrete cutting process of T δ

n . The tree T δ
n can be divided into

n − 1 disjoint simple paths as in the way provided by Wilson’s algorithm: γ δ
2 denotes the

branch from z2 to z1, and for all k in {3, . . . , n}, γ δ
k denotes the branch from zk to the subtree

containing z1, . . . , zk−1. Similarly, we can define γ2, . . . , γn in Tn.
Propositions 13 and 14 tell us that the finite subtrees T δ

n , together with their appropriately
rescaled length measure converge; any of the branches from zi to zj converge for the topology
of supremum norm to branches of the continuous tree G(0) in their natural parametrization.
More specifically, when δ is small enough, we can couple the trees T δ

n and Tn in such a way
that, with probability at least 1−η: (i) for each k ∈ {2, . . . , n}, the total appropriately rescaled
length of γ δ

k is η/(|t0|n)-close to the natural length of γk , and (ii) for each k ∈ {2, . . . , n}, the
two paths γ δ

k and γk are uniformly ε-close (in the sup norm for those parametrizations on the
time interval where they are both defined).
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We then couple the cutting dynamics in the discrete and in the continuum using the same
exponential clocks. We sample n − 1 independent Poisson point processes of intensity |t0|,
and we transfer these Poisson point processes onto the n−1 discrete and continuous branches
using, respectively, the appropriately rescaled length and the natural parametrization (in the
discrete setting, when at least one Poisson mark falls in an interval corresponding to an edge,
we remove this edge). Conditions (i) and (ii) ensure that when δ is small enough, with a
probability at least 1 − η, the number of Poisson marks that did fall in each branch γ δ

k and γk

will be identical and that the location of these marks will be ε-close.
Putting the pieces together, we get, when δ is small enough, one has a coupling such that

on a set of probability 1 − 3η, for all time t ∈ [t0,0],
dH

(
Gδ(t),G(t)

) ≤ dH
(
Gδ(t),T δ

n (t)
) + dH

(
T δ

n (t),Tn(t)
) + dH

(
Tn(t),G(t)

) ≤ 3ε. �

3. The structure graph and the scaling limit of the gluing dynamics. Let us now
focus on the flow that one obtains when one looks at the time reversal of the cutting dynamics
on some interval [t,0].

3.1. Description of the discrete gluing dynamics. Recall that, if we observe Gδ(t) for
some given t < 0, we can recreate the conditional law of (Gδ(s))s∈[t,0] in the following way.
Denote by n the number of connected components of Gδ(t). Let us pick uniformly a set of
edges E among all sets of n − 1 edges of δZ2 such that Gδ(t) ∪ E is a spanning tree of �δ .
The graph Gδ(t) then evolves by iteratively gaining edges of E (picked in uniform order)
at the jump times of a Poisson process conditioned on jumping n − 1 times in [t,0] (or,
equivalently, edges of E appear at independent uniformly chosen times).

Let us rephrase this evolution in a way that is more tractable in the continuum limit. We
first (deterministically) associate to each Gδ(t) a structure graph Sδ(t), as described in the
Introduction. Each connected component c of Gδ(t) becomes a site of the structure graph
Sδ(t). Two neighboring (and distinct) connected components are linked by an edge in the
structure graph which carries a positive weight equal to δ5/4 times the number of edges in �δ

between the two connected components (edges with one endpoint in each of the connected
components).

By construction, the trace of the set of edges E on the structure graph (which shows how
the connected components of Gδ(t) are connected in the graph Gδ(0)) has the law of the
weighted spanning tree T (Sδ(t)) on Sδ(t). This describes the Markovian evolution of the
discrete gluing dynamics when seen on structure graphs (each edge that is in the weighted
tree then appear uniformly at random in the interval [t,0]).

Note that the conditional distribution of (Gδ(s))s∈[t,0] given the initial data Gδ(t) and the
evolution of the structure graph (Sδ(s))s∈[t,0] is easy to describe. When two sites c and c′ of
Sδ(s−) merge at time s, one recovers the graph Gδ(s) by adding to Gδ(s−) an edge picked
uniformly among the edges of δZ2 \ Gδ(s−) that join c and c′.

3.2. Definition of the continuous structure graphs. The first nontrivial job when trying
to make sense of the continuous counterpart of this gluing dynamics on structure graphs is
to construct the continuous structure graphs S(t). For a point z0 which does not lie inside a
branch of the dual tree, let us formally define its connected component c in G(t) as a subset
of R2: c is the closure of all the points z such that there is a branch from z0 to z in G(t). Now,
we would like the vertices of S(t) to be the connected components of G(t); there should be
an edge between two vertices of S(t) (i.e., connected components of G(t)) whenever these
components are not disjoint (i.e., whenever they share a piece of their boundaries).

The candidate for the weight of these edges is (up to a constant) the 5/4-dimensional
Minkowski content of the interface between the corresponding clusters. Here, we can note
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that this interface is in fact made of portions of branches in the dual tree which suggests that
we will need to control the lengths of the branches in the dual of the continuous tree. This
is the purpose of the next result (we defer its proof to Section 4) that then defines, for each
t ≤ 0, the weights of the structure graph S(t) and shows that they are indeed the limits of
their discrete counterparts:

PROPOSITION 3 (Weights of the continuous structure graph). Consider two given points
z0 and z1 in �, and the connected components cδ

0(t) (resp., c0(t)) and cδ
1(t) (resp., c1(t)) of

Gδ(t) (resp. G(t)) that they are part of, and let lδ(z0, z1) be the renormalized length of the
interface between cδ

0(t) and cδ
1(t) (resp., the 5/4-dimensional Minkowski content l(z0, z1) of

the intersection between c0(t) and c1(t)) when it exists. Then, for each given t , the couple
(Gδ(t), lδ(z0, z1)) converges in distribution to (G(t), l(z0, z1)).

Mind that this is not a trivial fact, because the structure graphs are rather complicated. We
have to handle the infinitely many microscopic clusters appearing in the scaling limit and that
will squeeze in between two macroscopic ones. One point in the proof (deferred to Section 4)
will be to control the effect of this feature.

In order to define the Markov dynamics on such structure graphs, we will need to define the
(weighted) forests and trees on them. In order to do so, we will choose exhaustions (Sε(t))ε
and (Sδ

ε (t))ε of the graphs S(t) and Sδ(t). Recall that the limiting laws on forests (when
ε → 0) do not depend on the choice for the exhaustions (see, e.g., [6], §5). In particular, we
can choose exhaustions, depending on the whole data of Gδ(t) (resp., G(t)), as we see fit: For
all ε > 0, we define the vertex set of Sδ

ε (t) (resp., Sε(t)) to be the subset of the vertex set
of Sδ(t) (resp., S(t)) consisting of the connected components Gδ(t) (resp., G(t)) that have
a diameter at least ε (when � is the entire plane, we use the spherical metric here). The
weighted edges between vertices of Sδ

ε (t) and Sε(t) are then exactly those of Sδ(t) and S(t).
Note that the graph Sε(t) is almost surely finite. Indeed, by Result B, we can almost surely

find a strong ε-approximation of G(0) by a subtree Tn, where n is random but almost surely
finite. The number of vertices of the graph Sε(t) will then be not larger than the number of
connected components of the forest Tn(t). It is also immediate to see that (Sδ

ε (t))ε (resp.,
(Sε(t))ε) exhausts Sδ(t) (resp., (S(t)).

We now state the convergence of the structure graph. We use the discrete topology on finite
graphs, and, for a given finite graph, weights form a real vector space that we equip with its
natural topology.

COROLLARY 4 (Discrete to continuous structure graph convergence). For each t < 0,
for all but (at most) countably many positive ε, the finite random graph Sδ

ε (t) converges in
probability to Sε(t) as the mesh size δ goes to 0.

This results follow directly from Proposition 3 (i.e., the convergence of the weights of the
edges) and the convergence of Gδ(t) to G(t). The values of ε we exclude here are those for
which, with positive probability, there is a cluster in G(t) that is of diameter exactly equal
to ε. As we know that there are countably many clusters, it follows that this can happen (for
each fixed t) for at most countably many ε. One could of course also (try to) prove that this
never happens, but the present result will be enough for our purposes.

3.3. Abstract definition of the Markovian dynamics on structure graphs. We are now
ready to define the Markovian dynamics on the set of structure graphs. For a given t and a
given weighted graph S(t):
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• First, sample a weighted free spanning forest on S(t), and for each edge of this forest
sample independently a uniform random variable on [t,0] that indicates when this edge
appears.

• Then, construct the graph at time s ∈ [t,0] by contracting all edges that have appeared
before time s and using the addition rule for weights: when two sites s1 and s2 merge into
a site s1s2, the new weights are given by wnew(s1s2, ·) = wold(s1, ·) + wold(s2, ·).

Recall that it is not a priori clear that the weighted spanning forest on the structure graph is
a tree, but along our proof we will see that, in fact, it is indeed almost surely the case, when
one starts this dynamics with the random graph S(t). Moreover, weights can blow up under
the dynamics, depending on initial conditions. That this does not happen when we initiate
our dynamics with the structure graphs of our near-critical spanning forests is a consequence
of the following Theorem 5.

In this way, one defines a process (S̃(s))s∈[t,0], which is the evolution of this Markovian
dynamics when applied to the random structure graph S̃(t) = S(t). The core of the matter is
then to prove the following fact:

THEOREM 5. The law of (S̃(s))s∈[t,0] is the same as that of (S(s))s∈[t,0].

In loose words, the scaling limit of the Markov dynamics on discrete structure graphs
is Markov, and it is described by the simple process on continuous graphs that we have
described above. Mind that the theorem is also valid when � is the full plane.

Note that, as in the discrete case, there is a (heuristically straightforward) description of
the conditional distribution of (G(s))s∈[t,0] given G(t). Construct first S(t) and (S̃(s))s∈[t,0].
For each contraction of vertices s(c) and s(c′) happening on [t,0], we choose a point w

according to the uniform measure on the common boundary of c and c′, measured by its
5/4-dimensional Minkowski content (this common boundary is the union of several portions
of dual branches, and its content is well defined, as follows from Lemma 9; the Minkowski
content can be viewed as a proper measure when restricted to these branches—this follows
from Result C which implies that the Minkowski content can be used as a continuous time
parametrization of these SLE2-type paths). Let us call W(s) the countable set of points thus
chosen that corresponds to contractions happening before time s. For each integer n, let G̃n(s)

be the union of the paths (a, b, γ ) such that γ is a path from a to b that can be realized as the
concatenation of at most n paths in G(t), where the points of concatenation belongs to the set
W(s). We then define G̃(s) to be the closure in OS of the union

⋃
n G̃n(s). It is easy to see

that (G̃(s))s∈[t,0] has the same law as the limit of the discrete dynamics (G(s))s∈[t,0]. Indeed,
each given branch (a, b, γa,b) ∈ G(0) is almost surely cut a finite number of times, and there
almost surely exist a countable family of branches of G(0) that are dense among the set of all
branches of G(0) (see Result B).

Let us now explain how to deduce this theorem from the previous propositions. As we
shall see, this is quite a soft argument, where we will exploit the tightness-type properties of
the USTs (derived by Schramm) and coupling ideas.

3.4. Proof of Theorem 5. Let us first recollect a few facts:

1. From Result B, we know that for a given η and a given ε, we can find a finite set of
points z1, . . . , zn such that (for both the discrete case for all given δ, and the continuous case),
with probability at least 1−η, the connected components of Gδ(t) (resp., G(t)) corresponding
to vertices of the graph Sδ

ε (t) (resp., Sε(t)) all intersect the tree T δ
z1,...,zn

(resp., Tz1,...,zn ).
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2. On the other hand, for a given choice of z1, . . . , zn, the convergence of the branches
of the tree joining these points in their natural parametrizations ensures that one can find ε1
small enough so that (uniformly in δ, i.e., for each given δ) every connected component of
Gδ(t) (resp., G(t)) that intersects the finite tree T δ

z1,...,zn
(resp. Tz1,...,zn ) has diameter at least

ε1, and hence corresponds to a vertex in Sδ
ε1

(t) (resp., Sε1(t)) with probability at least 1 − η

(this is because the probability that two cuts out of finitely many being at distance smaller
than ε1 of each other is very small).

3. By the comparison results recalled at the end of Section 2.1, the law of the weighted
spanning forest in Sδ(t), when restricted to the edges in Sδ

ε1
(t), is dominated by the law of

the weighted spanning forest in Sδ
ε1

(t), and the law of the weighted spanning forest in S(t),
when restricted to the edge in Sε1(t), is dominated by the law of the weighted spanning forest
in Sε1(t). In particular, if we are given n sites s1, . . . , sn and see that the tree in the weighted
spanning forest in Sδ(t) that joins these n points stays in the graph Sδ

ε1
(t) with probability at

least A, then this means that one can couple the weighted spanning forest in Sδ(t) and Sδ
ε1

(t)

in such a way that these two subtrees coincide with probability at least A (and the similar
statement holds without the superscript δ).

4. Finally, from Corollary 4 we know that, for all but countably many ε1, the law of
the weighted spanning forest on Sδ

ε1
(t) converges to that of the weighted spanning forest on

Sε1(t) as δ → 0.

Recall that (S̃(s))s∈[t,0] is reconstructed from S(t) by sampling a weighted spanning forest
on S(t), that is, the limit of a weighted spanning forest in Sε(t) as ε → 0. On the other hand,
(S(s))s∈[t,0] is reconstructed by taking the limit when δ → 0 of the weighted spanning forest
on Sδ(t) (indeed, one reconstructs first Sδ(s) and then takes the limit δ → 0).

Combining (1) and (2) shows that for all ε, one can find ε1 small enough such that for all
given δ, the subgraphs of T (S(t)) and of T (Sδ(t)) that join all the sites of Sε(t) and Sδ

ε (t)

stay, respectively, in Sε1(t) and Sδ
ε1

(t) with probability greater than 1 − 2η. By (3), we see
that it is therefore possible to couple these subgraphs with those obtained when sampling
T (Sε1(t)) and T (Sδ

ε1
(t)) instead of T (S(t)) and of T (Sδ(t)) so that they actually coincide

with probability greater than 1 − 2η. But by (4), we know that for all δ small enough, these
two samples can be coupled to be very close. Hence, the limit (as δ → 0) of the weighted
spanning forest on Sδ(t) coincides with the weighted spanning forest on S(t) which con-
cludes the proof. Note that the argument also shows that the free spanning forest T (S(t)) is
a.s. connected, hence a tree.

Mind that the identity in law between the two processes means the identity in law of all
finite-dimensional marginals. And for any t < s1 < · · · < sn < 0, we can always choose all
the ε’s and ε1’s in the above argument among those for which the convergence in Corollary 4
holds for these times t, s1, . . . , sn.

3.5. Whole plane dynamics and its properties. Let us first observe that the previous
Markov chain on structure graphs was not time homogeneous. It was defined for all t < 0, on
the time horizon [t,0] (i.e., for a time |t |) as follows: First, sample the UST on the structure
graph, and then open each edge e of this UST independently, at a uniformly chosen time τ(e)

in [t,0] independently.
However, it is trivial to turn this into a time-homogeneous Markov chain. One just needs to

replace the uniformly chosen times in [t,0] by (positive) exponential random variables ξ(e)

with mean 1 (one exponential variable for each edge of the structure graph), that is, we do the
time change ξ(e) = log(t/τ (e)). Then, the edge e opens at time ξ(e), and one collapses it to
form a new structure graph. As we shall now try to point out, this homogeneous-time Markov
chain for structure graphs setup turns out to be particularly interesting in the whole-plane
setting.
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Let us summarize the construction of the cutting dynamics (G(t))t≤0 in the plane. Sample
a continuous UST in the entire plane, and, just as in the finite-volume case, define a Poisson-
point process on its branches, with intensity � × μ, where � is the Lebesgue measure on
(−∞,0] and μ is the 5/4-dimensional Minkowski-content measure. Then, for each t < 0,
one can cut the UST on these marked points as before, which gives rise to a collection of
trees G(t), and these trees are the limit when δ → 0 of their discrete counterparts Gδ(t).

Note that the processes (G(t))t≤0 and (S(t))t≤0 are scale invariant in the following sense.
For each λ > 0, let us define Uλ(G(t)) to be the forest obtained from G(t) by magnifying
space by a factor λ and Uλ(S(t)) be the structure graph of Uλ(G(t)) or, equivalently, the
graph obtained from S(t) by multiplying the edge weights by a factor λ5/4. Then, the process
(Uλ(G(t)))t≤0 is identical in distribution to the process (G(t/λ5/4))t≤0 (and the same goes
for (S(t))t≤0). One can check that, on the one hand, the time 0 distributions coincide by
the scale-invariance of the whole-plane UST, and, on the other hand, the cutting points in
the dynamics are sampled in the same way in either case with the rescaling of time exactly
corresponding to the rescaling of the Minkowski content.

Let us now define π to be the distribution of S(−1). Theorem 5 then states exactly that
the process (S(−e−u))u≥0 is obtained by letting the (time-homogeneous) Markov dynamics
run from S(−1). But, by the scale-invariance property, we get that (modulo relabeling of
the edges of the structure graph) the distribution π is invariant under the time-homogeneous
Markovian dynamic.

Finally, we can also note that if we start from the graph S0 = Z
2 with all edge weights equal

to 1 (or any other regular planar lattice) and let the time-homogeneous Markov chain (Su)u≥0
run until a large time U , we discover each edge of the final UST on Z

2 (independently) with
probability 1 − e−U (or more exactly, rather than their edges, their “traces on the structure
graphs”). In particular with Theorem 5, this shows that (modulo relabeling of the edges of
the structure graph, i.e., scaling down Z

2 to δZ2 for an appropriately chosen δ depending on
U ) as U → ∞, the law of the structure graph converges to π (in the sense of Corollary 4).

Hence, this provides the following renormalization flow description of the UST scaling
limit via (a rescaling of) the time-homogeneous Markov chain Pu on the state of discrete
weighted graphs:

THEOREM 6 (Renormalization flow description). The measure π (that describes the pre-
vious scaling limit of near critical spanning forests) is invariant under the Markov chain.
Furthermore, the (time-homogeneous) Markov chain started from any deterministic periodic
two-dimensional transitive lattice and properly rescaled converges in distribution to π .

4. Technical estimates and proofs.

4.1. First comments about the structure graphs and their convergence. Most of the re-
mainder of this paper is now devoted to the proof of Proposition 3 which provides the conver-
gence of the discrete structure graph weights to their continuous counterparts. In this section,
we are working with the UST on the whole plane, but the proofs can easily be extended to
any bounded domain with C1 boundary.

Let us now make some comments about this and explain how to deduce Proposition 3 from
two lemmas (Lemma 8 and Lemma 9) that we will then prove in the subsequent section, based
on more “traditional” arm-estimates and considerations for UST.

Suppose first that z0 and z1 are two given points. In both the discrete and continuous
settings, these two points are joined by a unique path in the UST, which has a finite (renor-
malized) length (or Minkowski content, by slight abuse of terminology, we will now use the
word length also in the continuous case), so that the number of “cuts” on this branch (condi-
tional on this length, and for a given t) follows a Poisson distribution. If these two points z0
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and z1 end up in different trees at the end of the cutting procedure, then there has been a “first
cut,” that is, an edge e on this path that has been removed first (when one looks back from
time 0 to time t in the cutting procedure), and its law (conditional on the branch between z0
and z1) is uniform on this branch with respect to length. Mind that the edge e has a positive
probability not to exist (if there was no cut on the branch).

If we consider the entire UST and remove from it just this one edge e, then one has divided
the UST into two trees, one containing z0 and the other one containing z1. As the graph dual
to the whole-plane UST is also a UST, the intersection between the boundaries of the two
trees containing z0 and z1, respectively, is a cycle Cδ which consists of the edge e� dual to
e together with the branch in the dual of the UST that joins the two extremities of e�; see
Figure 5. Clearly, if one removes more edges than just e, the trees that contain z0 and z1,
respectively, will shrink, and the intersection between the boundary of these two trees can
only decrease. Hence, the interface between the two clusters of Gδ(t) that contain z0 and
z1 is a subset of this cycle (and its length is bounded by that of Cδ). The same situation
occurs in the continuous case. Here, when one chooses a first point z at random (according to
Minkowski content) on the UST branch joining z0 and z1, one can consider the cycle C in the
dual tree that joins z to itself, and, when one removes more points according to the cutting
dynamics, the clusters that contain the two points z0 and z1 will intersect along a subset of
that cycle C.

Let us first state a simple consequence of the convergence in distribution of Cδ combined
with the convergence of the renormalized length on the branch from z0 to z1. In the following,

FIG. 5. Sketch of the tree, of the cycle C and the cuts.
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B(z, r) denotes the Euclidean ball of radius r centered in z when z ∈ C and when e is an edge
of Cδ ; B(e, r) is the ball of radius r centered at its midpoint.

LEMMA 7. As η0 → 0, the probability that Cδ �⊂ B(0,1/η0) or d(z0, e) < η0 or
d(z1, e) < η0 occurs goes to 0 uniformly with respect to δ.

PROOF. Consider δk → 0. By contradiction, if for all η0, Cδk �⊂ B(0,1/η0) occurs with
uniformly positive probability for infinitely many δk , then this would readily imply that the
continuous whole-plane UST is disconnected, whereas d(z0, e) < η0 (or d(z1, e) < η0) occur-
ring with uniformly positive probability for infinitely many δk would contradict the finiteness
of the Minkowski content of the branch from z0 to z1 in the continuous whole-plane UST.

�

We know already that the lengths of branches in the dual tree that join prescribed given
points do converge to their continuous counterparts, but care will be needed when we want
to show the convergence of the length of the entire cycle Cδ , because it does originate at a
special point, that is, a point on the backbone of the original UST, so we need to exclude the
scenario where something weird happens to the length of Cδ in the vicinity of this special
point. This is the purpose of the next lemma:

LEMMA 8. Let us fix η0, z0 and z1 and condition on the event that Cδ exists, and that
the three events in Lemma 7 do not occur (note that this is a conditioning on an event of
positive probability, bounded from below independently of δ, and that then, the diameter of
Cδ is bounded from below by η0). As η goes to 0, in the previous setting (for fixed z0 and z1)
the expected (conditional) renormalized length uδ(η) of the intersection of Cδ with the ball of
radius η around the center of e� does tend to 0 uniformly with respect to δ.

Next, one can make the following observations (which can be made rigorous but they serve
here as a motivation and will not be used later, so we will not bother to do so). Suppose that
in the previous scenario, one considers the continuous tree containing z1 after cutting away
just e and that this tree is bounded (if we were in the whole plane, this means that z1 was on
the bounded side of the cut e). Lemma 8 indicates that the length of C (in terms of Minkowski
content) is finite. However, we need to understand something finer, namely, what the common
boundary of the subtrees containing z0 and z1 looks like at time t of the cutting procedure,
when one has removed from Gδ(0) many more edges than just e. One can notice that for a
“typical point” on the cycle C, a similar argument will show that the (Minkowski-content)
length between this point z and z1 in the initial tree is finite. Hence, this point will have a
positive probability to be cut off from z1, but it also has a positive probability not to be cut
off. Hence, the expected portion of the length of the part of C that will remain on the outer
boundary of the cluster containing z1 is in fact positive. On the other hand, a back-of-the-
envelope calculation (that we do not reproduce here) suggests that the total length of the tree
consisting of all the branches that join z1 to all the boundary points in C is infinite. This
means that an infinite number of portions of C will be cut out. In other words, the situation is
that one starts with C and cuts off infinitely many connected arcs from it, and these arcs will
be dense on C, but the total length of the remaining set can still be positive.

The purpose of the following lemma is now to control this feature at the discrete level:
Let us say that a point z of Cδ is cut out from this boundary at a scale smaller than ε if there
exists a cut disconnecting z from one of the two extremities of the special edge e in such a
way that the part of the tree disconnected from e by this cut has a diameter smaller than ε

(see Figure 6). For each η > 0, we are going to define Lδ(ε) to be the renormalized length of
the set of points on Cδ ∩ (B(0,1/η) \ B(e, η)) that are cut out from the interface Cδ at a scale
smaller than ε:
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FIG. 6. After all the cuts: the remaining interface between the trees containing z0 and z1.

LEMMA 9. As ε goes to 0, in the previous setting (for fixed z0, z1 and η), the expected
value of Lδ(ε) tends to 0 uniformly with respect to δ.

We shall prove Lemmas 8 and 9 in the next section, but let us already explain now how
Proposition 3 follows from them:

PROOF OF PROPOSITION 3. Consider points z0, z1 as well as a sequence of mesh sizes
δk → 0. We can sample the graphs Gδk (t) for all k, together with G(t) on the same proba-
bility space, in such a way that the tree containing (a δk-approximation of) z0 (resp., z1) in
Gδk (t) converges almost surely to the tree containing z0 (resp., z1) in G(t). We can further-
more choose our setup so that the dual tree at time 0 converges almost surely, in the sense that
the renormalized lengths of branches of its finite subtrees do (Corollary 16). We will spend
the remainder of this proof showing that lδk (z0, z1) converges in probability to l(z0, z1) as
k → ∞. More precisely, we need to show (for each η0) this convergence on the event de-
scribed in Lemma 7, that is, when the cycle separating z0 from z1 is not very large and when
the cut edge e is neither very close to z0 nor very close to z1.

Let us first note that, for the coupling of the trees and of the cutting processes introduced
in the proof of Proposition 2, the cycles Cδk are with very high probability very close to C. We
can therefore actually choose such a coupling and assume that, almost surely, Cδk do converge
to C as planar curves.

The next step is to prove convergence of the lengths of these cycles which is where
Lemma 8 is crucial. It ensures that the lengths of the two portions of Cδk near the special
edge e (from e to the circle of radius η around the center of e) tends to 0, uniformly in δ,
when η → 0. On the other hand, Schramm’s strong approximation result (Result B) for the
dual tree, together with the strong convergence of finite subtrees of the dual tree (as shown
in the Appendix) shows that the bulk lengths (i.e., that the lengths of the portions of Cδk

obtained by removing its portions near the special edge e) do converge (indeed, the strong
approximation result implies with a probability as close to one as one wishes, all the pieces
of the dual tree that are not near to its leaves will be contained in some finite subtree with
prescribed endpoints (one chooses enough of these endpoints deterministically so that the
probability gets close to 1), and we know that the convergence of the length parametrization
for this finite subtree holds).
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We now need to control the length of the discrete approximations of l(z0, z1). We now
choose ε and denote by lδε (resp., lε) the renormalized length of the set of points in Cδ (resp.,
C) that have not been disconnected from z0 or z1 at a scale larger than ε (i.e., by a cut creating
a cycle of diameter larger than ε). In other words, we remove from the total length of Cδ (resp.,
C) the contribution of all the macroscopic cuts (of diameter larger than ε).

By definition of l(z0, z1), we know that lε → l(z0, z1) almost surely as ε → 0. Moreover,
Lemma 9 ensures that E(lδk

ε − lδk (z0, z1)) goes to 0 as ε → 0, uniformly in k. As a conse-
quence, we get that, for all r > 0, one can find ε0 such that for all ε ≤ ε0, there exists k0 so
that, for all k ≥ k0, all the probabilities P(|lε − l(z0, z1)| > r), P(|lδk

2ε − lδk (z0, z1)| > r) and

P(|lδk

ε/2 − lδk (z0, z1)| > r) are smaller than r/10. We then choose such an ε0 and k0 = k0(ε0).

We know that the finitely many pieces of Cδ , cut by cycles of diameter larger than ε0, do
converge almost surely to their continuous counterpart (for the same reason that the curve Cδ

converges to C). In particular, this shows that one can find k1 ≥ k0 so that for all k ≥ k1, the
probability that

l
δk

2ε0
+ (r/2) ≥ lε0 ≥ l

δk

ε0/2 − (r/2)

is greater than 1−r/10. Hence, for k ≥ k1, with probability at least 1−r/2, the four quantities
l
δk

2ε0
, l

δk

ε0/2, lδk (z0, z1) and lε0 are no more than 3r apart.
Wrapping up, we see that for any fixed r one can find k1, so that for all k ≥ k1,

P
(∣∣lδk (z0, z1) − l(z0, z1)

∣∣ > 4r
) ≤ r.

In other words, lδk (z0, z1) converges in probability to l(z0, z1) as k → ∞. �

4.2. Arm events in UST. Let us first recall an estimate about LERW of the type that is
essential in the derivation of results involving the Minkowski content in [2, 5, 20]. Let X

and Y be two independent simple random walks on Z
2 starting at x and 0, respectively, and

stopped at their first exit time τX and τY of the ball of radius N around the origin. Let us
consider the loop erasure Ŷ of Y . Take L < N and denote by Ŷ L the subpath of Ŷ from its
last hitting time of the ball of radius L around the origin until its end τY and define the escape
probability to be

Es(L,N) := Px=0
(
X ∩ Ŷ L =∅

)
.

RESULT D. There exists a constant C > 0 such that for all L and N with L ≤ N/2,

C−1(L/N)3/4 ≤ Es(L,N) ≤ C(L/N)3/4.

PROOF. When L = 1, the estimate can be derived following the proof of [3], Corol-
lary 3.15, and using the better estimate of [5], Theorem 1.1, as an input. Moreover, one can
compare Es(L,N) to Es(1,N)/Es(1,L), thanks to [24], Propositions 5.2 and 5.3, which
proves Result D. �

Note that this implies that the probabilities, say Es(L,N) and Es(5L,N), are comparable.
Moreover, the case L = 1 provides (via Wilson’s algorithm) the probability that two dis-

tinct branches in the wired UST in B(N) that start at the origin and next to the origin stay
disjoint until they hit the circle of radius N . By duality, this is also (almost, as there is the
issue of the (1/2,1/2) translation) the probability that, for the free UST in B(N), there exists
a branch from the boundary ∂B(N) to itself that goes through a fixed edge neighboring the
origin.

An event related to the previous nonintersection events, but slightly different, is the fol-
lowing arms event A(L,N) around the origin between scales L and N that there exists four
disjoint branches, two of the UST and two of the dual UST (in alternating order) that connect
∂B(L) to ∂B(N) (see Figure 7).
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FIG. 7. The four alternating disjoint branches in the UST.

LEMMA 10. Consider the UST in a discrete domain � ⊆ Z
2 containing B(N) with ar-

bitrary boundary conditions. There exists a constant C > 0 independent of �, N and the
boundary conditions such that, for all L ≤ N ,

P
(
A(L,N)

) ≤ C(L/N)3/4.

PROOF OF LEMMA 10. It is clearly sufficient to focus on the case where L < N/10, say
(choosing also C ≥ 10 at the end will then ensure that the statement holds for all L ≤ N ).
Note that (for whatever � and boundary conditions), when A(L,N) occurs, then at least one
of the following two events occur:

• There exists a branch of the UST that crosses the annulus twice. A part of this branch starts
from ∂B(N), reaches ∂B(L) and then hits ∂B(N) again.

• There exists a branch of the dual UST that crosses the annulus twice. A part of this branch
starts from ∂B(N), reaches ∂B(L) and then hits ∂B(N) again.

By duality, it is enough to evaluate the probability of the first event, which we call A′(L,N).
We then can note that the monotone coupling of USTs with different boundary conditions
and in different domains shows that the probability of A′(L,N) is maximal (among all do-
mains and boundary conditions but for fixed L and N ) for the ball B(N) with free boundary
conditions on ∂B(N). By then, considering its dual configuration again, this means that it is
sufficient to bound the probability that, for a UST in B(N) with wired boundary conditions,
there exists two disjoint branches of the tree that join ∂B(L) to the outer wired boundary
∂B(N).

From now on in this proof, we will work with the UST in B(N) with wired boundary
conditions. Since the branch γ of this UST from the origin to ∂B(N) always joins ∂B(L) to
∂B(N), we want to show that the probability that there exists at least another branch (disjoint
from γ ) that joins ∂B(L) to ∂B(N) is bounded by a constant times (L/N)3/4. To see this,
we consider the UST, conditionally on γ , and we start constructing the rest of the tree by a
variant of Wilson’s algorithm that we now describe.

Let x denote the first (when starting from the origin) point on γ that is at distance greater
than 2L from the origin. The first step of our iteration goes as follows: We will use a random
walk X1 = X starting from this point x. More specifically, we start Wilson’s algorithm at the
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the first point X(j1) at which X is not in γ , and we use the movements of X to perform it. In
this way, one attaches a branch I1 from X(j1) to X(j ′

1) ∈ γ ∪∂B(N) (with obvious notations,
here, j ′

1 is the first time after j1 at which X(j ′
1) ∈ γ ∪ ∂B(N)) that will be part of the UST.

Then, one continues still using X. The next point, where one will start Wilson’s algorithm,
will correspond to the first time j2 larger than j ′

1 that is not on γ ∪∂B(N)∪ I1. One continues
like this, constructing branches of the uniform spanning tree using this random walk X, until
the first time greater than the exit time of B(3L) by X at which X hits γ ∪ ∂B(N). At that
moment, one has constructed some subtree of the wired UST that consists of the union of γ

with a finite number of branches I1, . . . , Ik .
The key observation can be, loosely speaking, described as follows: during this first step,

one can create at most one second branch of the UST that crosses A(L,N) (and the prob-
ability of this event will be bounded by some constant times Es(L,N)), and, on the other
hand with some positive probability, one has drawn a collection of branches that do actually
prevent the existence of a second branch of the UST that crosses A(L,N). Let us be more
specific; let E1 be the event that:

• The walk X first winds once around the origin in the annulus B(3L)\B(L), in other words,
the first time ρ1 at which the argument of X around the origin exits [−2π + arg(x),2π +
arg(x)] is smaller than the exit time ρ2 of B(3L) \ B(L) by X.

• And then, after ρ1 but before exiting the ball of radius L around x, the walk X makes
a closed loop around x within B(x,L/2) (i.e., it contains a path that disconnects x from
∂B(x,L/2)).

One can note that, when this event E1 occurs, then necessarily, there cannot exist a second
branch of the wired UST (disjoint from γ ) that connects ∂B(L) to ∂B(N). Indeed, after
ρ1, X will touch the branch γ in B(x,L/2) at at least one point y such that the part of γ

joining x and y stays in B(x,L/2): let us call τ such a time. By our definition of E1, we
see that the winding of X around the origin between 0 and τ will differ from that of the
part of γ that joins x to y. We now call τ ′ to be the first time at which X is at some point
y′ on γ so that the winding of X until time τ ′ differs from that of the part of γ that joins
x to y′. Note that on the event E1, τ ′ ≤ τ ≤ ρ2, and that the time τ ′ corresponds to some
moment in our algorithm, where one has constructed branches I1, . . . , Ik′ for some k′ ≤ k.
It is then easy to see that the set of vertices in γ ∪ I1 ∪ · · · ∪ Ik′ disconnects B(L) from
∂B(N) which prevents the existence of any UST branch disjoint from γ that connects ∂B(L)

to ∂B(N).
Now, note that the probability of E1 is bounded from below by a universal constant b, in-

dependent of L, N or γ . Indeed, the probability of E1 converges to that of the corresponding
event for a Brownian motion in an annulus as L → ∞.

If E1 does not hold, then we continue our algorithm until the first time after X exits B(3L)

at which X hits γ or ∂B(N). The probability of hitting ∂B(N) is bounded from above by
a constant times the conditional probability (given γ ) that a random walk started from 0
does not hit the subpath γ 5L of γ ; let us call this probability p(γ ). This is because the exit
measures on ∂B(5L) of random walks started at points inside of B(3L) are all absolutely
continuous with respect to another and with Radon–Nikodym derivatives uniformly bounded
(with respect to L and to the starting points of the walks). Then, we simply iterate the same
procedure, starting an independent random walk X2 from x again, except that we already
have added some branches to the UST, so that the way we add branches to the tree using
Wilson’s algorithm is slightly modified. We can, however, use the event E2 defined for the
random walk X2 in the same way as E1 was defined for X1. We then iterate the proce-
dure.

Then, we obtain the following iterative scheme. We first discover γ and then:
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• With a probability at least b, the event E1 occurs, and we then know that there is no second
branch of the UST joining ∂B(L) and ∂B(N).

• If not, then, with a conditional probability bounded from above by p(γ ), one discovers a
second branch of the UST joining ∂B(L) and ∂B(N).

• Then, with a conditional probability at least b again, the event E2 occurs, and we know
that there is no further branch of the UST joining ∂B(L) and ∂B(N).

• If E2 does not occur, then with a conditional probability bounded by p(γ ), one discovers
an extra branch of the UST joining ∂B(L) and ∂B(N).

• And so on.

Hence, we see that, conditionally on γ , we can bound the expectation of the number N of
additional disjoint branches (apart from γ ) in the wired UST that join ∂B(L) to ∂B(N):

E(N |γ ) ≤ C
∑
k≥1

(1 − b)kp(γ ) = C
1 − b

b
× p(γ ).

Since

E
(
p(γ )

) = Es(5L,N),

we conclude that

P
(
A′(L,N)

) ≤ E(N ) ≤ 1 − b

b
× C′(L/N)3/4. �

4.3. Arm-estimates imply Lemma 9 and Lemma 8.

PROOF OF LEMMA 9. We can bound the expected value of the renormalized length
Lδ(ε) by δ5/4 times the sum over all pairs of edges e0 (in the dual lattice) and e1 (in the
original lattice) that are at distance at most ε of each other of the probability of the intersection
E(e0, e1) of the following events:

• The edge e0 belongs to the dual cycle Cδ (that appears when closing the edge e).
• The edge e0 is at distance greater than η from e and in the ball of radius 1/η around the

origin.
• If we erase the two edges e and e1 from the UST, the edge e0 is no longer on the interface

between the clusters that contain z0 and z1.
• The edge e1 is cut out during the cutting procedure (note that this event occurs indepen-

dently of the rest, with probability δ5/4 times a constant that depends on t).

For any edge f in δZ2 and l1 ≤ l2, denote by Af (l1, l2) the four arms event in the annulus
B(x, l2) \ B(x, l1) centered at the middle point x of the edge f for the UST on δZ2. We have
that, if we set r := d(e0, e1), then (see Figure 8)

E(e0, e1) ⊂ Ae0(δ/2, r/3) ∩Ae1(δ/2, r/3) ∩Ae0(2r, η).

Using the upper bounds on the probabilities of these events given by Lemma 10, together
with the fact that the bounds on the first two are independent of the boundary conditions (so
it is possible to first condition on the last one and then to bound the conditional probability
of the first two), we get readily that

E
(
Lδ(ε)

)

≤ δ5/4C(t)δ5/4 × ∑
e0∈B(0,1/η)

∑
e1∈B(e0,ε)

(r/δ)−3/4 × (r/δ)−3/4 × (η/r)−3/4

≤ C(η)δ5/4+5/4+3/4+3/4−2 × ∑
x∈δZ2∩B(0,ε)\{0}

|x|−3/4

≤ C(η)ε5/4.
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FIG. 8. Arm events appearing in E(e0, e1).

�

PROOF OF LEMMA 8. The proof goes along similar lines to the previous one. We can
bound the expected renormalized length by δ5/4 times the sum over all pairs of edges e0 (in
the original lattice) and e1 (in the dual lattice) such that r := d(e0, e1) ≤ η of the probability
of the intersection of the following events:

• The edge e0 is on the UST branch from z0 to z1, and it splits this branch in two parts of
diameter larger than η0.

• The edge e0 is removed by the cutting procedure.
• The edge e1 belongs to the dual cycle that appears when closing the edge e0.

As in the previous argument, we can note that this event (for given e0 and e1) is included
in the joint occurrence of the four-arms events Ae0(δ/2, r/3), Ae1(δ/2, r/3) and Ae0(2r, η0),
and we can conclude using the very same computation. �

APPENDIX: STRONG CONVERGENCE OF UNIFORM SPANNING TREES

In this appendix we show that USTs with different boundary conditions (wired, free,
whole-plane) converge when the mesh size vanishes, in the sense that their finite subtrees
parametrized by their appropriately renormalized length converge in law.

This is done by combining three ingredients: the result of Lawler and Viklund about con-
vergence of radial LERW to SLE2 in its natural parametrization (Result C), the convergence
of discrete USTs to their continuous counterparts (up to time-reparametrization) by [18], and
absolute continuity arguments between USTs with different boundary conditions using loop
soups. Discrete harmonic measure estimates will be instrumental as well.

In order to avoid lengthy, but easy details, we do outline here the main ideas, leaving the
simple considerations to the interested reader.

A.1. Notations and background. � will denote a bounded simply connected domain
with analytic boundary. For each z ∈ �, we let zδ be a point in δZ2 that is at distance less
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than δ from z chosen in some deterministic way. We choose some fixed ξ ∈ �, and we define
�δ to be the connected component of the graph δZ2 ∩ � that contains ξδ (where edges are
kept in this graph if they lie entirely in �). A halfedge adjacent to a vertex in �δ but that does
not belong to an edge in �δ will be called a boundary halfedge.

On this discretization we will define the usual two measures on random walk paths and
random walk loops. Each of these measures will come in two variants, corresponding to the
two following Markov chains:

• The usual random walk in δZ2 is killed upon exiting �δ (i.e., at the first time it used an
edge that is not in �δ).

• The reflected random walk in δZ2 that, at each step, is choosing a neighbor with probability
1/4 and jumps to it if the corresponding edge is in �δ . If the corresponding edge is not
in �δ , it stays put, and we say that the walk bounced on the boundary halfedge it tried to
explore at that time (two walks that stay put at x but bounce on different halfedges will be
considered to be different in what follows).

The measures corresponding to the random walk killed upon exiting �δ are the following:
we let λδ denote the (oriented, unrooted) loop measure in �δ ; an unoriented unrooted loop
X has a mass J−1 × (1/4)|X|, where J is the multiplicity of the loop (i.e., J is the maximal
integer j such that the loop is the concatenation of j times the same loop, see, for instance,
[28, 30]).

We define similarly the loop measure λr
δ corresponding to the reflected random walks. It

is worthwhile to notice that, when one restricts λr
δ to the set of loops that do not bounce on

the boundary (i.e., that do not use any boundary halfedge), one gets exactly the measure λδ .
We will also use the (oriented) excursion measure on nearest neighbor paths in �δ that

we denote by ν�δ . This is the measure that assigns a mass 4−n to the nearest-neighbor paths
X = (X0, . . . ,Xn) in (δZ)2 such that the edges (X0,X1) and (Xn−1,Xn) are not in �δ , and
the other n − 2 edges are in �δ .

Let us recall that one way to sample a UST in �δ with wired boundary conditions using
Wilson’s algorithm (for convenience, we will view the boundary as a single vertex ∂) is
to iteratively sample the subtrees of the UST T∂,zδ

1,...,z
δ
n

that join the points zδ
1, . . . , z

δ
n and

the boundary. The tree T∂,zδ
1,...,z

δ
n+1

is obtained by adding to T∂,zδ
1,...,z

δ
n

an independent LERW

joining zδ
n+1 to T∂,zδ

1,...,z
δ
n
. The probability that T∂,zδ

1,...,z
δ
n

is a given tree T (see [30], Chapter 2,
Section 3); this is related to the fact that the set of loops that are being erased in Wilson’s
algorithm can be interpreted exactly as the set of loops in a loop soup that do intersect the UST
branches that one constructs) is equal to some renormalization constant (i.e., independent of
T ) times Uδ(T ) × 4−|T |, where |T | is the number of edges in T , and

Uδ(T ) := exp
(
λδ

({
�, zδ

1 /∈ �, � ∩ T �= ∅
}))

(here, we use the fact that the set of loops that intersect zδ
1 does not depend on T , and so we

can include the term exp(λδ{�, zδ
1 ∈ �}) in the renormalizing constant).

Similarly, when one samples a UST in �δ with free boundary conditions, the probability
that Tzδ

1,...,z
δ
n

is a given tree T is given by Vδ(T ) × 4−|T |, where

Vδ(T ) := exp
(
λr

δ

({
�, zδ

1 /∈ �, � ∩ T �= ∅
}))

(here, the algorithm is rooted at zδ
1, instead of ∂ , so we keep all reflected loops, and, by

construction, the loops that contain zδ
1 are not present anyway when performing Wilson’s

algorithm).
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A.2. Wired UST convergence. Let z1, . . . , zn be n points in �, and, for each sufficiently
small δ, zδ

1, . . . , z
δ
n will denote the approximations of these points on δZ2 (such that each zδ

j

is at distance at most δ from zj ).
We will consider the uniform spanning tree with wired boundary conditions in �δ , the

uniform spanning tree with free boundary conditions in �δ and the uniform spanning tree in
δZ2. We will denote by T f,δ

n and T w,δ
n the (smallest) finite subtrees of these spanning trees

that contains zδ
1, . . . , z

δ
n.

Note that the tree T w,δ
n sometimes contains the boundary vertex ∂ so that it can also be

viewed as a forest. We will denote the (possibly larger) tree that contains zδ
1, . . . , z

δ
n and the

boundary vertex ∂ by T̂ w,δ
n (so the trees T̂ w,δ

n and T wf,δ
n are the trees that are constructed

iteratively via Wilson’s algorithm as described above). When ∂ /∈ T w,δ
n , then T̂ w,δ

n is the
union of T w,δ

n with an additional branch that joins T w,δ
n to ∂ .

Our goal is to show that these wired and free uniform spanning trees, with appropriately
rescaled length parametrization, converge in distribution to their continuous SLE2-tree coun-
terparts in � with their natural parametrizations. Let us start with the wired boundary condi-
tions:

PROPOSITION 11 (Wired UST convergence). The tree T̂ w,δ
n , parametrized by its Eu-

clidean length (say from ∂) multiplied by a constant times δ1/4, converges in law to its con-
tinuous counterpart T̂ w

n parametrized via its natural parametrization.

Note that we need to multiply here by δ1/4 here instead of the usual δ5/4 because we
consider the Euclidean distance on the tree instead of the graph distance.

PROOF. Let us define for each j ≤ n, the branch γj,δ of the tree that joins zδ
j to the

boundary. The joint law of (γ1,δ, . . . , γn,δ) converges in law to its continuous counterpart, for
the weaker topology τw on simple paths up to time reparametrization (this follows the results
in [18] for the scaling limit of one single branch, noting that this result does not require an
analytical boundary, so that one can apply it iteratively via Wilson’s algorithm). Note also
that the joint law of (γ1,δ, . . . , γn,δ) and of the meeting points of different γj,δ converges as
well to its continuous counterpart.

Let us choose a sequence δk → 0 and couple all the trees T̂ w,δk
n and T̂ w

n on a same
probability space (via Skorokhod’s representation theorem) so that for the topology τw ,
(γ1,δk

, . . . , γn,δk
) converges almost surely to (γ1, . . . , γn) (and that the meeting points be-

tween different branches converge as well).
From Result C, for each j , γj,δk

with appropriately rescaled length converges in law to γj

with its natural parametrization. It follows readily that in the previous coupling, γj,δk
has to

converge in probability to γj for this stronger topology. This finally implies that the collection
(γ1,δk

, . . . , γn,δk
) converges in probability to (γ1, . . . , γn) (for this stronger topology) which

implies the claim. �

The previous proposition readily implies that:

COROLLARY 12. The tree T w,δ
n , parametrized by its Euclidean length (say from zδ

1) and
multiplied by a constant times δ1/4, converges in law to its continuous counterpart T w

n with
its natural parametrization.

Indeed, using the same arguments as before, when T w,δ
n �= T̂ w,δ

n , the arm T̂ w,δ
n \ T w,δ

n is
easily seen to converge to its continuous counterpart.
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Before discussing the UST with free boundary conditions, let us first derive the conver-
gence result for the whole-plane UST. Here, T ∞,δ

n denotes the smallest subtree of an UST
in δZ2 that contains the points zδ

1, . . . , z
δ
n on δZ2 that are approximations of some points

z1 . . . , zn ∈R
2.

PROPOSITION 13 (Whole-plane UST). The tree T ∞,δ
n , parametrized by its Euclidean

length (say from zδ
1) and multiplied by a constant times δ1/4, converges in law to its continuous

counterpart T ∞
n with its natural parametrization.

PROOF. This follows fairly directly from the previous result for the wired UST. Indeed,
it is easy to see that for all ε > 0, one can find R large enough so that, for all δ, the tree T ∞,δ

n

can be coupled with the subtree T w,δ
n of the wired UST in the discrete approximation of the

disk of radius R around the origin in such a way that they coincide with probability at least
1 − ε (this can be shown in the number of ways, for instance, in the spirit of the proof of
Lemma 3.1 in [25] using Wilson’s algorithm and Beurling-type estimates such as Lemma 2.3
in [15]. One can first condition on the infinite branch on the full-plane UST in δZ2 that starts
near the point (R,0), and first note that, with probability 1 −O(1) as R → ∞ and uniformly
with respect to δ, this branch does not go through the ball of radius R1/2 around the origin.
Then, using the same random walks in Wilson’s algorithm for both, one can couple the two
finite subtrees for the UST with wired conditions on this branch, with the UST with wired
boundary condition in the discrete approximation of the ball of radius R, in such a way that
the parts of the subtrees inside the balls of radius R1/4 do coincide with probability 1−O(1),
again uniformly with respect to δ. We safely leave those details to the reader). �

A.3. Free UST convergence. We now turn to the more challenging case of the free UST.

PROPOSITION 14 (Free UST). The tree T f,δ
n , parametrized by its length (say from zδ

1)

renormalized by a constant times δ5/4, converges in law to its continuous counterpart T f
n

with its natural parametrization.

One important observation in order to deduce the results for the free UST from those for
the wired UST is that, in a free UST (and in its scaling limit), the entire branch that joins
any two given inner points (at positive distance from the boundary) will (in the scaling limit)
remain at positive distance from ∂�. More precisely:

LEMMA 15 ([25], Theorem 11.1(ii)). For any given z1, . . . , zn in �, for each ε, one can
find r0 and δ0 so that, for all δ < δ0,

P
[
d
(
T f,δ

n , ∂�δ) < r0
] ≤ ε.

We now turn to the proof of Proposition 14.

PROOF OF PROPOSITION 14. We will prove this result by controlling the Radon–
Nikodym derivative of the law of T f

n with respect to that of the wired subtree T w
n .

As noted above, for a given possible tree T ,

P
[
T f,δ

n = T
] = 1

Z
f,δ
n

4−|T | × Vδ(T ).
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For the wired UST, we can compute the probability that T w,δ
n = T for the same tree T by

summing, over all possible additional simple branches γ that connect T to the boundary ∂ ,
the probability that T̂ w,δ

n is equal to T ∪ γ :

P
[
T w,δ

n = T
] = 1

Z
w,δ
n

∑
γ :T ↔∂�δ

4−|γ |−|T |Uδ(T ∪ γ ).

However, for each tree T ,

ν�δ\T
({

e : e joins ∂�δ and T
}) = ∑

γ :T ↔∂�δ

4−|γ | exp
(
λ�δ\T

({� : � ∩ γ �= ∅}))

(this corresponds to the decomposition of each excursion e into its loop-erasure and the loops
it encountered). Hence, as

Uδ(T ∪ γ ) = Uδ(T ) exp
(
λ�δ\T

({� : � ∩ γ �=∅})),
we have

P
[
T w,δ

n = T
] = 1

Z
w,δ
n

4−|T |Uδ(T )ν�δ\T
({

e : e joins ∂�δ and T
})

.

Our goal is to control the behavior of the ratio P[T f,δ
n = T ]/P[T w,δ

n = T ] as δ → 0, uni-
formly over all trees T that stay at distance at least r0 from the boundary of �. The previous
expressions show that this ratio is equal to some constant C = C(δ,�) (that is independent
of T ) times

(1)
Vδ(T )

Uδ(T )
= exp(λr

δ({� : zδ
1 /∈ �, � ∩ T �= ∅, � bounces off ∂�δ}))

ν�δ\T ({e : e joins ∂�δ and T }) ,

because the mass of loops that do not bounce off the boundary appear in both expressions
(for the free and wired trees) and cancel out.

Let us first study the excursion measure term in the denominator of the right-hand side
of (1). This is a well-known quantity that can be viewed as the discrete extremal distance
between ∂�δ and T . This quantity is uniformly close to its continuous Brownian counterpart
(a.k.a. the extremal distance between T and ∂�) when δ → 0. We will briefly explain in
Section A.5 how to adapt the existing results for discrete extremal lengths of quadrilaterals to
the present annular case. Let us also note that this quantity is bounded form below and from
above uniformly with respect to all trees T that are are distance greater than r0 from ∂� as
well as with respect to all δ small enough. Indeed, once z1 and z2 are fixed (say), then all
excursions that go through some given tube from the boundary to itself and disconnects z1
and z2 in the domain do necessarily intersect each of these trees, and the mass of this set of
excursions converges as δ → 0 which proves the lower bound. For the upper bound, one can
use monotonicity of the extremal distance and bound this quantity by the extremal distance
between the outer boundary of � and some cycle that is at distance smaller than r0 from the
boundary.

We now turn to the study of the numerator of the right-hand side of (1). Let us now look
closer at the set of loops

(2)
{
� : zδ

1 /∈ �, � ∩ T �=∅, � bounces off ∂�δ}

appearing in (1). Note that discrete loop measures converge to their Brownian counterparts
(and the discrete loop-soups therefore converge [19] to the Brownian loop-soups introduced
in [22]), but this result is not available in the literature for the reflected loops. We will there-
fore explain how to derive the needed result from scratch, based on known estimates for
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harmonic functions. Let w and w′ be two fixed disjoint concentric (w′ surrounds w) smooth
curves that surround both z1 and z2 that both stay in the r0-neighborhood of ∂�, and denote
their natural discretization on δZ2 by wδ and w′

δ . One can then decompose each loop � in �δ

that touches both ∂�δ and T (where the tree T stays at distance at least r0 from ∂�) into its
upcrossings and downcrossings between wδ and w′

δ . More precisely, an upcrossing will cor-
respond to a nearest-neighbor path from some point y on wδ to the first point y′ that belongs
to w′

δ , and a downcrossing will conversely correspond to a path (possibly reflected off the
boundary of �δ) that starts from some point y′ on w′

δ up to the first point y that belongs to
wδ . The maximal number N(�) of disjoint subpaths of a loop � that are upcrossings is finite
and is at least equal to 1 (because the loop touches both T and the boundary). Summing up,
we get a decomposition of the loop into a concatenation of N(�) pairs of paths, each pair
consisting of an upcrossing from wδ to w′

δ and one downcrossing from w′
δ to wδ . The up-

crossings are usual random walk paths until their first hitting of w′
δ , and the downcrossings

are reflected random walk paths in �δ up to their first hitting of wδ .
Let r1 be the minimum of the distance d(z1,w) and d(z1, z2)/2. We say that an upcrossing

from wδ to w′
δ is good if it does not disconnect zδ

1 from the circle of radius r1 around z1 and if
it does not go through the point zδ

1. We say that a loop � of (2) is good if all of its upcrossings
are good. It is easy to see that the total mass of such good loops is finite, as the mass of good
loops with exactly n upcrossings decays exponentially in n.

The loops that are not good intersect any tree that contains both zδ
1 and zδ

2 (as r1 is smaller
than d(z1, z2)/2), so that the mass of the loops in (2) that are not good does not depend on
T and so can be incorporated into the constant C(δ,�). Hence, it it enough to estimate the
mass under λr

δ of the set of loops

(3)
{
� : � ∩ T �=∅, � is good, and bounces off ∂�δ}.

This set can be decomposed according to the number N(�) of upcrossings of a loop �, and
according to the positions of the endpoints y1, . . . , yN(�) and y′

1, . . . , y
′
N(�) of these up- and

downcrossings. More precisely, we can choose to root � at the beginning of one of its upcross-
ings, chosen uniformly at random (so we weight this choice of a root by a factor 1/N(�)).
The first upcrossing goes from y1 to y′

1, the first downcrossing from y′
1 to y2 and so on (the

last downcrossing goes from y′
N back to y1). Recall that we also define J (�) to be the maxi-

mal multiplicity of the loop (which will typically be equal to 1). The total mass for λr
δ of the

set (3) can be written as

oδ(1) + ∑
N≥1

∑
y1,...,yN

∑
y′

1,...,y
′
N

N−1Rδ

(
y′

1, y2;y′
2, y3; . . . , y′

N,y1
)

× Q
g
δ

(
y1, y

′
1;y2, y

′
2; . . . ;yN, y′

N

)
,

(4)

where

Rδ

(
y′

1, y2;y′
2, y3; . . . , y′

N,y1
) := pr

δ

(
y′

1, y2
)
. . . pr

δ

(
y′
N,y1

)
,

and pr
δ(y

′, y) denotes the probability that a reflected random walk in �δ started from y′ hits
wδ at y, and where Q

g
δ denote the probability that N independent random walks started from

yi , i = 1, . . . ,N , respectively, hit w′
δ at y′

i , respectively, that they are all good upcrossings
and that at least one of them intersects the tree T .

The oδ(1) term in (4) is due to the fact that we overcounted here the set of loops that have
a multiplicity J (�) that is not equal to 1. It is easy to see that this term is negligible as δ → 0
as the contribution of loops of nontrivial multiplicity vanishes (for instance, note that J ≥ 2
implies that for some j �= k, yj = yk).
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To conclude, we need to control the limit of (4), that is, we need to control, for each
given N , the limit of the sum of the products Rδ × Q

g
δ . Note that Rδ involves reflected ran-

dom walks but deals only with discrete harmonic measures, while Q
g
δ involves usual (non-

reflected) random walks but requires control on the trajectories because of the condition that
the upcrossings are good and that at least one of them hits T .

Let us first look at the quantity Rδ . For each point y′
i (δ) ∈ δZ2, we can view pr

δ(y
′
i , ·) as the

distribution of the first point at which the reflected random walk in �δ started from y′
i (δ) hits

wδ . On the one hand, the dependence on the starting point y′
i (δ) can be controlled uniformly

via a simple coupling argument (two random walks started from nearby points can be mirror-
coupled in such a way that they meet with high probability before exiting some ball). On the
other hand, when δ → 0, if y′

i (δ) → yi , then this discrete harmonic measure can be shown to
converge to its continuous counterpart, as we briefly explain in Section A.5.

Let us now focus on Q
g
δ . Just as for Rδ (but with the roles of y′

i and yi exchanged), for
each set of points (y1, . . . , yN) in δZ2, one can view Q

g
δ as a random measure μδ,T on the

set of points (y′
1, . . . , y

′
N).

Let us define for each y(δ) ∈ δZ2 the measure μδ(y(δ), ·) on endpoints of good upcross-
ings that start from y(δ) and the measure μ̃δ(y(δ), ·) on endpoints of good upcrossings that
start from y(δ) and do not intersect T .

When δ → 0, when the starting point y(δ) converge to some y and when the tree T = T (δ)

converges to some continuous tree (noting that all points on this continuous tree are regular
for Brownian motion simply because it is connected by arcs so that, as soon as Brownian
motion hits the tree for the first time at some point z, it also disconnects this point z from
infinity immediately after that time), the usual convergence in distribution of simple random
walk to Brownian motion implies that the measures μd(y(δ), ·) and μ̃δ(y(δ), ·) converge
to their Brownian counterpart (the previous observation ensures that the scenario where the
limiting Brownian motion hits the tree much before the random walk does is unlikely). Since
the quantity μδ,T is a linear combination of finite products of these measures, it follows
readily that it also converges to its Brownian counterpart when (y1(δ), . . . , yn(δ)) converges
to some (y1, . . . , yn) (and the tree T (δ) converges to some continuous tree).

Furthermore (for instance, by simple coupling arguments), one can again see that these
measures depend continuously on the starting points (and also uniformly with respect to δ,
the total variation distance between the two measures for two sets of discrete starting points
goes to 0 when the distance between these starting points goes to 0).

From this convergence of the measures Rδ and μδ,T (uniform in the starting point parame-
ters, and in T when d(T , ∂�) is bounded from below), the convergence of the sum (4) finally
follows (indeed, the contribution to (4) of loops with more than N upcrossings is exponen-
tially small, as noted previously).

We can note also that the same arguments (just evaluating the mass of good loops without
reference to T ) shows that the masses of the set of loops in (3) are all bounded uniformly (with
respect to all T ’s that are at distance greater than r0 of the boundary and all δ small enough).
Hence, on the set of trees that stay at distance at least r0 from the boundary, the Radon–
Nikodym derivative between the laws of the free and wired subtrees converges uniformly.
Combining this with Lemma 15 and the convergence in law of the finite subtrees of the
wired UST, we can conclude follows from that of the finite subtrees of the free UST do also
converge in law. �

A.4. Joint convergence of the UST and its dual. Finally, we consider the joint conver-
gence of a wired UST with its dual free UST. We let T δ denote the whole wired UST in the
discretization �δ of a bounded simply-connected domain � with analytic boundary. Its dual
T †δ is then a free UST in some subgraph of δ(Z+ (1/2))2 which also approximates �.
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Again, for each z1, . . . , zn, we can define the finite subtree tree T δ
n of T δ . We also con-

sider the smallest finite subtree of the dual tree T †,δ that connects some approximations of
z1, . . . , zn in the dual graph δ(Z+ (1/2))2. We denote this tree by T †,δ

n .

COROLLARY 16. The pair (T δ
n ,T †,δ

n ) (with appropriately rescaled length) converges in
distribution to its continuous counterpart (with the natural parametrizations).

PROOF. The tree and dual tree are known to jointly converge (as unparametrized trees),
and [25], Remark 10.14, shows that their limits are deterministic functions of each other. So,
we can readily deduce that (T δ

n ,T †,δ
n ) converges to its continuous counterpart, in the sense

of unparametrized trees (i.e., trees up to monotone reparametrization). In order to deduce the
convergence of the parametrized trees, we can use the same argument as before:

• We consider any given sequence δk → 0, and we couple the pairs (T δk
n ,T †,δk

n ) for all k, so
that this pair converges almost surely as k → ∞ (as unparametrized trees).

• Then, we note that when one looks at the sequence T δk
n alone, Proposition 11 then im-

plies that it converges in probability for the stronger topology of parametrized trees. Sim-
ilarly, Proposition 14 shows that T †,δk

n converges in probability for the stronger topology.
It follows readily that the pair converges in probability for the stronger topology to the
pair of limiting trees parametrized by their natural parametrization (noting that the natural
parametrization is a deterministic function of the tree). �

Similarly, using Proposition 13, we obtain the following corollary for the subtrees of the
whole-plane UST and its dual (with obvious notation):

COROLLARY 17. The pair (T ∞,δ
n ,T ∞†,δ

n ) (with appropriately rescaled length) con-
verges in distribution to its continuous counterpart (with the natural parametrizations).

A.5. Final estimates. We now briefly explain how to adapt the existing proofs in the
literature in order to obtain the two results that we have used in Section A.3. The following
arguments are in the spirit of [7, 8]:

• Let us first discuss the mass mA of the set of discrete excursions that cross a discrete
conformal annulus A (we applied this to the term in the denominator of (1)). For each given
δ, let us consider the harmonic function Ĥ δ in A that takes value 0 on the inner boundary
and 1 on the outer boundary. For any closed simple loop L on the dual lattice of δZ2 that
separates the two boundary components of the conformal annulus, we can define the flow
φ(L) of the gradient vector field ∇Ĥ δ through L (defined as the sum of the increments of
Ĥ δ over all properly oriented edges dual to those of L). We can note that: (a) The flow φ(L)

does in fact not depend on the choice of L because Ĥ δ is harmonic; (b) when one chooses
L to be “outer boundary circuit,” one gets exactly the quantity 4mA, by definition of the
excursion measure and the representation of Ĥ δ via random walk hitting probabilities, the
4 factor comes from the 1/4 contribution in mA of the first outgoing jumps away from
the outer boundary, across the edge of the boundary circuit). Hence, the quantity mA is,
in particular, equal to φ(Lδ

0) through some given Lδ
0, which is the approximation on the

lattice dual to δZ2 of a given loop L0, that is at positive distance of the outer boundary.
To conclude, we can then note that the harmonic function Ĥ δ and its (appropriately

defined) discrete derivatives converge to their continuous counterpart Ĥ as δ → 0 and uni-
formly when considered at some positive distance from the boundary of A (and, therefore,
uniformly on a neighborhood of L0). Hence, we can conclude the quantity 4mA converges
to the flow of the gradient of Ĥ through L0, which is a positive and finite quantity (note
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that no normalization is needed as φ(L0) will typically be the sum of O(δ−1) terms of
order δ) and that, in turn, can be interpreted in terms of the mass of a set of continuous
Brownian excursions, using similar arguments.

• Let us now discuss the convergence of the harmonic measure pr
δ(y

′, ·) for a random walk
reflected on the outer boundary of a conformal annulus A. It suffices to show the conver-
gence of the harmonic measure (seen from y′) of a given subarc a of the inner boundary
of A. This is a discrete harmonic bounded function Hδ of the starting point y′. It therefore
has subsequential limits as δ → 0. A limit h of a convergent subsequence is necessarily
harmonic, and by Beurling-type estimates, like Lemma 2.3 in [15], it has boundary values
0 and 1 on the inner boundary of the annulus (1 of the arc a and 0 on its complement). To
conclude, we need to show that h has Neumann boundary conditions on the outer boundary
of A.

To do this, let us consider the discrete harmonic conjugate Hδ∗ of Hδ , normalized,
so that it takes the value 0 at some given interior point. These harmonic conjugates are
bounded uniformly with respect to δ so that they also have subsequential limits. Hence,
by extracting a further subsequential limit, one gets a joint convergence of (Hδ,Hδ∗) to
some pair (h,h∗). As above, Beurling-type estimates imply that h∗ is constant on the outer
boundary, which is to say that h has Neumann boundary conditions on the outer boundary.
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