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We construct weak solutions to the McKean–Vlasov SDE

dX(t) = b

(
X(t),

dLX(t)

dx

(
X(t)

))
dt + σ

(
X(t),

dLX(t)

dt

(
X(t)

))
dW(t)

on R
d for possibly degenerate diffusion matrices σ with X(0) having a given

law, which has a density with respect to Lebesgue measure, dx. Here, LX(t)

denotes the law of X(t). Our approach is to first solve the corresponding non-
linear Fokker–Planck equations and then use the well-known superposition
principle to obtain weak solutions of the above SDE.

1. Introduction. Recently, there has been an increasing interest in distribution depen-
dent stochastic differential equations (DDSDE) of type

dX(t) = b
(
t,X(t),LX(t)

)
dt + σ

(
t,X(t),LX(t)

)
dW(t),

X(0) = ξ0,
(1.1)

on R
d , where W(t), t ≥ 0, is a (Ft )-Brownian motion on a probability space (�,F,P ) with

normal filtration (Ft )t≥0. The coefficients b, σ defined on [0,∞) ×R
d ×P(Rd) are R

d and
d × d-matrix valued, respectively (satisfying conditions to be specified below). Here, P(Rd)

denotes the set of all probability measures on R
d . In (1.1), LX(t) denotes the law of X(t)

under P and ξ0 is an F0-measurable R
d -valued map. Equations as in (1.1) are also referred

to as McKean–Vlasov SDEs. Here, we refer to the classical papers [16, 21, 22, 26, 28] and,
for example, the more recent papers [13, 17–19, 23, 24, 30].

By Itô’s formula, under quite general conditions on the coefficients, the time marginal
laws μt := LX(t), t ≥ 0, with μ0 := law of ξ0, of the solution X(t), t ≥ 0, to (1.1) satisfy a
nonlinear Fokker–Planck equation (FPE). More precisely, for all ϕ ∈ C2

0(Rd) (= all twice
differentiable real-valued functions of compact support) and, for all t ≥ 0,

(1.2)
∫
Rd

ϕ(x)μt (dx) =
∫
Rd

ϕ(x)μ0(dx) +
∫ t

0

∫
Rd

(Lμsϕ)(s, x)μs(dx) ds,

where, for x ∈ R
d , t ≥ 0, aij := (σσT )i,j , 1 ≤ i, j ≤ d ,

(1.3) (Lμt ϕ)(t, x) := 1

2

d∑
i,j=1

aij (t, x,μt)
∂2

∂xi∂xj

ϕ(x) +
d∑

i=1

bi(t, x,μt)
∂

∂xi

ϕ(x),

is the corresponding Kolmogorov operator. For equations of type (1.2), we refer the reader,
for example, to [10]. We note that (1.2) is also shortly written as

(1.4) ∂tμt = L∗
μt

μt with μ0 given.

Hence, if one can solve (1.1), one obtains a solution to (1.2) this way.
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In the special case where the solutions μt , t ≥ 0, to (1.2) have densities with respect to the
Lebesgue measure dx, that is, μt(dx) = u(t, x) dx, t ≥ 0, (1.2) can be rewritten (in the sense
of Schwartz distributions) as (cf. [15])

∂

∂t
u(t, x) = 1

2

d∑
i,j=1

∂2

∂xi∂xj

[
aij

(
t, x, u(t, ·) dx

)
u(t, x)

]

−
d∑

i=1

∂

∂xi

[
bi

(
t, x, u(t, ·) dx

)
u(t, x)

]
,

u(0, x) = u0(x)

(
= dμ0

dx
(x)

)
,

(1.5)

x ∈ R
d , t ≥ 0, or shortly,

(1.6) ∂tu = 1

2
∂i∂j

(
aij (u)u

) − ∂i

(
bi(u)u

)
, u(0, ·) = u0.

In this paper, we want to go in the opposite direction, that is, we first want to solve (1.2)
and, using the obtained μt , t ≥ 0, we shall obtain a (probabilistically) weak solution to (1.1)
with the time marginal laws of X(t), t ≥ 0, given by these μt, t ≥ 0. It turns out that, once
one has solved (1.2), which is in general a hard task, and if one can prove some mild inte-
grability properties for the solutions, a recent version of the so-called superposition principle
by Trevisan in [29] (generalizing earlier work by Figalli [14]), in connection with a classical
result by Stroock and Varadhan (see, e.g., [27]) yields the desired weak solution of (1.1) (see
Section 2 below for details).

We would like to mention at this point that, by the very same result from [29], one can
also easily prove that, if (1.1) has a unique solution in law, then the solution to (1.2) does
not only exist as described above, but is also unique. In this paper, however, we concentrate
on existence of weak solutions to (1.1). We shall do this in the singular case, where the
coefficients in (1.1) are of Nemytskii type, that is, we consider the following situation. bi , aij

depend on μ in the following way:

(1.7) bi(t, x,μ) := b̄i

(
t, x,

dμ

dx
(x)

)
, aij (t, x,μ) := āij

(
t, x,

dμ

dx
(x)

)
,

for t ≥ 0, x ∈ R
d , 1 ≤ i, j ≤ d , where b̄i , āij : [0,∞) ×R

d ×R → R, are measurable func-
tions. Then, under the conditions on b̄i and āij , 1 ≤ i, j ≤ d , specified in Section 3, we
shall construct solutions (μt )t≥0 to (1.1) which are absolutely continuous with respect to the
Lebesgue dx, that is, μt(dx) = u(t, x) dx, t ≥ 0. So, as indicated above, by the superposition
principle, we obtain weak solutions to DDSDEs of type

dX(t) = b̄

(
t,X(t),

dLX(t)

dx

(
X(t)

))
dt

+ σ̄

(
t,X(t),

dLX(t)

dx

(
X(t)

))
dW(t),

X(0) = ξ0,

(1.8)

with (σ̄ σ̄ T )i,j = āij .
In particular, we obtain a probabilistic representation of the solution μt , t ≥ 0, of the

nonlinear FPE (1.2) (or (1.5)) as the time marginal laws of a stochastic process, namely the
solution of the DDSDE (1.8).
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We would like to emphasize that the coefficients as in (1.8), which we consider below,
have no continuity properties with respect to their dependence on the law LX(t) of X(t), such
as those imposed in the existing literature on the subject. Nevertheless, such Nemytskii-type
dependence is very natural and, of course, independent of the dx-version of the Lebesgue
density of LX(t) we choose in (1.8), since we are looking only for solutions of (1.8) in the
class with LX(t) being absolutely continuous with respect to dx. Precise conditions on the
coefficients b̄i , āij are formulated in Section 3 (there, for simplicity, denoted by bi , aij ). Our
main existence results for solutions of the nonlinear FPE (1.2) are Theorems 3.4 and 3.7
below. Our main result on solutions to (1.1) (more precisely, (1.8)) is Theorem 4.1. Subse-
quently, in Remark 4.2 we discuss connections with previous related, but much more special,
results from [2–4, 6–9]. A class of cases where we also have uniqueness in law results for
solutions to (1.8) is described in Remark 4.3.

Notation. Given an open subset O ⊂ R
d , we denote by Lp(O), 1 ≤ p ≤ ∞, the standard

Lebesgue p-integrable functions on O, and by H 1(O), the Sobolev space {u ∈ L2(O);∇u ∈
L2(O)}.

We set H 1
0 (O) = {u ∈ H 1(O); u = 0 on ∂O} and denote by H−1(O) the dual space of

H 1
0 (O). By C∞

0 (O), we denote the space of infinitely differentiable functions with compact
support in O. We set H 1 = H 1(Rd), H−1 = H−1(Rd) and denote by H 1

loc the corresponding
local space.

We also set Lp = Lp(Rd) with the norm denoted | · |p and L
p
loc = L

p
loc(R

d), 1 ≤ p ≤ ∞.
By D′(Rd) and D′((0,∞) × R

d), we denote the space of distributions on R
d and (0,∞) ×

R
d , respectively.
We shall denote either by ∂u

∂xj
or by uxj

, Dju the partial derivative of the function u =
u(x1, . . . , xd) with respect to xj , 1 ≤ j ≤ d . By D2

ij u, i, j = 1, . . . , d , we shall denote the

second-order derivatives ∂2u
∂xi∂xj

.

We denote by C(Rd ×R) and C(Rd) the space of continuous functions on R
d ×R and R,

respectively, and by Cb(R
d ×R) and Cb(R) the corresponding subspaces of continuous and

bounded functions.
By C1(Rd ×R) and C1(R), we denote the spaces of continuously differentiable functions

on R
d ×R and R, respectively. Finally, C1

b is the space of bounded continuously differentiable
functions with bounded derivatives.

If X is a real Banach space and 0 < T < ∞, we denote by Lp(0, T ;X ) the space of
Bochner p-integrable functions u : (0, T ) → X and by C([0, T ];X ) the space of of X -valued
continuous functions on [0, T ].

2. From nonlinear FPEs to DDSDEs: General scheme. Let aij , bi : [0,∞) × R
d ×

P(Rd) →R, 1 ≤ i, j ≤ d , be measurable.

HYPOTHESIS 2.1. There exists a solution (μt )t≥0 to (1.2) such that:

(i) μt ∈ P(Rd) for all t ≥ 0.
(ii) (t, x) �→ aij (t, x,μt) and (t, x) �→ bi(t, x,μt) are measurable and

∫ T

0

∫
Rd

[∣∣aij (t, x,μt)
∣∣ + ∣∣bi(t, x,μt)

∣∣]μt(dx) dt < ∞ ∀T ∈ (0,∞).

(iii) [0,∞)  t �→ μt is weakly continuous.
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Under Hypothesis 2.1, we can apply the superposition principle (see Theorem 2.5 in [29])
for linear FPEs applied to the (linear) Kolmogorov operator

(2.1) Lμt := 1

2

d∑
i,j=1

aij (t, x,μt)
∂2

∂xi∂xj

+
d∑

i=1

bi(t, x,μt)
∂

∂xi

,

with (μt )t≥0 from Hypothesis 2.1 fixed.
More precisely, by Theorem 2.5 in [29], there exists a probability measure P on

C([0, T ];Rd) equipped with its Borel σ -algebra and its natural normal filtration obtained
by the evaluation maps πt , t ∈ [0, T ], defined by

πt(w) := w(t), w ∈ C
([0, T ],Rd)

,

solving the martingale problem (see [29], Definition 2.4) for the time-dependent (linear)
Kolmogorov operator ∂

∂t
+ Lμt (with (μt )t≥0 as above fixed) with time marginal laws

P ◦ π−1
t = μt, t ≥ 0.

Then a standard result (see Theorem 4.5.2 in [27]) implies that there exists a d-dimensional
(Ft )-Brownian motion W(t), t ≥ 0, on a stochastic basis (�,F, (Ft )t≥0,Q) and a con-
tinuous (Ft )-progressively measurable map X : [0,∞) × � → R

d satisfying the following
(DD)SDE:

(2.2) dX(t) = b
(
t,X(t),μt

)
dt + σ

(
t,X(t),μt

)
dW(t),

with the law

Q ◦ X−1 = P,

where σ = ((aij )1≤i,j≤d)
1
2 . In particular, we have, for the marginal laws,

(2.3) LX(t) := Q ◦ X(t)−1 = μt, t ≥ 0.

REMARK 2.2. Because of (2.3), the process X(t), t ≥ 0, is also called a probabilistic
representation of the solution (μt )t≥0 for the nonlinear FPE (1.2).

REMARK 2.3. It is much harder to prove that the solution to SDE (2.2) for fixed (μt )t≥0
is unique in law, provided its initial distribution is μ0, which would, of course, be very desir-
able. For this, one has to prove the uniqueness of the solutions to the linear Fokker–Planck
equation

∂tνt = L∗
μt

νt , ν0 = μ0

for all initial condition of the type μ0 = δx , x ∈ R
d (see [27], Theorem 6.2.3). For a large

class of initial conditions μ0, this was achieved in certain cases where d = 1 (see [6, 9, 25]).

Conclusion. To weakly solve DDSDE (1.1), we have to solve the corresponding nonlin-
ear FPE (1.2) (hard) and then check Hypothesis 2.1 above.

3. Existence of solutions to the nonlinear FPEs. Consider the following time-
independent special case of (1.5) with Nemytskii-type dependence of the coefficients on
u(t, x) dx, t ≥ 0, that is, the nonlinear Fokker–Planck equation

∂u

∂t
−

d∑
i,j=1

D2
ij

(
aij (x, u)u

) + div
(
b(x,u)u

) = 0 in D′((0,∞) ×R
d)

,

u(0, x) = u0(x), x ∈ R
d,

(3.1)

where b(x,u) = {bi(x, u)}di=1.



1906 V. BARBU AND M. RÖCKNER

We shall study this equation under two different sets of hypotheses specified in the follow-
ing:

(H1) aij ∈ C2(Rd × R) ∩ Cb(R
d × R), (aij )x ∈ Cb(R

d × R;Rd), aij = aji , ∀i, j =
1, . . . , d .

(H2)
∑d

i,j=1(aij (x, u) + (aij (x, u))uu)ξiξj ≥ γ |ξ |2, ∀ξ ∈ R
d , x ∈ R

d , u ∈ R, where
γ > 0.

(H3) bi ∈ Cb(R
d ×R) ∩ C1(Rd ×R), bi(x,0) ≡ 0, ∀x ∈ R

d , i = 1, . . . , d .
(H1)′ aij (x, u) ≡ aij (u), aij ∈ C2(R) ∩ Cb(R), aij = aji , ∀i, j = 1, . . . , d .
(H2)′ ∑d

i,j=1(aij (u) + u(aij (u))u)ξiξj ≥ 0, ∀ξ ∈ R
d , u ∈ R.

(H3)′ bi ∈ Cb(R) ∩ C1(Rd), bi(0) = 0, i = 1, . . . , d .

Here, (aij (x, u))u = ∂
∂u

aij (x, u), ∀u ∈ R and (aij )x(x, u) = (∇xaij )(x, u), x = {xi}di=1. The
first set of hypotheses, that is (H1)–(H3), allows for nonlinear nondegenerate FPEs with
x-dependent coefficients, while the second set (H1)′–(H3)′ allows for degenerate nonlinear
FPEs, however, with x-independent coefficients.

Nonlinear FPEs of the form (3.1) describe in the mean field theory the dynamics of a set
of interacting particles or many body systems. The function u = u(t, x) is associated with
the probability to find a certain subsystem or particle at time t in the state x. Equation (3.1)
arises also as a closed loop system corresponding to a velocity field system

∂v

∂t
= F(x,u)v =

d∑
i,j=1

D2
ij

(
aij (x, u)v

) − div
(
b(x,u)v

)

with coefficients depending on the probability density u. If v = u, one may view this system
as a statistical feedback (see [15]).

The first part of this section is concerned with the existence of a weak (mild) solution
to equation (3.1) in the space L1(Rd). This result is obtained via the Crandall and Liggett
existence theorem for the nonlinear Cauchy problem

du

dt
(t) + Au(t) = 0, t ≥ 0,

u(0) = u0,

(3.2)

in a Banach space X .
An operator A : D(A) ⊂ X → X (possibly multivalued) is said to be m-accretive if, for

each λ > 0, the range R(I + λA) of the operator I + λA is all of X and

(3.3)
∥∥(I + λA)−1u − (I + λA)−1v

∥∥
X ≤ ‖u − v‖X ∀u, v ∈ X , λ > 0.

The continuous function u : [0,∞) → X is said to be a mild solution to (3.2) if, for each
0 < T < ∞,

u(t) = lim
h→0

uh(t) strongly in X , uniformly in t ∈ [0, T ](3.4)

where uh : [0, T ] → X is defined by

uh(t) = ui
h, t ∈ [

ih, (i + 1)h
)
, i = 0,1, . . . ,N =

[
T

h

]
.(3.5)

ui
h + hAui

h = ui−1
h , i = 1, . . . ,N; u0

h = u0.(3.6)

By the Crandall and Liggett theorem (see, e.g., [1], p. 99), if A is m-accretive, then for each
u0 ∈ D(A) (the closure of D(A) in X ) there is a unique mild solution u ∈ C([0,∞);X )

to (3.2). Moreover, the map u0 → u(t) is a continuous semigroup of contractions on D(A)

equipped with ‖ · ‖X .



NONLINEAR FOKKER–PLANCK EQUATIONS 1907

The first main existence result of this section, Theorem 3.4, is obtained by writing equation
(3.1) in the form (3.2) with a suitable m-accretive operator A in the space X = L1(Rd).

It should be said that the space L1(Rd) is not only appropriate to represent equation (3.1)
in the form (3.2), but it is the unique Lp(Rd)-space in which the operator defined by equation
(3.1) is m-accretive, that is, which gives the parabolic character of this equation. Only in the
particular case of porous media equations (i.e., (3.1) with b ≡ 0), an alternative is the Sobolev
space H−1(Rd), but this does not work for the more general case (3.1). On the other hand,
taking into account the significance of the solution u as probability density, the space L1 is
very convenient for the treatment of equation (1.1).

Our work [3] contains the following special case of (3.1):

(3.7)
∂u

∂t
− �β(u) + div

(
b(u)u

) = 0 in (0, T ) ×R
d,

where β : R → 2R is a maximal monotone (multivalued) function with sup{|s| : s ∈ β(r)} ≤
C|r|m, r ∈ R, for some C,m ∈ [0,∞). (See also [2].) In the special case b ≡ 0 and d = 1,
related results were obtained in [6, 9]. However, the present case is much more difficult and
the arguments of [3] are not applicable here.

3.1. Existence for FPEs in the nondegenerate, x-dependent case. Define in the space
X = L1 the operator A : D(A) ⊂ L1 → L1,

Au = −
d∑

i,j=1

D2
ij

(
aij (x, u)u

) + div
(
b(x,u)u

) ∀u ∈ D(A),(3.8)

D(A) =
{
u ∈ L1;−

d∑
i,j=1

D2
ij

(
aij (x, u)u

) + div
(
b(x,u)u

) ∈ L1

}
,(3.9)

where D2
ij and div are taken in the sense of Schwartz distributions on R

d , that is, in D′(Rd).

We note that, since by (H1), (H3), aij (x, u)u, bi(x, u)u ∈ L1, ∀i, j = 1, . . . , d , ∀u ∈ L1, Au

is well defined in D′(Rd). Moreover, since C∞
0 (Rd) ⊂ D(A), it follows that D(A) is dense

in L1.
Since we are going to represent equation (3.1) as (3.2) with A defined by (3.8)–(3.9), we

must prove that A is m-accretive, that is, R(I + λA) = L1 and (3.3) holds in X = L1 for all
λ > 0. For this purpose, we shall prove the following result.

PROPOSITION 3.1. Let (H1)–(H3) hold. Then, for each f ∈ L1 and λ > 0, the equation

(3.10) u − λ

d∑
i,j=1

D2
ij

(
aij (x, u)u

) + λdiv
(
b(x,u)u

) = f in D′(
R

d)

has a unique solution u = u(λ,f ) ∈ D(A).
Moreover, we have, for all λ > 0,∣∣u(λ,f1) − u(λ,f2)

∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L1,(3.11)

(I + λA)−1f ≥ 0, a.e. in R
d, if f ∈ L1, f ≥ 0, a.e. in R

d,(3.12) ∫
Rd

(I + λA)−1f (x) dx =
∫
Rd

f (x) dx ∀f ∈ L1, λ > 0.(3.13)

PROOF. In the following, we shall simply write

aij (u) = aij (x, u), x ∈ R
d, u ∈R, i, j = 1, . . . , d.
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We set

a∗
ij (x, u) ≡ aij (x,u)u, x ∈ R

d, u ∈ R ∀i, j = 1, . . . , d,

b(x,u) = {
bi(x, u)

}d
i=1, b∗(x, u) = b(x,u)u, x ∈ R

d, u ∈ R.

We note that, by (H2), we have

(3.14)
d∑

i,j=1

(
a∗
ij

)
u(x,u)ξiξj ≥ γ |ξ |2 ∀ξ ∈ R

d, x ∈ R
d, u ∈ R,

where γ > 0. We shall first prove Proposition 3.1 under the additional hypotheses

(K) (a∗
ij )u ∈ Cb(R

d ×R), bi ∈ C1
b(Rd ×R), and

∣∣(a∗
ij

)
u(x,u) − (

a∗
ij

)
u(x, ū)

∣∣ + ∣∣∇x

(
a∗
ij

)
(x, u) − ∇x

(
a∗
ij

)
(x, ū)

∣∣
d

≤ C|u − ū| ∀u, ū ∈ R, x ∈ R
d,

(3.15)

for i, j = 1, . . . , d .
We rewrite (3.10) as

(3.10)′ u − λ

d∑
i,j=1

D2
ij

(
a∗
ij (u)

) + λdiv
(
b∗(x, u)

) = f in D′(
R

d)
.

Equivalently, if Du ∈ L1
loc, then

(3.10)′′
u − λ

d∑
i,j=1

Di

((
a∗
ij

)
u(u)Dju + (

a∗
ij

)
xj

(x, u)u
) + λdiv

(
b∗(x, u)

) = f

in D′(
R

d)
.

We also set

b∞ = sup
{∣∣bi(x, u)

∣∣; (x, u) ∈ R
d ×R, i = 1, . . . , d

}
,

c∞ = sup
{∣∣(aij )xj

(x, u)
∣∣; (x, u) ∈ R

d ×R, i, j = 1, . . . , d
}
.

(By virtue of (K), the formulation (3.10)′′ of (3.10)′ makes sense only if Dju ∈ L1
loc.)

For each N > 0, we set BN = {ξ ∈R
d; |ξ | < N}. We have the following.

LEMMA 3.2. Let f ∈ L2 and 0 < λ < λ0 = γ (b2∞ + c2∞)−1. Then, for each N there is at
least one solution uN ∈ H 1

0 (BN) to the equation

u − λ

d∑
i,j=1

D2
ij

(
a∗
ij (x, u)

) + λdiv
(
b∗(x, u)

) = f in BN,

u = 0 on ∂BN,

(3.16)

which satisfies the estimate

(3.17) ‖uN‖2
L2(BN)

+ λγ ‖∇uN‖2
L2(BN)

≤ C‖f ‖2
L2(BN)

,

where C is independent of N and λ.
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PROOF. For ρ > 0, we set Mρ = {v ∈ L2(BN); ‖v‖L2(BN) ≤ ρ} and consider the opera-
tor F : Mρ → L2(BN) defined by F(v) = u ∈ H 1

0 (BN), where u is the solution to the linear
elliptic problem

u − λ

d∑
i,j=1

Di

((
a∗
ij

)
v(x, v)Dju + (aij )xj

(x, v)u
) + λdiv

(
b(x, v)u

)

= f in D′(BN),

u = 0 on ∂BN.

(3.18)

By (3.14) and (H2), it follows via the Lax–Milgram lemma that, for each v ∈ Mρ and λ ∈
(0, λ0), problem (3.18) has a unique solution u = F(v). Moreover, by (3.18) and (H1), we
see that

‖u‖2
L2(BN)

+ γ λ‖∇u‖2
L2(BN)

≤ λb∞‖∇u‖L2(BN)‖u‖L2(BN) + c∞λ‖u‖L2(BN)‖∇u‖L2(BN)

+ ‖f ‖L2(BN)‖u‖L2(BN)

≤ λb∞‖∇u‖L2(BN)ρ + ρ‖f ‖L2(BN) + c∞λρ‖∇u‖L2(BN).

(3.19)

Hence, for λ ∈ (0, λ0) and ρ suitably chosen, independent of N , F(Mρ)⊂Mρ .
Indeed, if vn → v in L2(BN) and un = Fvn, we have b(x, vn) → b(x, v),(

a∗
ij

)
v(x, vn) → (

a∗
ij

)
v(x, v), (aij )xj

(x, vn) → (aij )xj
(x, v)

strongly in L2(BN). Along a subsequence we have, by (3.19),

un → u weakly in H 1(BN), strongly in L2(BN).

Now, letting n → ∞ in equation (3.18), where v = vn and u = un, that is,
∫
BN

(
unψ + λ

d∑
i,j=1

(
a∗
ij

)
v(x, vn)Djun + (aij )xj

(x, vn)un

)
Diψ dx

− λ

∫
BN

unb
∗(x, vn) · ∇ψ dx =

∫
BN

f ψ dx ∀ψ ∈ C∞
0 (BN),

we see that u = Fv and, therefore, F is continuous on L2(BN).
Moreover, since the Sobolev space H 1(BN) is compactly embedded in L2(BN), by (3.19)

we see that F(Mρ) is relatively compact in L2(BN). Then, by the Schauder theorem, F has
a fixed point uN ∈ Mρ which, clearly, is a solution to (3.16). Also, by (3.19), it follows that
estimate (3.17) holds. �

LEMMA 3.3. Let f ∈ L2(Rd) and λ < λ0. Then equation (3.10) has at least one solution
u ∈ H 1(Rd) which satisfies the estimate

(3.20) |u|22 + γ λ|∇u|22 ≤ C
(|f |22 + 1

)
.

PROOF. Consider a sequence {N} → ∞ and uN ∈ H 1
0 (BN) a solution to (3.16) given by

Lemma 3.2. By (3.17), we have

‖uN‖H 1
0 (BN) ≤ C ∀N,

and so, on a subsequence, again denoted {N}, we have

(3.21) uN → u weakly in H 1(
R

d)
, strongly in L2

loc
(
R

d)
.
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Then, letting N → ∞ in the equation

uN − λ

d∑
i,j=1

Di

((
a∗
ij

)
u(uN

)
DjuN + (aij )xj

(x, uN)uN

)

+ λdiv
(
b(x,uN)uN

) = f in BN,

or, more precisely, in its weak form

∫
Rd

uNψ dx + λ

d∑
i,j=1

∫
Rd

(
a∗
ij (uN)DjuN + (aij )xj

(x, uN)uN

)
Diψ dx

− λ

d∑
i=1

∫
Rd

b(x,uN)uN · ∇ψ dx =
∫
Rd

f ψ dx ∀ψ ∈ C∞
0

(
R

d)
,

we infer by (H1), (H3) and (3.21) that u ∈ H 1(Rd) is a solution to (3.10). Also, estimate
(3.20) follows by estimate (3.17). This completes the proof of Lemma 3.3. �

Now, we come back to the proof of Proposition 3.1. We prove first that, for each f ∈
L2 ∩ L1 and λ ∈ (0, λ0), the solution u = u(λ,f ) ∈ H 1 to equation (3.10) is unique and we
have

(3.22)
∣∣u(λ,f1) − u(λ,f2)

∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L2 ∩ L1.

Here is the argument. We set ui = u(λ,fi), i = 1,2, and f = f1 − f2, u = u1 − u2. Then we
have

u − λ

d∑
i,j=1

D2
ij

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)

+ λdiv
(
b∗(x, u1) − b∗(x, u2)

) = f in D′(
R

d)
.

(3.23)

More precisely, since ui ∈ H 1(Rd), equation (3.23) is taken in its weak form

∫
Rd

(
uψ + λ

d∑
i,j=1

Di

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)
Djψ

− λ
(
b∗(x, u1) − b∗(x, u2)

) · ∇ψ

)
dx =

∫
Rd

f ψ dx ∀ψ ∈ H 1(
R

d)
.

(3.24)

In order to fix the idea of the proof, we invoke first a heuristic argument. Namely, if we
multiply (3.23) by η ∈ L∞(O), η(x) ∈ sign(u(x)), a.e. x ∈ R

d , and take into account that, by
the monotonicity of the functions u → a∗

ij x, u),

η(x) ∈ sign
(
a∗
ij

(
x,u1(x)

) − a∗
ij

(
x,u2(x)

))
, a.e. x ∈R

d,

we get

|u|1 + λ

∫
Rd

d∑
i,j=1

Di

(
a∗
ij

(
x,u1(x)

) − a∗
ij

(
x,u2(x)

))
Djη(x) dx

+ λ

∫
Rd

div
(
b∗(x, u1) − b∗(x, u2)

)
η dx =

∫
Rd

f η dx.
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Taking into account that, by the monotonicity of u → a∗
ij (x, u), we have (formally)

Di

(
a∗
ij

(
x,u1(x)

) − a∗
ij

(
x,u2(x)

))
Djη(x) ≥ 0 in R

d,

while((
a∗
ij

)
xi

(x, u1) − (
a∗
ij

)
xi

(x, u2)
)
Djη(x) = 0,∫

Rd
div

(
b∗(x, u1) − b∗(x, u2)

)
η dx =

∫
[|u|=0]

(
b∗(x, u1) − b∗(x, u2)

) · ∇η dx

= 0,

we get (3.22). This formal argument can be made rigorous by using a smooth approximation
Xδ of the signum graph. Namely, let Xδ ∈ Lip(R) be the function

Xδ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 for r ≥ δ,
r

δ
for |r| < δ,

−1 for r < −δ,

where δ > 0. We note that, since u ∈ L2, it follows Xδ(u) ∈ L2 and

Gε = −Xδ(u)

(
d∑

i,j=1

DiDj

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)

− div
(
b∗(x, u1) − b∗(x, u2)

)) ∈ L1,

and, therefore,
∫
Rd

Gε dx =
∫
Rd

(
d∑

i,j=1

Dj

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)
DiXδ(u)

− (
b∗(x, u1) − b∗(x, u2)

) · ∇Xδ(u)

)
dx.

Since b∗(x, ui) ∈ L2 and since, by (K), it follows that a∗
ij (x, ui) ∈ H 1(Rd), i = 1,2, taking

in (3.24) ψ = Xδ(u) yields∫
[|u(x)|≥δ]

∣∣u(x)
∣∣dx + 1

δ

∫
[|u(x)|≤δ]

∣∣u(x)
∣∣dx

+ λ

d∑
i,j=1

∫
Rd

Dj

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)
Di

(
Xδ(u)

)
dx

= λ

∫
Rd

(
b∗(x, u1) − b∗(x, u2)

) · ∇(
Xδ(u)

)
dx +

∫
Rd

fXδ(u) dx.

(3.25)

We set

I 1
δ =

∫
Rd

(
b∗(x, u1) − b∗(x, u2)

) · ∇(
Xδ(u)

)
dx

=
∫
Rd

(
b∗(x, u1) − b∗(x, u2)

) · ∇uX ′
δ(u) dx

= 1

δ

∫
[|u|≤δ]

(
b∗(x, u1) − b∗(x, u2)

) · ∇udx.
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Since, by hypothesis (K), |b∗(x, u1)−b∗(x, u2)| ≤ C|u|(|u1|+|u2|), a.e. on R
d , and ui ∈ L2,

it follows that

lim
δ→0

1

δ

∫
[|u|≤δ]

∣∣(b∗(x, u1) − b∗(x, u2)
) · ∇u

∣∣dx

≤ C lim
δ→0

(∫
[|u|≤δ]

|∇u|2 dx

) 1
2 = 0,

because u ∈ H 1(Rd) and ∇u = 0 on [x;u(x) = 0]. This yields

(3.26) lim
δ→0

I 1
δ = 0.

On the other hand, taking into account that ui, a
∗
ij (ui) ∈ H 1(Rd), for i = 1,2, we have

I 2
δ =

∫
Rd

d∑
i,j=1

Dj

(
a∗
ij (x, u1) − a∗

ij (x, u2)
)
Di

(
Xδ(u)

)
dx

= 1

δ

∫
Eδ

d∑
i,j=1

((
a∗
ij

)
u(x,u1)Dju1 − (

a∗
ij

)
u(u2)Dju2

+ (
a∗
ij

)
xj

(x, u1) − (
a∗
ij

)
xj

(x, u1)
)
Diudx

= 1

δ

∫
Eδ

d∑
i,j=1

(
a∗
ij

)
u(x,u1)DjuDiudx

+ 1

δ

∫
Eδ

d∑
i,j=1

((
a∗
ij

)
u(x,u1) − (

a∗
ij

)
u(x,u2)

)
Dju2Diudx

+ 1

δ

∫
Eδ

d∑
i,j=1

((
a∗
ij

)
xj

(x, u1) − (
a∗
ij

)
xj

(x, u2)
)
Diudx

= Kδ
1 + Kδ

2 + Kδ
3 .

(3.27)

Here, Eδ = {x ∈ R
d; |u(x)| ≤ δ}. By (H2), it follows that Kδ

1 ≥ 0, while by (3.15) we have∣∣(a∗
ij

)
u(x,u1) − (

a∗
ij

)
u(x,u2)

∣∣ + ∣∣(a∗
ij

)
xj

(x, u1) − (
a∗
ij

)
xj

(x, u2)
∣∣ ≤ C|u|.

Taking into account that ui ∈ H 1(Rd), i = 1,2, and that

(3.28) lim
δ→0

∫
[|u|≤δ]

∣∣∇u(x)
∣∣2 dx = 0,

we infer that limδ→0 Kδ
i = 0, i = 2,3, and so, by (3.27) it follows that

lim
δ→0

inf I 2
δ ≥ 0.

This yields

|u|1 ≤ |f |1 ∀λ ∈ (0, λ0).

To resume, we have shown so far that under assumptions (H1)–(H3) and (K), for each
f ∈ L2 ∩L1, equation (3.10) has, for λ ∈ (0, λ0), a unique solution u(λ,f ) ∈ H 1(Rd) which
satisfies (3.20) and (3.22).
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Now, we assume that aij , bi satisfy (H1)–(H3) only and consider, for ε > 0, the functions

(
a∗
ij

)
ε(x, u) =

∫
R

a∗
ij (x − εy,u − εv)ρ(y, v) dv dy, i, j = 1, . . . , d,(3.29)

bε
i (x, u) =

∫
R

bi(x − εy,u − εv)ρ(y, v) dv dy, i, j = 1, . . . , d,(3.30)

where ρ ∈ C∞
0 (Rd × R),

∫
Rd×R

ρ(y, v) dy dv = 1, ρ ≥ 0, is a standard mollifier. Clearly,
(a∗

ij )ε , bε
i satisfy condition (K). We set bε = {bε

i }di=1. Then, as shown above, the equation

(3.31) uε − λ

d∑
i,j=1

D2
ij

(
a∗
ij

)
ε(x, uε) + λdiv

(
bε(x,uε)uε

) = f

has, for each λ ∈ (0, λ0) and f ∈ L2 ∩ L1, a unique solution uε = uε(λ,f ) ∈ H 1(Rd) satis-
fying (3.20) and (3.22). Hence∣∣uε(λ,f1) − uε(λ,f2)

∣∣ ≤ |f1 − f2|1 ∀ε > 0, f1, f2 ∈ L2 ∩ L1,(3.32) ∣∣uε(λ,f )
∣∣2
2 + γ λ

∣∣∇uε(λ,f )
∣∣2
2 ≤ C

(|f |22 + 1
) ∀ε > 0, f ∈ L2.(3.33)

(We note that, by Lemma 3.2, λ0 is independent of ε, because

sup
ε

{∣∣(aε
ij

)
xj

∣∣∞ + |bi |∞; i, j = 1, . . . , d
}
< ∞.)

Now, for ε → 0, it follows by the compactness of H 1(Rd) in L2
loc that along a subsequence,

again denoted ε, we have

uε(λ,f ) −→ u strongly in L2
loc

and so, by (3.29), (3.30), we have(
a∗
ij

)
ε

(
x,uε(x)

) −→ a∗
ij

(
x,u(x)

)
, a.e. x ∈R

d,

bε
i

(
x,uε(x)

) −→ bi

(
x,u(x)

)
, a.e. x ∈ R

d,

as ε → 0. Hence, for ε → 0,

D2
ij

((
a∗
ij

)
ε(x, uε)

) −→ D2
ij

(
a∗
ij (x, u)

)
in D′(

R
d)

,

div
(
bε(x,uε)uε

) −→ div
(
b(x,u)u

)
in D′(

R
d)

and so u = u(λ,f ) is a solution to (3.10). Moreover, by (3.32) it follows that

(3.34)
∣∣u(λ,f1) − u(λ,f2)

∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L2.

Now, we fix f ∈ L1 and consider a sequence {fn} ⊂ L2 such that fn → f in L1 and consider
the corresponding solution un = u(λ,fn) to (3.10). By (3.34), we see that

|un − um|1 ≤ |fn − fm|1 ∀n,m ∈N.

Hence, there is u∗ = limn→∞ un in L1. Moreover, by (H1), we see that, for n → ∞,

a∗
ij (un) → aij

(
u∗)

, a.e. in R
d

and, since aij ∈ Cb(R
d ×R), we have

D2
ij a

∗
ij (un) → D2

ij a
∗
ij

(
u∗)

in D′(
R

d)
,

for all i, j = 1,2, . . . , d . Similarly, by (H3) we see that

div
(
b(x,un)un

) → div
(
b
(
x,u∗)

u∗)
in D′(

R
d)

.
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We have, therefore,

d∑
i,j=1

D2
ij a

∗
ij (un) − div

(
b(x,un)un

)

→
d∑

i,j=1

D2
ij a

∗
ij

(
u∗) − div

(
b
(
x,u∗)

u∗)
strongly in L1.

(3.35)

Then, letting n → ∞ in equation (3.10), where f = fn, u = un, we see that u∗ = u(λ,f ) is
the solution to (3.10). Moreover, by (3.34), the inequality (3.11) follows for all λ ∈ (0, λ0].
This means that∣∣(I + λA)−1f1 − (I + λA)−1∣∣

1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L1,

for all λ ∈ [0, λ0). By Proposition 3.1 in [1], this implies that the above inequality holds for
all λ > 0. Hence, (3.11) follows for all λ > 0, as claimed.

As regards (3.13), it first follows by equation (3.10), where f ∈ L2 and u ∈ H 1(Rd), by
integrating over Rd . Then, by density, it extends to all of f ∈ L1. Finally, (3.12) for f ∈ L2,
f ≥ 0, follows by multiplying (3.10) with sign(u−) (or, more exactly, by Xδ(u

−) and letting
δ → 0) and integrating over Rd . This completes the proof of Proposition 3.1 under hypotheses
(H1)–(H3). �

Now, we are ready to formulate the existence theorem for equation (3.1). As mentioned
earlier, we shall represent equation (3.1) as the evolution equation (3.2) in X = L1, where the
operator A is defined by (3.8)–(3.9). By a weak solution to equation (3.1), we mean a mild
solution to equation (3.2), where X = L1 and A is the operator defined by (3.8), (3.9).

We have the following.

THEOREM 3.4. Assume that hypotheses (H1)–(H3) hold. Then, for each u0 ∈ L1(Rd),
there is a unique weak solution u = u(·, u0) ∈ C([0,∞);L1) to equation (3.1). Moreover, u

has the following properties:∣∣u(
t, u1

0
) − u

(
t, u2

0
)∣∣

1 ≤ ∣∣u1
0 − u2

0
∣∣
1 ∀u1

0, u
2
0 ∈ L1, t ≥ 0,(3.36)

u ≥ 0 a.e. in (0,∞) ×R
d if u0 ≥ 0 a.e. in R

d,(3.37) ∫
Rd

u(t, x) dx =
∫
Rd

u0(x) dx ∀u0 ∈ L1, t ≥ 0,(3.38)

and u is a solution to equation (3.1) in the sense of Schwartz distributions on (0,∞)×R
d

(see (1.2)), that is,∫ ∞
0

∫
Rd

(
u(t, x)ϕt (t, x) +

d∑
i,j=1

aij

(
x,u(t, x)

)
u(t, x)D2

ij ϕ(t, x)

+ b(x,u) · ∇xϕ(t, x)u(t, x)

)
dt dx = 0 ∀ϕ ∈ C∞

0
(
(0,∞) ×R

d)
.

(3.39)

PROOF. As mentioned above, the existence of a mild solution u for (3.2), which by our
definition is a weak solution to (3.1), follows by the Crandall and Liggett theorem by virtue
of Proposition 3.1, which implies the m-accretivity of the operator A defined by (3.8)–(3.9).
The solution can be equivalently expressed by the exponential formula

(3.40) u(t, u0) = lim
n→∞

(
I + t

n
A

)−n

u0 ∀t ≥ 0, u0 ∈ D(A) = L1.
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Then, by (3.11)–(3.13), we get for u = u(t, u0) the corresponding properties (3.36)–(3.38)
and this completes the proof. �

In particular, it follows that, if u0 is a probability density, that is, u0 dx ∈ P(Rd), then so is
u(t, u0) for all t ≥ 0. Note also that t → u(t, u0) is a continuous semigroup of nonexpansive
operators in the space L1. As regards (3.39), it follows by letting h → 0 in the equation

∫ ∞
0

∫
Rd

(
uh(t, x)

(
ϕ(t + h,x) − ϕ(t, x)

) +
d∑

i,j=1

aij

(
x,uh(t, x)

)
uh(t, x)

× D2
ij ϕ(t, x) + b

(
x,uh(t, x)

) · ∇xϕ(t, x)uh(t, x)

)
dt dx = 0,

∀ϕ ∈ C∞
0

(
(0,∞) ×R

d)
.

REMARK 3.5. Assumptions aij ∈ C2(Rd ×R) and bi ∈ C1(Rd ×R) in (H1)–(H3) were
necessary for the density of D(A) in L1. Otherwise, it suffices to take only aij ∈ C1(Rd ×
R). In the special case aij ≡ βδij , the density of D(A) follows, however, under the weaker
condition β ∈ C1(Rd) (see [4]).

3.2. Existence for degenerate FPEs. We consider here the equation

ut −
d∑

i,j=1

D2
ij

(
aij (u)u

) +
d∑

i=1

Di

(
bi(u)u

) = 0 in D′((0,∞) ×R
d)

,

u(0, x) = u0(x), x ∈ R
d,

(3.41)

where aij and bi satisfy hypotheses (H1)′–(H3)′.
Consider the operator A1 : D(A1) ⊂ L1 → L1 defined by

A1u = −
d∑

i,j=1

D2
ij

(
aij (u)u

) +
d∑

i=1

Di

(
bi(u)u

)
in D′(

R
d)

,

D(A1) =
{
u ∈ L1;−

d∑
i,j=1

D2
ij

(
aij (u)u

) +
d∑

i=1

Di

(
bi(u)u

) ∈ L1

}
.

(3.42)

We have the following.

LEMMA 3.6. Assume that (H1)′–(H3)′ hold. Then the operator A1 is m-accretive in L1.

PROOF. One should prove that, for each λ ∈ (0, λ0) and f ∈ L1, the equation

(3.43) u − λ

d∑
i,j=1

D2
ij

(
aij (u)u

) + λ

d∑
i=1

Di

(
bi(u)u

) = f in D′(
R

d)

has a unique solution u = u(λ,f ) which satisfies the estimate

(3.44)
∣∣u(λ,f1) − u(λ,f2)

∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L1.

We set, for each ε > 0,

(3.45) aε
ij (r) = aij (r) + εδij , i, j = 1, . . . , d, r ∈R,
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where δij is the Kronecker symbol. Then we approximate (3.43) by

(3.46) u − λ

d∑
i,j=1

D2
ij

(
aε
ij (u)u

) + λ

d∑
i=1

Di

(
bi(u)u

) = f in D′(
R

d)
.

Equivalently,

(3.47) u + λAε
1(u) = f,

where

Aε
1(u) = −

d∑
i,j=1

D2
ij

(
aε
ij (u)u

) +
d∑

i=1

Di

(
bi(u)u

) ∀u ∈ D
(
Aε

1
)
,

D
(
Aε

1
) =

{
u ∈ L1;−

d∑
i,j=1

D2
ij

(
aε
ij (u)u

) +
d∑

i=1

Di

(
bi(u)u

) ∈ L1

}
.

We shall prove that, for each f ∈ L1, there is a solution u = uε(λ,f ) satisfying (3.44) for
0 < λ < λ0.

Since aε
ij and bi satisfy, for each ε > 0, hypotheses (H1)–(H3), Proposition 3.1 implies the

existence of a solution uε = uε(λ,f ) to (3.46) in L1(Rd) for each f ∈ L2 if 0 < λ ≤ λε
0 = C

ε
,

with C independent of ε.
Moreover, one has

(3.48)
∣∣uε(λ,f1) − uε(λ,f2)

∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L2, λ ∈ (

0, λε
0
)
.

Then, by density, uε(λ,f ) extends as solution to (3.46) for all f ∈ L1.
Note also that, by (3.11)–(3.13), we have, for all ε > 0 and λ ∈ (0, λε

0),∫
Rd

(
I + λAε

1
)−1

f dx =
∫
Rd

f dx ∀f ∈ L∞,(3.49)

(
I + λAε

1
)−1

f ≥ 0 , a.e. in R
d if f ≥ 0, a.e. in R

d,(3.50)

while (3.48) yields

(3.51)
∣∣I + λAε

1)
−1f1 − (

I + λAε
1
)−1

f2
∣∣
1 ≤ |f1 − f2|1 ∀f1, f2 ∈ L1, ε > 0.

Though (3.49)–(3.51) were proved only for 0 < λ ≤ λε
0, it can be shown, however, as

mentioned earlier, that (I + λAε
1)

−1 extends to all λ > 0 by a well known argument based on
the resolvent equation

(
I + λAε

1
)−1

f = (
I + λ0A

ε
1
)−1

(
λε

0

λ
f +

(
1 − λε

0

λ

)(
I + λAε

1
)−1

f

)
, λ > λε

0.

(See [1], Proposition 3.3.)
Now, we are going to let ε → 0 in (3.46). We set, for f ∈ L1 and the solution uε to (3.46),

uε
h(x) = uε(x + h) − uε(x), fh(x) = f (x + h) − f (x), x,h ∈ R

d .

Since aε
ij and bε

i are independent of x, we see that x → uε(x +h) is the solution to (3.46) for
f (x) = f (x + h). Then, by (3.51), it follows that∣∣uε

h

∣∣
1 ≤ |fh|1 ∀h ∈R

d, ε > 0.

By the Kolmogorov compactness theorem (see, e.g., [11], p. 111), it follows that {uε} is
compact in L1

loc(R
d) and so, along a subsequence,

uε → u strongly in L1
loc

(
R

d)
for ε → 0.
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Since |uε|1 ≤ C, ∀ε > 0, it follows via Fatou’s lemma that u ∈ L1. Letting ε → 0 in (3.46),
where u = uε , and taking into account that

aε
ij (uε)uε → aij (u)u, bi(uε)uε → bi(u)u, a.e. in R

d,

while by (H1)′, (H3)′, ∣∣aε
ij (uε)

∣∣ + ∣∣bij (uε)
∣∣ ≤ C, a.e. in R

d,

where C is independent of ε, we see that u is a solution to (3.46) and so u = (I + λA1)
−1f .

Moreover, letting ε → 0 in (3.49)–(3.51), we see that∣∣(I + λA1)
−1f1 − (I + λA1)

−1f2
∣∣
1 ≤ |f1 − f2|1 ∀λ > 0, f1, f2 ∈ L1,(3.52) ∫

Rd
(I + λA1)

−1f dx =
∫
Rd

f dx ∀f ∈ L1, λ > 0,(3.53)

(I + λA1)
−1f ≥ 0, a.e. in R

d if f ≥ 0, a.e. in R
d .(3.54)

Then, by the Crandall and Liggett existence theorem, for each u0 ∈ D(A1) = L1, the differ-
ential equation

du

dt
+ A1u = 0, t > 0,

u(0) = u0,

(3.55)

has a unique mild solution u ∈ C([0,∞);L1) in the sense of (3.4)–(3.6). �

As in the previous case, this mild solution is, in fact, a solution to the Fokker–Planck
equation (3.41) in the sense of Schwartz distributions(cf. (3.39)). We have, therefore, the
following existence result.

THEOREM 3.7. Under hypotheses (H1)′–(H3)′, for each u0 ∈ L1, there is a unique weak
solution u = u(t, u0) ∈ C([0,∞);L1) to equation (3.41). Moreover, this solution satisfies
(3.36)–(3.38) and is a solution to (3.41) in the sense of Schwartz distributions on (0,∞)×R

d ,
that is, in the sense of (3.39) or (1.2).

REMARK 3.8. In particular, Theorems 3.4 and 3.7 imply the existence of a solution
u in the sense of Schwartz distributions on (0,∞) × R

d for equation (3.1). Moreover,
u : [0,∞) → L1 is continuous. In some special cases, these two properties are sufficient
to characterize such solutions to (3.1). In fact, this is the case if (see [12]) b ≡ 0 and

aij (x, u)u = δijβ(u)u ∀u ∈R, i, j = 1, . . . , d,

where β is a continuous monotonically nondecreasing function because, in this case, one
has the uniqueness of distributional solutions u ∈ L∞((0,∞)×R

d)∩C([0,∞);L1). Such a
result remains, however, open for general Fokker–Planck equations as in (3.1). (See, however,
[5] for the uniqueness of distributional solutions in a special case of (3.1).)

REMARK 3.9. In the special case aij = δij , the weak solution u given by Theorem 3.7
is an entropic solution in sense of S. Kruzkov [20] for equation (3.1). In the present case, the
solution u given by Theorem 3.7 is a mild solution to (3.1) defined, as in the previous case,
by the finite difference scheme (3.4)–(3.6). It is, of course, a continuous in t distributional so-
lution to (3.1), but we do not know if it is unique within this class. In fact, we should mention
that the solutions u given by Theorems 3.4 and 3.7 are unique in the class of mild solutions
generated by the operator A and not in the class of distributional or entropic solutions in the
sense of Kruzkov.
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4. Solution of the McKean–Vlasov SDE. Consider the following McKean–Vlasov
SDE for T ∈ (0,∞):

dX(t) = b

(
X(t),

dLX(t)

dx

(
X(t)

))
dt

+ √
2σ

(
X(t),

dLX(t)

dx

(
X(t)

))
dW(t), 0 ≤ t ≤ T ,(4.1)

X(0) = ξ0,

on R
d , where W(t), t ≥ 0, is an (Ft )t≥0-Brownian motion on a probability space (�,F,P )

with normal filtration (Ft )t≥0 and ξ0 : � →R
d is F0-measurable such that

P ◦ ξ−1
0 (dx) = u0(x) dx.

Furthermore, b = (b1, . . . , bd) :Rd ×R →R
d and σ : Rd ×R → L(Rd;Rd) are measurable.

Let aij := 2(σσT )ij , 1 ≤ i, j ≤ d . Then, as an immediate consequence of Section 2 and
Theorems 3.4 and 3.7, respectively, we obtain the following.

THEOREM 4.1. Suppose that aij , bi , 1 ≤ i, j ≤ d , satisfy either (H1)–(H3) or (H1)′–
(H3)′. Then there exists a (in the probabilistic sense) weak solution to DDSDE (4.1). Fur-
thermore, for the solution u in Theorems 3.4 and 3.7, respectively, with u(0, ·) = u0, we have
the “probabilistic representation”

u(t, x) dx = P ◦ X(t)−1(dx), t ≥ 0.

REMARK 4.2.

(i) In the case where in (4.1) we have aij (x, u) = δijβ(u), 1 ≤ i, j ≤ d , and β : R → 2R

is maximal monotone with sup{|s| : s ∈ β(r)} ≤ C|r|m, r ∈ R, for some C,m ∈ [0,∞) and b

satisfies (H3)′, then the above theorem was already proved in [3]. The special case where, in
addition, b ≡ 0, d = 1 and m = 4, was proved in [9] if β(r)/r is nondegenerate at r = 0 and
in [10] including the degenerate case.

(ii) The special case d = 1, b ≡ 0, aij (x, u) = δijβ(u), 1 ≤ i, j ≤ d , with β(r) :=
r|r|m−1, r ∈ R, for some m ∈ (1,∞), was proved in [8].

(iii) [7] contains an analogous result as in [9, 10] in the case where a linear multiplicative
noise is added to the nonlinear FPE, which thus becomes a stochastic porous media equation.

Our final remark concerns the uniqueness of the time marginal of solutions to (4.1).

REMARK 4.3. If b ≡ 0, aij (x, u) = δijβ(u), 1 ≤ i, j ≤ d and β : R → R is continuous,
nondecreasing and β(0) = 0, then (3.1) has a unique solution among all the solutions in
(L∞ ∩ L1)((0, T ) × R

d) by the main result in [12]. Hence, obviously, we have uniqueness
of the time marginals for weak solutions to (4.1) among all the solutions of (4.1) whose time
marginals have densities in L∞((0, T ) ×R

d).
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