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AVERAGING DYNAMICS DRIVEN BY FRACTIONAL BROWNIAN MOTION
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We consider slow/fast systems where the slow system is driven by frac-
tional Brownian motion with Hurst parameter H > 1

2 . We show that unlike

in the case H = 1
2 , convergence to the averaged solution takes place in prob-

ability and the limiting process solves the ‘naïvely’ averaged equation. Our
proof strongly relies on the recently obtained stochastic sewing lemma.

1. Introduction. The purpose of the paper is to study a two-scale stochastic evolution
on Rd with memory of the type

(1.1) dxε
t = f

(
xε
t , y

ε
t

)
dBt + g

(
xε
t , y

ε
t

)
dt,

where B is an m-dimensional fractional Brownian motion (fBm) of Hurst parameter H > 1
2 ,

f : Rd × Y → L(Rm,Rd) and g : Rd × Y → Rd . The fast variable yt is assumed to take
values in a state space Y which is either an arbitrary Polish space or a compact manifold,
depending on the situation. We will consider both the case in which the dynamic of y is
given, independently of that of x, and the case in which the current state of x influences
the dynamic of y. In the latter case, we will assume that the dynamic of y is Markovian,
conditional on B .

We recall that one-dimensional fractional Brownian motion is the centred Gaussian pro-
cess with B0 = 0 and covariance E(Bt −Bs)

2 = |t − s|2H . An Rm-valued fBm (B1
t , . . . ,Bm

t )

is obtained by taking i.i.d. copies of a one-dimensional fBm. A fBm is not a semimartingale
and does not have independent increments. It does however have a version such that almost
all of its sample paths t �→ Bt(ω) are Hölder continuous of order α for any α < H .

Let us first consider the simple case in which the fast process y has no feedback from x

and is of the form yε
t = Yt/ε for some process Y which is almost surely Hölder continuous of

order α with α +H > 1. The integral appearing in (1.1) can then be interpreted as a Young
integral. For the processes {xε· , ε > 0} to have a limit, we would at the very least need uniform
bounds. The usual Young bound however only gives an estimate of the form

∣∣∣∣
∫ t

0
f

(
xε
s , y

ε
s

)
dbs

∣∣∣∣ � ∣∣f (
xε· , yε·

)∣∣
α|b|β,

which is not very helpful since the process yε is in general expected to have a Hölder norm
of order 1

εα . Proving these bounds present unexpected difficulties. In the case where B is a
Brownian motion, the desired estimates follow quite easily from Itô’s isometry and/or the
Burkholder–Davis–Gundy inequality. They are of course not available in our setting, but we
would nevertheless like to exploit the stochastic nature of the fractional Brownian motion.
We resolve this problem by using a carefully chosen approximation to the Young integral
and using a recently discovered stochastic sewing lemma by Lê [23]. Our main result in this
setting is given by Theorem 3.13 below. When combining it with Lemma 3.14, this can be
formulated as follows.
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THEOREM A. Let Y be a Polish space and let f,g be bounded measurable and of class
BC2 in their first argument. Let yε

t = Yt/ε for a Y-valued stationary stochastic process Y that
is independent of B and is strongly mixing with rate t−δ for some δ > 0 in the sense that

sup
{
P(A∩ Ā)− P(A)P(Ā) :A ∈ σ(Y0), Ā ∈ σ(Yt )

}
� t−δ.

Let f̄ (x)= ∫
f (x, y)μ(dy), where μ is the law of Y0, and similarly for g. Then, any solutions

to (1.1) converge in probability to the solution to

(1.2) dx̄t = f̄ (x̄t ) dBt + ḡ(x̄t ) dt,

with the same initial value.

REMARK 1.1. This is very different from the case where B is a Wiener process. In that
case, one cannot expect convergence in probability and the weak limit solves a diffusion with
averaged generator; see, for example, [7, 15, 19, 20, 25, 26, 31, 33], which is different in
general from the diffusion with averaged diffusion coefficients appearing here. In this sense,
equations driven by fBm with H > 1

2 behave more like ODEs rather than SDEs.
Note however that our convergence in probability refers to convergence in probability in

the full ‘product’ probability space on which both B and Y live. In particular, we do not know
whether the convergence to x̄ holds with B replaced by any given b ∈ Cβ with β < H . In the
lingo of diffusions in random environment, our convergence result is ‘annealed’ rather than
‘quenched’.

REMARK 1.2. It would be natural to take for y the solution to a SDE driven by a frac-
tional Brownian motion independent of B . Unfortunately, it is not clear whether the results of
[2, 12, 14] concerning the ergodicity of such processes can be strengthened in order to satisfy
the assumptions of Theorem A.

The other case we consider is when the state of the slow variable x feeds back into the
dynamic of the fast variable y. In this case, we restrict ourselves to the case when Y is a
compact Riemannian manifold and y is given by the solution to

(1.3) dyε
t =

1

ε
V0

(
xε
t , y

ε
t

)
dt + 1√

ε
V

(
xε
t , y

ε
t

) ◦ dŴt ,

where, for any fixed value x ∈Rd , Vi(x, ·) are vector fields on a state space Y , and where Ŵ

is a m̂-dimensional standard Wiener process that is independent of B .
Since solutions to this equation are expected to be Hölder continuous of any order α < 1

2 ,
the integral with respect to B appearing in (1.1) can still be interpreted as a Young integral
for any fixed ε > 0. Since the slow and fast variables interact with each other, however, a
solution theory with mixed Young and Itô integrals must be used. Such a theory is available
in the literature; see, for example, the work by Guerra–Nualart [11] extending Kubilius [21],
as well as [5]. Our main theorem is the following result, which is a slight reformulation of
Theorem 4.3 below.

THEOREM B. Let f,g and the Vi satisfy Assumption 4.1 below, let Bt be a fBm of Hurst
parameter H > 1

2 and let Ŵt be an independent Brownian motion. For every x ∈ Rd , let
μx denote the (unique) invariant measure for (1.3) with xε

t replaced by x. As before, let
f̄ (x)= ∫

f (x, y)μx(dy), and similarly for ḡ.
Then, as ε → 0, the process xε

t converges in probability in Cα (for any α < H ) to the
unique limit x̄t solving (1.2) with the same initial value.
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1.1. Outline of the article. In both cases, the proof of convergence of the slow variable
is based on a deterministic residue bound, Lemma 2.2. This is a quite general statement
about differential equations with Young integration, not involving any stochastic element nor
needing any preparation, and is therefore given at the very beginning of the article, even
though it becomes relevant only in the later stages.

Section 3 is devoted to the proof of Theorem A. In order to prepare for this, we use the
Mandelbrot–Van Ness representation of Bt by a Wiener process Wt . We then make use of
the observation, [12], that the filtration Gt generated by the increments of B up to time t is
the same as that generated by W , and that B can be decomposed for t > 0 as Bt = B̄t + B̃t ,
where B̄t is smooth in t and B̃t is independent of G0. Such a split can be made with reference
to any Gu for any time u, which allows us to define integrals of the type∫ v

u
F (s) dB(s),

for Gu-measurable processes F , as the sum of a Wiener integral against B̃t and a Riemann–
Stieltjes integral against the smooth function B̄t . The stochastic sewing lemma then allows
us to extend this integration to a class of adapted integrands which are allowed to be quite
singular (much more than what Young integration would allow), but such that the singular part
of their behaviour is independent of B in a suitable sense. This is the content of Lemma 3.10,
which is the main ingredient of the proof of Theorem A given in Section 3.4.

Section 4 is devoted to the proof of Theorem B. The main ingredient of the proof is given
by Theorem 4.16 where we show that one has a bound∥∥∥∥

∫ t

s

(
h
(
xr, y

ε
r

)− h̄(xr)
)
dBr

∥∥∥∥
Lp
≤ Cεκ(‖x‖α,p|t − s|η̄ + |t − s|η)

,

for some η > 1
2 and η̄ > 1, where h̄ is the average of h. Compared to the results in Section 3,

the difficulty here is that the process yε does depend on x (and therefore also on B) via (1.3).
The main idea is to interpret the integral appearing in this expression as the output of the
stochastic sewing lemma applied to

Au,v =
∫ v

u

(
h
(
xu,Y

xu,ε
r

)− h̄(xu)
)
dBr,

where Y x̄,ε
r denotes the solution to (1.3), but with the process x replaced by the fixed value x̄.

In this way, the integrand is Fu-measurable (for F the filtration generated by B and Ŵ ) and
the integral can be interpreted as a mixed Wiener/Young integral as before.

The hard part is to show that δA satisfies the assumptions of the stochastic sewing lemma.
For this, we use the fact that we only need bounds on E(δAs,u,t |Fs) and that this quantity is
much better behaved than δA itself. Section 4.4 contains preliminary estimates on the Markov
semigroup generated by Y x̄,ε

r as well as some form of ‘nonautonomous Markov semigroup’
generated by (1.3), while Section 4.6 then contains the uniform bounds on the conditional
expectation of δA.

Notation. We gather here the most common notation:

• (
,F,P) is a probability space and ‖ ·‖p denotes the norm in Lp(
).

• For s ≤ t and xt a one-parameter process with values in Rd , we set δxs,t
def= xt − xs . We

also set ‖x‖α,p = sups,t |t − s|−α‖δxs,t‖p .
• For s < u < t and A, a two-parameter stochastic process, we set

δAsut
def= As,t −As,u −Au,t .
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We also set

‖A‖α,p
def= sup

s<t

‖As,t‖p
|t − s|α , |||A|||α,p

def= sup
s<u<t

‖E(δAsut|Fs)‖p
|t − s|α .

• H
p
η = {As,t ∈ Lp(
,Ft ,P) : ‖A‖η,p <∞}.

• Bα,p = {xt ∈Ft : δxs,t ∈H
p
α }, Bα,p ⊂ Lp(
,Cγ ) (up to modification) for γ < α− 1

p
.

• H̄
p
η = {As,t : |||A|||η,p <∞}.

• Wt and Ŵt are two independent two-sided Wiener processes of dimension m and m̂, re-
spectively.

• Gt and Ĝt are the filtrations generated by the independent Wiener processes W and Ŵ ,
respectively, and Ft = Gt ∨ Ĝt .

• Bt (also denoted by BH
t ) is a fractional Brownian motion of Hurst parameter H , which is

related to Wt via the Mandelbrot–Van Ness representation.

• For u < t , B̄u
t

def= E(Bt −Bu|Gu) and B̃u
t

def= Bt −Bu − B̄u
t .

Also B̄t
def= B̄0

t , B̃t = B̃0
t .

• f � g means that f ≤ Cg for a universal constant C.
• C∞K denotes the space of smooth functions with compact support.
• BCk is the space of bounded Ck functions with bounded derivatives of all orders up to k.
• For α ∈ (0,1), |x|α = sups =t

|xt−xs ||t−s|α is the homogeneous Hölder semi-norm.
• | · |∞ and | · |Lip denote the supremum norm and minimal Lipschitz constant, respectively.
• |f |Osc = supf − inff .
• For h ∈ C(R,Rd), κ ∈ (0,1), |h|−κ = sups,t≤T |t − s|κ−1| ∫ t

s h(r) dr|.
• For f :R×Rd →R, |f |−κ,γ is the smallest possible choice of constant K with the prop-

erty

sup
x

∣∣f (·, x)
∣∣−κ ≤K, sup

x =y

|f (·, x)− f (·, y)|−κ

|x − y|γ ≤K.

• We write B(Y) for the Borel σ -algebra of a topological space Y . For s < u, we set

Uu
s =

{
F :
×Y→R : bounded (Fs ∨ Gu)⊗B(Y) measurable

}
.

2. A deterministic residual bound. We first state a bound on the difference between
two solutions to a differential equation driven by a Hölder continuous signal, given a bound
on the corresponding residual. In the following, the reader may think of bt as a realisation
of the fractional Brownian motion Bt or a realisation of (Bt , t) ∈Rm+1, but our statement is
purely deterministic.

A basic tool is the following estimate, the proof of which is elementary and follows for
example easily from [9], equation (2.8).

LEMMA 2.1. Assume that F : Rd → R has two bounded derivatives and let α ∈ (0,1).
Then the composition operator x �→ F(x)= (t �→ F(xt )) satisfies the bound∣∣F(x)− F(y)

∣∣
α �

∣∣F ′∣∣∞|x − y|α +
∣∣F ′′∣∣∞|x − y|∞(|x|α + |y|α)

.

The announced bound goes as follows.

LEMMA 2.2. Let F ∈ BC2, let b ∈ Cβ for some β > 1
2 and let Z, Z̄ ∈ Cα for some α ∈

(0, β] such that α + β > 1. Let z, z̄ be the solutions to

zt =Zt +
∫ t

0
F(zs) dbs, z̄t = Z̄t +

∫ t

0
F(z̄s) dbs.
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Then there exists a constant C depending only on F such that, on the time interval [0,1], one
has the bound

|z− z̄|α ≤ C exp
(
C|b|1/β

β +C|Z|1/α
α +C|Z̄|1/α

α

)|Z − Z̄|α.

PROOF. Since, by Lemma 2.1, we have the bound

(2.1)
∣∣F(z)− F(z̄)

∣∣
α � |z− z̄|α

∣∣F ′∣∣∞ +
∣∣F ′′∣∣∞|z− z̄|∞(|z|α + |z̄|α)

,

we conclude that on [0, T ] with T ≤ 1 one has

|z− z̄|∞ �
(
T βL|z− z̄|∞ +

∣∣F ′∣∣∞T α+β |z− z̄|α)|b|β + |Z − Z̄|∞,

|z− z̄|α �
(
T β−αL|z− z̄|∞ +

∣∣F ′∣∣∞T β |z− z̄|α)|b|β + |Z − Z̄|α,

where L = |F |Lip + T α|F ′′|∞(|z|α + |z̄|α). The two inequalities are proved similarly, we
demonstrate with the second one. By (3.11) in Section 3, we obtain on [0, T ] the bound

|z− z̄|α ≤
∣∣∣∣
∫ ·

0

(
F(zs)− F(z̄s)

)
dbs

∣∣∣∣
α

+ |Z − Z̄|α
�

∣∣F(z)− F(z̄)
∣∣
αT β |b|β +

∣∣F(z)− F(z̄)
∣∣∞T β−α|b|β + |Z − Z̄|α,

and the requested bound then follows from (2.1). In a similar way, using the fact that
|F(z)|α ≤ |F ′|∞|z|α , we obtain the a priori bound

|z|α � |Z|α + T β−α|b|β + T β |b|β |z|α,

and similarly for z̄. Provided that we choose T in such a way that

(2.2) T β |b|β ≤ c, T α|Z|α ≤ 1, T α|Z̄|α ≤ 1,

for some sufficiently small constant c that only depends on F , we thus obtain the bound
|z|α � |Z|α + T β−α|b|β , and similarly for |z̄|α . In particular, this shows that for T as in (2.2)
one has L� 1.

This then suggests the introduction of the norm

|z|α,T = |z|∞ + T α|z|α,

with suprema taken over [0, T ], for which we obtain the bound

|z− z̄|α,T � T β |z− z̄|α,T |b|β + |Z− Z̄|α,T ,

thus yielding

|z− z̄|α,T ≤ 2|Z− Z̄|α,T ,

on [0, T ] where T is as in (2.2). Iterating this bound, we conclude that on any sub-interval
[s, s + T ] of [0,1], one has a bound of the type

∣∣(z− z̄)�[s, s + T ]∣∣α,T ≤ 2 exp
(
C(1+ s/T )

)|Z− Z̄|α,T ,

whence we conclude that on [0,1], for a possibly larger constant C, one has

|z− z̄|α � exp
(
C

(
1+ T −1))|Z − Z̄|α.

Since (2.2) allows us to choose T such that 1/T � |b|1/β
β +|Z|1/α

α +|Z̄|1/α
α , the claim follows.

�
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3. Averaging without feedback. In this section, we provide an interpretation of the in-
tegral against fractional Brownian motion that is more stable than the Young integral in situ-
ations in which the integrand exhibits fast oscillations. The idea is to exploit the adaptedness
of the integrand in a way that allows us to apply the stochastic version of the sewing lemma
[10] recently obtained in [23].

To take one step back, we recall that integration of a deterministic function with respect to a
fractional Brownian motion (fBm) of Hurst parameter H > 1

2 is called a Wiener integral (with
respect to Gaussian processes): the integrands are smooth stochastic processes completed
with the norm given by the inner product

〈φ,ψ〉 = E
(∫

R
φs dBs

∫
R

ψs dBs

)
.

(Limits of smooth functions with respect to this norm can be Schwartz distributions.) When
the integrand is sufficiently smooth, this is just the Young integral.

Let Bt be a m-dimensional fractional Brownian motion with Hurst parameter H ∈ (1
2 ,1), it

has an integral representation with respect to a two sided standard Wiener process Wt , which
was introduced by Mandelbrot and Van Ness [29]. We consider H as being fixed throughout
this article and, therefore, omit the superscript. For r > u, write the increment of fractional
Brownian motion as a sum of two processes:

Br −Bu =
∫ u

−∞
(
(r − v)H−

1
2 − (u− v)H−

1
2
)
dWv +

∫ r

u
(r − v)H−

1
2 dWv

(3.1)
def= B̄u

r + B̃u
r .

Writing Gt for the filtration generated by the increments of W , B̄u
t is Gu-measurable and

smooth in t on (u,∞), while B̃u
t is independent of Gu. For the special case u= 0, we simply

write B̄t = B̄0
t , B̃t = B̃0

t . Recall also that the filtration Gt coincides with that generated by the
increments of B .

3.1. Mixed Riemann and Wiener integrals. If f : R×Rd → L(Rm,Rd) is a measurable
function and xt a Gt -adapted stochastic process, our first task is to define

∫ t
0 f (r, xr) dBr as

the limit of ‘Riemann sums’ of the type
∑

i

∫ si+1
si

f (r, xsi ) dBr , provided that f and x satisfy
suitable assumptions. Prior to justifying its convergence, we explain how each individual
integration in the sum is defined. For any s < t , set

As,t
def=

∫ t

s
f (r, xs) dBr

def=
∫ t

s
f (r, xs) dB̄s

r +
∫ t

s
f (r, xs) dB̃s

r .

The first integral will be considered as a Riemann–Stieltjes integral which will exploit the fact
that B̄s is a smooth function with a well-behaved singularity at time s. The second term will
be interpreted as a Wiener integral with respect to the Gaussian process B̃s , which we can do
since xs is Gs -measurable and, therefore, independent of it. Since r �→ B̄u

r is smooth for r > u

and its derivative has an integrable singularity at r ∼ u, the Riemann integral
∫ t
u f (r, xu) dB̄u

r

can be defined in a pathwise sense as soon as f is continuous in both of its arguments. If
x· has continuous sample paths, then the same is true for the Wiener integral since the map
F �→ ∫ t

u Fr dB̃u
r , viewed as a linear map from C∞ into L2(
), can be extended to all F ∈ C0

(and actually even to F ∈ C−κ for κ small enough; see Lemmas 3.2 and 3.3 below). Think
now of u as being fixed and consider an arbitrary stochastic process F on [u, t], but we think
of the case Fr = f (r, xu).

REMARK 3.1. If F is either deterministic and Hölder continuous of order α or F ∈ Bα,p

where p > 2 and α + H > 1, then the mixed integral coincides with the Young integral.
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The first follows from the deterministic sewing lemma and that
∫ t
u(Fr − Fu)dB̃r � |t −

u|α+H . The second follows from the stochastic sewing lemma; alternatively, this is a special
case of Lemma 3.12 below.

In situations where f and x are sufficiently regular so that the usual Riemann sums con-
verge, we will see in Lemmas 3.12 and 4.10 that the notion of integration used here coincides
with the classical Young integral. The advantage of this set-up however is that we can exploit
the stochastic cancellations of the Wiener integral through the use of the stochastic sewing
lemma, which allows us to substantially expand the class of admissible integrands and is
fundamental for extracting uniform estimates for SDEs with random inputs.

We begin with building up estimates for the mixed stochastic integral explained earlier.
Let R denote the covariance function of B̃ . We work componentwise, so that instead of
complicating our notation with i.i.d. copies of the one-dimensional fBm’s, we may assume
that B̃ is one dimensional in the formulation below. It follows from the scaling properties of
B̃ that

R(r, s)= EB̃r B̃s = (r ∧ s)2H R̂

( |r − s|
r ∧ s

)
,

R̂(t)= EB̃1B̃1+t =
∫ 1

0
(1− s)H−

1
2 (1+ t − s)H−

1
2 ds,

(3.2)

so that their distributional derivatives ∂2
r,sR(r, s)

def= ∂2

∂r ∂s
R(r, s) satisfy

∂2
r,sR(r, s)= (r ∧ s)2H−2G

( |r − s|
r ∧ s

)
,

G(t)= (2H − 1)R̂′(t)− (t + 1)R̂′′(t).
(3.3)

Convention. We now fix a filtration Fs with Gs ⊂ Fs and such that, for every s, B̃s is
independent of Fs . The example to have in mind which will be relevant in Section 4 is to
take Fs = Gs ∨ Ĝs , where Ĝ is the filtration generated by the increments of a Wiener process
independent of B .

Recall that Wiener integrals are centred Gaussian processes. In our case, Fs is random but
with Fs ∈ Fu for any s ∈ [u, t], so that

∫ t
u Fs dB̃u

s is a centred Gaussian process, conditional
on Fu.

LEMMA 3.2. G(t) ≈ t2H−2 for t � 1 and G(t) ≈ tH− 3
2 for t � 1. In particular,

∂2
r,sR(r, s) is integrable over any bounded region and there exists c1 ∈R s.t.,

∫ t

0

∫ t

0

∣∣∂2
r,sR(r, s)

∣∣dr ds ≤ c1t
2H ,

for every t ∈ R+. For some fixed u ≥ 0, let Fs be pathwise smooth in s and suppose Fs is
Fu-measurable for any s ∈ [u, t], then the following Itô isometry holds:

(3.4) E
((∫ t

u
Fs dB̃u

s

)2∣∣∣Fu

)
(ω)=

∫ t

u

∫ t

u
∂2
r,sR(r, s)Fr(ω)Fs(ω)dr ds.

PROOF. The bound on ∂2
r,sR(r, s) follows at once from the representation given in

Lemma A.1 below, while the fact that (3.4) holds in the distributional sense is classical; see,
for example, [16]. The bounds on R given in Lemma A.1 guarantee that the distributional
derivative of R coincides with its weak derivative and is an integrable function, so that (3.4)
also holds with the right-hand side interpreted as a Lebesgue integral. �
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As usual [3, 16], the left-hand side of (3.4) can be defined in such a way that this isometry
extends to all g taking values in the completion of the space of smooth functions under the
norm given by the right-hand side of (3.4). This in particular contains all g ∈ L2, as can be
shown similar to [30]. It turns out however that the space of admissible integrands for this
Wiener integral contains not only functions, but also distributions of order −κ provided that
κ < H − 1

2 . More precisely, we have the following result, a proof of which is postponed to
the Appendix.

LEMMA 3.3. Let h be a continuous function. Then, for all T > 0 and κ ∈ [0,H − 1
2),

one has the bound

(3.5) |h|2RKHS
def=

∣∣∣∣
∫ T

0

∫ T

0
∂2
r,sR(r, s)h(r)h(s) dr ds

∣∣∣∣ � T 2H−2κ |h|2−κ ,

where the negative Hölder norm |h|−κ on [0, T ] is given by

|h|−κ = sup
0≤s,t≤T

|t − s|κ−1
∣∣∣∣
∫ t

s
h(r) dr

∣∣∣∣.

Since B̄t is smooth in t , integrals with respect to it extend to rougher integrands, as we will
show now. Below we provide a bound for integration with respect to the full fBm.

LEMMA 3.4. Let B be a fBm with H > 1
2 and fix 0 ≤ κ < H − 1

2 . Let s ≥ 0 be fixed.
Let r �→ Fr be smooth, with each Fr for s ≤ r measurable with respect to Fs . Then, for t ≥ s

with |t − s| ≤ 1 and 2≤ p < q one has the bound∥∥∥∥
∫ t

s
Fr dBr

∥∥∥∥
p

�
∥∥|F |−κ

∥∥
q |t − s|H−κ,

where |F |−κ denotes its negative Hölder norm on [s, t].
By linearity and density, this immediately allows us to extend the notion of integral against

B to any integrand in Lq((
,Fr ),C−κ) for any 0≤ κ < H − 1
2 (which may no longer agree

with the Young integral).

PROOF. Since our set-up is translation invariant, we restrict ourselves to the case s = 0
without loss of generality and we write∫ t

0
Fr dBr =

∫ t

0
Fr dB̄r +

∫ t

0
Fr dB̃r

def= I1 + I2.

To bound I1, we note that r �→ B̄r (ω) is a smooth function on (0,∞) satisfying the bounds,
for any p ≥ 1,

(3.6) ‖ ˙̄Br‖p � rH−1, ‖ ¨̄Br‖p � rH−2.

We then integrate I1 by parts, so that

I1 = ˙̄Bt

∫ t

0
F(r) dr −

∫ t

0

∫ r

0
Fu du ¨̄Br dr,

and the required bound follows from Hölder’s inequality.
Concerning I2, since the integrand is F0-measurable and B̃ is independent of F0, the

Wiener integral I2 is Gaussian and its Lp norm is bounded by its L2 norm. We can proceed
as if the integrand were deterministic and use Lemma 3.2, so that one has the bound

(3.7) E|I2|p � E
∣∣∣∣
∫ t

0

∫ t

0
F(r)F (s)∂2

r,sR(r, s) dr ds

∣∣∣∣
p/2

.

Inserting the bound from Lemma 3.3 into (3.7), we obtain the bound ‖I2‖p � ‖|F |−κ‖ptH−κ

as required. �
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3.2. Stochastic sewing lemma. Let As,t denote a two parameter stochastic process with
values in Rn, where s ≤ t . Both s and t take values in a fixed finite interval [a, b]. We are
interested in situations where A is close to being an increment. To quantify this, for any
s < u < t , set

δAsut
def= As,t −As,u −Au,t ,

which vanishes if and only if As,t is the increment of a one-parameter function. In the cases
of interest to us, the family of ‘defects’ δAsut is typically much smaller than As,t itself for
|t − s| small.

Let us now quantify this more precisely. Given p ≥ 2 and an exponent η > 0, we define
the space H

p
η of continuous functions (s, t) �→As,t ∈ Lp(
,Ft ) such that

(3.8) ‖A‖η,p
def= sup

s<t

‖As,t‖p
|t − s|η <∞,

where ‖ ·‖p denotes the norm in Lp(
). We also define the space H̄
p
η of maps As,t as above

such that

(3.9) |||A|||η,p
def= sup

s<u<t

‖E(δAsut|Fs)‖p
|t − s|η <∞.

Then H
p
η is a Banach space with norm ‖ ·‖η,p , while ||| · |||η,p is only a semi-norm.

We will view a partition of the interval [a, b] as a collection P of nonempty closed inter-
vals that cover [a, b] and overlap pairwise in at most one point, so we can use the notation∑
[u,v]∈P Au,v for the ‘Riemann sum’ associated with A on the partition P . Given such a

partition, we write |P| for the length of the largest interval contained in P . The following
result was proved in [23], Theorem 2.1. The version presented here is slightly weaker than
the general result, but it will be sufficient for our needs. Note that a deterministic version
of the sewing lemma was given in [10] and was instrumental for the reformulation of rough
path theory [28] as exposed, for example, in [8]. A multidimensional analogue to the sewing
lemma is given by the reconstruction theorem from the theory of regularity structures [13],
Theorem 3.23.

LEMMA 3.5 (Stochastic sewing Lemma). Suppose that, for some p ≥ 2, one has A ∈
H

p
η ∩ H̄

p
η̄ with η > 1

2 and η̄ > 1. Then, for every t > 0, the limit in Lp

(3.10) Is,t (A)
def= lim|P|→0

∑
[u,v]∈P

Au,v,

with P taking values in partitions of [s, t], exists and there exists a constant C depending
only on p and η, η̄ such that∥∥Is,t (A)

∥∥
p ≤ C

(|||A|||η̄,p|t − s|η̄ + ‖A‖η,p|t − s|η)
,

∥∥E
(
Is,t (A)−As,t |Fs

)∥∥
p ≤ C|||A|||η̄,p|t − s|η̄.

Furthermore, I (A) satisfies the identity Is,u(A) + Iu,t (A) = Is,t (A) for any s ≤ u ≤ t , so
that there exists a stochastic process It (A) = I0,t (A) with Is,t (A) = It (A) − Is(A). If one
furthermore has the bound ‖E(As,t |Fs)‖p � |t − s|η̄, then I (A)≡ 0.

REMARK 3.6. In the general case, the bound (3.8) is required for δA only, but we will
always have this stronger bound at our disposal. Note also that [23], Theorem 2.1, requires
joint continuity of E(As,t |Fs), but this is only ever used to obtain [23], equation (2.8), which
we do not need.
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REMARK 3.7. A simple special case is the classical result by Young [35]: for f ∈ Cα

and g ∈ Cβ with α+ β > 1, one has the bound

(3.11)
∣∣∣∣
∫ t

s
fr dgr − fs(gt − gs)

∣∣∣∣ � |f |α|g|β |t − s|α+β.

Strictly speaking, setting As,t = fs(gt − gs), this is only a special case of Lemma 3.5 for
β > 1

2 , but this is only due to the fact that, as already mentioned, the formulation given here
is slightly weaker than the one given in [23].

3.3. A stochastic integral with respect to fBm. For κ, γ ∈ [0,1], we introduce a space
C−κ,γ of distributions of order −κ (in time) with values in the space of Hölder continuous
functions of order γ (in space). More precisely, an element f ∈ C−κ,γ is interpreted as the
distributional derivative with respect to the first argument of a continuous function f̂ : R×
Rd →R, such that f̂ (0, x)= 0 and

∣∣f̂ (t, x)− f̂ (s, x)
∣∣≤K|t − s|1−κ ,

∣∣f̂ (t, x)− f̂ (s, x)− f̂ (t, y)+ f̂ (s, y)
∣∣≤K|t − s|1−κ |x − y|γ ,

(3.12)

uniformly over |s − t | ≤ 1 and x, y ∈Rd . Alternatively, one has

sup
x

∣∣f (·, x)
∣∣−κ ≤K, sup

x =y

|f (·, x)− f (·, y)|−κ

|x − y|γ ≤K.

We write |f |−κ,γ for the smallest possible choice of proportionality constant K in (3.12). In
particular if f is bounded and f (r, ·) uniformly γ -Hölder continuous (uniformly in r), then
f ∈ C−κ,γ for every κ > 0.

The following lemma is only used for the proof of Theorem A.

LEMMA 3.8. For α,κ ∈ (0,1), the map

(f, x) �→ (
t �→ f (t, xt )

)
,

extends to a continuous map from C−κ,γ × Cα into C−κ provided that γα > κ . Furthermore,
one has the bound

(3.13)
∣∣t �→ f (t, xt )

∣∣−κ � |f |−κ,γ

(
1+ |x|γαT γα)

,

on any interval of length T .

PROOF. This is an immediate consequence of the deterministic sewing lemma [10]: Let
�s,t be a deterministic two parameter process with

|�st| ≤ K̂|t − s|η, |δ�sut| ≤ K̂Lip|t − s|η̄,
for some η > 0 and η̄ > 1. Then, for every s < t ≤ T , the limit Is,t (�)

def=
lim|P|→0

∑
[u,v]∈P �u,v exists along partitions of [s, t] and one has

(3.14)
∣∣Is,t (�)−�s,t

∣∣ � K̂Lip|t − s|η̄.
To make sense of the distribution r �→ f (r, xr), we need to be able to make sense of its
integral over any interval [s, t]. A good candidate for this is It (�), where

�s,t =
∫ t

s
f (r, xs) dr = f̂ (t, xs)− f̂ (s, xs).
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Writing K = |f |−κ,γ , the bounds (3.12) imply that |�s,t |� K|t − s|1−κ . On the other hand,
we have

|δ�sut| =
∣∣f̂ (t, xs)− f̂ (u, xs)− f̂ (t, xu)+ f̂ (u, xu)

∣∣
� |f |−κ,γ |t − u|1−κ |s − u|γα|x|γα ,

(3.15)

so that the corresponding ‘integral’ I (�) is well defined since γα > κ by assumption. Fur-
thermore, it follows from (3.14) that∣∣Is,t (�)

∣∣ � |t − s|1−κ |f |−κ,γ

(
1+ |x|γα |t − s|γα)

,

which does indeed show that the distributional derivative of t �→ I0,t (�) belongs to C−κ . In
the particular case where f is actually a β-Hölder continuous function in its first argument,
we have ∣∣�s,t − f (s, xs)(t − s)

∣∣ � |t − s|1+β,

so that we do have Is,t (�)= ∫ t
s f (r, xr) dr and, therefore, d

dt
I0,t (�)= f (t, xt ) as required.

�

We now introduce a space of stochastic processes that will be a natural candidate for
containing our solutions. Recall that Ft denotes a filtration of the underlying probability
space as in Section 3.1, namely it contains Gs = σ({Bu − Bv : u, v ≤ s}) and is such that B̃s·
is independent of Fs for every s.

DEFINITION 3.9. For α > 0 and p ≥ 1, let Bα,p denote the Banach space consisting of
all Ft -adapted processes xt such that δx ∈H

p
α , where δxs,t = xt − xs . We also write

(3.16) ‖x‖α,p = sup
s,t
|t − s|−α‖xt − xs‖Lp .

(To be consistent with (3.8), we should really write ‖δx‖α,p , but we drop the δ for the sake
of conciseness.)

Our aim is to lay the foundations for a solution theory of SDEs driven by fractional Brow-
nian motion with right-hand sides determined by functions f : R× Rd → L(Rm,Rd) such
that the following holds.

LEMMA 3.10. Let p ≥ 2 and α > 1
2 . Assume that x· ∈ Bα,p , let f ∈ C−κ,γ (determinis-

tic) for some κ, γ ≥ 0 such that η=H − κ > 1
2 and η̄=H − κ + γα > 1, and define the two

parameter stochastic process

As,t =
∫ t

s
f (r, xs) dBr,

where the integral is interpreted as a conditional Wiener integral as constructed in
Lemma 3.4. Then one has A ∈ H

p
η ∩ H̄

p
η̄ and we take the resulting process as our defini-

tion of the stochastic integral against B:

(3.17)
∫ t

s
f (r, xr) dBr

def= Is,t (A).

This integral satisfies the bounds∥∥∥∥
∫ t

s
f (r, xr) dBr

∥∥∥∥
p

(3.18)
� |f |−κ,γ

(|t − s|H−κ + ‖x‖γα,p|t − s|η̄)
,
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∥∥∥∥E
(∫ t

s

(
f (r, xr)− f (r, xs)

)
dBr

∣∣∣Fs

)∥∥∥∥
p

(3.19)
� |f |−κ,γ ‖x‖γα,p|t − s|η̄

uniformly over s, t ∈ [0, T ].

PROOF. By Lemma 3.5, it suffices to show that for κ, γ as in the assumption, one has
A ∈H

p
η ∩ H̄

p
η̄ with

η =H − κ, ‖A‖η,p � |f |−κ,γ .(3.20a)

η̄ =H − κ + γα, |||A|||η̄,p � |f |−κ,γ ‖x‖γα,p.(3.20b)

Since f (·, xs) is Fs -measurable and f ∈ C−κ,γ with κ ∈ [0,H − 1
2 ], it follows from

Lemma 3.4 that one has the bound

(3.21) ‖Ast‖p � sup
x∈Rd

∣∣f (·, x)
∣∣−κ |t − s|H−κ,

where Cp is a universal constant, thus yielding the bound (3.20a).
We now bound δAsut for u between s and t . Since

δAsut =
∫ t

u

(
f (r, xs)− f (r, xu)

)
dBr,

and since s < u, we are again in the setting of Lemma 3.4, which yields

(3.22) ‖δAsut‖p �
∥∥∣∣f (·, xs)− f (·, xu)

∣∣−κ

∥∥
q |t − u|H−κ .

We then note that
∣∣f (·, xs)− f (·, xu)

∣∣−κ ≤ |f |−κ,γ |xs − xu|γ .

Choosing q = p/γ in (3.22), we thus obtain

‖δAsut‖p � |f |−κ,γ ‖x‖γα,p|u− s|αγ |t − u|H−κ,

so that (3.20b) follows. Since H −κ > 1
2 and H +αγ −κ > 1, we can now apply Lemma 3.5

and immediately deduce Is,t (A) = lim|P→0
∑
[u,v]∈P Au,v and the required bounds (3.18)–

(3.19). �

REMARK 3.11. Since f (t, x) is not assumed to be Hölder continuous in t , the integral
defined in the theorem by sewing up the mixed integrals (Riemann–Stieltjes integral with
respect to the smooth B̄t and the Wiener integral with respect to B̃t with essentially ‘nonran-
dom’ integrand) cannot necessarily be interpreted as a Young integral.

Finally, we note that in ‘nice’ situations where the integral against B also makes sense as
a Young integral, the two integrals coincide. The precise statement is as follows.

LEMMA 3.12. Under the assumptions of Lemma 3.10 and assuming that f is such that,
for some δ with δ +H > 1, one has

sup
x

sup
|t−s|≤1

|t − s|−δ
∣∣f (t, x)− f (s, x)

∣∣ <∞,

the integral given by (3.17) coincides with the usual Young integral.
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PROOF. By Lemma 3.4 with κ = 0, and q > p ≥ 2,∥∥∥∥
∫ v

u

(
f (r, xu)− f (u, xu)

)
dBr

∥∥∥∥
p

≤
∥∥∥ sup
r∈[u,v]

∣∣f (r, xu)− f (u, xu)
∣∣∥∥∥

q
|v − u|H � |v − u|H+δ.

The final part of Lemma 3.5 then leads to the desired conclusion, namely that

lim|P|→0

∑
[u,v]∈P

(∫ v

u
f (r, xu) dBr − f (u, xu)(Bv −Bu)

)
= 0,

in probability. �

3.4. A semideterministic averaging result. In order to state the main theorem of this sec-
tion, which is then going to lead us to the proof of Theorem A, we introduce the space Cα,2

of functions that are α-Hölder continuous in time, with values into the space BC2. With this
notation, we then have the following.

THEOREM 3.13. For H > 1
2 , let α,κ, γ > 0 satisfy the assumptions of Lemma 3.10 and

α < H −κ . Let furthermore ζ ∈ (α,1] and let fn, f̄ :R+×Rd → L(Rm,Rd) be in Cζ,2 such
that

lim
n→∞|fn − f̄ |−κ,γ = 0.

Let xn and x be the Cα solutions to the equations

dxn
t = fn

(
t, xn

t

)
dBt , dxt = f̄ (xt ) dBt ,(3.23)

with xn
0 = x0 and the integrals interpreted pathwise in Young’s sense. Then xn → x in prob-

ability in Cα . The same holds if the equations include a term with dB replaced by dt .

PROOF. The fact that (3.23) admits unique solutions in Cα for every realisation of B ∈ Cβ

with β > α and α+β > 1 is standard. (Combine Lemma 2.1 with [35] to show that the Picard
iteration is contracting in Cα with fixed initial value.)

Let us first obtain bounds on xn that are uniform in n. For any 1
2 < α < H − κ satisfying

αγ > 1−H + κ , we can apply bound (3.18) of Lemma 3.10 so that, over any interval [0, T ],
we obtain the bound ∥∥xn

∥∥
α,p � T H−α−κ(

1+ T γα
∥∥xn

∥∥γ
α,p

)
,

which immediately implies that ‖xn‖α,p ≤ 1, uniformly over n, provided that we choose a
sufficiently short time interval. This bound can be iterated and, therefore, yields an order one
a priori bound on ‖xn‖α,p over any fixed time interval.

We then note that we can write

xt = Zt +
∫ t

0
f̄ (xs) dBs, xn

t = Zn
t +

∫ t

0
f̄

(
xn
s

)
dBs,

with

Zt = x0, Zn
t = x0 +

∫ t

0

(
fn

(
s, xn

s

)− f̄
(
xn
s

))
dBs.

It now follows again from (3.18) in Lemma 3.10 that, over any fixed time interval, one has
the bound ∥∥Zn −Z

∥∥
H−κ,p � |fn − f̄ |−κ,γ

(
1+ ∥∥xn

∥∥γ
α,p

)
.
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Note now that by Kolmogorov’s continuity theorem, we have for any δ, ζ > 0 the inclusions

(3.24) Lp(

,Cζ )⊂ Bζ,p ⊂Lp(


,Cζ− 1
p
−δ)

so that, choosing p large enough, we conclude that |Zn −Z|α → 0 in Lp , for any p ≥ 2, as
n→∞. The claim now follows from Lemma 2.2. �

The type of application of this theorem that we have in mind is that when fn is, for exam-
ple, given by

(3.25) fn(t, x)= F(x, ynt ),

for some smooth function F and for a stationary stochastic process yt that is independent
of the driving noise B . (This is so that fn can be considered deterministic.) To give a more
concrete setting, given any two random variables X and Y , we can measure their degree of
independence α(X,Y ) (also called the ‘strong mixing coefficient’) by

α(X,Y )= sup
{
P(A∩B)− P(A)P(B) :A ∈ σ(X),B ∈ σ(Y )

}
.

Note that if F and G are two bounded centred functions, then

(3.26)
∣∣EF(X)G(Y )

∣∣≤ 4α(X,Y )|F |∞|G|∞,

see [17]. The following proposition is then crucial.

LEMMA 3.14. Let Y be a Polish space and let (yt )t∈R be a stationary Y-valued stochas-
tic process such that α(y0, yt ) � t−δ for some δ > 0. Let F : Rd × Y→ R be a measurable
function; C2 in the first variable, such that

∣∣F(x, y)
∣∣≤K,

∣∣F(x, y)− F(z, y)
∣∣≤K|x − z|,

uniformly over y ∈ Y and x, z ∈Rd . Assume for simplicity that outside of a compact set F is
periodic in its first argument.

Then, for every κ > 0, every γ < 1 and every p ≥ 1, the sequence fn defined as in (3.25) is
such that |fn− f̄ |−κ,γ → 0 in Lp as n→∞, with f̄ (x)= ∫

F(x, y)μ(dy), where μ denotes
the law of yt for any fixed t .

PROOF. Since F is bounded measurable and fn(t, x)= F(x, ynt ) ∈ C0,1, we note that f̄

is bounded Lipschitz continuous. Replacing fn by (fn − f̄ )/K , we can assume without loss
of generality that K = 1 and f̄ = 0. Making use of (3.26), we then have the bound

E
(∫ t

s
fn(r, x) dr

)2
= n−2E

∫ nt

ns

∫ nt

ns
F (x, yr)F (x, yr̄ ) dr dr̄

≤ ∣∣F(x, ·)∣∣2∞4n−2
∫ nt

ns

∫ nt

ns
α(yr , yr̄ ) dr dr̄

�
∣∣F(x, ·)∣∣2∞n−2

∫ nt

ns

∫ nt

ns
|r − r̄|−δ dr dr̄

�
∣∣F(x, ·)∣∣2∞n−2|nt − ns|2−δ � n−δ|t − s|2−δ.

On the other hand, we have the trivial bound | ∫ t
s fn(r, x) dr| ≤ |t − s|, so that for any p ≥ 2,

∥∥∥∥
∫ t

s
fn(r, x) dr

∥∥∥∥
p

� n
− δ

p |t − s|1− δ
p .
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Replacing fn(r, x) by fn(r, x)− fn(r, z), we similarly obtain∥∥∥∥
∫ t

s

(
fn(r, x)− fn(r, z)

)
dr

∥∥∥∥
p

� n
− δ

p |x − z||t − s|1− δ
p .

Applying Kolmogorov’s continuity criterion, we obtain over any finite time interval the bound∥∥∥∥
∣∣∣∣
∫ ·

0

(
fn(r, x)− fn(r, z)

)
dr

∣∣∣∣
1−κ

∥∥∥∥
p

� n
− δ

p |x − z|,

provided that we choose p large enough so that δ
p
+ 1

p
< κ . In other words, we have the

bound
∥∥∣∣fn(·, x)− fn(·, z)

∣∣−κ

∥∥
p � n

− δ
p |x − z|.

This allows us to apply Kolmogorov’s criterion a second time; this time in the spatial variable,
showing that for any compact set K, we have∥∥∥∥ sup

x =z
x,z∈K

|fn(·, x)− fn(·, z)|−κ

|x − z|γ
∥∥∥∥
p

� n
− δ

p ,

provided that p is such that d
p

< 1− γ , where the proportionality constant in front of n
− δ

p

depends on the compact set K. Since F is furthermore assumed to be periodic outside of a
compact set, this bound extends to the whole space, proving the claim that |fn − f̄ |κ,γ → 0
in Lp . �

PROOF OF THEOREM A. As above, we define

fn(t, x)= f (x, ynt ),

for f as in the statement of the theorem. Since f̄ is Lipschitz continuous and C2, the
equation ẋt = f̄ (xt ) dBt has a unique solution. Assume now that xn is a Cα solution to
dxn

t = fn(t, x
n
t ) dBt . Note that since fn ∈ C0,1, t �→ fn(t, x

n
t ) ∈ C−κ for any κ < α (by

Lemma 3.8) and the integral
∫ t

0 fn(s, x
n
s ) dBs makes sense by Lemma 3.10, so the notion

of what constitutes a solution is unambiguous.
We now modify f outside of the ball BR of radius R centred at 0 so that the result-

ing function fR is periodic in its first argument and satisfies the conditions of Lemma 3.14.

Write f R
n (t, x)

def= fR(x, ytn) and denote by x
n,R
t and xR

t the respective solutions to dxt =
fR(xt , ynt ) dBt and dxt = f̄R(xt ) dBt . By Theorem 3.13, as n→∞, x

n,R
t converges to xR

t

in probability. The reason why we are able to apply this result is that, even though the func-
tions f R

n are not deterministic, they are independent of B . Furthermore, one has x
n,R
t = xn

t

and xR
t = xt before they exit BR so that, sending R →∞, we conclude that xn

t → xt in
probability, as required. �

To conclude this section, we give a deterministic example of averaging. Fix a function

F : R×Rn ×R+→ L
(
Rm,Rd)

,

(t, x, τ ) �→ Fτ (t, x)

with the property that, for any fixed τ ∈ R+, the function Fτ is of class BC2 and is periodic
with period τ in its first argument. We furthermore assume that, for some positive Radon
measure μ on R+ and some κ > 0, one has

(3.27)
∫ ∞

0
|Fτ |BC2

(
1+ τκ)

μ(dτ) <∞.
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We then set

fn(t, x)=
∫ ∞

0
Fτ (nt, x)μ(dτ), f̄ (x)=

∫ ∞
0

1

τ

∫ τ

0
Fτ (t, x) dtμ(dτ).

REMARK 3.15. A special case is when μ is atomic, which corresponds to the case when
fn is a sum of periodic functions.

PROPOSITION 3.16. In the above setting, if we set

dx
(n)
t = fn

(
t, x

(n)
t

)
dBt , dx̄t = f̄ (x̄t ) dBt ,

then x(n) converges in probability to x̄.

PROOF. We have fn, f̄ ∈ BC2 as an immediate consequence of their definitions and
(3.27). Note also that if gε is periodic with period ε and averages to 0, then one has the bound∣∣∣∣

∫ t

s
gε(r) dr

∣∣∣∣≤ |gε|∞(|t − s| ∧ ε
)
.

As a consequence, one has∣∣∣∣
∫ t

s

(
fn(r, x)− f̄ (x)

)
dr

∣∣∣∣
�

∫ ∞
0

∣∣Fτ (·, x)
∣∣∞(|t − s| ∧ n−1τ

)
μ(dτ)

� |t − s|1−κ
∫ ∞

0

∣∣Fτ (·, x)
∣∣∞n−κτ κμ(dτ)� n−κ |t − s|1−κ .

Since one similarly has the bound∣∣∣∣
∫ t

s

(
fn(r, x)− fn(r, y)− f̄ (x)+ f̄ (y)

)
dr

∣∣∣∣ � n−κ |x − y||t − s|1−κ ,

it follows that |fn − f̄ |−κ,1 � n−κ , and we conclude by Theorem 3.13. �

4. Averaging with feedback. We now turn to the main result of this article, where we
allow for feedback from the slow dynamic into the fast dynamic. The trade-off is that our
averaging result is not as general as Theorem 3.13, as we require that the fast dynamic is
Markovian.

4.1. A class of slow/fast processes. Fix a smooth compact manifold Y for the fast vari-
able and consider the slow/fast system

dxε
t = f

(
xε
t , y

ε
t

)
dBt + g

(
xε
t , y

ε
t

)
dt,(4.1a)

dyε
t =

1

ε
V0

(
xε
t , y

ε
t

)
dt + 1√

ε
V

(
xε
t , y

ε
t

) ◦ dŴt ,(4.1b)

xε
0 = x0 ∈Rd, yε

0 = y0 ∈ Y,

where B is a m-dimensional fractional Brownian motion with Hurst parameter H > 1
2 and Ŵ

a m̂-dimensional standard Wiener process independent of B . Also, f :Rd×Y→ L(Rm,Rd)

and g :Rd ×Y→Rd . We use the shorthand

V
(
xε
t , y

ε
t

) ◦ dŴt
def=

m̂∑
k=1

Vk

(
xε
t , y

ε
t

) ◦ dŴ k
t
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for vector fields Vi(x, ·) on Y . Similarly, f (xε
t , y

ε
t ) dBt

def= ∑m
k=1 fk(x

ε
t , y

ε
t ) dBk

t . We fix a
Riemannian metric on Y and, furthermore, assume that the following holds.

ASSUMPTION 4.1. The drift vector field g is uniformly bounded and globally Lipschitz
continuous. Also f,V0 ∈ BC2 and Vk ∈ BC3 for k > 0. Furthermore, there exists λ > 0 such
that, for all x ∈Rd , y ∈ Y and v ∈ TyY , one has

∑
j>0〈v,Vj (x, y)〉2 ≥ λ|v|2.

Solutions will be interpreted as follows. We fix a realisation of the fractional Brownian
motion in Cβ for some β > 1

2 and we will look for solutions that are Hölder continuous of
order α for some α < 1

2 with α + β > 1, so that integration with respect to the realisation
of fractional Brownian motion can (and will) be interpreted as a Young integral. We will see
in Theorem 4.6 below that (4.1) is well-posed and admits solutions in Bα,p for any α < 1

2 .
Indeed, by the consideration in Remark 4.5, it is sufficient to consider the case where Y is
a Euclidean space. A posteriori, one can easily show that the slow variables actually satisfy
xε· ∈ Bβ,p for any β < H , but this will not be needed.

For any fixed (x, y) ∈Rd ×Y and any time s ∈R, consider the SDE

dYs,t = 1

ε
V0(x,Ys,t ) dt + 1√

ε
V (x,Ys,t ) ◦ dŴt , Ys,s = y,(4.2)

with t ≥ s. We write Ys,t = �̄x
s,t (y) for the solution flow associated to this equation, which

exists for all time and is unique under our assumptions. The superscript denotes the frozen
variable x and we have refrained from adding also ε to the notation.

Write now Px
t for the Markov transition semigroup on Y with generator

Lx = 1

ε
V0(x, ·)+ 1

2ε

m̂∑
i=1

(
Vi(x, ·))2

,

(vector fields are identified with first-order differential operators in the usual way), so for
any points x ∈ Rd , y ∈ Y , and bounded measurable F : Y → R, Px

t F (y) = EF(�̄x
s,t (y)).

Note that since Y is compact and the diffusion for y is uniformly elliptic for any x ∈Rd , the
solution �̄x

s,t (y) with generator Px
t admits a unique invariant probability measure μx on Y .

REMARK 4.2. The semigroup Px
t depends on ε, but in a trivial way, that is, only though

a time change. In particular, the family μx of invariant measures does not depend on ε.

Writing f̄ (x) = ∫
Y f (x, y)μx(dy), and similarly for ḡ, the following is our main result.

The proof of which will be given in Section 4.8.

THEOREM 4.3. Assume Assumption 4.1. Let Bt be a fBm with Hurst parameter H > 1
2

and let Ŵt be an independent Brownian motion. Then over any finite time interval [0, T ] and
for any β < H , the solution xε

t to (4.1) converges, in probability in Cβ as ε→ 0, to the unique
limit x̄t solving

dx̄t = f̄ (x̄t ) dBt + ḡ(x̄t ) dt, x̄0 = x0.

Furthermore, there exists an exponent κ > 0 (depending on β) such that

lim
ε→0

P
(∣∣xε

t − x̄t

∣∣
β > εκ)= 0.
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REMARK 4.4. The lengthy part of the proof is to obtain a priori estimates on the slow
variables {xε· } that are uniform in ε. The Young bound is of course useless since the Hölder
norm of r �→ yε

r diverges as ε → 0. It is more advantageous to use the sewing technique.
Since yε

r contains noise not independent of the increments of Br , (3.17) cannot be directly
applied to

∫ t
s f (xε

s , y
ε
r ) dBr . Instead we break the interaction between the slow and the fast

variables by replacing yε
r by Ys,r

def= �̄
xs
s,r (ys) and exploit the fact that, since xε

s is left frozen
at its value at time s and Ys,t is driven by Ŵ , the integrand is independent of B̃s

r . In order
to use these for obtaining estimates, we first prove that for any fixed ε > 0, our notion of
integral, used for the purpose of estimation, does still coincide with usual Young integration;
see Section 4.3.

We also consider equation (4.1b) separately, with xt a given Ft stochastic process not
necessarily the solution to (4.1a). More precisely, we consider

(4.3) dyε
t =

1

ε
V0

(
xt , y

ε
t

)
dt + 1√

ε
V

(
xt , y

ε
t

) ◦ dŴt ,

for x any given sufficiently regular Ft -adapted stochastic process. Its solution flow will
be denoted by �x

s,t , namely �x
s,t (y,ω) is the solution to the equation at time t ≥ s with

�x
s,s(y,ω)= y. For its existence, see Remark 4.5. The chance element ω in the flow is often

omitted for simplicity and the superscript denotes the dependence on the auxiliary process
xt .

Given an adapted Rd -valued stochastic processes xt and an initial condition y0, we will
henceforth use the symbol Ys,t in order to denote the process

(4.4) Ys,t
def= �̄

xs
s,t

(
�x

0,s(y0)
)
,

namely Ys,· is the solution to (4.2) with frozen parameter x = xs and with initial condition
y = ys , with ys itself given by the solution to (4.3).

REMARK 4.5. First, we assume that (4.3) is defined on the Euclidean space Rd ′ . Sup-
pose V0 ∈ C1 and V1, . . . , Vm are C2. Set Ṽ (t, y,ω) = V (xt (ω), y), the randomness in xt

is independent of that in Ŵt − Ŵs , so there exists a unique global solution to the SDE
dyt = Ṽ (t, yt ,ω) ◦ dŴt + Ṽ0(t, yt ,ω) dt , which follows from the fixed-point argument and
the condition |V (x, y)−V (x, y′)| ≤K d(y, y′). On a compact manifold the global existence
is trivial. Let (Ui,φi) be an atlas of charts in M with the property that for every i, φi(Ui)

contains the centred ball B(3r) of radius 3r and the pre-image of Vi
def= φi(B(r)) covers the

manifold. Consider the SDE dyt = (φi)∗Ṽ (t, yt )◦dŴt + (φi)∗Ṽ0(t, yt ) dt . Since the the vec-
tor fields (φi)∗(Vi) have uniform bounds on B(3r), there are uniform estimates, in i, on the
exit time of yt from Vi to Ui .

4.2. Estimates for SDEs with mixed Young and Itô integration. In this section, we show
that SDEs driven by a fractional Brownian motion with H > 1

2 and a Wiener process do admit
solutions in Bα,p for arbitrary p. This is similar to the results obtained in [11, 21], but since
our spaces are slightly different, our result does not appear to follow immediately from theirs.
The first estimate below is a semipath by path result: we fixed a realisation of the fBm, then
consider the Itô integral.

THEOREM 4.6. Let b ∈ Cβ where β > 1
2 and consider the equation in Rd ,

(4.5) dzt = F(zt ) dbt + σ(zt ) dŴt +G(zt ) dt,
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for some F ∈ BC2 and σ,G ∈ BC1. Here, the first term on the right-hand side is a Young
integral while the second term is an Itô integral. Given a time interval [0, T ] and numbers
α > 0 and p ≥ 1 with 1 − β < α < 1

2 (allowing 1 − β < α < β if σ vanishes identically),
there exists a unique solution in Bα,p . Furthermore,

(4.6) ‖z‖α,p � |b|
1
β

β + 1.

PROOF. Note that the conclusion is more restrictive for larger values of p so we can
choose p sufficiently large so that α > 1

p
and α + β > 1+ 1

p
. Let z ∈ Bα,p([0, δ]) and recall

that, by Kolmogorov’s continuity theorem, we have Bα,p ⊂ Lp(
,Cγ ) for any γ < α − 1
p

and, for any fixed κ > 0, one has

(4.7)
∥∥|z|γ ∥∥

p � δ
α− 1

p
−κ−γ ‖z‖α,p.

(This is because, on an interval of length δ, |z|γ ≤ δγ̄−γ |z|γ̄ for any 0 < γ ≤ γ̄ ≤ 1.) Let us
define, for z ∈ Bα,p([0, δ]),

�(z)= z0 +
∫ ·

0
F(zr) dbr +

∫ ·

0
σ(zr) dŴr +

∫ ·

0
G(zr) dr

= z0 +�1(z)+�2(z)+�3(z),

and show that for a sufficiently small value of δ, � maps the ball of radius 1 in Bα,p([0, δ])
centred around z0 to itself.

Choosing γ such that γ + β > 1 (which is always possible by taking p large enough and
κ small enough) and using Young’s bound (3.11), we obtain the estimate∣∣�1(z)

∣∣
α �

∣∣F(z)
∣∣
γ |b|βδβ+γ−α + |F |∞|b|βδβ−α

(4.8)
≤ |F |Lip|z|γ |b|βδβ+γ−α + |F |∞|b|βδβ−α,

where the Hölder seminorm |z|γ is really the Hölder seminorm of z�[0, δ], while the Hölder
seminorm |b|β is considered on the full interval [0, T ]. Combining this with (4.7) and using
the fact that ‖ ·‖α,p ≤ ‖| · |α‖p , we obtain the a priori bound

∥∥�1(z)
∥∥
α,p � ‖z‖α,p|b|βδ

β− 1
p
−κ + |b|βδβ−α,

where we used that α + β − 1
p

> 1. As a consequence of the Burkholder–Davis–Gundy
inequality, we immediately obtain the bound

∥∥�2(z)
∥∥
α,p � |σ |∞δ

1
2−α,

provided that α < 1
2 , p is large enough, and κ is small enough. This is the only place where

we require that α < 1
2 , which is due to the regularity of the Wiener process. If the Wiener

process is absent, we can choose any α ∈ (0, β). Finally, it is trivial that∥∥�3(z)
∥∥
α,p � |G|∞δ1−α.

This shows that, assuming that � does admit a fixed point in Bα,p , this fixed point neces-
sarily satisfies the bound

‖z‖α,p � |b|βδβ−α + δ
1
2−α + δ1−α,

provided that δβ |b|β ≤ c for a sufficiently small constant c > 0 (depending on F ). Since this
bound is independent of the initial condition, it can be iterated and necessarily holds on any



AVERAGING DYNAMICS DRIVEN BY FRACTIONAL BROWNIAN MOTION 1845

interval of size δ. It is then straightforward to verify from the definitions that, on the interval
[0, T ], one has

‖z‖α,p � δα−1 sup
s∈[0,T−δ]

∥∥z�[s, s + δ]∥∥α,p,

which implies that, fixing δ with δβ |b|β = 1
2 ,

‖z‖α,p � |b|βδβ−1 + δ−
1
2 + 1 � 1+ |b|

1
β

β ,

as claimed.
To show that such a solution exists and is unique, we note that by [11], Theorem 2.2, there

exists a unique adapted process z ∈ L2(
,Cα) solving (4.5). To show that it furthermore
satisfies the stronger bound (4.6), write τ for the stopping time given by

τM = T ∧ inf
{
t ∈ (0, T ] : ∣∣z�[0, t]∣∣α ≥M

}
.

The process zM obtained by stopping z at time τM then belongs to Bα,p and the same calcu-
lation as above shows that it satisfies the bound (4.6). Since one has limM→∞P(zM = z)= 1,
the claim follows at once. �

Since the fractional Brownian motion has moments of all order, we may take average over
all fractional Brownian paths and obtain the corollary below.

CORROLARY 4.7. Suppose that B and Ŵ are independent and let F , G and σ be as
in Theorem 4.6. Let α ∈ ( 1

p
, 1

2) be such that α +H > 1. Then for any initial value and any
interval [0, T ], there exists a unique solution in Bα,p to

dzt = F(zt ) dBt + σ(zt ) dŴt +G(zt ) dt.

Furthermore, ‖z‖α,p � 1+ ‖|B|
1
β

β ‖p . (If σ vanishes, we may take α ∈ ( 1
p
,H).)

4.3. Stochastic equals Young. We will make use of the following fact.

LEMMA 4.8. Let α ∈ (0,1) and let F and G be two positive functions such that

F(t)≤
∫ t

0
F 1−α(s)G(s) ds.

Then one has the bound Fα(t)≤ α
∫ t

0 G(s)ds.

PROOF. Let F̂ (t) = ∫ t
0 F 1−α(s)G(s) ds, so that F̂ is a continuous increasing function

and we have the bound

d

dt
F̂ α(t)= αF̂ α−1(t)F 1−α(t)G(t)≤ αG(t),

since F 1−α ≤ F̂ 1−α . The claim then follows since Fα ≤ F̂ α . �

Recalling Ys,t given by (4.4) (with xt arbitrary, not necessarily solution to (4.1a)), standard
methods for estimating its deviation from yt on the time scale of [s, t] blow up exponentially
fast as ε → 0. (For longer times, we will use the smoothing properties of the semigroup.)
Recall that yu =�x

0,u(y0)=�x
s,u(ys) and Ys,u = �̄

xs
s,u(ys), and denote by ρ the Riemannian

distance on Y .
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LEMMA 4.9. Suppose x· ∈ Bα,p where α < 1
2 and α +H > 1. For p ≥ 2,

(4.9)
∥∥∥ sup
s≤u≤t

ρ(yu,Ys,u)
∥∥∥
p
� ‖x‖α,p · ε− 1

2 |t − s| 1
2+α,

provided that |t − s| ≤ min(1
4δ, c)ε where δ is the injectivity radius of Y and c a constant

depending on the bounds on V,V0.

PROOF. Since Y is compact, we can find a function d which agrees with the Riemannian
distance in a neighbourhood of the diagonal and such that d2 is globally smooth. (Take d =
g ◦ρ for g :R+→R a smooth concave function with g(r)= r when r < δ/4 and g(r)= δ/2
when r ≥ 3δ/4, where δ denotes the injectivity radius of Y .)

We now claim that, by applying Itô’s formula to d2p(yu,Ys,u) and then using the
Burkholder–Davis–Gundy inequality, one obtains for p ≥ 1 the bound

E sup
s≤u≤t

d2p(yu,Ys,u)

(4.10)

� 1

ε

∫ t

s
Ed2p(yr , Ys,r ) dr + 1

ε

∫ t

s
E

(
d2p−2(yr , Ys,r )|xu − xr |2)

dr.

We proceed with the proof based on this, and return to give more explanation at the end of the
proof. Let σt = E supu≤t d2p(yu,Ys,u). Using Hölder’s inequality on the last term, we obtain
the bound

σt �
1

ε

∫ t

s
σ

2p−2
2p

r

(‖xu − xr‖2
2p + σ

1
p
r

)
dr,

so that Lemma 4.8 yields

σ
1
p

t � 1

ε

∫ t

s

(‖xu − xr‖2
2p + σ

1
p
r

)
dr.

This allows us to apply Gronwall’s inequality, yielding

σ
1
p

t � ec t−s
ε

ε

∫ t

s
‖xr − xu‖2

2p dr � |t − s|
ε

‖x‖2
α,2p|t − s|2α,

where we used the bound |t − s| ≤ ε to make sure that the exponential factor doesn’t cause
an explosion. This is precisely the required bound since we considered d2p rather than ρp .

The bound (4.10) is straightforward in Euclidean space using the x↔ y symmetry of the
distance |x − y|2. If Y is a compact manifold, 〈∇xρ(x, y), v〉 = −〈∇yρ(x, y), ṽ〉, where v, ṽ

are tangent vectors at TxM and TyM , respectively, and are obtained by parallel translations
along the geodesic from one to the other. This holds because we only consider x, y such that
their Riemannian distance ρ(x, y) is smaller than 1/2 of the injectivity radius.

This means the stochastic differential dyt and dYs,t can then be compared using the Lip-
schitz continuity assumption on the vector fields, modulo the Stratonovich correction term
which can be dealt with by the Lipschitz continuity assumption on

∑m̂
i=1∇Vi

Vi . The same
consideration holds for our modified distance function which is of the form g ◦ ρ where g is
a smooth real-valued function. �

We consider the two parameter family of stochastic processes:

Aε
s,t =

∫ t

s
h(xs, Ys,r ) dBr .(4.11)
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This is for fixed process x· ∈ Bα,p and for Ys,r = �̄
xs
s,t (�

x
0,s(y0)), as in (4.4). We will also

write yt for the process obtained by solving (4.3), that is, yt =�x
0,t (y0,ω), and we recall that

both yt and Ys,t depend of course on ε.
We have the following conclusion, which holds for any x· ∈ Bα,p (we emphasise that this

does in particular include the solution to (4.1a) but we do not restrict ourselves to that case).

LEMMA 4.10. Assume that h ∈ BC1 and that x ∈ Bα,p with α + H > 1 + 1
p

. Then
for each ε fixed, the process It (A

ε) given by Lemma 3.5 coincides with the Young integral∫ t
0 h(xs, ys) dBs .

PROOF. Note first that under our assumptions, the process s �→ h(xs, ys) belongs almost
surely to Cβ for every β < (α − 1

p
) ∧ 1

2 , so that the Young integral is well defined for every

B ∈ CH−κ for κ sufficiently small.
Let Ãε

s,t = h(xs, ys)(Bt −Bs), so that It (Ã
ε) coincides with that Young integral by (3.10).

As a consequence of the last statement of Lemma 3.5, it is sufficient to show that∥∥Aε
s,t − Ãε

s,t

∥∥
p � |t − s|η̄,

for some η̄ > 1. Note that ε > 0 is fixed, so we are allowed to obtain bounds which diverge
as ε→ 0. Apart from xs , the evolution of Ys,r has no further dependence on the fractional
Brownian motion, so that h(xs, ys)− h(xs, Ys,r ) is Fs-measurable for Fs = Gs ∨ σ(Ŵ ). We
then use Lemma 3.4 with κ = 0 and p′ < p, so that∥∥∥∥

∫ t

s

(
h(xs, ys)− h(xs, Ys,r )

)
) dBr

∥∥∥∥
p′

(4.12)
≤ ∥∥∣∣h(xs, ys)− h(xs, Ys,·)

∣∣∞
∥∥
p|s − t |H .

By the Lipschitz continuity of h, we have the bound∥∥∣∣h(xs, ys)− h(xs, Ys,·)
∣∣∞

∥∥
p �

∥∥∥ sup
r∈[s,t]

ρ(ys, Ys,r )
∥∥∥
p
.

Since the distance ρ is bounded, it follows from Lemma 4.9 that, for every κ > 0, one has the
bound ∥∥∥ sup

r∈[s,t]
ρ(ys, Ys,r )

∥∥∥
p
� 1∧ (

ε−
1
2 |t − s| 1

2+α)≤ (
ε−1/2|t − s| 1

2+α)1−κ
.

Combining this with (4.12), the claim follows. �

4.4. Semigroups with a parameter: Ergodicity and continuity. Denote by |F |Lip the best
Lipschitz constant of F and set |F |Osc = supF − infF . On a space with bounded radius,
|F |Osc � |F |Lip. Recall that Px

t denotes the semigroup associated to (4.2). By differentiating
the solution flow, a brutal bound on the derivative flow which is the solution to the equation
dvt = ε−1/2∇vt V ◦ dŴt + ε−1∇vt V0 dt (the estimates depend on the covariant derivatives up
to order 2), yields a bound of the type |Px

t F |Lip ≤ CeCt/ε|F |Lip. This can be improved using
ergodicity; for large time, we will also make use of the smoothing properties of the Markov
semigroups Px .

LEMMA 4.11. Under Assumption 4.1, the following holds:

(1) There exist constants c,C such that for any x ∈Rd ,∣∣Px
t F

∣∣
Osc ≤ Ce−ct/ε|F |Osc,(4.13)

∣∣Px
t F

∣∣
Lip ≤ Ce−ct/ε|F |Lip,(4.14)

∣∣Px
t F

∣∣
BC2 ≤ Cεt−1e−ct/ε|F |∞,(4.15)

uniformly over t ∈R+.
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(2) For any x, x̄ ∈Rd , the bound

(4.16)
∣∣Px

t F −P x̄
t F

∣∣∞ ≤ C|x − x̄||F |Lip,

holds for all t ≥ 0.
(3) If h :Rd×Y→R is a Lipschitz continuous bounded function with

∫
Y h(x, y)μx(dy)=

0 for every x, then for any κ ∈ (0,1),

(4.17)
∣∣Px

t h(x, ·)−P x̄
t h(x̄, ·)∣∣∞ � |h|κ∞|h|1−κ

Lip |x − x̄|1−κe−κct/ε.

PROOF. It follows from standard estimates (see, e.g., [6]) that for any t ∈ (0, ε), one has
the bounds ∣∣Px

t F
∣∣
Lip ≤ C

(
1∨ (t/ε)−1/2)|F |Osc,

∣∣Px
t F

∣∣
BC2 ≤ C

(
1∨ (t/ε)−1)|F |∞,

(4.18)

where the constant C only depends on derivatives of V0 up to order 2 and of the remaining Vk

up to order 3. The reason why one obtains the oscillation norm on the right-hand side of the
first bound is that |F |Lip does not change under constant shifts and |F |Osc = infc∈R 2|F−c|∞.
In fact, (4.18) holds for all t , but we do not need it.

It furthermore follows from the uniform positive lower bounds on the heat kernel (see [1]
for the case of Rn and, e.g., [4, 32] for versions that apply to manifolds; see also [34]) that
|Px

ε F (y1) − Px
ε F (y2)| ≤ (1 − λ)|F |Osc for some constant λ > 0, so that (4.13) follows by

iterating this bound (Doeblin’s condition).
Using this last inequality for time t − ε and (4.18) for the remaining time ε, we obtain for

t ≥ ε the bound ∣∣Px
t F

∣∣
Lip =

∣∣Px
ε Px

(t−ε)F
∣∣
Lip ≤ Ce−ct/ε|F |Lip.

For t ≤ ε on the other hand, this bound follows from Lp bounds on the Jacobian, so that
(4.14) holds. The bound (4.15) follows in the same way.

It is also rather straightforward to verify that

(4.19)
∣∣Px

t F −P x̄
t F

∣∣∞ ≤ CeCt/ε|x − x̄||F |Lip.

While this bound is good for t ≤ ε, it can be significantly improved for t > ε. Indeed, for
t ≥ ε and any partition � of [0, t] into subintervals of size at most ε and at least ε/2, we have∣∣Px

t F −P x̄
t F

∣∣∞ ≤
∑

[s,u]∈�

∣∣Px
t−u

(
Px

u−s −P x̄
u−s

)
P x̄

s F
∣∣∞

�
∑

[s,u]∈�

e−cs/ε|x − x̄||F |Lip ≤ C|x − x̄||F |Lip.

Here, we used (4.14), the small time bound (4.19), and the fact that Px
t−u is a contraction in

L∞.
For the last bound, we make use of the fact that, since the integral of h(x) against the

invariant measure for Px
t vanishes, its supremum norm is controlled by its oscillation and

vice versa, so that (4.13) yields the bound∣∣Px
t h(x, ·)∣∣∞ ≤ Ce−ct/ε|h|∞.

Combining this with (4.16), we see that∣∣Px
t h(x, ·)−P x̄

t h(x̄, ·)∣∣∞ � inf
{|h|∞e−ct/ε, |x − x̄||h|Lip

}
� |h|κ∞|h|1−κ

Lip |x − x̄|1−κe−κct/ε,

completing the proof. �
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LEMMA 4.12. Fix x̄ ∈Rd and y ∈ Y and write yt = �̄x̄
0,t (y). Fix p ≥ 2 and F : Y→R

bounded measurable, and write F̄ (x̄)= ∫
F(y)μx̄(dy). Then one has the bound

(4.20)
∥∥∥∥
∫ t

0

(
F(yr)− F̄ (x)

)
dr

∥∥∥∥
p

� ε
1
p t

1− 1
p |F |Osc,

uniformly over x̄ ∈Rd , y ∈ Y and t ≥ 0.

PROOF. Since infF ≤ F̄ (x)≤ supF , one has the almost sure bound∣∣∣∣
∫ t

0

(
F(yr)− F̄ (x)

)
dr

∣∣∣∣≤ 2t |F |Osc,

so that the general case of (4.20) follows from the case p = 2 by interpolation.
For p = 2, we write F̃ (y)= F(y)− F̄ (x̄). With this notation, we have the identity

E
(∫ t

0
F̃ (ys) ds

)2
= 2

∫ t

0

∫ r

0

(
P x̄

s

(
F̃ ·P x̄

r−sF̃
))

(y) ds dr.

By Lemma 4.11, we can bound the supremum of P x̄
r−sF̃ by Ce−c|r−s|/ε|F̃ |Osc, giving the

bound

E
(∫ t

0
F̃ (ys) ds

)2
≤ C|F̃ |2Osc

∫ t

0

∫ r

0
e−

c|s−r|
ε ds dr.

Since this integral is bounded by a multiple of εt and since |F̃ |Osc = |F |Osc, the claim follows.
�

CORROLARY 4.13. We fix an adapted stochastic process xt with values in Rd and yt

with values in Y . Let h : Rd × Y→ R be bounded measurable, set Ys,t = �̄
xs
s,t (ys), and set

h̄(x)= ∫
h(x, y)μx(dy). For p ≥ 2 and s ≤ u≤ t , one has the bound∥∥∥∥

∫ t

u

(
h(xs, Ys,r )− h̄(xs)

)
dr

∥∥∥∥
p

� |h|Oscε
1
p |t − u|1− 1

p ,

uniformly over ε ∈ (0,1], and over the processes xt and yt .

PROOF. Applying Lemma 4.12 with x̄ = xs , y = Ys,u ≡ �̄
xs
s,u(ys) and F = h(xs, ·), we

then obtain

E
(∣∣∣∣

∫ t

u

(
h
(
xs, �̄

xs
u,r (Ys,u)

)− h̄(xs)
)
dr

∣∣∣∣
p∣∣∣Fu

)
�

∣∣h(xs, ·)
∣∣
Oscε

1
p |t − u|1− 1

p .

Since this bound is uniform over y and since |h(x̄, ·)|Osc ≤ |h|Osc for every x̄, the claim
follows. �

4.5. Regularity of limiting drift. In this section, we show that Assumption 4.1 guarantees
that the limiting functions f̄ and ḡ do again belong to BC2. Throughout Section 4.5 (and only
here), we write Px

t for the semigroup generated by (4.2), but with ε = 1, that is, we work on
the fast timescale. The reason why we can do this is that we are only interested in showing a
result about the invariant measures, and these do not depend on ε. We also write �̄x

t for the
corresponding flow map, so that (Px

t F )(y)= EF(�̄x
t (y)). The main ingredient for the proof

is the following claim.

LEMMA 4.14. Under Assumption 4.1, for any fixed τ > 0, the map x �→ Px
τ is differen-

tiable, uniformly in x, as a map Rd → L(BC2,BC1) and as a map Rd → L(BC1,BC0). It is
also twice differentiable, uniformly in x, as a map Rd → L(BC2,BC0).
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PROOF. Consider the semigroup P̄t on Rd ×Y given by

(P̄tF )(x, y)= EF
(
x, �̄x

t (y)
)
.

By [6], Proposition A8, and [24] (see also [22] for related results), P̄t maps BCk into itself
for k ∈ {0,1,2}, and the claim follows. �

LEMMA 4.15. Under Assumption 4.1, the map f̄ (x) = ∫
Y f (x, y)μx(dy) belongs

to BC2.

PROOF. For any given x and t , we view Px
t as a bounded linear operator on the spaces

BCk of k times continuously differentiable functions on Y , k = 0,1,2. Writing �x for the
projection operator given by �xF = 〈μx,F 〉1, where F : Y→R and 1 denotes the constant
function, we note that �x commutes with Px

t and that, by part (1) of Lemma 4.11, we can
choose t sufficiently large so that |(1−�x)Px

t F |BCk ≤ 1
2 |F |BCk for k ∈ {0,1,2}, uniformly

over x. We used the fact that F −�xF is centred.
We fix such a value of t from now on. Writing Rx(λ) for the resolvent of Px

t , it follows that
that for each k ∈ {0,1,2}, the operator norm of Rx(λ) in BCk is bounded by 4, uniformly in x

and uniformly over λ belonging to the circle γ of radius 1
4 centred at 1. Indeed, for B = BCk ,

we write B = 〈1〉 ⊕ B⊥ where B⊥ = {F : 〈μx,F 〉 = 0}, and view �x as the projection onto
〈1〉 for this decomposition.

Since �x commutes with Px
t , that operator splits with respect to this decomposition as

Px
t = id⊕ (1−�x)Px

t and its resolvent is given by

Rx(λ)= (
λ−Px

t

)−1 = (λ− id)−1⊕ (
λ− (1−�x)Px

t

)−1
.

The first term is obviously bounded by 4, while the second term is given by the convergent
Neumann series

λ−1
(

1+ 1

λ
(1−�x)Px

t +
1

λ2

(
(1−�x)Px

t

)2 + · · ·
)
,

which is also bounded by 4 in operator norm since |λ| ≥ 3
4 and ‖(1−�x)Px

t ‖ ≤ 1
2 . We claim

that, uniformly over λ ∈ γ and x ∈Rd , the map x �→Rx(λ) is C2 as a map into L(BC2,BC0)

and C1 as a map into L(BC2,BC1) and into L(BC1,BC0). Indeed, this is an immediate
consequence of the identities

DxR
x =Rx(

DxPx
t

)
,Rx,

D2
xR

x = 2Rx(
DxPx

t

)
Rx(

DxPx
t

)
Rx +Rx(

D2
xPx

t

)
Rx,

(4.21)

combined with Lemma 4.14.
We now recall that one has [18], Theorem III.6.17,

�x = 1

2iπ

∮
γ

Rx(λ) dλ.

In particular, for any fixed probability measure μ on Y , one has the identity

(4.22) f̄ (x)= 1

2iπ

∮
γ

〈
μ,Rx(λ)f (x, ·)〉dλ.

It now suffices to note that, by our assumptions, one has Dk
xf (x, ·) ∈ BC2−k for k ∈ {0,1,2}

uniformly over x and, therefore, the claim follows from (4.21) combined with Lemma 4.14.
�
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4.6. Uniform estimates on the slow variable. The main theorem in this section is a uni-
form estimate for the slow variables. The divergence of the Hölder norm of r �→ yε

r means
that the bounds given on Aε and Ãε in the proof of Lemma 4.10 diverge as ε→ 0, and are
thus inadequate to show any kind of tightness result. This is where our precise choice of Aε

comes in. We will show that Aε belongs to the Banach space H
p
η ∩ H̄

p
η̄ with uniform (in ε)

upper bounds on its norms.
The estimates obtained in Lemma 4.11 on Px

t are not quite sufficient for our use, we will
also introduce a second family of random semigroups Qx

s,t generated by the flow �x
s,t ; see

Definition 4.18 below. Given the Wiener process Ŵt and the fractional Brownian motion Bt

as before, we define the filtration Ft = Gt ∨ Ĝt , where

Gt = σ {Bu −Br : r ≤ u≤ t}, Ĝt = σ {Ŵu − Ŵr : r ≤ u≤ t}.
Observe that Gt = σ {Wu −Wr : r ≤ u≤ t}. We will also make use of the ‘noise’

(4.23) Ĝs
t = σ {Ŵu − Ŵr : s ≤ r ≤ u≤ t},

and also Gs
t defined using Wt . In the definition for Bα,p , we use the filtration Ft given above.

The following theorem is the main technical tool in the proof of Theorem 4.3 as it yields
uniform bounds in ε on the fixed-point map defining x. Its proof relies on three further lem-
mas: Lemmas 4.23, 4.22 and 4.24, given after the proof of the theorem.

THEOREM 4.16. Let T > 0, let p ≥ 2 and α ∈ (0, 1
2) be such that 1+ 1

p
< α +H , let

x· be a Rd -valued process in Bα,p and let yε· be the solution to (4.3) where V is assumed to
satisfy Assumption 4.1. Then there are exponents η > 1

2 and η̄ > 1 such that, for h :Rd×Y→
R a bounded uniformly Lipschitz continuous function, one has the following:

1. Suppose in addition that h̄(x)
def= ∫

Y h(x, y)μx(dy)= 0 for all x. Then for any β < H ,
there exists a constant κ > 0 such that

(4.24)
∥∥∥∥
∫ t

s
h
(
xr, y

ε
r

)
dBr

∥∥∥∥
p

� εκ |h|BC1
(‖x‖α,p|t − s|η̄ + |t − s|η)

,

holds uniformly over ε and over xt .
2. For general h, one has the bound

(4.25)
∥∥∥∥
∫ t

s
h
(
xr, y

ε
r

)
dBr

∥∥∥∥
p

� |h|BC1
(‖x‖α,p|t − s|η̄ + |t − s|η)

.

PROOF. Fix an arbitrary Rd -valued stochastic process xt in Bα,p (which is not necessar-
ily a solution to our equation). We first note that the bound (4.25) for general h (i.e., with
h̄ = 0) follows from the bound (4.24), combined with the estimate (3.18) for

∫ t
0 h̄(xr) dBr .

We therefore only focus on the proof of (4.24) and assume that h̄= 0 from now on.
During the rest of the section, we will also suppress the superscript ε whenever possible.

Note that standard estimates for the Young integral
∫ t

0 h(xr , y
ε
r ) dBr obtained by taking limits

in the Riemann sum
∑
[v,u]∈P h(xs, ys)(Bu−Bv) would require uniform (in ε) bounds on the

Hölder norms on yε , which we do not have.
In order to obtain estimates that are uniform in ε, it will be useful to use Lemma 4.10 and

write the integral as lim|P|→0
∑
[u,v]∈P Au,v , where A is given by

As,t =
∫ t

s
h(xs, Ys,r ) dBr .

In order to obtain the bound (4.24) from Lemma 3.5, it therefore remains to obtain a bound
on ‖A‖η,p and |||A|||η̄,p for some p ≥ 2, some η > 1

2 and some η̄ > 1. The bound on ‖A‖η,p

is contained in the following lemma, the proof of which is relatively straightforward.
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LEMMA 4.17. Assume that h̄= 0. For every p ≥ 2 and κ > 0, one has {As,t } ∈H
p
η with

η=H − κ and

‖As,t‖p � εκ̄ |t − s|H−κ,

uniformly over s, t ∈ [0, T ], provided that κ̄ < (κ/2)∧ (1/p).

PROOF. To prove that ‖A‖η,p = sups<t
‖As,t‖p
|t−s|η is finite, we first write

Fs(r)= h(xs, Ys,r ),

so that

As,t =
∫ t

s
Fs(r) dBr.

Furthermore, conditional on Fs , Fs and B are independent, so that we can apply Lemma 3.4,
yielding for q > p and κ ∈ [0,1) the bound

‖As,t‖p �
∥∥|Fs |−κ

∥∥
q |t − s|H−κ .

On the other hand, it follows from Corollary 4.13 exploiting ergodicity, that for s ≤ u≤ v ≤ t ,
one has the bound ∥∥∥∥

∫ v

u
Fs(r) dr

∥∥∥∥
q

� ε
1
q |v− u|1− 1

q ,

so that Kolmogorov’s continuity theorem implies the bound

∥∥|Fs |−κ

∥∥
q =

∥∥∥∥sup
u=v

|u− v|1−κ
∫ v

u
Fs(r) dr

∥∥∥∥
q

� ε
1
q ,

provided that κ > 2
q

. Choosing q = 1/κ̄ completes the proof. �

It now remains to show that As,t ∈ H̄
p
η̄ for some η̄ > 1 and to obtain a suitable bound for

small values of ε. We have the identity

δAsut =
∫ t

u

(
h(xs, Ys,r )− h(xu,Yu,r )

)
dBr.

Recall that this integral is defined as the sum of a Wiener integral against B̃u
r and

a Riemann–Stieltjes integral against B̄u
r . Since B̃u

r is independent of Fu ∨ Ĝt , while
h(xs, Ys,r )− h(xu,Yu,r ) is measurable with respect to it, the Wiener integral has vanishing
conditional expectation against Fu, so that

E(δAsut|Fu)=
∫ t

u
E

(
h(xs, Ys,r )− h(xu,Yu,r )|Fu

) ˙̄Bu
r dr

=
∫ t

u

(
Pxs

r−uh(xs, ·)(Ys,u)−Pxu
r−uh(xu, ·)(yu)

) ˙̄Bu
r dr.

In the last line, we have used

Ys,r = �̄xs
s,r (ys)= �̄xs

u,r �̄
xs
s,u(ys)= �̄xs

u,r (Ys,u), Yu,r = �̄xu
u,r (yu).

It seems to be difficult to get a good enough bound on this expression, so we exploit the fact
that we really only need to bound the conditional expectation of δAsut with respect to Fs

rather than Fu. Conditioning on Fs however has the unfortunate side effect that it no longer
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keeps this term separate from the term ˙̄Bu
r . Instead, we are going to condition on Fs ∨ Gu.

We have

E(δAsut|Fs ∨ Gu)

=
∫ t

u
E

(
Pxs

r−uh(xs, ·)(Ys,u)−Pxu
r−uh(xu, ·)(yu)|Fs ∨ Gu

) ˙̄Bu
r dr(4.26)

=
∫ t

u

(
Pxs

y−sP
xs
r−uh(xs, ·)(ys)−E

(
Pxu

r−uh(xu, ·)(yu)|Fs ∨ Gu

)) ˙̄Bu
r dr.

Given a ‘final time’ u, we write

Uu
s =

{
F : 
×Y→R :

F is bounded and (Fs ∨ Gu)⊗B(Y)-measurable
}
.

(4.27)

Given an element F ∈ Uu
s , we will use various norms for its Y-dependency, but will always

keep the ω-dependency fixed, so that these norms are interpreted as R+-valued random vari-
ables. For example, we set

|F |∞(ω)= sup
y∈Y

∣∣F(ω,y)
∣∣, |F |Lip(ω)= sup

ȳ =y∈Y
ρ(y, ȳ)−1∣∣F(ω,y)− F(ω, ȳ)

∣∣,
and similarly for |F |Osc(ω), but we will always denote them simply by |F |∞, |F |Lip, etc.

For any stochastic process x (not necessarily a solution to our equation) adapted to the full
filtration F , we then define a collection of bounded linear operators Qx

r,v : Uu
v → Uu

r in the
following way.

DEFINITION 4.18. Given a fixed value u and a process x adapted to F , we set for r ≤
v ≤ u and F ∈ Uu

v ,

(4.28)
(
Qx

r,vF
)
(ω, y)

def= E
(
F

(·,�x
r,v(y, ·))|Fr ∨ Gu

)
(ω).

REMARK 4.19. The fact that we have Gu and not Gv in the right-hand side of (4.28) is not
a typo. We always condition on the whole trajectory of the fractional Brownian motion B up
to the ‘final’ time u. Observe that Qx

r,vF is a three-parameter family of stochastic processes,
and could be denoted by Qx,u

r,v F .

Since �̄x̄
r,v(y) is independent of Gu, for u≥ v ≥ r , we can also build from P x̄

v−r an operator

P̂ x̄
r,v : Uu

v → Uu
r by setting

(
P̂ x̄

r,vF
)
(ω, y)

def= E
((
P x̄

v−rF
)
(·, y)|Fr ∨ Gu

)
(ω).

By P x̄
v−rF (ω,y), we mean applying the semigroup to each F(ω, ·), so if F happens to be

Fr ∨ Gu-measurable, then P̂ x̄
r,v coincides with P x̄

v−r , applied ω-wise.
Using these notation, we can rewrite (4.26) as

E(δAsut|Fs ∨ Gu)=
∫ t

u

(
P̂xs

s,uP
xs
r−uh(xs, ·)(ys)

−Qx
s,uP

xu
r−uh(xu, ·)(ys)

) ˙̄Bu
r dr.

(4.29)

The expression in (4.29) then naturally splits into two parts. The first part is given by

I1
def=

∫ t

u
P̂xs

s,u

(
Pxs

r−uh(xs, ·)−Pxu
r−uh(xu, ·))(ys)

˙̄Bu
r dr.
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We then apply the estimate in (4.17), namely
∣∣Px

t h(x, ·)−P x̄
t h(x̄, ·)∣∣∞ � |h|κ∞|h|1−κ

Lip |x − x̄|1−κe−κct/ε.

This term is then bounded by

(4.30) |I1|� |h|1−κ
Lip |h|κ∞E

(|xs − xu|1−κ |Fs ∨ Gu

) ∫ t

u
e−κc(r−u)/ε

∣∣ ˙̄Bu
r

∣∣dr.

Consequently, for 1
p′ + 1

q ′ = 1,

‖I1‖p � |h|1−κ
Lip |h|κ∞

∥∥E
(|xs − xu|1−κ |Fs ∨ Gu

)∥∥
pp′

∥∥∥∥
∫ t

u
e−

κc(r−u)
ε

∣∣ ˙̄Bu
r

∣∣dr

∥∥∥∥
pq ′

.

We choose p′ = (1− κ)−1 and q ′ = κ−1, which yields the bound
∥∥E

(|xs − xu|1−κ |Fs ∨ Gu

)∥∥
pp′ ≤ ‖x‖α,p|s − u|(1−κ)α

recall that ‖ ˙̄Bu
r ‖q � |r − u|H−1 for every q ≥ 1 so that

∥∥∥∥
∫ t

u
e−

κc(r−u)
ε

∣∣ ˙̄Bu
r

∣∣dr

∥∥∥∥
pq ′

� εH ∧ |t − u|H .

Combining these bounds, we conclude that for every η̄ < H +α there exist κ, κ̄ > 0 such that

‖I1‖p � εκ̄‖x‖α,p|t − u|η̄|h|1−κ
Lip |h|κ∞.

The remaining term is given by

I2
def=

∫ t

u

((
P̂xs

s,u −Qx
s,u

)
Pxu

r−uh(xu, ·))(ys))
˙̄Bu
r dr.

We then apply the following estimate from Lemma 4.24, to be found after this proof,

∣∣P̂xs
s,uF −Qx

s,uF
∣∣∞ �

√
E

(|x|2ᾱ|Fs ∨ Gu

)|u− s|ᾱ|F |Lip,

where the Hölder norm |x|ᾱ is taken on [s, u] and ᾱ < H is a number to be chosen, to deduce
that

|I2| =
∣∣∣∣
∫ t

u

(
P̂xs

s,uP
xs
r−uh(xs, ·)−Qx

s,uP
xs
r−uh(xs, ·))(ys)

˙̄Bu
r dr

∣∣∣∣
�

∫ t

u

√
E

(|x|2ᾱ|Fs ∨ Gu

)|u− s|ᾱ∣∣Pxs
r−uh(xs, ·)

∣∣
Lip

∣∣ ˙̄Bu
r

∣∣dr.

We apply to this the following estimate obtained in Lemma 4.11:
∣∣Pxs

r−uh(xs, ·)
∣∣
Lip ≤ Ce−c(r−u)/ε

∣∣h(xs, ·)
∣∣
Lip ≤ Ce−c(r−u)/ε|h|Lip.

Then, provided that we choose ᾱ and p in such a way that α < ᾱ − 1
p

, we can apply Kol-
mogorov’s continuity theorem yielding

‖I2‖p � ‖x‖α,pεκ̄ |h|Lip(t − s)ᾱ+H−κ̄ .

Combining these estimates, we have shown that, provided that we choose p sufficiently large
and κ̄ sufficiently small, there exists η̄ > 1 and a constant C(h) such that

∥∥E(δAsut|Fs ∨ Gu)
∥∥
p ≤C(h)‖x‖α,pεκ̄ (t − s)η̄.
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When combining this with Lemma 4.17, we have proved that A belongs to H
p
η ∩ H̄

p
η̄

with η > 1
2 and η̄ > 1, and we have obtained bounds for it that are of order εκ̄ for suffi-

ciently small κ̄ > 0. We also know from Lemma 4.10 that It (A
ε) equals the Young integral∫ t

0 h(xs, y
ε
s ) dBs . Applying Lemma 3.5, this leads to the bound∥∥∥∥

∫ t

s
h
(
xε
r , y

ε
r

)
dBr

∥∥∥∥
p

�
(|||A|||η̄,p|t − s|η̄ + ‖A‖η,p|t − s|η)

≤ C(h)‖x‖α,pεκ̄ |t − s|η̄ + εκ̄ |t − s|η,
uniformly over ε ∈ (0,1], thus completing the proof of (4.24). �

CORROLARY 4.20. Suppose that Assumption 4.1 holds. The solutions xε to (4.1) are
uniformly bounded in Bα,p for any α < H and p ≥ 1.

PROOF. The assumptions on our data guarantee that, for each ε > 0, there exists a unique
solution to (4.1) that belong to Bα,p , so we only need to obtain the uniform bound. By Theo-
rem 4.16, we obtain for the time interval [0, T ] the bound

‖x‖α,p � C
(|f |∞, |f |Lip

)
T κ(

1+ ‖x‖α,p

)+ T |g|∞,

where κ > 0, which implies the required bound on a sufficiently short time interval. One
concludes by iterating the bound. �

REMARK 4.21. It is clear from the proof of Corollary 4.20 that instead of assum-
ing that g is bounded, it suffices to guarantee that it satisfies a bound of the form
‖ ∫ T

0 g(xr, y
ε
r ) dr‖p � T κ(1 + ‖x‖α,p) for some κ > 0. (Here, yε

r solves (4.3) driven by
x as usual.)

4.7. Bounds on the random semigroup. In the rest of this section, we fix a Ft -adapted
stochastic process xt and as usual �x

s,t denotes the solution flow to (4.3). For any x̄ ∈ Rd ,
fixed, �x̄

s,t denotes the solution to (4.2) with frozen variable x̄. We first bound the difference
between the evolutions of �x and �̄x̄ over a short time period [r, r ′].

LEMMA 4.22. Suppose that x ∈ Bα,p . Let F :
×Y→R be bounded and (Fs ∨Gu)⊗
B(Y) measurable. Then, for s ≤ r < r ′ ≤ u with |r ′ − r| ≤ ε and for x̄ ∈ Rd , one has the
almost sure bound

(4.31)
∣∣P̂ x̄

r,r ′F −Qx
r,r ′F

∣∣∞ �
√

sup
v∈[r,r ′]

E
(|xv − x̄|2|Fr ∨ Gu

)|F |Lip.

PROOF. Since �̄x̄
r,r ′(ys) depends on the filtration of B only through the value of ys , it is

measurable with respect to Fr ∨ Ĝr
r ′ ; cf. (4.23). Since furthermore Ĝr

r ′ is independent of Gu,
it follows that (

P̂ x̄
r,r ′F(ω, ·))(y)= E

(
F

(
ω, �̄x̄

r,r ′(y)
)|Fr ∨ Gu

)
.

We now have∣∣(P x̄
r,r ′F −Qx

r,r ′F
)
(ω, y)

∣∣= ∣∣E(
F

(
ω, �̄x̄

r,r ′(y)
)− F

(
ω,�x

r,r ′(y)
)|Fr ∨ Gu

)∣∣
≤ |F |LipE

(
ρ

(
�̄x̄

r,r ′(y),�x
r,r ′(y)

)|Fr ∨ Gu

)
.

We then apply Itô’s formula to d(�̄x̄
r,r ′(y),�x

r,r ′(y)), where d is a modification of ρ such that

d2 is smooth. Since the increments of Ŵ on [r, r ′] are independent of Fr ∨Gu, its martingale
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term vanishes after taking conditional expectation with respect to Fr ∨ Gu. The rest of the
estimate for the distance is routine (see Lemma 4.9) and the required bound follows. �

We fix a ‘final time’ u and recall that Uu
s is the space of bounded real valued functions

from 
×Y that are measurable with respect to (Fs ∨ Gu)⊗B(Y); cf. (4.27).

LEMMA 4.23. Let s < r < v. Let F ∈ Uu
s be a function that is continuous in the second

variable for almost every ω. The operators Qx
s,r : Uu

r → Uu
s defined by (4.28) satisfy the

composition rule

Qx
s,r ◦Qx

r,vF =Qx
s,vF.

PROOF. Since �x
r,v(�

x
s,r (y,ω),ω) = �x

s,v(y,ω) and ω �→ �x
s,r (y,ω) is (Fr ∨ Gu)-

measurable, for F ∈ Uu
v ,(

Qx
s,rQx

r,vF
)
(y)= E

((
Qx

r,vF
)(·,�x

s,r (y)
)|Fs ∨ Gu

)
= E

(
E

(
F

(·,�x
r,v

(
�x

s,r (y)
))|Fr ∨ Gu

)|Fs ∨ Gu

)
= E

(
F

(·,�x
s,v(y)

)|Fs ∨ Gu

)= (
Qx

s,vF
)
(y),

as required. Here, the fact that ω �→�x
s,r (y,ω) is (Fr ∨Gu)-measurable was used in order to

go from the first to the second line. This is a particular instance of the fact that if x �→ F(x,ω)

is continuous in x for almost every ω and Y : 
→X is a G-measurable random variable for
some sub-σ -algebra G, then the identity

E
(
F(x, ·)|G)|x=Y = E

(
F

(
Y(·), ·)|G)

holds almost surely. We have also used the fact that �x
s,· has a version which is continuous in

time and in the initial value. �

LEMMA 4.24. The following estimate holds uniformly over all s < v ≤ u and all F ∈
Uu

v :

(4.32)
∣∣P̂xs

s,vF −Qx
s,vF

∣∣∞ �
√

E
(|x|2α|Fs ∨ Gu

)|v− s|α|F |Lip.

PROOF. We know that (4.32) holds for |v − s| ≤ ε from Lemma 4.22 with x̄ = xs since
one has the bound

(4.33) E
(|xr ′ − xs |2|Fr ∨ Gu

)
� E

(|x|2α|Fs ∨ Gu

)|u− s|2α,

uniformly over r ∈ [s, u] and r ′ ∈ [r, u]. We also know from Lemma 4.11 that |Pxs
v−sF |Lip is

bounded by a constant multiple of |F |Lip, uniformly in time.
We then consider a partition � of [s, v] into subintervals of size between ε/2 and ε, and

we write the difference of the two semigroups as a telescopic sum, then apply consecutively
the following: the triangle inequalities, the contraction property of Qx

s,r , estimate (4.31) com-
bined with (4.33) and Lemma 4.11. We also use the quasi semigroup property of Qx . This
yields ∣∣P̂xs

s,vF −Qx
s,vF

∣∣∞ ≤
∑

[r,r ′]∈�

∣∣Qx
s,r

(
P̂xs

r,r ′ −Qx
r,r ′

)
Pxs

v−r ′F
∣∣∞

≤ ∑
[r,r ′]∈�

∣∣(P̂xs

r,r ′ −Qx
r,r ′

)
Pxs

v−r ′F
∣∣∞

�
∑

[r,r ′]∈�

√
E

(|x|2α|Fs ∨ Gu

)∣∣s − r ′
∣∣α∣∣Pxs

v−r ′F
∣∣
Lip
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�
∑

[r,r ′]∈�

√
E

(|x|2α|Fs ∨ Gu

)|s − v|αe−c|v−r ′|/ε|F |Lip

�
√

E
(|x|2α|Fs ∨ Gu

)|v− s|α|F |Lip,

as required. Note that there exists C such that for any ε,
∑
[r,r ′]∈� e−c|v−r ′|/ε ≤ C provided

the size of the partition is of order ε. �

4.8. Proof of the main result. We now have all the ingredients in place for the proof of
Theorem 4.3.

OF THEOREM 4.3. By Lemma 4.15, we know that f̄ and ḡ belong to BC2. This implies
that there exists a unique solution x̄t to

dx̄t = f̄ (x̄t ) dBt + ḡ(x̄t ) dt, x̄0 = x0,

where the integral against B is interpreted pathwise as a Young integral; see for example [27].
We apply Theorem 4.16 with h= f − f̄ , yielding the bound

∥∥∥∥
∫ ·

0

(
f

(
xr, y

ε
r

)− f̄ (xr)
)
dBr

∥∥∥∥
β,p

� εκ(
1+ ‖x‖α,p

)
,

uniformly over x and over ε ∈ (0,1], where yε is obtained from x by solving (4.1b). Here,
κ > 0 is small enough and α < 1

2 and p are such that α+H > 1+ 1
p

. Since supε ‖xε
s ‖α,p <∞

by Corollary 4.20, we conclude that
∥∥∥∥
∫ ·

0

(
f

(
xε
s , y

ε
s

)− f̄
(
xε
s

))
dBs

∥∥∥∥
β,p

� εκ,

and a similar bound holds for ‖ ∫ t
0 (g(xε

s , y
ε
s )− ḡ(xε

s )) ds‖β,p . Setting

x̄ε
t

def= x0 +
∫ t

0
f̄

(
xε
s

)
dBs +

∫ t

0
ḡ
(
xε
s

)
ds,

we have just shown that the processes xε
t and x̄ε

t are close in Bβ,p:

(4.34)
∥∥x̄ε − xε

∥∥
β,p � εκ .

It remains to show that x̄ε
t and x̄t are close in the β-Hölder norm, for which we begin by

obtaining a pathwise estimates on their β-Hölder norm. Writing

xε
t = xε

t − x̄ε
t + x0 +

∫ t

0
f̄

(
xε
s

)
dBs +

∫ t

0
ḡ
(
xε
s

)
ds,

we may apply Lemma 2.2 to compare xε
t and x̄t , where we take F = (f̄ , ḡ) and bt =

(Bt (ω), t), Z0 = x0 and Z̄0 = x0 + xε
t − x̄ε

t . We have the pathwise estimate:

∣∣xε
t − x̄t

∣∣
β � exp

(
C|B|1/β

β +C +C
∣∣x̄ε − xε

∣∣1/β
β

)∣∣x̄ε − xε
∣∣
β.

(Note that the β-Hölder seminorm of the constant x0 vanishes.) Since (modulo changing β

slightly), we already know from (4.34) that |x̄ε − xε|β → 0 in probability at rate εκ . This
concludes the proof. �
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APPENDIX: ESTIMATES ON CONDITIONED FBM

The purpose of this Appendix is to provide a proof of Lemma 3.3, as well as to provide an
explicit representation of R used in Lemma 3.2. For this, we first derive a suitable represen-
tation for the mixed derivative of the covariance function R of B̃ .

LEMMA A.1. Let R be as above, c1 = (H − 1
2), c3 = (H − 1

2)(H − 3
2) and c2 =

−c3
∫∞

0 uH− 1
2 (1+ u)H− 5

2 du. Then for r < s, one has the identity

∂2
r,sR(r, s)= c1r

H− 1
2 sH− 3

2 + c2(s − r)2H−2

(A.1)
+ c3

∫ ∞
r

vH− 1
2 (s − r + v)H−

5
2 dv.

PROOF. Recall that one has the identity

(A.2) G(t)= (2H − 1)R̂′(t)− (t + 1)R̂′′(t),

with

R̂(t)=
∫ 1

0
(1− s)H−

1
2 (1+ t − s)H−

1
2 ds.

We have

F ′(t)=
(
H − 1

2

)∫ 1

0
(1− s)H−

1
2 (1+ t − s)H−

3
2 ds

=
(
H − 1

2

)
t2H−1

∫ 1/t

0
uH− 1

2 (1+ u)H−
3
2 du,

(A.3)

where we used the change of variables s = 1+ tu. Differentiating the second line of (A.3)
immediately gives

(A.4) tR̂′′(t)= (2H − 1)R̂′(t)− c1(1+ t)H−
3
2 .

On the other hand, differentiating the first line of (A.3), we obtain

R̂′′(t)=
(
H − 1

2

)(
H − 3

2

)∫ 1

0
(1− s)H−

1
2 (1+ t − s)H−

5
2 ds

= c3

∫ 1

0
uH− 1

2 (t + u)H−
5
2 du

= c3

∫ ∞
0

uH− 1
2 (t + u)H−

5
2 du− c3

∫ ∞
1

uH− 1
2 (t + u)H−

5
2 du

= c3t
2H−2

∫ ∞
0

uH− 1
2 (1+ u)H−

5
2 du− c3

∫ ∞
1

uH− 1
2 (t + u)H−

5
2 du.

Substituting (A.4) into (A.2), we can then rewrite G as G(t)= c1(1+ t)H− 3
2 − R̂′′(t), so that

for c2 =−c3
∫∞

0 uH− 1
2 (1+ u)H− 5

2 du,

G(t)= c1(1+ t)H−
3
2 + c2t

2H−2 + c3

∫ ∞
1

uH− 1
2 (t + u)H−

5
2 du,

and the claim follows by substituting this into (3.3). �
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OF LEMMA 3.3. It follows from the fact that a conditional variance is always smaller
than the full variance that

|h|2RKHS ≤ C

∣∣∣∣
∫ T

0

∫ T

0
|r − s|2H−2h(r)h(s) dr ds

∣∣∣∣=: 2C|I |.
By homogeneity, it suffices to consider the case T = 1 and, by symmetry, we can restrict the
domain of integration to the region where r ≤ s. To bound I , we then note that we can find a
constant c such that

I =
∫ 1

0

∫ s

0
(s − r)2H−2h(r) drh(s) ds

= c

∫ 1

0

∫ s

0

∫ s

r
(s − u)H−

3
2 (u− r)H−

3
2 duh(r) drh(s) ds

= c

∫ 1

0

∫ 1

u
(s − u)H−

3
2 h(s) ds

∫ u

0
(u− r)H−

3
2 h(r) dr du.

Performing one integration by parts, we note that∣∣∣∣
∫ u

0
(u− r)H−

3
2 h(r) dr

∣∣∣∣=
∣∣∣∣
(
H − 3

2

)∫ u

0
(u− r)H−

5
2
(
ĥ(u)− ĥ(r)

)
dr

∣∣∣∣
� |h|−κuH− 1

2−κ ,

where we used the fact that κ < H − 1
2 to guarantee integrability at r = u and ĥ denotes a

primitive of h. The other factor is bounded in the same way, so that

|I |� |h|2−κ

∫ 1

0
(1− u)H−

1
2−κuH− 1

2−κ du � |h|2−κ ,

as required. �
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