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It is well known (see Dvoretzky, Erdős and Kakutani (Bull. Res. Council
Israel Sect. F 7F (1958) 175–180) and Le Gall (J. Funct. Anal. 71 (1987)
246–262)) that a planar Brownian motion (Bt )t≥0 has points of infinite mul-
tiplicity, and these points form a dense set on the range. Our main result is the
construction of a family of random measures, denoted by {Mα∞}0<α<2, that
are supported by the set of the points of infinite multiplicity. We prove that for
any α ∈ (0,2), almost surely the Hausdorff dimension of Mα∞ equals 2 − α,
and Mα∞ is supported by the set of thick points defined in Bass, Burdzy and
Khoshnevisan (Ann. Probab. 22 (1994) 566–625) as well as by that defined
in Dembo, Peres, Rosen and Zeitouni (Acta Math. 186 (2001) 239–270).

1. Introduction.

1.1. Problem and results. It is well known that a planar Brownian motion has points of
infinite multiplicity, and these points form a dense set on the range (Dvoretzky, Erdős and
Kakutani [7] and Le Gall [12]); see Le Gall ([13], p. 204) for comments on the proof.

In this paper, we restrict our attention to the thick points which constitute a dense subset
of points of infinite multiplicity. In the literature, there are two important ways to define
thick points, one by Bass, Burdzy and Khoshnevisan [1] through the number of crossings and
another one by Dembo, Peres, Rosen and Zeitouni [5] through the occupation times.

Let (Bt )t≥0 be the standard planar Brownian motion started at 0 defined on a complete
probability space (�,F , (Ft )t≥0,P), where Ft := σ {Bs, s ∈ [0, t]}, t ≥ 0, is the natural
filtration of B . For any x ∈ R2 and r > 0, denote by C(x, r) (resp., B(x, r)) the circle (resp.,
open disc) centered at x and with radius r . Let Nx(r) be the number of crossings from x

to C(x, r) by (Bt ) till TC(0,1), where TC(0,1) := inf{t ≥ 0 : Bt ∈ C(0,1)} is the first hitting
time of the unit circle C(0,1). Fix α ∈ (0,2). Bass, Burdzy and Khoshnevisan [1] studied the
following set:

(1.1) Aα :=
{
x ∈ B(0,1) : lim

r→0+
Nx(r)

log 1/r
= α

}
.

For any Borel measure β on R2, let Dim(β) be the Hausdorff dimension of β:

Dim(β) := inf
{
r : ∃ Borel set A such that β

(
Ac)= 0 and dimH(A) = r

}
,

where dimH(A) denotes the Hausdorff dimension of the set A. The main result in [1] can be
stated as follows.

THEOREM A (Bass, Burdzy and Khoshnevisan [1]). Let α ∈ (0, 1
2). Almost surely there

exists a measure βα carried by Aα . Moreover,

Dim(βα) = 2 − α a.s.
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The random measure βα in Theorem A gives important information on the set of points to
which planar Brownian motion makes “many visits.” For example, it plays a crucial role in
Cammarota and Mörters [4] who gave a characterization of the gauge functions for the level
sets of planar Brownian motion, confirming a conjecture of Taylor [20].

Another definition of thick points was given by Dembo, Peres, Rosen and Zeitouni [5]:
A point x ∈ R2 is called an α-thick point (called perfectly thick point in [5]) if

(1.2) lim
r→0+

1

r2(log r)2

∫ TC(0,1)

0
1{Bs∈B(x,r)} ds = α,

where, as pointed out in [5], TC(0,1) can be replaced by any positive and finite (Ft )-stopping
time.

The fractal measure of the α-thick points was studied in depth in [5]; in particular the
following result holds.

THEOREM B (Dembo, Peres, Rosen and Zeitouni [5]). For 0 ≤ α ≤ 2,

dimH {α-thick points} = 2 − α a.s.

To the best of our best knowledge, it is still an open question whether the two ways of
defining thick points are equivalent or not. For instance, we have not been able to determine
the Hausdorff dimension of Aα .

The starting point of our study is to generalize Theorem A to all parameters α ∈ (0,2).
Our construction of random measures, different from that in [1] where the authors utilized
the local times on circles, relies on a change of measures involving the excursions around
points with infinite multiplicity. This change of measures is given by [1], Theorem 5.2, where
it plays a crucial role.

We consider Brownian motion inside a domain. By a domain in R2, we mean an open,
connected and bounded subset of R2. Given a domain D, a boundary point z ∈ ∂D is said to
be nice if there exists a one-to-one analytic function f from the unit disc such that f (0) = z

and the image of the set of points of the unit disc with positive imaginary part is the inter-
section of D with the image of the unit disc by f . A domain D is nice if every boundary
point, except perhaps a finite number of them, is nice (in Lawler [9], p. 48, ∂D is said to be
piecewise analytic). Let D := D ∪ ∂D. We say that a point z ∈ D is nice if either z ∈ D or z

is a nice boundary point.
Denote by P

z,z′
D the probability law of a Brownian excursion inside D from z to z′, whose

definition is given in Section 2.1.
The main result of this paper reads as follows.

THEOREM 1.1. Let D be a simply connected nice domain. Let z and z′ be distinct nice
points of D. Fix α ∈ (0,2). With P

z,z′
D -probability one, there exists a random finite measure

Mα∞ carried by Aα as well as by the set of α-thick points; moreover,

(1.3) Dim
(
Mα∞

)= 2 − α, P
z,z′
D -a.s.

We mention that Mα∞ is uniquely determined by the forthcoming formula (5.1), the latter
being analogous to [1], Theorem 5.2. Since Mα∞ is supported by the set of α-thick points,
(1.3) yields that almost surely, dimH {α-thick points} ≥ 2−α, giving a new proof of the lower
bound in Theorem B.
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We will see that equation (5.1) also yields the existence,1 for Mα∞(dx)-almost every x, of
a continuous and nondecreasing additive functional (Lx

t )t≥0, called local times at the point
x. Define

Tx := inf{t > 0 : Bt = x}, x ∈ R2.

THEOREM 1.2. Let D be a simply connected nice domain. Let z and z′ be distinct nice
points of D. Fix α ∈ (0,2). With P

z,z′
D -probability one, Mα∞(dx)-almost everywhere, there

exists a continuous Brownian additive functional (Lx
t )t≥0 such that

(1.4) Lx
t = lim

r→0+
1

r2(log r)2

∫ t

0
1{|Bs−x|<r} ds ∀t ≥ 0;

moreover, the support of dLx
t is identified as the level set {t ≥ 0 : Bt = x}.

In Theorem 1.2, under P
z,z′
D , the process is killed upon first hitting z′, that is, at time

Tz′ := inf{t > 0 : Bt = z′}. So the local time Lx
t is defined for t ∈ [0, Tz′ ]. We are going to see

that Lx
Tz′ = α (with P

z,z′
D -probability one, Mα∞(dx)-almost everywhere).

1.2. A brief description of the construction of Mα∞. Let D be a nice domain, and let
x ∈ D and z, z′ distinct nice points of D, different from x. Let as before Tx := inf{t > 0 :
Bt = x}. We consider a probability measure Q

z,z′,α
x,D similar to the measure Qx

α introduced in

Bass, Burdzy and Khoshnevisan ([1], p. 606): Under Qz,z′,α
x,D , (Bt )t≥0 is split into three parts:

1. Until time Tx , B is a Brownian motion starting from z and conditioned at hitting x

before ∂D, whose law P
z,x
D is defined in Notation 2.1.

2. After Tx , the trajectory is a concatenation of Brownian loops generated by a Poisson
point process (es)s≥0 with intensity 1[0,α] dt in time and νD(x, x) in space, where νD(x, x)

denotes the law of Brownian loops in D at x (see (2.12) for the definition).2

3. The last part of the trajectory is a standard Brownian motion in D, started from x and
conditioned to hit z′ if z′ ∈ D or to exit D at z′ if z′ ∈ ∂D. The law P

x,z′
D of this process is

defined in (2.7).

Consider D1 ⊂ D a nice domain containing x. The baseline in our construction of Mα∞,

stated as Corollary 3.6, is the absolute continuity of Qz,z′,α
x,D with respect to P

z,z′
D considered at

F+
D1

, where F+
D1

denotes the sigma-algebra generated by the excursions outside D1 together
with the order of their appearances (see Notation 3.4). Denote by MD1(x,α) the Radon–
Nikodym derivative (up to a renormalization factor MD(x,α)). Then MD1(x,α) satisfies a
certain restriction property (see Corollary 3.7).

Now we construct Mα∞ as follows: Let D be a simply connected nice domain and let Dn

be the connected components of D minus a grid of mesh size 2−n. By using Corollary 3.7, we
may construct a sequence of random measures Mα

Dn
(defined in (4.1)). The measure Mα∞

is nothing but the (nonnegative martingale) limit of Mα
Dn

as n → ∞, and the limit is not
trivial and defines a (finite) measure thanks to the uniform integrability of (Mα

Dn
)n≥1 (see

Theorem 4.1). This gives the construction of Mα∞.

1This was a private question by Chris Burdzy.
2When α = 0, the second part is reduced to the single point {x}.
Let us say a few words on the concatenation of the loops (es). Denote by ζ(e) the lifetime of a loop e. Remark

that
∑

s≤α ζ(es) < ∞, a.s.; see (6.2) for the law of ζ . For Tx < t ≤ Tx +∑s≤α ζ(es), let s ∈ (0, α] be such that
t − Tx ∈ [∑u<s ζ(eu),

∑
u≤s ζ(eu)). We define Bt := es(t − Tx −∑u<s ζ(eu)).
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1.3. Comparison with previous works. In Dembo, Peres, Rosen and Zeitouni [5], the
main interest was focused on the size of the set of the thick points; as a tool, the authors
constructed a measure on the thick points as a limit along subsequences of a tight family of
measures, for all α ∈ (0,2). In Bass, Burdzy and Khoshnevisan [1], a measure (in fact, the
measure βα recalled in Theorem A) on the thick points was constructed by means of a L2-
limit, for all α ∈ (0, 1

2); a formula characterizing the measure βα will be recalled in our paper
(see Proposition 5.1).

Our work makes a link between [1] and [5]. Inspired by the conceptual approach of
Lyons [14] and Lyons, Pemantle and Peres [15] for branching processes, we extend the mea-
sure βα in [1] to all α ∈ (0,2), relying on the martingale structure instead of computations of
moments. It is to the measure βα in a similar spirit as Lyons [14] to the Biggins martingale
convergence theorem for spatial branching processes originally established by Biggins [2].

After this work was completed, a paper of Jego [8] managed to construct the measure βα

for all α ∈ (0,2) by approximating it via the thick points, as in [1], relying on a truncated
second moment method.

We close this Introduction by describing the organization of this paper:

• Section 2: We collect some results on the Brownian measure P
z,z′
D on the paths inside a

nice domain D from z to z′ and on the σ -finite measure νD(x, x) on the Brownian loops
at x.

• Section 3: We characterize the law of the macroscopic excursions at x under Qz
x,D (Propo-

sition 3.2) and get Corollary 3.6. We also establish Proposition 3.9 which plays a key role
in the proof of Theorem 4.1.

• Section 4: A standard argument says that the proof of Theorem 4.1 boils down to the
study of Mα∞ under Qz

x,D (Proposition 4.2). The proof of Proposition 4.2 is based on a
truncation argument in the computation of moments under Qz

x,D , which also provides the
needed capacity estimates (see (4.18)) in the proof of (1.3).

• Section 5: The measure Mα∞ satisfies a certain conformal invariance, up to a multiplicative
factor, which implies its almost sure positivity.

• Section 6: We prove that Mα∞ is supported by Aα as well as by the set of α-thick points
(Corollary 6.1 and Theorem 6.2) and complete the proof of Theorem 1.1. The proof of
Theorem 1.2 is also given in Section 6.

• Section 7: We identify the measure Mα∞ in the case α = 0 and discuss its relationship with
the intersection local times of independent Brownian motions.

For notational convenience, we write E[X,A] := E[X1A] when X is a random variable
and A is an event (and we write E[X,A1,A2] for E[X,A] if A = A1 ∩ A2). When ν is a
positive measure, we write ν(X) := ∫ X dν and use the similar notation ν(X,A) for

∫
A X dν.

Finally, by f (x) ∼ g(x) as x → x0 we mean that limx→x0
f (x)
g(x)

= 1.

2. Preliminaries on Brownian excursions. At first we recall some facts, taken from
Lawler ([9], Chapter 2), on the Green function and the Poisson kernel. Let D be a nice
domain and consider x ∈ D. The harmonic measure Px(BT∂D

∈ •) is absolutely continuous
with respect to the one-dimensional Lebesgue measure, whose density is called the Poisson
kernel and is denoted by HD(x, y), y ∈ ∂D. For any nice point y ∈ ∂D, HD(•, y) is harmonic
in D.

Let pD(t, x, y), x ∈ D, y ∈ D be the density (in y) of the transition probabilities of Bt∧TDc

under Px . We define the Green function GD by

GD(x, y) := π

∫ ∞
0

pD(t, x, y)dt, x, y ∈ D.
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Then

(2.1) GD(x, y) = log
1

|x − y| + O(1), y → x.

For any nice point y ∈ ∂D, denote by ny the inward normal at y. We have (see Lawler [9],
p. 55) that

(2.2) lim
ε→0+

1

ε
GD(x, y + εny) = 2πHD(x, y).

Following Lawler and Werner [10] and Lawler [9], Section 5.2, we introduce the boundary
Poisson kernel: for y′ �= y distinct nice points of ∂D, define

(2.3) HD

(
y, y′) := lim

ε→0+
1

ε
HD

(
y + εny, y

′).
For sake of concision, we will use the following notation: if z, z′ are distinct points of D, we
define

(2.4) HD

(
z, z′) := 1

2π
GD

(
z, z′).

Finally, we define HD(z, z′) := HD(z′, z) when z ∈ ∂D and z′ ∈ D. The function HD is
symmetric and has the following property (see Lawler [9], Section 5.2): if D,D′ are two nice
domains, z, z′ nice points of D (recall that by y nice point of D, we mean y ∈ D or y nice
point of ∂D), � : D → D′ a conformal transformation such that �(z) and �(z′) are nice
points of D′, then

• if z, z′ ∈ D, HD′(�(z),�(z′)) = HD(z, z′),
• if z ∈ D and z′ ∈ ∂D, HD′(�(z),�(z′)) = |� ′(z′)|−1HD(z, z′),
• if z, z′ ∈ ∂D, HD′(�(z),�(z′)) = |� ′(z)|−1|� ′(z′)|−1HD(z, z′).

Beware that with this definition, HD is not continuous at the boundary of D. Indeed, from
(2.2), we see that for z ∈ D and z′ nice point of ∂D,

(2.5) lim
ε→0+

1

ε
HD

(
z, z′ + εnz′

)= HD

(
z, z′).

With this notation, we may give a unified presentation on the forthcoming h-transform (2.7).
As in Lawler ([9], Chapter 5), we consider K the set of all parametrized continuous planar

curves γ defined on a finite time-interval [0, tγ ] with tγ ∈ (0,∞). For any closed subset
A ⊂ R2, we call γ an excursion away from A if

(2.6) γ (0) ∈ A, γ (tγ ) ∈ A, γ (s) /∈ A ∀s ∈ (0, tγ ).

More generally, for any 0 ≤ s < t < ∞, we call (γ (u), u ∈ [s, t]) an excursion away from A

if u �→ γ (u + s), u ∈ [0, t − s], is an excursion away from A.
The space K is endowed with the natural filtration of the canonical coordinate process

(et )t≥0. We denote by

TA := inf{t > 0 : et ∈ A},
the first hitting time of a set A by (et ). We will write (Bt ) in place of (et ) when the underlying
measure is a probability measure (such as Pz

D and P
z,z′
D ).

For any 0 ≤ s < t < ∞, we denote by B[s,t] the trajectory u ∈ [0, t − s] �→ Bu+s , an
element in K. We define e[s,t] in the same way.
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2.1. Excursion measures inside D. Recall that for any Borel set A ⊂ R2,

TA := inf{t > 0 : Bt ∈ A}.
Let D be a nice domain. For x ∈ D, denote by Px

D the probability measure under which
(Bt , t ≥ 0) is a Brownian motion starting from x and killed at time T∂D . We introduce the
probability measure P

z,z′
D (which is the normalized excursion measure denoted by μ#

D(z, z′)
in Lawler [9], Section 5.2) as follows; the measure is supported by trajectories from z to z′ in
D.

NOTATION 2.1. Let D be a nice domain. Let z and z′ be distinct nice points of D. We
define the probability measure P

z,z′
D as follows:

(i) If z ∈ D and z′ ∈ D, we let Pz,z′
D be the law of the Brownian motion starting at z,

conditioned to hit z′ before ∂D if z′ ∈ D, and conditioned to exit D at z′ if z′ ∈ ∂D. It is
given by the h-transform of the Brownian motion: for any 0 < r < |z − z′|,

(2.7)
dPz,z′

D

dPz
D

∣∣∣∣
FTC(z′,r)

= HD(BTC(z′,r) , z
′)

HD(z, z′)
1{TC(z′,r)<T∂D}.

(ii) If z, z′ ∈ ∂D, we define P
z,z′
D as the limit of Py,z′

D as y → z and y ∈ D in the sense of
(2.8) below. It is the excursion measure at z conditioned to exit D at z′.

(iii) If z ∈ ∂D and z′ ∈ D, we define P
z,z′
D as the limit of Py,z′

D as y → z and y ∈ D in the
sense of (2.8). It is the excursion measure at z conditioned to hit the interior point z′ ∈ D.

For any z ∈ ∂D nice point, the limit of Py,z′
D when y → z is understood in the following

sense: for any 0 < r < |z − z′|, any A ∈ σ {BTD∩C(z,r)+t
, t ≥ 0},

(2.8) P
z,z′
D (A) = lim

ε→0+ P
z+εnz,z

′
D (A).

See Appendix A.1 for a justification of (2.8).
There is a time-reversal relationship between P

z,z′
D and P

z′,z
D (see Lawler [9], Section 5.2)

which can also be checked by applying the general theory on the time-reversal of Markov
processes at cooptional times (see Revuz and Yor [19], Theorem VII.4.5): for any z, z′ distinct
nice points of D,

(2.9)
(
(BTz′−t ,0 ≤ t ≤ Tz′) under Pz,z′

D

)(law)= (
(Bt ,0 ≤ t ≤ Tz) under Pz′,z

D

)
.

If D,D′ are two nice domains, z, z′ nice points of D, � : D → D′ a conformal transfor-
mation such that �(z) and �(z′) are nice points of D′, then the image measure of Pz,z′

D by �

is P�(z),�(z′)
D′ .

We introduce the following notation: for D1 ⊂ D two nice domains, define

J (D,D1) := {z ∈ ∂D : nice point such that z ∈ ∂D1
(2.10)

and ∃r > 0 such that D ∩ B(z, r) = D1 ∩B(z, r)
}
.

LEMMA 2.2. Let D1 ⊂ D be two nice domains.

(i) For z′ nice point of D and z ∈ D1 with z �= z′, for any nice point y ∈ ∂D1\∂D,

P
z,z′
D (Tz′ > T∂D1,BT∂D1

∈ dy) = HD(y, z′)
HD(z, z′)

HD1(z, y)dy.
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(ii) For z, z′ distinct points of D1 ∪J (D,D1), we have

P
z,z′
D (Tz′ ≤ T∂D1) = HD1(z, z

′)
HD(z, z′)

.

PROOF. (i) For any nonnegative measurable function F on K, we deduce from the mono-
tone convergence theorem that

E
z,z′
D

(
F(B[0,T∂D1 ]), Tz′ > T∂D1

)= lim
r→0+ E

z,z′
D

(
F(B[0,T∂D1 ]), TC(z′,r) > T∂D1

)
.

Applying the change of measures in (2.7) to TC(z′,r) ∧ T∂D1 in place of TC(z′,r), we have

E
z,z′
D

(
F(B[0,T∂D1 ]), TC(z′,r) > T∂D1

)
= 1

HD(z, z′)
Ez

D

[
HD

(
BT∂D1

, z′)F(B[0,T∂D1 ]), T∂D ∧ TC(z′,r) > T∂D1

]
.

Hence, taking the limit r → 0+,

E
z,z′
D

(
F(B[0,T∂D1 ]), Tz′ > T∂D1

)
(2.11)

= 1

HD(z, z′)
Ez

D

[
HD

(
BT∂D1

, z′)F(B[0,T∂D1 ]), T∂D > T∂D1

]
,

which readily gives (i).
(ii) First, we suppose that z and z′ are distinct points of D1. By (2.11),

P
z,z′
D (Tz′ > T∂D1) = Ez

D[HD(BT∂D1
, z′), T∂D > T∂D1]

HD(z, z′)

= Ez[GD(BT∂D1
, z′)]

GD(z, z′)
.

Note that the function g defined by g(y) := GD(y, z′) − GD1(y, z′), y ∈ D1\{z′}, is har-
monic and bounded. Then g can be continuously extended to {z′} so that g is harmonic on
D1.3 By the optional stopping theorem for the bounded martingale g(Bt), we get that

Ez[GD

(
BT∂D1

, z′)]= GD

(
z, z′)− GD1

(
z, z′),

proving (ii) in this case. Making z go to ∂D ∩ ∂D1, using (2.2) and (2.8) yields the equality
for z′ ∈ D1 and z ∈ J (D,D1). Using the time-reversal (2.9) yields the equality for z ∈ D1
and z′ ∈ J (D,D1). Making z go to ∂D ∩ ∂D1 and using (2.3) and (2.8) gives the equality
for z, z′ ∈ J (D,D1). �

2.2. Brownian loops. Let x ∈ D. We consider an infinite measure νD(x, x) on the set of
Brownian loops in D that start and end at x. Let us briefly recall the definition in Lawler ([9],
Chapter 5). For each t > 0, the measure μD(x, x; t) of loops in D of length t is such that for
any bounded measurable function  on K:

μD(x, x; t)[(e)
]= lim

ε→0+
1

πε2E
x[(B[0,t]), t < T∂D, |Bt − x| < ε

]
.

3We give here a probabilistic argument on this known continuous extension. Let z ∈ D1\{z′} and let ε > 0 be
small such that B(z, ε) ⊂ D1. By the optional stopping theorem for the bounded martingale g(Bt∧TC(z′,ε) ) at T∂D1

and by letting ε → 0+, we get that g(z) = Ez(g(BT∂D1
)) = ∫∂D1

HD1(z, y)g(y)dy which can be continuously

extended to z′ and the extension is harmonic on D1.
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We define the σ -finite measure νD(x, x) by

(2.12) νD(x, x) := π

∫ ∞
0

μD(x, x; t)dt.

With the notation μD(x, x) of the loop measure in Lawler ([9], Chapter 5), we have
νD(x, x) = πμD(x, x).

Furthermore, νD(x, x) can also be viewed as the excursion measure at x of the Brownian
motion conditioned to hit x before hitting ∂D. We claim that

(2.13) νD(x, x) = lim
z→x

log
(

1

|z − x|
)
P

z,x
D ,

in the sense that for any r > 0 such that B(x, r) ⊂ D, for any A ∈ σ {eC(x,r)+t , t ≥ 0},

(2.14) νD(x, x)
(
A ∩ {TC(x,r) < Tx})= lim

z→x
log
(

1

|z − x|
)
P

z,x
D

(
A ∩ {TC(x,r) < Tx}).

See Appendix A.2 for a justification of (2.14). Equation (2.13) implies that the measure
ν is conformally invariant: if D and D′ are two nice domains, � : D → D′ a conformal
transformation and x ∈ D, the image by � of a loop under νD(x, x) is “distributed” as
νD′(�(x),�(x)).

We summarize some quantitative results on νD(x, x) in the following lemma.

LEMMA 2.3. Let D1 ⊂ D be two nice domains and x ∈ D1.

(i) For any nice point y ∈ ∂D1,

νD(x, x)(T∂D1 < Tx, eT∂D1
∈ dy) = GD(x, y)HD1(x, y)dy.

Moreover, for any nonnegative measurable function F on K,

νD(x, x)
(
F(e[0,T∂D1 ]), T∂D1 < Tx

)= Ex[GD(x,BT∂D1
)F (B[0,T∂D1 ])

]
.

(ii) We have

CD,D1(x) := νD(x, x)(T∂D1 < Tx)

=
∫
∂D1

GD(x, y)HD1(x, y)dy(2.15)

= CD1(x) − CD(x),

where CS(x) := − ∫∂S log(|x −y|)HS(x, y)dy for any nice domain S. Moreover, CD,D1(x) =
log(Rx,D) − log(Rx,D1) in the case that D1,D are simply connected, where Rx,D (resp.,
Rx,D1 ) is the conformal radius of D (resp., D1) seen from x.

(iii) For any nonnegative measurable function F on K,

νD(x, x)
(
F(e[T∂D1 ,Tx ]), T∂D1 < Tx

)
=
∫
∂D1

E
y,x
D

[
F(B[0,Tx ])

]
GD(x, y)HD1(x, y)dy.

Consequently,

νD(x, x)
(
F(e[T∂D1 ,Tx ])|T∂D1 < Tx, eT∂D1

= y
)= E

y,x
D

[
F(B[0,Tx ])

]
.
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PROOF. (i) By (2.14) and (2.11), for any r > 0 such that B(x, r) ⊂ D1,

νD(x, x)
(
F(e[TC(x,r),T∂D1 ]), T∂D1 < Tx

)
= lim

z→x

log(1/|z − x|)
GD(x, z)

Ez[GD(x,BT∂D1
)F (B[TC(x,r),T∂D1 ])

]
= Ex[GD(x,BT∂D1

)F (B[TC(x,r),T∂D1 ])
]
,

by (2.1). Under Px , BT∂D1
is distributed as HD1(x, y)dy, which implies the first equality in (i)

by taking F(B[TC(x,r),T∂D1 ]) a function of BT∂D1
. By considering F a continuous and bounded

function on K, and then letting r → 0+, we get the second equality in (i).
(ii) The first equality in (2.15) readily follows from (i). Let g(y) := GD(x, y)−GD1(x, y)

for y ∈ D1\{x} [x ∈ D1 being fixed]. We have already observed that g can be continuously
extended to x. Then g is harmonic and bounded on D1, and by the mean property,

(2.16) g(x) =
∫
∂D1

g(y)HD1(x, y)dy =
∫
∂D1

GD(x, y)HD1(x, y)dy.

The same argument shows that, for S = D or S = D1,∫
∂S

log
(|x − y|)HS(x, y)dy = lim

y→x

(
log
(|x − y|)+ GS(x, y)

)
,

which implies that CD,D1(x) = CD1(x) − CD(x), as stated in (2.15).
Now we suppose that D is simply connected. It suffices to check that

CD(x) = − log(Rx,D).

Let D be a conformal map from D (resp., D1) to B(0,1) which sends x to 0 and satisfies
that ′

D(x) > 0. By the conformal invariance, GD(x, y) = log 1
|D(y)| . It follows that

lim
y→x

(
log
(|x − y|)+ GD(x, y)

)= log
1

|′
D(x)| = logRx,D,

by definition of the conformal radius.
(iii) It comes from a straightforward application of the strong Markov property together

with the first equality in (i). �

3. A change of measures. Let α ≥ 0 be fixed. Let D be a nice domain. We consider
D1 ⊂ D a nice domain containing x. We define for any distinct nice points y, z ∈ D1, differ-
ent from x,

(3.1) ξD1(x, y, z) := 2πHD1(x, y)HD1(x, z)

HD1(y, z)
.

[Taking D1 = D, we get the definition of ξD(x, y, z) for any x ∈ D and distinct nice points
y, z ∈ D, different from x].

Fix two nice points z �= z′ of D. Let x ∈ D distinct of z and z′. Let us take a close look at the
probability measure Q

z,z′,α
x,D defined in the Introduction. Under Qz,z′,α

x,D , the Brownian motion
B starts from z and is conditioned to hit x. After Tx , the trajectory is a concatenation of Brow-
nian loops generated by a Poisson point process (es)s≥0 with intensity 1[0,α] dt × νD(x, x).
The last part of trajectory is a Brownian motion in D starting from x and conditioned to hit
z′.

The purpose of this section is to study the absolute continuity of Qz,z′,α
x,D with respect to

P
z,z′
D , both restricted to the sigma-algebra generated by the excursions outside a domain D1

containing x.



1794 E. AÏDÉKON, Y. HU AND Z. SHI

FIG. 1. Crossings from ∂D2 to ∂D1.

As a first step, we look at events of crossings. We introduce some notation, see Figure 1.
Let K denote as before the set of all parametrized continuous planar curves γ defined on a
finite time-interval [0, tγ ] with tγ ∈ (0,∞).

NOTATION 3.1. Let D2 ⊂ D1 ⊂ D be nice domains with d(D2, ∂D1) > 0. Let γ ∈K.

(i) Define s0 := 0 and for all i ≥ 0 (with inf∅ := ∞),

ti+1 := inf
{
t > si : γ (t) ∈ ∂D2

}
,

si+1 := inf
{
t > ti+1 : γ (t) ∈ ∂D1 ∪ {γ (tγ )

}}
.

(ii) Let x ∈ D2. For any integer � ≥ 1, denote, if it exists, by i� the �th smallest index i ≥ 1
such that γ hits x during the time interval [ti , si] and set U� := ti� , V� := si� .

Let D2 ⊂ D1 ⊂ D be nice domains with d(D2, ∂D1) > 0. Let x ∈ D2 and z �= z′ be nice
points of D different from x, neither in ∂D1\J (D,D1) nor in D2.4

Let

L := 1 + #{loops from x which hit ∂D1}.
By Lemma 2.3,

Q
z,z′,α
x,D (L = L) = e−αCD,D1 (x) (αCD,D1(x))L−1

(L − 1)! .

Notice that i� is well defined for any 1 ≤ � ≤ L. The next proposition gives the law of the
points (BU�

,BV�
)�≤L under Q

z,z′,α
x,D . Notice that we may have BVL = z′ in the case where

z′ ∈ D1 and the excursion from x to z′ does not hit ∂D1 (except, of course, possibly at the
ending point).

4In other words, z, z′ ∈ J (D,D1) ∪ (D\({x} ∪ ∂D1 ∪ D2)). Note that z /∈ ∂D1\J (D,D1) means that z does
not belong to ∂D1 unless z ∈J (D,D1).
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PROPOSITION 3.2. Let D2 ⊂ D1 ⊂ D nice domains with d(D2, ∂D1) > 0. Let x ∈ D2.
Let z �= z′ be nice points of D different from x, neither in ∂D1\J (D,D1) nor in D2.5 Let
L ≥ 1 be an integer. Let y1, . . . , yL be nice points of ∂D2. Let y′

1, . . . , y
′
L be nice points of

∂D1\∂D. We can take as well y′
L = z′ in the case z′ ∈ D1 ∪J (D,D1). Let 1 ≤ i1 < · · · < iL

be integers. Then

Q
z,z′,α
x,D

(
ij = ij ,BUj

∈ dyj ,BVj
∈ dy′

j ,1 ≤ j ≤ L | L = L
)

= CD,D1(x)−(L−1)

ξD(x, z, z′)

×
L∏

j=1

ξD1

(
x, yj , y

′
j

)
P

z,z′
D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, tiL < Tz′
)
.

In this equation, we mean, in the case y′
L = z′, BVL

= z′ and BsiL
= z′ when writing BVL

∈
dy′

L and BsiL
∈ dy′

L.

Taking L = 1 and integrating over yj and y′
j yields the following equation which will be

used in (3.12):

(3.2) ξD

(
x, z, z′)= E

z,z′
D

[∑
i≥1

ξD1(x,Bti ,Bsi )1{ti<Tz′ }
]
.

PROOF OF PROPOSITION 3.2. To deal with the case z ∈ ∂D, we extend the h-transform
representation (2.7) to z ∈ ∂D. To this end, we abusively write, when z ∈ ∂D, Pz

D for νD(z)

defined in (A.2) (which is not a finite measure). With this notation, (2.7) still holds for nice
point z of ∂D: this comes from (2.8), (2.7) (replacing z there by z + εnz), and (A.2).

Denote by Q the probability expression Q
z,z′,α
x,D (. . .) in the proposition. For simplicity, we

suppose first that y′
L �= z′. We notice that for each 1 ≤ � ≤ L − 1, the trajectory between V�

and the next hitting time of x is, conditionally on BV�
= y′, distributed as P

y′,x
D . Moreover,

conditionally on L = L, BV�
is distributed as eT∂D1

under νD(x, x)(· | T∂D1 < Tx) when � <

L, and as BT∂D1∪{z′} under Px,z′
D when � = L. Using the strong Markov property at the hitting

times of x and stopping times V1, . . . ,VL−1, the probability expression Q is

L−1∏
j=1

P
y′
j−1,x

D (i1 = ij − ij−1,BU1 ∈ dyj )νD(x, x)
(
eT∂D1

∈ dy′
j | BT∂D1

< Tx

)
× P

y′
L−1,x

D (i1 = iL − iL−1,BU1 ∈ dyL)P
x,z′
D

(
BT∂D1∪{z′} ∈ dy′

L

)
,

where we set y′
0 = z and i0 = 0. We can write it as

(3.3) Q = �1�2,

where

�1 :=
L∏

j=1

P
y′
j−1,x

D (i1 = ij − ij−1,BU1 ∈ dyj ),

5The assumption z, z′ /∈ ∂D1\J (D,D1), which may look somehow uncomfortable, will be automatically satis-
fied in the applications in the forthcoming sections. The same remark applies to other propositions and corollaries
in this section.
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�2 :=
L−1∏
j=1

νD(x, x)
(
eT∂D1

∈ dy′
j | T∂D1 < Tx

)
P

x,z′
D

(
BT∂D1∪{z′} ∈ dy′

L

)
.

By the strong Markov property at the stopping time ti , we have for any y′ ∈ ∂D1 ∪
{z}, y ∈ ∂D2, Py′,x

D (i1 = i,BU1 ∈ dy) = P
y′,x
D (Bti ∈ dy, ti < Tx)P

y,x
D (Tx < T∂D1) and by

Lemma 2.2(ii) (with z = y, z′ = x there), Py,x
D (Tx < T∂D1) = HD1 (y,x)

HD(y,x)
. We get that

P
y′,x
D (i1 = i,BU1 ∈ dy) = P

y′,x
D (Bti ∈ dy, ti < Tx)

HD1(y, x)

HD(y, x)
,

which is, using the h-transform (2.7),

P
y′
D(Bti ∈ dy, ti < T∂D)

HD1(y, x)

HD(y′, x)
.

Hence,

(3.4) �1 =
L∏

j=1

P
y′
j−1

D (Btij −ij−1
∈ dyj , tij−ij−1 < T∂D)

HD1(yj , x)

HD(y′
j−1, x)

.

On the other hand, the law of eT∂D1
under νD(x, x)(· | T∂D1 < Tx) has, by Lemma 2.3, density

on ∂D1

1

CD,D1(x)
GD

(
x, y′)HD1

(
x, y′)dy′,

whereas, by Lemma 2.2(i) (with z = x, z′ = z′ there),

(3.5) P
x,z′
D

(
BT∂D1

∈ dy′, T∂D1 < Tz′
)= HD1(x, y′)HD(y′, z′)

HD(x, z′)
dy′.

Recalling y′
L �= z′, we obtain that

(3.6) �2 = CD,D1(x)−(L−1) HD1(x, y′
L)HD(y′

L, z′)
HD(x, z′)

dy′
L

L−1∏
j=1

GD

(
x, y′

j

)
HD1

(
x, y′

j

)
dy′

j .

Recall that GD(y, y′) = 2πHD(y, y′) when y, y′ ∈ D. By (3.3), (3.4) and (3.6), we get that

Q = (2π)L−1CD,D1(x)−(L−1) HD(y′
L, z′)

HD(z, x)HD(x, z′)

×
L∏

j=1

HD1(x, yj )HD1

(
x, y′

j

)
dy′

j

L∏
j=1

P
y′
j−1

D (Btij −ij−1
∈ dyj , tij−ij−1 < T∂D).

In view of the definition of ξD1 in (3.1), we have

(2π)L−1 HD(y′
L, z′)

HD(z, x)HD(x, z′)

L∏
j=1

HD1(x, yj )HD1

(
x, y′

j

)

= HD(y′
L, z′)

HD(z, z′)ξD(x, z, z′)

L∏
j=1

ξD1

(
x, yj , y

′
j

) L∏
j=1

HD1

(
yj , y

′
j

)
.

Comparing with the statement of the proposition, we see that it remains to prove that

HD

(
y′
L, z′) L∏

j=1

P
y′
j−1

D (Btij −ij−1
∈ dyj , tij−ij−1 < T∂D)HD1

(
yj , y

′
j

)
dy′

j

(3.7)
= HD

(
z, z′)Pz,z′

D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, tiL < Tz′
)
.
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Consider the right-hand side. By the h-transform (2.7) (we recall that y′
L �= z′ hence siL <

Tz′), it is equal to

Pz
D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, siL < T∂D

)
HD

(
y′
L, z′).

Recall that HD1(y, y′) for y ∈ D1 and y′ ∈ ∂D1 is the density at y′ of the harmonic measure
of the Brownian motion starting at y. It follows that, using the strong Markov property at the
hitting times sij−1 , j ≥ 2 and tij , j ≥ 1,

Pz
D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, siL < T∂D

)
=

L∏
j=1

P
y′
j−1

D (Btij −ij−1
∈ dyj , tij−ij−1 < T∂D)HD1

(
yj , y

′
j

)
dy′

j ,

which completes the proof in the case y′
L �= z′. In the remaining case y′

L = z′, the same proof
applies by replacing (3.5) by

P
x,z′
D (Tz′ ≤ T∂D1) = HD1(x, z′)

HD(x, z′)
,

which holds by Lemma 2.2(ii) (with z = x and z′ = z′ there), then replacing (3.7) by

L∏
j=1

P
y′
j−1

D (Btij −ij−1
∈ dyj , tij−ij−1 < T∂D)HD1

(
yj , y

′
j

)L−1∏
j=1

dy′
j

(3.8)
= HD

(
z, z′)Pz,z′

D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, tiL < Tz′
)
,

where we write BsiL
∈ dy′

L for BsiL
= z′.

As in the case y′
L �= z′, it remains to check (3.9). By the strong Markov property at time

tiL and Lemma 2.2(ii) (with z = yL and z′ = z′ there), the right-hand side in (3.9) is

HD

(
z, z′)

× P
z,z′
D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L − 1,BtiL
∈ dyL, tiL < Tz′

)
× HD1(yL, z′)

HD(yL, z)
,

which, in view of the h-transform (2.7), is

Pz
D

(
Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L − 1,BtiL
∈ dyL, tiL < T∂D

)
× HD1

(
yL, z′).

We use, as before, the strong Markov property at times sij−1, j ≥ 2 and tij , j ≥ 1 to get (3.9).
This completes the proof of Proposition 3.2. �

Our next aim is to compute the Radon–Nikodym derivative of Qz,z′,α
x,D with respect to P

z,z′
D

when both measures are restricted to an appropriate sigma-algebra denoted by F+
D1

(defined

in Notation 3.4 below). We start by computing the conditional law of Qz,z′,α
x,D given L.

Take the notation of Proposition 3.2. Fix an arbitrary L ≥ 1 as well as arbitrary integers
1 ≤ i1 < i2 < · · · < iL. On the event {tiL < Tz′ }, let Cj be the trajectory from sij to tij+1 for
1 ≤ j ≤ L − 1, C0 the trajectory from (time) 0 to ti1 , and CL the trajectory from siL to Tz′ ,
see Figure 1. [In case tiL ≥ Tz′ , Cj will play no role, and can be defined as any trajectories.]
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Observe that, under Qz,z′,α
x,D , conditionally on L = L and on ij = ij , BUj

∈ dyj , BVj
∈ dy′

j ,
1 ≤ j ≤ L (in particular, tiL < Tz′), the trajectories (Cj ,0 ≤ j ≤ L) are independent; for
0 ≤ j ≤ L − 1, Cj is distributed as a Brownian excursion in D from y′

j to yj+1 conditioned
on tij+1−ij = Tyj+1 (with i0 := 0 and y′

0 := z); CL is a Brownian excursion in D from y′
L to

z′. [Beware of the degenerate situation that CL = {z′} if y′
L = z′.] In other words, (Cj ,0 ≤

j ≤ L) has the same distribution under Qz,z′,α
x,D (· | L = L, ij = ij ,BUj

∈ dyj ,BVj
∈ dy′

j ,1 ≤
j ≤ L) and under Pz,z′

D (· | Btij
∈ dyj ,Bsij

∈ dy′
j ,1 ≤ j ≤ L, tiL < Tz′). It implies that for any

measurable set A ∈ σ(Cj ,0 ≤ j ≤ L),

Q
z,z′,α
x,D

(
A | L = L, ij = ij ,BUj

∈ dyj ,BVj
∈ dy′

j ,1 ≤ j ≤ L
)

(3.9)
= P

z,z′
D

(
A | Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, tiL < Tz′
)
.

We introduce the following notation. Let K denote as before the set of all parametrized con-
tinuous planar curves γ defined on a finite time-interval [0, tγ ] with tγ ∈ (0,∞).

NOTATION 3.3. Let D1 ⊂ D be nice domains. Let γ ∈ K.

(i) Let ED1 be the set of excursions away from Dc
1 ∪ {γ (0)} ∪ {γ (tγ )} in the sense of

(2.6); an element of ED1 is called an excursion inside D1.
(ii) For e ∈ ED1 , call eg and ed its starting and ending points.

(iii) An excursion away from D1 ∪ {γ (0)} ∪ {γ (tγ )} is called an excursion outside D1.

NOTATION 3.4. Let D1 ⊂ D be nice domains. Let F+
D1

be the sigma-algebra generated
by the excursions of Brownian motion outside D1 together with the order of their appear-
ances.6

Observe that for any A ∈ F+
D1

, A ∩ {tiL < Tz′ } ∈ σ(Cj ,0 ≤ j ≤ L). Hence, by Proposi-

tion 3.2, we have for any A ∈ F+
D1

,

Q
z,z′,α
x,D

(
A, ij = ij ,BUj

∈ dyj ,BVj
∈ dy′

j ,1 ≤ j ≤ L | L = L
)

= CD,D1(x)−(L−1)

ξD(x, z, z′)

L∏
j=1

ξD1

(
x, yj , y

′
j

)
(3.10)

× P
z,z′
D

(
A,Btij

∈ dyj ,Bsij
∈ dy′

j ,1 ≤ j ≤ L, tiL < Tz′
)
,

which gives that

Q
z,z′,α
x,D (A | L = L)

(3.11)

= CD,D1(x)−(L−1)

ξD(x, z, z′)
E

z,z′
D

[
1A

∑
1≤i1<···<iL

L∏
j=1

ξD1(x,Btij
,Bsij

)1{tiL<Tz′ }
]
.

Contrarily to the left-hand side in (3.11), the right-hand side depends on D2 via the stop-
ping times. To get rid of the dependence on D2, we want to compute

E
z,z′
D

[ ∑
1≤i1<···<iL

L∏
j=1

ξD1(x,Btij
,Bsij

)1{tiL<Tz′ }
∣∣∣∣F+

D1

]
.

6For any γ ∈ K, we can associate a function φ(γ ) = ((eg, ed)D1 ,R) where (eg, ed)D1 are starting and ending
points of excursions in D1 of γ and R is the order relation defined as R(eg, e′g) = 0 if eg is visited before e′g , and
1 otherwise, for any eg , e′g starting points of excursions in ED1 . Then the sigma-algebra generated by (eg, ed) for
e ∈ ED1 with the order of their appearances, is the sigma-algebra generated by φ.
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Observe that any (eg, ed) for e ∈ ED1 is measurable with respect to F+
D1

. Conditionally on

F+
D1

, the excursions between eg and ed for e ∈ ED1 are independent Brownian excursions

inside D1 with law P
eg,ed
D1

. Notice that each excursion inside D1 can be associated to at most
one ti : for any excursion e ∈ ED1 , write (if it exists) t(e) for the time ti associated, which is
the hitting time of ∂D2 by the excursion. Set t(e) = ∞ otherwise. Similarly, we write

s(e) := inf
{
t > t(e) : et ∈ ∂D1 ∪ {z′}}.

Consequently,

∑
1≤i1<···<iL

L∏
j=1

ξD1(x,Btij
,Bsij

)1{tiL<Tz′ }

=∑
eLD1

L∏
j=1

ξD1(x,Bt(ej ),Bs(ej ))1{t(ej )<∞},

where we write
∑

eLD1
as a short way for sum over ordered (distinct) excursions (e1, . . . , eL) ∈

(ED1)
L.7 Apply (3.2) to D1 = D, z = eg , and z′ = ed . Notice that in this case, the sum∑

i≥1 . . . in (3.2) has at most one term. This yields that for any e ∈ ED1 ,

E
z,z′
D

[
ξD1(x,Bt(e),Bs(e))1{t(e)<∞} | F+

D1

]
= E

eg,ed
D1

[∑
i≥1

ξD1(x,Bti ,Bsi )1{ti<Ted }
]

= ξD1(x, eg, ed).

Hence,

E
z,z′
D

[ ∑
1≤i1<···<iL

L∏
j=1

ξD1(x,Btij
,Bsij

)1{tiL<Tz′ }
∣∣∣∣F+

D1

]
(3.12)

=∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
.

For future use, we observe that the same argument also gives (noting that siL < Tz′ ensures
tiL < Tz′)

E
z,z′
D

[ ∑
1≤i1<···<iL

L∏
j=1

ξD1(x,Btij
,Bsij

)1{T∂D1<ti1 }1{siL<Tz′ }
∣∣∣∣F+

D1

]
(3.13)

=∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=z′}.

Going back to (3.11), the following proposition is already proved.

7The excursions e1, . . . , eL are naturally ordered in terms of their appearances, in particular any set of L distinct
excursions appears only once in the sum.
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PROPOSITION 3.5. Let D1 ⊂ D be nice domains. Let x ∈ D1. Suppose that z and z′ are
distinct nice points of D, different from x, and not in ∂D1\J (D,D1). For any A ∈ F+

D1
,

Q
z,z′,α
x,D (A | L = L) = CD,D1(x)−(L−1)

ξD(x, z, z′)
E

z,z′
D

[
1A

∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)]
,

where as before,
∑

eLD1
means that the sum runs over all ordered (distinct) excursions

(e1, . . . , eL) ∈ (ED1)
L. In particular, we have

(3.14) E
z,z′
D

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)]= ξD

(
x, z, z′)CD,D1(x)L−1.

Recall that CD,D1(x) = CD1(x) − CD(x) by (2.15). Since L − 1 is by construction a Pois-
son random variable with parameter ανD(x, x)(T∂D1 < Tx) = αCD,D1(x), we get the follow-
ing corollary.

COROLLARY 3.6. With the notation and assumptions of Proposition 3.5,

dQz,z′,α
x,D

dPz,z′
D

∣∣∣∣
F+

D1

= MD1(x,α)

e−αCD(x)ξD(x, z, z′)
,

where

(3.15) MD1(x,α) := e−αCD1 (x)
∑
L≥1

αL−1

(L − 1)!
∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
.

By definition, MD(x,α) = e−αCD(x)ξD(x, z, z′) under Pz,z′
D .

COROLLARY 3.7. With the same notation and assumptions of Proposition 3.5. Let D2 ⊂
D1 be another nice domain such that x ∈ D2 and that z, z′ do not lie in ∂D2\J (D,D2).8

Then

E
z,z′
D

[
MD2(x,α)|F+

D1

]= MD1(x,α).

PROOF OF COROLLARY 3.7. Let C ∈ F+
D1

. Then C ∈ F+
D2

, hence in view of Corol-
lary 3.6, we have

E
z,z′
D

[
1C

MD2(x,α)

MD(x,α)

]
= Q

z,z′,α
x,D (C) = E

z,z′
D

[
1C

MD1(x,α)

MD(x,α)

]
,

which implies Corollary 3.7. �

The rest of this section is devoted to Proposition 3.9, which controls the condi-
tional expectation of MD2(·, α) under Q

z,z′,α
x,D , and is also the main technical tool in

the proof of the forthcoming Proposition 4.2. At first, we compute the expectation of∑
eLD1

∏L
j=1 ξD1(x, e

j
g, e

j
d)1{e1

g �=z,eLd �=z′} under different measures.

8It is elementary to check that if z /∈ ∂D1\J (D,D1), then saying z /∈ ∂D2\J (D,D2) and saying z /∈
∂D2\J (D1,D2) are equivalent.
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LEMMA 3.8. Let x ∈ D1. Suppose that z, z′ are distinct nice points of D, different from
x, and do not belong to ∂D1\J (D,D1). We take the convention that HD1(x, y) = 0 if y /∈ D1.
We have the following equalities: For all L ≥ 1,

CD,D1(x)−(L−1)

ξD(x, z, z′)
E

z,z′
D

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=z′}

]

=
(

1 − HD1(x, z)

HD(x, z)

)(
1 − HD1(x, z′)

HD(x, z′)

)
,

(3.16)

E
z,x
D

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=x}

]
=
(

1 − HD1(x, z)

HD(x, z)

)
CD,D1(x)L,(3.17)

νD(x, x)

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=x,eLd �=x}

]
= CD,D1(x)L+1,(3.18)

where as before,
∑

eLD1
means that the sum runs over all ordered (distinct) excursions

(e1, . . . , eL) ∈ (ED1)
L; if furthermore, z ∈ D, then

CD,D1(x)−(L−1)νD(z, z)

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=z}

]
(3.19)

= (2π)2(HD(x, z) − HD1(x, z)
)2

.

PROOF OF LEMMA 3.8. Let A be the event that, under Qz,z′,α
x,D , the first part of the tra-

jectory from z to x hits ∂D1, and so does the last part from x to z′.
We have by Lemma 2.2(ii),

Q
z,z′,α
x,D (A | L = L) = P

z,x
D (T∂D1 < Tx)P

x,z′
D (T∂D1 < Tz′)

(3.20)

=
(

1 − HD1(x, z)

HD(x, z)

)(
1 − HD1(x, z′)

HD(x, z′)

)
.

Let D2 be a nice domain such that x ∈ D2, D2 ⊂ D1 and that z, z′ /∈ D2. Observe that for
all 1 ≤ i1 < · · · < iL, A ∩ {L = L, i1 = i1, iL = iL} = A(i1, iL) ∩ {L = L, i1 = i1, iL = iL},
with A(i1, iL) := {T∂D1 < ti1,BsiL

�= z′} ∈ F+
D1

. Then

Q
z,z′,α
x,D (A | L = L)

= ∑
1≤i1<···<iL

Q
z,z′,α
x,D

(
A(i1, iL), ij = ij ,1 ≤ j ≤ L | L = L

)

= CD,D1(x)−(L−1)

ξD(x, z, z′)
E

z,z′
D

( ∑
1≤i1<···<iL

1{T∂D1<ti1 ,BsiL
�=z′}

L∏
j=1

ξD1

(
x, yj , y

′
j

))
,

the last identity being a consequence of (3.10). Applying (3.13) gives

Q
z,z′,α
x,D (A | L = L)

= CD,D1(x)−(L−1)

ξD(x, z, z′)
E

z,z′
D

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=z′}

]
,
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which is the same expression as on the left-hand side of (3.16). Together with (3.21), this
yields (3.17).

Recall the definition of CD,D1(x) in (2.15) and that limz′→x(GD(x, z′) − GD1(x, z′)) =
CD,D1(x) as proved in (2.16). It follows that

ξD

(
x, z, z′)(1 − HD1(x, z′)

HD(x, z′)

)
→ CD,D1(x) as z′ → x.

Then making z′ → x in (3.16) implies (3.17).

Notice that as z → x, 1 − HD1 (x,z)

HD(x,z)
= GD(x,z)−GD1 (x,z)

GD(x,z)
∼ CD,D1 (x)

log 1/|x−z| by (2.1). Using (2.13),
making z → x in (3.17) gives (3.18).

Recall that HD(y, y′) = GD(y, y′)/2π when y, y′ are in D. When z ∈ D\∂D1, making
z′ → z �= x in (3.16), and using (2.1) and (2.13) give (3.20). �

Let us go back to the probability Q
z,z′,α
x,D for z �= z′ which are different from x. For any nice

domains S ⊂ D1 ⊂ D, such that x ∈ S, we introduce Ex,D1,S , the set of excursions away from
Dc

1 ∪ {z} ∪ {z′} ∪ {x} (in the sense of (2.6)) but excluding all loops at x that lie in S.9

For any nice domain set S ⊂ D1 which contains x, any nice domain D2 ⊂ D1, and any
u ∈ D2\{x}, let

(3.21) Mx,D1,S,D2(u,α) := e−αCD1 (u)
∞∑

L=1

αL−1

(L − 1)!
∑

eLx,D1,S

L∏
j=1

ξx,D1,S,D2

(
u, ejg, e

j
d

)
,

where the sum
∑

eLx,D1,S
runs over all ordered (distinct) excursions (e1, . . . , eL) in (Ex,D1,S)L

and

ξx,D1,S,D2(u, eg, ed)
(3.22)

:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξD1(u, eg, ed) if eg, ed ∈ ∂D1,

(2π)2(HD1(u, x))2

CD1,S(x)
if eg = ed = x,

2π(HD1(u, eg) − HD2(u, eg))(HD1(u, ed) − HD2(u, ed))

HD1(eg, ed)
otherwise.

Considering (3.21), and the inequality
∑

j≥0
λj

(j !)2 ≤ e2
√

λ for any λ ≥ 0, we have the fol-
lowing bound:

(3.23) Mx,D1,S,D2(u,α) ≤ Υx,D1,S,D2(u)e−αCD1 (u)e2
√

αΥx,D1,S,D2 (u)
,

where

(3.24) Υx,D1,S,D2(u) := ∑
e∈Ex,D1,S

ξx,D1,S,D2(u, eg, ed).

PROPOSITION 3.9. Let S ⊂ D1 ⊂ D be nice domains such that x ∈ S. Let D2 ⊂ D1 be a
nice domain satisfying ∂D2 ⊂ Sc. Suppose that z and z′ are distinct nice points of D, different

9In words, Ex,D1,S stands for the set of excursions in ED1 that do not hit x, to which we also add: (a) the
excursions from ∂D1 to x (if they exist); (b) the excursions from x to ∂D1 (if they exist); (c) loops at x which lie
in D1 and hit ∂S; (d) if z ∈ D1, the path from z to x if it does not hit ∂D1; (e) if z′ ∈ D1, the path from x to z′ if
it does not hit ∂D1.
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from x, which belong neither to ∂D1\J (D,D1) nor to ∂D2\J (D1,D2). Let u ∈ D2\{x}.
Define

M̃x,D2(u,α) := e−αCD2 (u)
∞∑

L=1

αL−1

(L − 1)!
∑
eLD2

L∏
j=1

ξD2

(
u, ejg, e

j
d

)
1{x /∈ej }.

We have, with the notation of (3.21) and (3.24),

E
Q

z,z′,α
x,D

[
M̃x,D2(u,α)|(eg, ed)e∈Ex,D1,S

]
= Mx,D1,S,D2(u,α)(3.25)

≤ Υx,D1,S,D2(u)e−αCD1 (u)e2
√

αΥx,D1,S,D2 (u)
.(3.26)

PROOF. Any element of ED2 that does not hit x, necessarily hits ∂D2, and lies (except,
possibly, for the starting or the ending point) in D1\{x, z, z′}, and is thus contained in an
excursion, say e, away from Dc

1 ∪ {x, z, z′}; e cannot be a loop at x lying in S because ∂D2 ⊂
Sc. In other words, e ∈ Ex,D1,S . It follows that

M̃x,D2(u,α)

= e−αCD2 (u)
∞∑

L=1

αL−1

(L − 1)!
L∑

K=1

∑
eKx,D1,S

∑
�1+···+�K=L,�j≥1,∀j≤K

K∏
j=1

Υ
(
ej , �j

)
,

where as before, the sum
∑

eKx,D1,S
runs over ordered (distinct) all excursions (e1, . . . , eK) ∈

(Ex,D1,S)K , and Υ (ej , �j ) is the sum, over all �j distinct excursions ej,1, . . . , ej,�j in
ED2 which do not hit x and which is contained in the excursion ej , of the products∏�j

i=1 ξD2(u, e
j,i
g , e

j,i
d ).

Notice that conditionally on (eg, ed)e∈Ex,D1,S
∈ (C2)Ex,D1,S , the family (Υ (ej , �j ))1≤j≤K

for distinct e1, . . . , eK ∈ Ex,D1,S , is independent. We claim that

(3.27) E
Q

z,z′,α
x,D

[
Υ
(
ej , �j

)|(eg, ed)e∈Ex,D1,S

]= CD1,D2(u)�j−1ξx,D1,S,D2

(
u, ejg, e

j
d

)
.

Indeed by definition of Ex,D1,S , the excursion ej can be an excursion from ∂D1 to ∂D1
which does not hit x, or from ∂D1 to x or from x to ∂D1, or a loop at x in D1 conditioned
to hit ∂S. Let us check (3.27) for each of these four cases. Write Q(3.27) for the conditional
expectation term on the left-hand side of (3.27).

If ej is an excursion from ∂D1 to ∂D1 which does not hit x, then e
j
g ∈ ∂D1, ejd ∈ ∂D1 and

none of ej,1, . . . , ej,�j hits x. By the Markov property,

Q(3.27) = E
e
j
g,e

j
d

D1

[ ∑
ordered (distinct) ej,1,...,ej,�j ∈ED2

�j∏
i=1

ξD2

(
u, ej,ig , e

j,i
d

)]

= CD1,D2(u)�j−1ξD1

(
u, ejg, e

j
d

)
,

by using (3.14) for the second equality. This implies (3.27) as ξx,D1,S,D2(u, e
j
g, e

j
d) =

ξD1(u, e
j
g, e

j
d) in this case.

If ej is an excursion from ∂D1 to x, then e
j
g ∈ ∂D1 and e

j
d = x. By the Markov property

and (3.16),

Q(3.27) = CD1,D2(u)�j−1ξD1

(
u, ejg, e

j
d

)(
1 − HD2(u, e

j
g)

HD1(u, e
j
g)

)(
1 − HD2(u, e

j
d)

HD1(u, e
j
d)

)
,



1804 E. AÏDÉKON, Y. HU AND Z. SHI

which yields (3.27) by the definition of ξx,D1,S,D2(u, e
j
g, e

j
d) (recalling that ejg �= x and e

j
d = x

in this case). The case when ej is an excursion from x to ∂D1 follows from the same way.
Finally, for the case when ej is a loop at x in D1 conditioned to hit ∂S, ejg = e

j
d = x, so

Q(3.27) = νD1(x, x)

[∑
eLD1

L∏
j=1

ξD1

(
x, ejg, e

j
d

)
1{e1

g �=z,eLd �=z}
∣∣∣∣T∂S < Tx

]

=
νD1(x, x)[∑eLD1

∏L
j=1 ξD1(x, e

j
g, e

j
d)1{e1

g �=z,eLd �=z}]
νD1(x, x)(T∂S < Tx)

.

Recall from (2.15) that νD1(x, x)(T∂S < Tx) = CD1,S(x). Using (3.20), completes the proof
of (3.27).

By (3.27), E
Q

z,z′,α
x,D

[M̃x,D2(u,α)|(eg, ed)e∈Ex,D1,S
] is given by

e−αCD2 (u)
∞∑

L=1

αL−1

(L − 1)!
L∑

K=1

CD1,D2(u)L−K

×
{ ∑
eKx,D1,S

∑
�1+···+�K=L,�j≥1,∀j≤K

K∏
j=1

ξx,D1,S,D2

(
u, ejg, e

j
d

)}
.

The sum
∑∞

L=1 . . . is also

∞∑
L=1

αL−1

(L − 1)!
L∑

K=1

CD1,D2(u)L−K
∑

eKx,D1,S

(
L − 1
K − 1

) K∏
j=1

ξx,D1,S,D2

(
u, ejg, e

j
d

)

=
∞∑

K=1

∑
eKx,D1,S

K∏
j=1

ξx,D1,S,D2

(
u, ejg, e

j
d

) ∞∑
L=K

αL−1

(K − 1)!(L − K)!CD1,D2(u)L−K.

Since

∞∑
L=K

αL−1

(K − 1)!(L − K)!CD1,D2(u)L−K = αK−1

(K − 1)!e
αCD1,D2 (u),

and CD1,D2(u) = CD2(u) − CD1(u), we get (3.25), which, in turn (in view of (3.23)), yields
(3.26). �

4. Construction of the measure Mα∞. Let D be a simply connected nice domain. Let
z and z′ be distinct nice points of D. For n ≥ 0, we let Dn be the set of the connected
components of D minus the grid of mesh size 2−n. We choose (Dn, n ≥ 0) such that z and
z′ never lie in any of the grid. We will abusively call an element of Dn a square (it is not
necessarily a square near the boundary of D). We say that x is suitable if x is in some square
Dn ∈ Dn at any level n, and is different from z and z′. The set of suitable points has the full
Lebesgue measure.

For any suitable x, we let D
(x)
n be the square in Dn that contains x. We let FDn be

the sigma-algebra generated by the starting and return points of all excursions inside some
square Dn together with the order of their appearances. Then (FDn)n≥0 is a filtration, and
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σ(
⋃∞

n=0 FDn) coincides with σ(Bt , t ∈ [0, T∂D]).10 We define for any Borel set A,

(4.1) Mα
Dn

(A) :=
∫
A

M
D

(x)
n

(x,α)dx,

where M
D

(x)
n

(x,α) is defined in (3.15) and M
D

(x)
n

(x,α) := 0 if x is not suitable.

Note that Mα
Dn

(A) is FDn-adapted. For any suitable x, FDn ⊂ F+
D

(x)
n

(defined in No-

tation 3.4 for the latter), so we can use Corollary 3.7 and integrate over A to yield that
(Mα

Dn
(A))n≥0 is an (FDn)-martingale under Pz,z′

D . Consequently, the following limit exists:

(4.2) Mα∞(A) := lim
n→+∞Mα

Dn
(A) ∈ [0,∞), P

z,z′
D -a.s.

THEOREM 4.1. Let D be a simply connected nice domain, and z and z′ be distinct nice
points of D. Fix 0 ≤ α < 2 and a Borel set A. Under P

z,z′
D , the martingale (Mα

Dn
(A))n≥0

converges in L1 to Mα∞(A).

In order to prove Theorem 4.1, we first remark that by Corollary 3.6, the (finite) measure∫
AQ

z,z′,α
x,D (•)MD(x,α)dx has Radon–Nikodym derivative Mα

Dn
(A) with respect to P

z,z′
D on

FDn . We assume without loss of generality that A has a positive Lebesgue measure. Let

(4.3) Q
z,z′,α
A (•) := 1∫

A MD(x,α)dx

∫
A
Q

z,z′,α
x,D (•)MD(x,α)dx

be the normalized probability measure defined on σ(
⋃∞

n=0 FDn).

By an elementary fact (see Durrett [6], Theorem 5.3.3), Mα
Dn

(A) converges in L1(P
z,z′
D ) if

and only if Mα∞(A) < ∞, Q
z,z′,α
A -a.s., where Mα∞(A) is the Q

z,z′,α
A -a.s. limit of Mα

Dn
(A),

which exists since 1/Mα
Dn

(A) is a nonnegative supermartingale under Q
z,z′,α
A .

Then Theorem 4.1 follows from the next proposition.

PROPOSITION 4.2. Let D be a simply connected nice domain, and z and z′ be distinct
nice points of D. Fix 0 ≤ α < 2. Then

(4.4) Q
z,z′,α
x,D

(
Mα∞

(
R2)< ∞)= 1 Lebesgue-a.e. x ∈ D.

As a consequence of Theorem 4.1, we have the following.

COROLLARY 4.3. Under the assumption of Proposition 4.2, we may define a random
finite measure m on the Borel sets such that Pz,z′

D -a.s., m is the weak limit of Mα
Dn

. Moreover,

for any rectangle A, m(A) = limn→∞Mα
Dn

(A), Pz,z′
D -a.s.

PROOF OF COROLLARY 4.3. The argument is routine; we give the details for the sake
of completeness.

10To identify the two sigma-algebras, note that by continuity, it suffices to show that for any disc B(x, r) ⊂ D

(where r > 0 is rational, and x is with rational coordinates), the duration and the exiting position of Brow-
nian motion starting at any y ∈ B(x, r) and killed upon exiting from B(x, r) are measurable with respect to
σ(
⋃∞

n=0 FDn
). This, however, is quite straightforward because by continuity, the number of crossings and their

positions between two concentric circles (hence the local time on any circle, hence the duration by integration
over local time) are measurable with respect to σ(

⋃∞
n=0 FDn

).
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First, note that the sequence (Mα
Dn

)n≥0 is tight, all the measures being supported in the

compact set D; so we can extract a (random) subsequence, say (n(k), k ≥ 1), along which
Mα

Dn(k)
converges weakly to some finite random measure m.

We may define Mα∞(A) such that Pz,z′
D -a.s., (4.2) simultaneously holds for all rectangles A

with rational coordinates. For any ε > 0 and rectangle A, let A+,ε be an open rectangle and
A−,ε be a closed rectangle both with rational coordinates such that A−,ε ⊂ ◦

A ⊂ A ⊂ A+,ε

and
∫
A+,ε\A−,ε

MD(x,α)dx ≤ ε. By the L1-convergence in Theorem 4.1, for any ε > 0,

E
z,z′
D (Mα∞(A+,ε) − Mα∞(A−,ε)) = ∫A+,ε\A−,ε

MD(x,α)dx ≤ ε. It implies that for any rect-
angle A,

(4.5) inf
ε>0

(
Mα∞(A+,ε) − Mα∞(A−,ε)

)= 0, P
z,z′
D -a.s.

Consider the event A on which (4.2) and (4.5) hold for all rectangles A with rational coordi-
nates. By the Portmanteau theorem, for any ε > 0, we necessarily have m(A) ≤ m(A+,ε) ≤
lim infk→∞Mα

Dn(k)
(A+,ε) = Mα∞(A+,ε), and similarly, m(

◦
A) ≥ Mα∞(A−,ε). Consequently,

m(∂A) ≤ inf
ε>0

(
Mα∞(A+,ε) − Mα∞(A−,ε)

)= 0

for any rectangle A with rational coordinates on the event A . The Portmanteau theorem
implies that m(A) = limk→∞Mα

Dn(k)
(A) = Mα∞(A) for any such A, which by the monotone

class theorem yields the uniqueness of the limit measure m on A and proves the P
z,z′
D -a.s.

weak convergence of the sequence (Mα
Dn

)n≥0 to m. Finally, for any rectangle A (regardless

of the rationality of the coordinates of A), equation (4.5) holds P
z,z′
D -a.s., hence the same

reasoning shows that m(A) = limn→∞Mα
Dn

(A), Pz,z′
D -a.s. �

DEFINITION 4.4 (Definition of Mα∞). In the sequel, by a slight abuse of notation, we still
denote by Mα∞ the finite random measure m in Corollary 4.3.

Theorem 4.1 implies in particular that Ez,z′
D (Mα∞(D)) > 0. Furthermore, Pz,z′

D -a.s., Mα∞
is not trivial; see Proposition 5.3.

The rest of this section is devoted to the proof of Proposition 4.2. First, we present in
Section 4.1 some preliminary estimates under Qz,z′,α

x,D by means of elementary properties of
ξD ; then we give the proof in Section 4.2.

4.1. Preliminary estimates. Let x ∈ D. Let y, z ∈ D be distinct nice points, different
from x. Recall from (3.1) that ξD(x, y, z) = 2πHD(x,y)HD(x,z)

HD(y,z)
. By properties of harmonic

functions under conformal transformations, we see that ξD is invariant under conformal
transformations: if D and D′ are two nice domains, z �= z′ nice points of D, � : D → D′
a conformal transformation such that �(z) and �(z′) are nice points of D′, then

ξD′
(
�(x),�(z),�

(
z′))= ξD

(
x, z, z′).

LEMMA 4.5. Let D be a simply connected nice domain and z′ ∈ ∂D be a nice point.

(i) For any x ∈ D, and any nice point z ∈ ∂D different from z′, we have

(4.6) ξD

(
x, z, z′)≤ 4.

(ii) For any δ ∈ (0,1), there exists some positive constant c4 = c4(δ,D) such that for any
x, z ∈ D with |x − z| > δ, we have

(4.7) ξD

(
x, z, z′)≤ c4.
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PROOF OF LEMMA 4.5. Observe that ξD(x, z, z′) = ξB(0,1)(0,�(z),�(z′)) for � a con-
formal map from D to B(0,1) which maps x to 0. It is well known (see Lawler [9], Chapter 2,
formula (2.4)) that for any |a| < 1 and |b| = 1,

(4.8) HB(0,1)(a, b) = 1 − |a|2
2π |a − b|2 .

It follows that for |b′| = |b| = 1, HB(0,1)(b
′, b) = 1

π |b−b′|2 (see also Lawler [9], Chapter 5,
Exercise 5.6).

If z ∈ ∂D, then |�(z)| = 1 and ξB(0,1)(0,�(z),�(z′)) = |�(z) − �(z′)|2 ≤ 4 yielding
(4.6).

It remains to treat the case z ∈ D with |z − x| > δ. Write a := �(z) for notational brevity.
Using the elementary fact that for any |a| < 1, HB(0,1)(0, a) = 1

2π
log 1

|a| , we have

(4.9) ξB(0,1)

(
0,�(z),�

(
z′))= 1

2π

(
log

1

|a|
)

1 − |a|2
|a − �(z′)|2 ≤ 1

π

log 1
a

1 − |a| ,

by using the triangular inequality: |a − �(z′)| ≥ |�(z′)| − |a| = 1 − |a|.
Now we shall estimate |a| from below. Observe that |u − x| = |�−1(a) − �−1(0)| ≤

|a| sup0≤t≤1 |(�−1)′(at)|. Applying Corollary 3.19 (Lawler [9], Chapter 3) to the con-
formal transformation �−1 which maps B(0,1) to D, we get that for any 0 ≤ t ≤ 1,

|(�−1)′(at)| ≤ 4d(�−1(at),∂D)
|1−at | ≤ 4diam(D)

1−|a| , where diam(D) denotes the diameter of D. Then

|u − x| ≤ 4 diam(D)
|a|

1−|a| . Since |u − x| > δ by assumption, we deduce that |a| ≥ η, with

η := δ
8(diam(D)+1)

. Going back to (4.9), we get that ξD(x, z, z′) = ξB(0,1)(0,�(z),�(z′)) ≤
1
π

supη≤r<1
log 1

r
1−r

=: c4, proving (4.7). �

From (4.8), we have the following lemma.

LEMMA 4.6. For each ε > 0, there exists η > 0 such that |HB(0,1)(a,b)

HB(0,1)(0,b)
− 1| < ε for any

|b| = 1 and |a| < η.

In view of the proof of Proposition 4.2, we now study loops from x to x under Qz,z′,α
x,D . For

any r > 0, we denote by

N(x, r) := #
{
loops from x to x which hit C(x, r)

}
,(4.10)

Υ (x, r) := ∑
e∈EB(x,r)

ξB(x,r)(x, eg, ed)1{x /∈e},(4.11)

where EB(x,r) is the set of excursions inside B(x, r) as defined in Notation 3.3, and ξ defined
in (3.1).

Let z �= z′ be distinct nice points of D, different from x. Let r0 ∈ (0,1) be such that
B(x, r0) ⊂ D and z, z′ /∈ B(x, r0). Let rk := r0

2k for k ≥ 0.

LEMMA 4.7. Let α ≥ 0. As k → ∞,

(i) N(x, rk) ∼ α log 1
rk

, Qz,z′,α
x,D -a.s.;

(ii) Υ (x, rk) ∼ α(log 1
rk

)2, Qz,z′,α
x,D -a.s.
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PROOF OF LEMMA 4.7. (i) We start by mentioning a simple fact on the concentration
of a Poisson variable: Let Nλ be a Poisson random variable with parameter λ > 0. By the
standard large deviation principle, for any ε > 0, there exist some δ > 0 and λ0 > 0 such that
for all λ > λ0,

(4.12) P
(|Nλ − λ| ≥ ελ

)≤ e−δλ.

Under Qz,z′,α
x,D , the number of loops from x to x that hit C(x, rk) is a Poisson variable of

parameter ανD(x, x)(TC(x,rk) < Tx) (see Section 1.2). By Lemma 2.3(ii), νD(x, x)(TC(x,rk) <

Tx) = ∫C(x,rk)
GD(x, y)HB(x,rk)(x, y)dy ∼ log(1/rk) as k → ∞. By (4.12) and the Borel–

Cantelli lemma, N(x, rk) ∼ α log(1/rk) as k → ∞, Qz,z′,α
x,D -a.s. This proves (i).

(ii) For each r > 0, the contribution to the right-hand side of (4.11) comes from the paths
of the excursion from z to x, of the N(x, r) loops which hit C(x, r), and of the excursion
from x to z′. Consequently for any k ≥ 1,

Υ (x, rk) = Υbegin +
N(x,rk)∑

j=1

Υj + Υend,

where under Q
z,z′,α
x,D , Υbegin, Υend, Υ1,Υ2, . . . , are mutually independent (and independent

of N(x, rk)) such that Υbegin and Υend are distributed as Υ (x, rk) under P
z,x
D and P

x,z′
D ,

respectively, and for any j ≥ 1, Υj has the same distribution as that of Υ (x, rk) under
νD(x, x)(•|TC(x,rk) < Tx). [For the sake of presentation, we have introduced Υj for all j ≥ 1;
we have also omitted the dependence on k in the notation Υbegin,Υend and Υj , j ≥ 1.]

We claim that

(4.13) Q
z,z′,α
x,D (Υbegin) = Q

z,z′,α
x,D (Υend) = Q

z,z′,α
x,D (Υ1) = CD,B(x,rk)(x).

In fact, notice that HB(x,rk)(x, z) = 0 as well as HB(x,rk)(x, z′) = 0. Applying (3.17)

to L = 1 gives that Qz,z′,α
x,D (Υbegin) = CD,B(x,rk)(x). In the definition of Υ (x, r) in (4.11),

ξB(x,r)(x, eg, ed) = ξB(x,r)(x, ed, eg), so by the time-reversal property (2.9) for the path from

x to z′ and another application of (3.17) to L = 1, we get Qz,z′,α
x,D (Υend) = CD,B(x,rk)(x).

Finally, recall that νD(x, x)(TC(x,rk) < Tx) = CD,B(x,rk)(x) by definition (see Lemma 2.3).

Applying (3.18) to L = 1 gives that Qz,z′,α
x,D (Υ1) = CD,B(x,rk)(x) and completes the justifica-

tion of (4.13).
By Lemma 2.3(ii), CD,B(x,rk)(x) = ∫C(x,rk)

GD(x, y)HB(x,rk)(x, y)dy ∼ log(1/rk) as k →
∞. [A fact already used in the proof of (i)].

From (i), the statement (ii) immediately follows once we have shown that for any deter-
ministic sequence nk such that lim infk→∞ nk

k
> 0,

(4.14)
1

n2
k

[
Υbegin + Υend +

nk∑
j=1

Υj − (nk + 2)CD,B(x,rk)(x)

]
→ 0, Q

z,z′,α
x,D -a.s.

To get (4.14), we shall use the following inequality (see Petrov [16], Theorem 2.10): There
exists some constant c1 > 0 such that for any sequence of independent real-valued integrable
random variables (ηi)i≥1,

(4.15) E

∣∣∣∣∣
n∑

i=1

(
ηi −E(ηi)

)∣∣∣∣∣
3

≤ c1n
1/2

n∑
i=1

E
[|ηi |3] ∀n ≥ 1.
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Using the fact that ξB(x,rk)(x, eg, ed) is bounded by 4 (see (4.6)), we deduce from the
definition of Υ (x, rk) in (4.11) that for some numerical constant c2 [we may take c2 = 16],

Υ (x, rk)
3 ≤ c2

3∑
L=1

∑
eLB(x,rk)

L∏
j=1

ξB(x,rk)

(
x, ejg, e

j
d

)
1{e1

g �=x,eLd �=x},

where as in the previous section,
∑

eLB(x,rk)
is a short way to denote sum over all ordered

(distinct) excursions (e1, . . . , eL) ∈ (EB(x,rk))
L.

From the equations (3.17) and (3.18) with L ∈ {1,2,3}, D1 = B(x, rk) there, we see that
there exists some positive constant c3 = c3(x) such that the third moments of Υbegin, of Υend

and of Υ1 are less than c3(log(1/rk))
3.

Recalling (4.13). It follows from (4.15) that

Q
z,z′,α
x,D

[∣∣∣∣∣ 1

n2
k

(
Υbegin + Υend +

nk∑
j=1

Υj − (nk + 2)CD,B(x,rk)(x)

)∣∣∣∣∣
3]

≤ c1c3
(nk + 2)3/2

n6
k

(
log

1

rk

)3
,

which is summable in k thanks to the assumption on nk : lim infk→∞ nk

k
> 0. The Borel–

Cantelli lemma yields (4.14) completes the proof of (ii). �

4.2. Proof of Proposition 4.2. We fix D, z �= z′ nice points of D. Let 0 ≤ α < 2 and
0 ≤ � < 2 − α. Take γ = γ (�) and ε = ε(�) such that γ > α, ε > 0 and

(4.16) 2(1 + ε)
√

γα − α + � < 2.

Let η ∈ (0,1) be the constant in Lemma 4.6 associated with our choice of ε. Let K ≥ 5 be
such that 2−K <

η
16 . Constants c5, c6, . . . in the proof can depend on D, z, z′, α, �, γ , ε, K

even if not specified.
Let x ∈ D be a suitable point, meaning, as before, that x is in some square Dn ∈ Dn at any

level n, and is different from z and z′ (recall that the set of suitable points has full Lebesgue
measure). Let r0 ∈ (0,1) and rk = r0

2k , let

E(x)(r0, γ ) := {d(x, ∂D ∪ {z, z′})> r0
}

(4.17)

∩ ⋂
k≥0

{
N(x, rk) ≤ γ log

1

rk
,Υ (x, rk) ≤ γ

(
log

1

rk

)2}
.

We assume, for the moment, that for all suitable x ∈ D,

(4.18) lim inf
n→+∞ 1{d(x,∂D

(x)
n )≥ 2−n

4 }EQ
z,z′,α
x,D

[∫
D

Mα
Dn

(du)

|u − x|� ,E(x)(r0, γ )

]
≤ c5(r0),

where c5(r0) is some positive constant depending on r0. We claim that Proposition 4.2 will
follow from Lemma 4.7 and (the case � = 0 of) (4.18). In fact, for any c > 0, we deduce from
(4.18) (with � = 0) that

lim inf
n→+∞E

Q
z,z′,α
x,D

[
min
(
c,Mα

Dn
(D)
)
,E(x)(r0, γ )

]
≤ c5(r0) + c lim inf

n→+∞ 1{d(x,∂D
(x)
n )< rn

4 }
= c5(r0),
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for Lebesgue-a.e. x ∈ D. By Fatou’s lemma, it gives that for any c > 0,

E
Q

z,z′,α
x,D

[
min
(
c,Mα∞(D)

)
,E(x)(r0, γ )

]≤ c5(r0),

then, by monotone convergence,

(4.19) E
Q

z,z′,α
x,D

[
Mα∞(D),E(x)(r0, γ )

]≤ c5(r0).

We deduce that for Lebesgue-a.e. x ∈ D, Qz,z′,α
x,D -a.s., Mα∞(D) < ∞ on the event E(x)(r0, γ ).

By Lemma 4.7, we have for any x ∈ D\{z, z′},

(4.20) Q
z,z′,α
x,D

( ∞⋃
�=1

E(x)(2−�, γ
))= 1.

Hence we get (4.4). [The case 0 < � < 2 − α in (4.18) will be used in Section 6.]
It remains to prove (4.18). We fix r0 > 0 and suitable x ∈ D such that d(x, ∂D ∪ {z, z′}) >

r0. We write B0 := D and Bk := B(x, rk) for any k ≥ 1. We distinguish three possible situa-
tions: (i) |u − x| > rK with u /∈ D

(x)
n , (ii) |u − x| < rK with u /∈ D

(x)
n , and (iii) u ∈ D

(x)
n . We

suppose that d(x, ∂D
(x)
n ) ≥ 2−n

4 , which means that x is not too close to the boundary of D
(x)
n .

First case: |u − x| > rK with u /∈ D
(x)
n . Since we are going to integrate over u with re-

spect to the Lebesgue measure, we suppose, without loss of generality, that u is a suitable
point. With the notation of Proposition 3.9, observe that M̃

x,D
(u)
n

(u,α) = M
D

(u)
n

(u,α) since

the excursions inside D
(u)
n cannot hit x. Recall the definition of Υx,D1,S,D2(u) in (3.24). We

are going to take D1 = D, S = BK and D2 = D
(u)
n . Then Υ

x,D,BK,D
(u)
n

(u) is (possibly) con-

tributed by excursions from z to x, from x to z′ and by the loops at x in D which hit C(x, rK).
By definition,

Υ
x,D,BK,D

(u)
n

(u)

= 2π

HD(z, x)

(
HD(u, z) − H

D
(u)
n

(u, z)
)(

HD(u,x) − H
D

(u)
n

(u, x)
)

+ 2π

HD(x, z′)
(
HD

(
u, z′)− H

D
(u)
n

(
u, z′))(HD(u,x) − H

D
(u)
n

(u, x)
)

+ (2π)2

CD,BK
(x)

(
HD(u,x) − H

D
(u)
n

(u, x)
)2

N(x, rK),

by recalling that N(x, rK) denotes the number of loops at x which hit C(x, rK). This implies
that

(4.21) Υ
x,D,BK,D

(u)
n

(u) ≤ ξD(u, x, z) + ξD

(
u,x, z′)+ GD(u,x)2

CD,BK
(x)

N(x, rK) =: c(4.21),

recalling that GD(u,x) = 2πHD(u, x).
By applying Proposition 3.9 to D1 = D, S = BK and D2 = D

(u)
n , we get that

E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α)|N(x, rK)
]= E

Q
z,z′,α
x,D

[
M̃

x,D
(u)
n

(u,α)
∣∣N(x, rK)

]
(4.22)

≤ c(4.21)e
−αCD(u)e2

√
αc(4.21) .

Let us control the three terms in c(4.21). For the last term in c(4.21), we remark that
since |u − x| > rK , we have, by Lawler [9] Proposition 2.36, GD(u,x) ≤ log diam(D) +
log 1

rK
(where diam(D) denotes, as before, the diameter of D). For any |y − x| = rK ,



POINTS OF INFINITE MULTIPLICITY 1811

GD(x, y) ≥ logd(x, ∂D) + log 1
rK

(again by Lawler [9] Proposition 2.36). It follows that

CD,BK
(x) = ∫C(x,rK) GD(x, y)HB(x,rK)(x, y)dy ≥ log(r0/rK). On the event E(x)(r0, γ ), we

have N(x, rK) ≤ γ (log rK)2, hence for some constant c6 = c6(r0,K,D,γ ),

GD(u,x)2

CD,BK
(x)

N(x, rK) ≤ c6.

To control ξD(u, x, z) + ξD(u, x, z′) in c(4.21), we discuss separately two cases: If z ∈ ∂D,
then we apply (4.7) to see that ξD(u, x, z) ≤ c4. If z ∈ D, HD(u,x) is bounded as seen in the
previous paragraph (recalling that |u − x| > rK ), HD(x, z) ≥ infy:d(y,∂D∪{z})≥r0 HD(y, z) =:
c7(r0, z,D) > 0, hence ξD(u, x, z) = 2π HD(u,x)

HD(x,z)
HD(u, z) ≤ 2πc7HD(u, z). We get that for

z ∈ D, ξD(u, x, z) ≤ c4 + 2πc7HD(u, z)). A similar bound holds for ξD(u, x, z′). Therefore,
we have shown that for some constant c8 = c8(r0, z, z

′,K,D,γ ),

c(4.21) ≤ c8
(
1 + HD(u, z) + HD

(
u, z′))=: fz,z′(u).

Going back to (4.22), we see that

E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α),E(x)(r0, γ )
]

≤ E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α),N(x, rK) ≤ γ (log rK)2]
≤ fz,z′(u)e−αCD(u)e2

√
αfz,z′ (u)

,

which implies that

E
Q

z,z′,α
x,D

[∫
|u−x|>rK

Mα
Dn

(du)

|u − x|� ,E(x)(r0, γ )

]

≤
∫
|u−x|>rK

du

|u − x|� fz,z′(u)e−αCD(u)e2
√

αfz,z′ (u)(4.23)

≤ c9,

with c9 := r
−�
K

∫
D fz,z′(u)e−αCD(u)e2

√
αfz,z′ (u) du < ∞.

Second case: rk+K+1 ≤ |u − x| < rk+K for some k ≥ 0, with u /∈ D
(x)
n . We still have

M̃
x,D

(u)
n

(u,α) = M
D

(u)
n

(u,α). We claim

(4.24) D
(u)
n ⊂ Bk, ∂D(u)

n ⊂ Bc
k+K+5.

To see why D
(u)
n ⊂ Bk holds: It suffices to check |u − x| + √

2 × 2−n < rk , which is easy.
Indeed, |u − x| < rk+K < 1

2rk (since K > 1), and since d(x, ∂D
(x)
n ) ≥ 1

42−n, we also have√
2 × 2−n <

√
2 × 4d(x, ∂D

(x)
n ) ≤ √

2 × 4|u − x| < √
2 × 4rk+K which is smaller than 1

2rk
(since K ≥ 4).

We now prove the second inclusion in (4.24) by discussing on two possible situations. If
rk+K+1 ≥ 4

2n , then trivially |u − x| ≥ rk+K+1 > rk+K+5 + √
2 × 2−n, which yields ∂D

(u)
n ⊂

Bc
k+K+5. If, on the other hand, rk+K+1 < 4

2n , then rk+K+5 < 1
42−n, which yields Bk+K+5 ⊂

∂D
(u)
n (because d(x, ∂D

(x)
n ) ≥ 1

42−n), which, in turn, implies ∂D
(u)
n ⊂ Bc

k+K+5. As such,
(4.24) is proved.

Recall the definition of Υx,D1,S,D2(u) in (3.24); we take D1 = Bk , S = Bk+K+5 and
D2 = D

(u)
n . Then Υ

x,Bk,Bk+K+5,D
(u)
n

(u) is (possibly) contributed by excursions from C(x, rk)

to x, from x to C(x, rk), and by the loops in Bk which hit C(x, rk+K+5), and by excursions
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from C(x, rk) to itself without hitting x. [The latter excursions make the most significant
contribution to Υ

x,Bk,Bk+K+5,D
(u)
n

(u).] We claim that for some positive constant c10 only de-
pending on K and all e ∈ Ex,Bk,Bk+K+5 ,

(4.25) ξ
x,Bk,Bk+K+5,D

(u)
n

(u, eg, ed) ≤ c10.

To prove (4.25), we start by noting that H
D

(u)
n

(u, x) = 0 (because x /∈ D
(u)
n ) and

H
D

(u)
n

(u, y) = 0 for any y ∈ ∂Bk = C(x, rk). Hence by (3.23),

ξ
x,Bk,Bk+K+5,D

(u)
n

(u, eg, ed)

=
{
(2π)2(HBk

(u, x)
)2

/CBk,Bk+K+5(x) if eg = ed = x,

ξBk
(u, eg, ed) otherwise.

If eg, ed ∈ C(x, rk), we use (4.7) to see that ξ
x,Bk,Bk+K+5,D

(u)
n

(u, eg, ed) ≤ 4; otherwise, we use

the following explicit computations: HBk
(u, x) = 1

2π
log rk|u−x| , CBk,Bk+K+5(x) = log rk

rk+K+5
=

(K + 5) log 2, HBk
(u, y) = 1

2πrk

r2
k −|u−x|2
|u−y|2 and HBk

(x, y) = 1
2πrk

for any y ∈ C(x, rk). Since
rk+K+1 ≤ |u − x| < rk+K , we easily get (4.25).

For e inside C(x, rk) which does not hit x, we have by our choice of K and Lemma 4.6,
ξBk

(u, eg, ed) ≤ (1 + ε)2ξBk
(x, eg, ed).

With the notation of (4.10), the number of excursions from C(x, rk) to x, from x to C(x, rk),
and the loops in Bk which hit C(x, rk+K+5), is less than 2N(x, rk+K+5) + 2. [The presence
of +2 is due to the path from z to x, and to the path from x to z′.] In the notation of (4.11),
we have

(4.26) Υ
x,D,B(x,r),D

(u)
n

(u) ≤ (1 + ε)2Υ (x, rk) + 2c10
(
N(x, rk+K+5) + 1

)=: c(4.26).

In view of (4.24), we are entitled to apply Proposition 3.9 to D1 = Bk , S = Bk+K+5 and
D2 = D

(u)
n , to see that

E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α)|N(x, rk+K+5),Υ (x, rk)
]

= E
Q

z,z′,α
x,D

[
M̃

x,D
(u)
n

(u,α)|N(x, rk+K+5),Υ (x, rk)
]

≤ c(4.26)e
−αCBk

(u)e2
√

αc(4.26) .

Recall the definition of CS(u) in Lemma 2.3. We see that CBk
(u) ≥ log(1/(2rk)). By the

choice of the event E(x)(r0, γ ), we deduce the existence of a constant c11 depending on
(K, ε,α, γ ) such that uniformly in u satisfying |u − x| < rK and u /∈ D

(x)
n ,

(4.27) E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α),E(x)(r0, γ )
]≤ c11

|u − x|2(1+ε)
√

αγ−α

(
log

1

|u − x|
)2

.

Third (and last) case: u ∈ D
(x)
n . Here, we assume that n is large enough so that D

(x)
n ⊂

B(x, r0). Recall that d(x, ∂D
(x)
n ) ≥ 2−n

4 . Let an be the smallest integer j ≥ K such that rj <
2−n

4 . In particular, Ban ⊂ D
(x)
n , so the number of excursions in E

D
(x)
n

which hit x is smaller than

N := N(x, ran) + 1. For all 0 ≤ m ≤ L, and for all ẽ1, . . . , ẽm distinct and ordered excursions
in E

D
(x)
n

which do not hit x, consider the set of e1, . . . , eL distinct and ordered excursions in

E
D

(x)
n

such that {̃e1, . . . , ẽm} ⊂ {e1, . . . , eL} and any e ∈ {e1, . . . , eL}\{̃e1, . . . , ẽm} hits x. We

remark that the cardinality of this set is less than
(

N
L−m

)
.
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Recall from (4.6) that ξ
D

(x)
n

(u, y, y′) ≤ 4 for any y, y′ ∈ ∂D
(x)
n . It follows that

∑
eL

D
(x)
n

L∏
j=1

ξ
D

(x)
n

(
u, ejg, e

j
d

)≤ L∑
m=0

4L−m

(
N

L − m

)
�(m)

n (u),

where �
(0)
n (u) := 1 and for any m ≥ 111

�(m)
n (u) := ∑

em

D
(x)
n

m∏
j=1

ξ
D

(x)
n

(
u, ejg, e

j
d

)
1{x /∈ej }.

We get that for any u ∈ D
(x)
n ,

M
D

(x)
n

(u,α)

≤ e
−αC

D
(x)
n

(u)
∞∑

L=1

αL−1

(L − 1)!
L∑

m=0

4L−m

(
N

L − m

)
�(m)

n (u)(4.28)

≤ e
−αC

D
(x)
n

(u)
∞∑

m=0

�(m)
n (u)

∞∑
L=max(m,1)

4L−m αL−1

(L − 1)!
(

N

L − m

)
.

To estimate the sum
∑∞

L=max(m,1)(· · · ) in (4.28), we shall use the following elementary
inequalities: for any b and j two integers and for all s ≥ 0,

(4.29)
∞∑

�=0

s�

(b + �)!
(
j

�

)
≤ 1

b!
∞∑

�=0

s�

�!
(
j

�

)
≤ 1

b!
∞∑

�=0

(sj)�

(�!)2 ≤ 1

b!e
2
√

sj .

When m = 0, the sum
∑∞

L=max(m,1)(· · · ) in (4.28) is equal to

∞∑
L=1

4L αL−1

(L − 1)!
(
N

L

)
= 4

∞∑
�=0

(4α)�

�!
(

N

� + 1

)

≤ 4N

∞∑
�=0

(4α)�

�!
(
N − 1

�

)

≤ 4Ne4
√

α(N−1),

by using (4.29) for the last inequality. When m ≥ 1, the sum
∑∞

L=max(m,1)(· · · ) in (4.28) is
equal to, after a change of variables L = m + �,

αm−1
∞∑

�=0

(4α)�

(m − 1 + �)!
(
N

�

)
≤ αm−1

(m − 1)!e
4
√

αN,

by using again (4.29) for the last inequality. It follows from (4.28) that

M
D

(x)
n

(u,α) ≤ e
−αC

D
(x)
n

(u)
[

4N +
∞∑

m=1

αm−1

(m − 1)!�
(m)
n (u)

]
e4

√
αN

(4.30)
= [4Ne

−αC
D

(x)
n

(u) + M̃
x,D

(x)
n

(u,α)
]
e4

√
αN,

11( N
L−m

)= 0 if N < L − m.
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with the notation of Proposition 3.9. We want to use Proposition 3.9 with D1 = Ban−K , D2 =
D

(x)
n and S = Ban (note that D

(x)
n ⊂ Ban−K as K ≥ 4). Remark that uniformly in u ∈ D

(x)
n ,

(4.31) 0 ≤ HBan−K
(u, x) − H

D
(x)
n

(u, x) ≤ c12(K).

In fact, if |u − x| ≥ 2−n

8 , then HBan−K
(u, x) = 1

2π
log ran−K

|u−x| ≤ log 2
2π

(K + 1), by using the fact

that ran < 2−n

4 . Now if |u−x| < 2−n

8 , then d(u, ∂D
(x)
n ) > 2−n

8 (recall that d(x, ∂D
(x)
n ) > 2−n

4 ).
By Lawler [9], Proposition 2.36, HBan−K

(u, x) − H
D

(x)
n

(u, x) = 1
2π

Ex log |BT∂Ban−K
− u| −

1
2π

Ex log |BT
∂D

(x)
n

− u| ≤ 1
2π

log 2ran−K

(2−n/8)
≤ log 2

2π
(K + 2) =: c12(K). This proves (4.31).

Using (4.31), the similar computations leading to (4.25) show that there is some positive
constant c13 only depending on K such that for all u ∈ D

(x)
n , for all e ∈ Ex,Ban−K,Ban

,

ξ
x,Ban−K,Ban ,D

(x)
n

(u, eg, ed) ≤ c13.

Recall the definition of Υx,D1,S,D2(u) in (3.24); we take D1 = Ban−K , D2 = D
(x)
n and

S = Ban . Remark that for all u ∈ D
(x)
n , |u − x| <

√
2 2−n <

√
2 ran−1 < ηran−K by the

choice of K . By Lemma 4.6, for all y ∈ C(x, ran−K), HBan−K
(u, y) ≤ (1 + ε)HBan−K

(x, y).
Then similar to (4.26), we have that

(4.32) Υ
x,Ban−K,Ban ,D

(x)
n

(u) ≤ (1 + ε)2Υ (x, ran−K) + 2c13
(
N(x, ran) + 1

)=: c(4.32).

Applying Proposition 3.9 to D1 = Ban−K , D2 = D
(x)
n and S = Ban gives that

E
Q

z,z′,α
x,D

[
M̃

D
(u)
n

(u,α)|N(x, ran), (1 + ε)2Υ (x, ran−K)
]

≤ c(4.32)e
−αCBan−K

(u)e2
√

αc(4.32) .

On the event E(x)(r0, γ ), N(x, ran) ≤ γ log 1
ran

and Υ (x, ran−K) ≤ γ (log 1
ran−K

)2, hence

c(4.32) ≤ (1 + ε)2γ

(
log

1

ran−K

)2
+ 2c13

(
γ log

1

ran

+ 1
)

≤ (1 + ε)2γ

(
log

c14

ran

)2
,

where c14 = c14(K,γ, r0) > 0 denotes some constant and for the last inequality. Therefore,

E
Q

z,z′,α
x,D

[
M̃

D
(u)
n

(u,α),E(x)(r0, γ )
]

≤ (1 + ε)2γ

(
log

c14

ran

)2
e−αCBan−K

(u)
(

c14

ran

)2(1+ε)
√

αγ

.

By definition, CBan−K
(u) = ∫C(x,ran−K) log 1

|u−y|HBan−K
(u, y)dy ≥ log 1

2ran−K
and in the

same way, C
D

(x)
n

(u) ≥ log 1√
22−n

. Using (4.30) yields that uniformly in u ∈ D
(x)
n ,

E
Q

z,z′,α
x,D

[
M

D
(u)
n

(u,α),E(x)(r0, γ )
]

(4.33)

≤ c15

(
log

1

ran

)2
e

4
√

αγ log 1
ran

(
1

ran

)2(1+ε)
√

αγ−α

.

Recall that ran < 1
42−n ≤ ran−1. We deduce from (4.33) that

(4.34) E
Q

z,z′,α
x,D

[∫
u∈D

(x)
n

Mα
Dn

(du)

|u − x|� ,E(x)(r0, γ )

]
→ 0, n → ∞.

Then equation (4.18) comes from (4.16), (4.23), (4.27) and (4.34). This completes the proof
of Proposition 4.2.
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5. Image of of Mα∞ under a conformal mapping. The following result is analogous
to [1], Theorem 5.2, with the extensions to all α ∈ (0,2). Recall that CD(x) = − ∫∂D log(|x −
y|)HD(x, y)dy and ξD(x, z, z′) = 2πHD(x,z)HD(x,z′)

HD(z,z′) .

PROPOSITION 5.1. Let 0 ≤ α < 2. Recall that D is a simply connected nice domain and
z, z′ nice points of D. For any nonnegative measurable function f , we have

(5.1) E
z,z′
D

∫
D

f (x,B)Mα∞(dx) =
∫
D
E
Q

z,z′,α
x,D

(
f (x,B)

)
e−αCD(x)ξD

(
x, z, z′)dx.

Consequently, if for a family of events (Ex)x∈D , Qz,z′,α
x,D (Ex) = 1 for Lebesgue-a.e. x ∈ D,

then with probability one, the event Ex holds for Mα∞-almost all x.

PROOF OF PROPOSITION 5.1. By the standard monotone class argument, it is enough to
prove the equality (5.1) for f (x,B) = 1A(x)1F , where A ⊂ D a Borel set and F ∈ FDn for
an arbitrary n ≥ 1. Then the left-hand side of (5.1) is equal to

E
z,z′
D

(
Mα∞(A)1F

)= ∫
A
E

z,z′
D

(
M

D
(x)
n

(x,α)1F

)
dx

=
∫
A
Q

z,z′,α
x,D (F )e−αCD(x)ξD

(
x, z, z′)dx,

where the first equality follows from Theorem 4.1 and the second from Corollary 3.6. �

As pointed out in [1], equation (5.1) characterizes the measure Mα∞. To be more precise,
under the assumptions of Proposition 5.1, suppose that there is a random finite measure m on
the Borel sets of R2, measurable with respect to the Brownian B := (Bt )0≤t≤Tz′ , and which

also verifies equation (5.1), replacing Mα∞ by m there. Then m = Mα∞ P
z,z′
D -a.s. To see it,

define m′ := m − Mα∞. Equation (5.1) applied to m and Mα∞ yields that, for any bounded
measurable function f ,

E
z,z′
D

∫
D

f (x,B)m′(dx) = 0.

Let A a Borel set of R2. For c > 0, taking f (x,B) := m′(A)1x∈A1|m′(A)|<c, we get that

E
z,z′
D [m′(A)21|m′(A)|<c] = 0, hence by monotone convergence, Ez,z′

D [m′(A)2] = 0. We deduce
the claim.

Let D, D′ be simply connected nice domains, and � : D → D′ a conformal transforma-
tion. Let z, z′ be distinct nice points of D such that �(z) and �(z′) are nice points of D′ (�
can be extended to a conformal transformation of D ∪ B(z, ε) ∪ B(z′, ε) for some ε > 0, see
Lawler [9], p. 48).

PROPOSITION 5.2. The image measure of Mα∞ by � under P
z,z′
D has the same law as

the measure |� ′(�−1(x))|−2−αMα∞(dx) under P�(z),�(z′)
D′ .

PROOF OF PROPOSITION 5.2. It suffices to show that for any nonnegative measurable
function f ,

E
z,z′
D

∫
D

f
(
�(x),�(B)

)
Mα∞(dx)

(5.2)
= E

�(z),�(z′)
D′

∫
D′

f (x,B)
∣∣� ′(�−1(x)

)∣∣−2−αMα∞(dx).
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From Proposition 5.1, the left-hand side is

(5.3)
∫
D
E
Q

z,z′,α
x,D

(
f
(
�(x),�(B)

))
e−αCD(x)ξD

(
x, z, z′)dx.

The conformal invariance of Q
z,z′,α
x,D (which results from the conformal invariance of the

Brownian measures Pz,x
D , Px,z′

D and νD(x, x)) implies that

E
Q

z,z′,α
x,D

(
f
(
�(x),�(B)

))= E
Q

�(z),�(z′),α
�(x),D′

(
f
(
�(x),B

))
.

Moreover, ξD(x, z, z′) = ξD′(�(x),�(z),�(z′)) and CD(x) = CD′(�(x))+ log |� ′(x)|. By
the change of variables y = �(x), equation (5.3) becomes∫

D′
E
Q

�(z),�(z′),α
y,D′

(
f (y,B)

)
e−αCD′ (y)ξD′

(
y,�(z),�

(
z′))∣∣� ′(�−1(y)

)∣∣−2−α dy,

which proves (5.2) by another use of Proposition 5.1. �

PROPOSITION 5.3. Let z, z′ be distinct nice points of D. We have P
z,z′
D (Mα∞(D) > 0) =

1.

PROOF OF PROPOSITION 5.3. To stress the dependence of D in Mα∞, we write Mα∞,D

in this proof. We want to prove that P
z,z′
D (Mα∞,D = 0) = 0. By Proposition 5.2, c :=

P
z,z′
D (Mα∞,D = 0) is independent of z, z′ and D. Consider D = (0,1)2, and D̃ ∈ D2 a square

of mesh 1
4 . The event {Mα∞,D = 0} implies that {Mα∞,D(D̃) = 0}. Conditionally on F +̃

D
and

on y, y′ the starting and ending points of an excursion inside D̃ (if exists),

P
z,z′
D

(
Mα∞,D(D̃) = 0|F +̃

D

)≤ P
y,y′
D̃

(
Mα

∞,D̃
= 0
)= c.

Let K := #{D̃ ∈ D2 : there is an excursion inside D̃}. It follows that

c = P
z,z′
D

(
Mα∞,D(D̃) = 0

)≤ E
z,z′
D

(
cK ).

Note that c < 1, K ∈ {1,2,3,4}, Pz,z′
D -a.s. and K ≥ 2 holds with positive probability. Then

the only possibility is that c = 0. �

6. Thick points. Recalling D a simply connected nice domain and z �= z′ nice points
of D. By using Proposition 5.1, we immediately deduce from Lemma 4.7(i) the following
result. Let N(x, r) be as in (4.10) the number of loops from x that hit C(x, r).

COROLLARY 6.1. Let 0 < α < 2. With P
z,z′
D -probability one, the measure Mα∞ is sup-

ported on the set of points x such that

lim
r→0+

N(x, r)

log 1/r
= α.

Corollary 6.1 is an extension of [1], Corollary 5.1, to all α ∈ (0,2).
In the sequel, we establish the relationship between Mα∞ and the thick points defined in

(1.2).

THEOREM 6.2. Let α ∈ (0,2). With P
z,z′
D -probability one, the measure Mα∞ is supported

by the set of α-thick points.
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By assuming Theorem 6.2, we are able to complete the proof of Theorem 1.1:

PROOF OF THEOREM 1.1. By Corollary 6.1 and Theorem 6.2, it remains to check (1.3).
The upper bound of (1.3) follows from that of Theorem B. In fact, for any sufficiently small

r > 0, the law of (BTC(z,r)∩D+t ,0 ≤ t ≤ TC(z′,r)∩D − TC(z,r)∩D) under Pz,z′
D is absolutely con-

tinuous with respect to that of a planar Brownian motion. Then we deduce from Theorem B
that

dimH {α-thick points} = 2 − α, P
z,z′
D -a.s.,

which in view of Theorem 6.2 yields the upper bound in (1.3).
For the lower bound in (1.3), let E(x)(r0, γ ) be the event defined in (4.17). Corollary 4.3

says that Pz,z′
D -a.s., Mα

Dn
converges weakly to Mα∞. By Theorem 4.1, the probability Q

z,z′,α
D

defined in (4.3) with A = D there, is absolutely continuous with respect to P
z,z′
D . Hence Mα

Dn

converges weakly to Mα∞, Q
z,z′,α
D -a.s. In other words, for Lebesgue-a.e. x ∈ D, Qz,z′,α

x,D -a.s.,
Mα

Dn
converges weakly to Mα∞.

Let 0 < � < 2 −α. Using the same arguments leading to (4.19) and by replacing Mα
Dn

(D)

by
∫
D

Mα
Dn

(du)

|u−x|� , we deduce from (4.18) that

E
Q

z,z′,α
x,D

[∫
D

Mα∞(du)

|u − x|� ,E(x)(r0, γ )

]
≤ c5(r0),

for Lebesgue-a.e. x ∈ D.
Let D(r0) be the set of points x ∈ D such that d(x, ∂D) > r0. It follows from (5.1) that for

any r0 > 0,

E
z,z′
D

[∫
D×D

1E(x)(r0,γ )

Mα∞(du)Mα∞(dx)

|u − x|�
]

=
∫
D

dxe−αCD(x)ξD

(
x, z, z′)E

Q
z,z′,α
x,D

[∫
D

Mα∞(du)

|u − x|� ,E(x)(r0, γ )

]
≤ c5(r0)

∫
D

dxe−αCD(x)ξD

(
x, z, z′)

< ∞.

Hence P
z,z′
D -almost surely, for all r0 > 0,∫

D×D
1E(x)(r0,γ )

Mα∞(du)Mα∞(dx)

|u − x|� < ∞.

By (4.20) and Proposition 5.1, Pz,z′
D -almost surely, Mα∞-almost all x,

⋃∞
�=1 E(x)(2−�, γ )

holds. Then by Proposition 5.3, for some � ≥ 1, the measure m�(dx) := 1E(x)(2−�,γ )Mα∞(dx)

is not trivial and
∫
D×D

m�(du)m�(dx)
|u−x|� < ∞.

For any Borel set A such that Mα∞(Ac) = 0, we have m�(A
c) = 0 and

∫
A×A

m�(du)m�(dx)
|u−x|� =∫

D×D
m�(du)m�(dx)

|u−x|� < ∞. It follows from Frostman’s lemma that dimH (A) ≥ �. This yields
that a.s., Dim(Mα∞) ≥ �. As � can be as close as possible to 2 − α, we get the lower bound
in (1.3). This completes the proof of Theorem 1.1. �

Denote by ζ(e) the lifetime of a loop e and let

(6.1) �s :=∑
v≤s

ζ(ev), 0 ≤ s ≤ α.
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Note that � is a subordinator on [0, α] whose sample paths are strictly increasing. The law
of ζ under νD(x, x) can easily be computed: it follows from (2.12) that

νD(x, x)(ζ ∈ dt) = πμD(x, x; t)(ζ ∈ dt)

= lim
ε→0+

1

ε2P
x(t < T∂D, |Bt − x| < ε

)
dt(6.2)

= πpD(t, x, x)dt.

Let us define (�x
t )t≥0 by the inverse of �:

(6.3) �x
t :=

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ Tx,

inf{s > 0 : �s > t − Tx} if Tx ≤ t < Tx + �α,

α if t ≥ Tx + �α.

By construction, Qz,z′,α
x,D -almost surely, t → �x

t is continuous. Moreover, by imitating the
proof in the one-dimensional Brownian motion case (for instance, the proof of Proposition
VI.2.5, [19]), we get that Qz,z′,α

x,D -almost surely, the support of d�x
t is exactly equal to the level

set {Tx ≤ t ≤ Tx + �β : Bt = x}. We call (�x
t )t≥0 the family of local times of B at x. We

mention that after Tx + �β , B is a Brownian motion started at x and conditioned to hit z′.
Theorems 6.2 and 1.2 will be a consequence of the following result.

PROPOSITION 6.3. For any x ∈ D, Qz,z′,α
x,D -a.s. for all 0 ≤ t ≤ Tz′ ,

(6.4) lim
r→0+

1

r2(log r)2

∫ t

0
1{Bs∈B(x,r)} ds = �x

t ,

where �x
t , defined in (6.3), denotes the local time at x up to time t (under Qz,z′,α

x,D ).

By assuming Proposition 6.3 for the moment, we give the proofs of Theorems 6.2 and 1.2.

PROOF OF THEOREM 6.2. By definition, �x
Tz′ = α. It follows from (6.4) that Qz,z′,α

x,D -a.s.,

limr→0+ 1
r2(log r)2

∫ Tz′
0 1{Bs∈B(x,r)} ds = α, which in view of Proposition 5.1 yields Theo-

rem 6.2. �

PROOF OF THEOREM 1.2. For any x ∈ D, we define

Lx
t := lim

r→0+
1

r2(log r)2

∫ t∧Tz′

0
1{Bs∈B(x,r)} ds if the limit exists for all t ≥ 0,

and Lx
t := 0,∀t ≥ 0, otherwise. By Proposition 6.3, for any x ∈ D, Qz,z′,α

x,D -a.s., Lx
t = �x

t∧Tz′
for all t ≥ 0. Then Q

z,z′,α
x,D -a.s., t → Lx

t is a continuous additive functional and such that
t → dLx

t is supported by {t ∈ [0, Tz′ ] : Bt = x}. By Proposition 5.1, we get Theorem 1.2. �

The rest of this section is devoted to the proof of Proposition 6.3. Recall � defined in (6.1).
Let for any r > 0 and 0 ≤ β < α,

Iβ(r) :=
∫ Tx+�β

0
1{Bs∈B(x,r)} ds and Iα(r) :=

∫ Tz′

0
1{Bs∈B(x,r)} ds.

Notice that I0(r) = ∫ Tx

0 1{Bs∈B(x,r)} ds and Iα(r) − Iα−(r) = ∫ Tz′
Tx+�α

1{Bs∈B(x,r)} ds corre-
spond to the times spent in B(x, r) by a conditioned Brownian motion under Pz,x

D and under
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P
x,z′
D , respectively. In the literature, there is a law of the iterated logarithm for their asymp-

totics as r → 0+; see Ray [18] and Le Gall [11].

PROOF OF PROPOSITION 6.3. Proposition 6.3 will follow from the following statement:
Q

z,z′,α
x,D -a.s., for all β ∈ [0, α],

(6.5) lim
r→0+

Iβ(r)

r2(log r)2 = β.

In fact, take β = 0 in (6.5) implies (6.4) for all t ∈ [0, Tx]. For t ∈ [�α + Tx, Tz′ ], we
remark that Iα−(r) ≤ ∫ t

0 1{Bs∈B(x,r)} ds ≤ Iα(r), then by (6.5) we see that (6.4) holds for these
t . Now consider Tx < t < Tx +�α , β := �x

t ∈ (0, α). We have �β−+Tx ≤ t ≤ �β +Tx . Then
Iβ−(r) ≤ ∫ t

0 1{Bs∈B(x,r)} ds ≤ Iβ(r). Applying (6.5) gives (6.4) for any Tx < t < �β + Tx .
In order to prove (6.5), by the monotonicity, we only need to show that for any fixed

β ∈ (0, α], Qz,z′,α
x,D -a.s.,

(6.6) lim
r→0+

Iβ(r)

r2(log r)2 = β.

To this end, let r0 > 0 such that B(x, r0) ⊂ D\{z, z′}. For any 0 < r < r0, denote by L(r)

the local time at C(x, r) of (Bt )t≥0 (as the occupation time density at r of the process (|Bt −
x|)t≥0) till Tx + �β if β < α and till Tz′ if β = α. Then

Iβ(r) =
∫ r

0
L(u)du.

We will prove that Qz,z′,α
x,D -a.s.,

lim
r→0+

L(r)

r(log r)2 = 2β,

which gives (6.6) by integrating L(·).
Without loss of generality, we suppose that x = 0. We can decompose the trajectories in

B(0, r0) as
• Brownian excursions from C(0, r0) to C(0, r0) which do not hit 0,
• Brownian excursions from C(0, r0) to 0 or from 0 to C(0, r0),
• and Brownian loops at 0 in B(0, r0).
The Brownian excursions which do not hit 0 can be ignored to understand the asymptotics

of the local time around 0 since none will hit C(0, r) for r small enough.
Let us consider the Brownian excursions from 0 to C(0, r0). These excursions are of finite

number almost surely. The norm of an excursion is a two-dimensional Bessel process stopped
at the first hitting time of r0. Its local time process at r ∈ (0, r0) is equal in law to the process
(rUlog(r0/r))r∈(0,r0) where U· is the square of Bessel processes of dimension 2 starting from 0
(see Exercise 2.6, Chapter XI in Revuz and Yor [19]). By the classical law of the iterated log-
arithm for the process U , almost surely as r → 0+, Ulog(1/r) = O(log(1/r)(log log log 1/r)).
Hence the contribution to L(r) by the excursions from 0 to C(0, r0) are o(r(log r)2). The
same is true, by time-reversal, of excursions from C(0, r0) to 0.

If we denote by L(e·)(r) the local time at C(0, r) of Brownian loops (es)s≤α in B(0, r0),
then we have shown that almost surely, L(r) − L(e·)(r) = o(r(log r)2) as r → 0+. It remains

to prove that almost surely, limr→0+ L(e·)(r)
r(log r)2 = 2β , or equivalently

lim
t→∞

etL(e·)(e
−t )

t2 = 2β.
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By scaling, we may take r0 = 1. For a loop e, denote by h(e) := maxu≥0 |e(u)| its maxi-
mum norm (recalling that x = 0). By Lemma 2.3(ii), we get that

νB(0,1)(0,0)
(
h(e) > r

)= log(1/r), 0 < r ≤ 1,

which implies that the point process P(β) :=∑s≤β:es∈B(0,1) δ{log(1/h(es ))} is a Poisson point
process on (0,∞) with intensity β dt . Write 0 < u1 < u2 < · · · < uk < · · · for the points of
P(β) and let Nt :=∑∞

k=1 1{uk≤t}, t ≥ 0. Then (Nt)t≥0 is a Poisson process with parameter β .
Conditionally on {h(e) = r}, the norm of a Brownian loop |e(·)| can be decomposed as a

two-dimensional Bessel process from 0 to its first hitting time of r , followed by an indepen-
dent copy of the same process going backwards in time; see Pitman and Yor [17]. Therefore,
conditionally on {h(e) = e−s}, the process of local times at e−t of |e(·)|, for t ≥ s, has the law
of the sum of two independent copies of (e−tUt−s)t≥s which by the additivity of the square of
Bessel processes, is equal in law to the process (e−tU

(4)
t−s)t≥s , where U(4) denotes the square

of Bessel processes of dimension 4, starting from 0.
Let U

(4)
k , k ≥ 1, be an i.i.d. copies of U(4), independent of {uk}k≥1. Then the process

(etL(e·)(e
−t ))t≥0 is equal in law to the process (Xt)t≥0 where

Xt :=
∞∑

k=1

1{uk≤t}U(k)
t−uk

, t ≥ 0.

It is enough to show that almost surely,

lim
t→∞

Xt

t2 = 2β.

To this end, write

Xt = 4
∞∑

k=1

(t − uk)1{uk≤t} + X̂t = 4
∫
(0,t]

(t − s)dNs + X̂t ,

where X̂t :=∑∞
k=1 1{uk≤t}(U(k)

t−uk
− 4(t − uk)). Notice that

∫
(0,t](t − s)dNs = ∫(0,t] Ns ds. By

the law of large numbers lims→∞ Ns

s
= β , which yields that 4

t2

∫
(0,t](t − s)dNs → 2β a.s.

To complete the proof, we only need to check that X̂t = o(t2) a.s. It is well known that
Us −4s is a martingale and Var(Us) = 8s2 (see Chapter XI in Revuz–Yor [19]). Conditionally
on {uk}k≥1, X̂ is a (finite) sum of independent martingale hence is a martingale. By Doob’s
L2-inequality, we get that for any t > 0,

E
(

sup
0≤s≤t

X̂2
s

)
≤ 4E

(
X̂2

t

)= 32E
∞∑

k=1

1{uk≤t}(t − uk)
2 = 32β

3
t3.

Using the Borel–Cantelli lemma gives that almost surely, sup0≤s≤t |X̂s | = O(t3/2+o(1)) as
t → ∞. Hence X̂t = o(t2) a.s., which completes the proof of Proposition 6.3. �

7. Further discussions.

7.1. The case α = 0. In the case α = 0, Qz,z′,α
x,D is the law of a Brownian excursion from

z to x in D, followed by an independent Brownian excursion from x to z′ in D. We claim
that for any z, z′ two distinct nice points of D,

(7.1) M0∞(•) = πμ(• ∩ D), P
z,z′
D -a.s.,
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where μ denotes the occupation measure of the Brownian motion (under Pz,z′
D ) defined by

μ(A) := ∫ Tz′
0 1{Bt∈A} dt for any Borel set A. To identify the two measures, we only need to

show that

(7.2) πE
z,z′
D

∫
D

f (x,B)μ(dx) =
∫
D
E
Q

z,z′,0
x,D

(
f (x,B)

)
ξD

(
x, z, z′)dx,

for f (x,B) = h̃(x)e− ∫∞
0 h(t,Bt )dt with nonnegative Borel functions h and h̃.

It is enough to prove (7.2) for z ∈ D; the case when z ∈ ∂D follows by considering zn :=
z + εnnz with εn → 0+ as n → ∞.

Consider the right-hand side of (7.2). By the strong Markov property at time Tx ,

E
Q

z,z′,0
x,D

(
f (x,B)

)= h̃(x)E
z,x
D

[
e− ∫ Tx

0 h(t,Bt )dt ]Ex,z′
D

[
e− ∫ T

z′
0 h(t,Bt )dt ].

The law P
z,x
D is the normalized excursion measure denoted by μ#

D(z, x) in Lawler ([9], Chap-
ter 5.2). It is μD(z, x) divided by the mass 2HD(z, x), and

μD(z, x) :=
∫ ∞

0
μD(z, x; s)ds,

where μD(z, x; s) denotes the measure on the Brownian paths in D of length s, from z to
x (the factor 2 comes from the renormalization of HD in (2.4)). We refer to Lawler ([9],
Chapter 5.2) for the precise definition of μD(z, x; s) and the following equality: For any
nonnegative Borel function F and for any s > 0,∫

D
μD(z, x; s)(F(Bs)e

− ∫ s
0 h(t,Bt )dt )dx = Ez[F(Bs)e

− ∫ s
0 h(t,Bt )dt , s < T∂D

]
.

It follows that ∫
D

F(x)E
z,x
D

[
e− ∫ Tx

0 h(t,Bt )dt ]dx

=
∫
D

F(x)

2HD(z, x)
μD(z, x)

(
e− ∫ Tx

0 h(t,Bt )dt )dx

= Ez
D

[∫ T∂D

0

F(Bs)

2HD(z,Bs)
e− ∫ s

0 h(t,Bt )dt ds

]
,

which implies that, with g(x) := E
x,z′
D [e− ∫ T

z′
0 h(t,Bt )dt ],∫

D
E
Q

z,z′,0
x,D

(
f (x,B)

)
ξD

(
x, z, z′)dx

= πEz
D

[∫ T∂D

0
h̃(Bs)g(Bs)e

− ∫ s
0 h(t,Bt )dt HD(Bs, z

′)
HD(z, z′)

ds

]
.

It is, by the h-transform (2.7),

πE
z,z′
D

[∫ Tz′

0
h̃(Bs)g(Bs)e

− ∫ s
0 h(t,Bt )dt ds

]

= πE
z,z′
D

[∫ Tz′

0
h̃(Bs)e

− ∫ T
z′

0 h(t,Bt )dt ds

]

= πE
z,z′
D

[∫ Tz′

0
f (Bs,B)ds

]
,

where the first equality follows from the Markov property at time s. This proves (7.2).
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7.2. The intersection local times. Fix p ≥ 2 an integer and let (z1, z
′
1), . . . , (zp, z′

p) be

p pairs of distinct nice points of D. We consider
⊗p

i=1 P
zi ,z

′
i

D the law of p independent ex-
cursions B(i), 1 ≤ i ≤ p, inside D, from zi to z′

i . For any x ∈ D and α ∈ [0,2), we consider⊗p
i=1 Q

zi ,z
′
i ,α

x,D the product measure. As the product of independent uniformly integrable mar-
tingales is still a uniformly integrable martingale, we obtain the existence of a finite random
measure Mα,p∞ such that for any nonnegative measurable functions fi , 1 ≤ i ≤ p,

p⊗
i=1

E
zi ,z

′
i

D

∫
D

p∏
i=1

fi

(
x,B(i))Mα,p∞ (dx)

(7.3)

=
∫
D
E⊗p

i=1 Q
zi ,z

′
i
,α

x,D

( p∏
i=1

fi

(
x,B(i)))e−α

∑p
i=1 CD(xi)

p∏
i=1

ξD

(
x, zi, z

′
i

)
dx.

We refer to Le Gall ([13], Chapter 9, Theorem 1) for a similar decomposition involving
the self-intersection local times.

When α = 0, π−pM0,p∞ is nothing else than the image of the pth intersection local times
measure. In fact, let γ (ds1 · · ·dsp) be the intersection local times of p independent excursions

B(1), . . . ,B(p), which means that γ is a measure supported by {(s1, . . . , sp) ∈ R
p
+ : B

(1)
s1 =

· · · = B
(p)
sp } and formally defined by

γ (ds1 · · ·dsp) := δ{0}
(
B(1)

s1
− B(2)

s2

) · · · δ{0}
(
B(p−1)

sp−1
− B(p)

sp

)
ds1 · · ·dsp.

Then we may check as in the previous subsection that
⊗p

i=1 P
zi ,z

′
i

D -a.s., π−pM0,p∞ is exactly

the image of γ by the application (s1, . . . , sp) → B
(1)
s1 . The details are omitted.

APPENDIX

A.1. Justification of (2.8). The existence of the limiting probability measure P
z,z′
D fol-

lows from the Kolmogorov extension theorem once we have proven that

(A.1) lim
ε→0+ E

z+εnz,z
′

D

(
F(BTD∩C(z,r)+t

, t ≥ 0)
)

exists,

for any 0 < r < |z − z′| and for any bounded measurable function F on K.
Let νD(z) be the excursion measure in D at z defined by

(A.2) νD(z) := lim
ε→0+

1

ε
P

z+εnz

D ,

in the sense that for any r > 0 such that D ∩ C(z, r) �=∅, any A ∈ σ {BTD∩C(z,r)+t , t ≥ 0},

(A.3) νD(z)
(
A ∩ {TD∩C(z,r) < T∂D})= lim

ε→0+
1

ε
P

z+εnz

D

(
A ∩ {TD∩C(z,r) < T∂D}).

We refer to Burdzy ([3], Theorem 4.1 and pp. 34–35) for a justification of (A.3) and the fact
that νD(z)(TD∩C(z,r) < T∂D) < ∞. By linearity, (A.3) is true when replacing 1A by simple
functions, then by any bounded measurable function (any measurable bounded function being
limit of simple functions for the uniform norm).

Now let 0 < r < |z−z′|. Using the strong Markov property at time TD∩C(z,r) it is enough to
show (A.1) for f (BTD∩C(z,r)

) instead of F(BTD∩C(z,r)+t
, t ≥ 0), where f denotes some bounded

Borel function.
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To this end, we have by the definition of Py,z′
D in (2.7) that for any 0 < r ′ < |z − z′| − r ,

lim
ε→0+ E

z+εnz,z
′

D

(
f (BTD∩C(z,r)

)
)

= lim
ε→0+ E

z+εnz

D

[HD(BTD∩C(z′,r′) , z
′)

HD(z + εnz, z′)
f (BTD∩C(z,r)

), TC(z′,r ′) < T∂D

]

= lim
ε→0+

1

εHD(z, z′)
E

z+εnz

D

[
HD

(
BTD∩C(z′,r′) , z

′)f (BTD∩C(z,r)
), TC(z′,r ′) < T∂D

]
= 1

HD(z, z′)
νD(z)

[
HD

(
BTD∩C(z′,r′) , z

′)f (BTD∩C(z,r)
), TC(z′,r ′) < T∂D

]
,

by (A.2). This completes the proof of (A.1) and justifies the definition of Pz,z′
D in (2.8).

A.2. Justification of (2.14). Let r > 0 be small such that B(x, r) ⊂ D and let  be a
bounded measurable function on K. By the strong Markov property at TC(x,r),

E
z,x
D

[
(BTC(x,r)+s, s ≥ 0), TC(x,r) < Tx

]= E
z,x
D

[
f (BTC(x,r)

), TC(x,r) < Tx

]
,

with f (b) := Eb
x,D[(Bs, s ≥ 0)]. By the h-transform,

E
z,x
D

[
f (BTC(x,r)

), TC(x,r) < Tx

]
= lim

ε→0+ E
z,x
D

[
f (BTC(x,r)

), TC(x,r) < TC(x,ε)

]
= lim

ε→0+ E
z

[
GD(x,BTC(x,r)

)

GD(x, z)
f (BTC(x,r)

), TC(x,r) < TC(x,ε)

]

= Ez

[
GD(x,BTC(x,r)

)

GD(x, z)
f (BTC(x,r)

)

]
.

It follows that

lim
z→x

(
log

1

|z − x|
)
E

z,x
D

[
(BTC(x,r)+·), TC(x,r) < Tx

]
= Ez[GD(x,BTC(x,r)

)f (BTC(x,r)
)
]
.

Therefore, the proof of (2.14) reduces to show that

(A.4) νD(x, x)
[
(eTC(x,r)+·), TC(x,r) < Tx

]= Ez[GD(x,BTC(x,r)
)f (BTC(x,r)

)
]
,

where as before f (b) := Eb
x,D[(B)] for any b ∈ C(x, r). By the monotone class theorem,

it is enough to consider (eTC(x,r)+·) of form r,δ(e) := (eTC(x,r)+s, s ≤ TC(x,δ) ◦ θTC(x,r)
)

where 0 < δ < r is arbitrary and θ denotes the usual shift operator. Then

f (b) = E
b,x
D

[
(Bs, s ≤ TC(x,δ))

]
= Eb

[
GD(x,BTC(x,δ)

)

GD(x, b)
(Bs, s ≤ TC(x,δ)), TC(x,δ) < T∂D

]
,

where the second equality is due to the h-transform. By the definition of μD(x, x; t) and the
strong Markov property at TC(x,δ) ◦ θTC(x,r)

,

μD(x, x; t)[r,δ(e), TC(x,r) < Tx

]
= lim

ε→0+
1

πε2E
x[r,δ(B), TC(x,δ) ◦ θTC(x,r)

< t ∧ T∂D,Pa(|Bs − x| < ε, s < T∂D

)]
= Ex[r,δ(B)pD(s, x, a), TC(x,δ) ◦ θTC(x,r)

< t ∧ T∂D

]
,
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where s := t − TC(x,δ) ◦ θTC(x,r)
, a := BTC(x,δ)◦θTC(x,r)

and the last equality follows from the
definition of the transition probabilities pD . Taking the integral over t gives that

νD(x, x)
[
r,δ(e), TC(x,r) < Tx

]
= Ex[r,δ(B)GD(x,BTC(x,δ)◦θTC(x,r)

), TC(x,δ) ◦ θTC(x,r)
< T∂D

]
.

By the strong Markov property at TC(x,r) and the h-transform, the above expectation term
Ex[· · · ] is equal to

Ex[GD(x,BTC(x,r)
)f (BTC(x,r)

), TC(x,r) < T∂D

]
,

yielding (A.4) because TC(x,r) < T∂D holds with probability one.
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