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We prove an explicit formula for the law in zero of the solution of a class
of elliptic SPDE in R

2. This formula is the simplest instance of dimensional
reduction, discovered in the physics literature by Parisi and Sourlas (Phys.
Rev. Lett. 43 (1979) 744–745), which links the law of an elliptic SPDE in
d + 2 dimension with a Gibbs measure in d dimensions. This phenomenon is
similar to the relation between a R

d+1 dimensional parabolic SPDE and its
R
d dimensional invariant measure. As such, dimensional reduction of elliptic

SPDEs can be considered a sort of elliptic stochastic quantisation procedure
in the sense of Nelson (Phys. Rev. 150 (1966) 1079–1085) and Parisi and
Wu (Sci. Sin. 24 (1981) 483–496). Our proof uses in a fundamental way the
representation of the law of the SPDE as a supersymmetric quantum field
theory. Dimensional reduction for the supersymmetric theory was already es-
tablished by Klein et al. (Comm. Math. Phys. 94 (1984) 459–482). We fix a
subtle gap in their proof and also complete the dimensional reduction pic-
ture by providing the link between the elliptic SPDE and the supersymmetric
model. Even in our d = 0 context the arguments are nontrivial and a non-
supersymmetric, elementary proof seems only to be available in the Gaussian
case.

1. Introduction. Stochastic quantization [21, 22, 51] broadly refers to the idea of sam-
pling a given probability distribution by solving a stochastic differential equation (SDE).
This idea is both appealing practically and theoretically since simulating or solving a SDE
is sometimes simpler than sampling or studying a given distribution. If, in finite dimensions,
this boils down mostly to the idea of the Monte Carlo Markov chain method (which was
actually invented before stochastic quantization); it is in infinite dimensions that the method
starts to have a real theoretical appeal.

It was Nelson [45–47] and subsequently Parisi and Wu [51] who advocated the construc-
tive use of stochastic partial differential equations (SPDEs) to realize a given Gibbs measure
for the use of Euclidean quantum field theory (QFT). Indeed the original (parabolic) stochas-
tic quantization procedure of [51] can be understood as the equivalence

(1) E
[
F
(
ϕ(t)

)]∝ ∫ F(φ)e−S(φ)Dφ.
Here, F belongs to a suitable space of real-valued test functions, Dφ is a heuristic “Lebesgue
measure” on S ′(Rd), while on the left-hand side the random field ϕ depends on (t, x) ∈
R×R

d and is a stationary solution to the parabolic SPDE

(2) ∂tϕ(t, x)+ (m2 −�)ϕ(t, x)+ V ′(ϕ(t, x))= ξ(t, x),
where ξ is a Gaussian white noise in R

d+1, V : R → R a generic local potential bounded
from below, m2 a positive parameter and ϕ(t) is the fixed time marginal of ϕ which has a law
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independent of t by stationarity and on the right-hand side we have the formal expression for
a measure on functions on R

d with weight factor given by

(3) S(φ) :=
∫
Rd

∣∣∇φ(x)∣∣2 +m2∣∣φ(x)∣∣2 + V (φ(x))dx.

Equation (1) can be made mathematically precise and rigorous by tools from the theory of
Markov processes [18, 20, 42], SDE/SPDEs [1, 37, 43, 57] and Dirichlet forms [4], for ex-
ample, when d = 0, or when the equation is regularized appropriately and, in certain cases,
for suitable renormalized versions of the SPDE [2, 3, 5, 10, 12, 19, 30–32, 35, 36, 44] when
d = 1,2,3. Let us note for example that in the full space it is easier to make sense of equation
(2) than of the formal Gibbs measure on the right-hand side of (1); see [30].

In a slightly different context, and inspired by previous perturbative computations of Imry
and Ma [34] and Young [62], Parisi and Sourlas [49, 50] considered the solutions of the
elliptic SPDEs

(4)
(
m2 −�)φ + V ′(φ)= ξ

in R
d+2 where ξ is a Gaussian white noise on R

d+2 and they discovered that its stationary
solutions are similarly related to the same d-dimensional Gibbs measure. If we take x ∈ R

d ,
then they claimed that, for “nice” test functions F (e.g., correlation functions) we have

(5) E
[
F
(
φ(0, ·))]∝ ∫ F(ϕ)e−4πS(ϕ)Dϕ.

More precisely, the law of the random field (φ(0, y))y∈Rd , obtained by looking at the trace
of φ on the hyperplane {x = (x1, . . . , xd+2) ∈ R

d+2 : x1 = x2 = 0} ⊂ R
d+2, should be equiv-

alent to that of the Gibbs measure formally appearing on the right-hand side of (5) and corre-
sponding to the action functional (3). Therefore, one can interpret equation (5) as an elliptic
stochastic quantization prescription in the same spirit of equation (1).

When V = 0, one can directly check that the formula (5) is correct. Indeed in this case
the unique stationary solution φ to the elliptic SPDE (4) is given by a Gaussian process with
covariance

E
[
φ(x)φ

(
x′)]= ∫

Rd+2

eik·(x−x′)

(m2 + |k|2)2
dk

(2π)d+2 , x, x′ ∈ R
d+2.

Therefore, for all y, y′ ∈ R
d we have

E
[
φ(0, y)φ

(
0, y′)]= ∫

Rd
eik·(y−y′)

∫
R2

dq

(|q|2 +m2 + |k|2)2
dk

(2π)d+2

=
∫
R2

dq

(|q|2 + 1)2

∫
Rd

eik·(y−y′)

m2 + |k|2
dk

(2π)d+2

= 1

4π

∫
Rd

eik·(y−y′)

m2 + |k|2
dk

(2π)d
,

where we performed a rescaling of the q integral in order to decouple the two integrations.
The reader can easily check that the expression we obtained describes the covariance of the
Gaussian random field formally corresponding to the right-hand side of (5) for V = 0.

While this last argument is almost trivial, a more general justification outside the Gaus-
sian setting is not so obvious. The equivalence (5) was derived in [49, 50] at the theoretical
physics level of rigor going through a representation of the left-hand side via a supersymmet-
ric quantum field theory (QFT) involving a pair of scalar fermion fields. This is one of the
instances of the dimensional reduction phenomenon which is conjectured in certain random
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systems where the randomness effectively decreases the dimension of the space where fluctu-
ations take place. A crucial assumption is that the equation (4) has a unique solution, which is
already a nontrivial problem for general V . Parisi and Sourlas [50] observed that nonunique-
ness can lead to a breaking of the supersymmetry, in which case the relation (5) could fail.
So, part of the task of clarifying the situation is to determine under which conditions some
relations in the spirit of (5) could anyway be true.

The dimensional reduction (5) of the elliptic SPDEs (4) seems less amenable to standard
probabilistic arguments than its parabolic counterpart (1). Let us remark that from the point
of view of theoretical physics it is possible [22, 50] to justify also dimensional reduction in
the parabolic case (2) using a supersymmetric argument much like in the elliptic setting.

The only attempt we are aware of to a mathematically rigorous understanding of the re-
lation (5) is the work of Klein, Landau and Perez [38–40] (see also the related work on the
density of states of electronic systems with random potentials [41]) which however do not
fully prove equation (5) but only the equivalence between the intermediate supersymmetric
theory in d + 2 dimensions and the Gibbs measure in d-dimensions. The reason for this lim-
itation is that the problem of uniqueness of the elliptic SPDE seems to unnecessarily restrict
the class of potentials for which (5) can be established and Klein et al. decided to bypass a
detailed analysis of the situation by starting directly with the supersymmetric formulation.
Their rigorous argument requires a cut-off, both on large momenta in d “orthogonal” dimen-
sions and on the space variable in d + 2 dimensions in order to obtain a well-defined, finite
volume problem. This regularization breaks the supersymmetry which has to be recovered
by adding a suitable correction term, spoiling the final result (see Theorem 1 and Theorem 3
below). A subtle gap in their published proof is pointed out, and closed, in Section 4.

Let us remark that, in a different context, dimensional reduction has been proven and
exploited in the remarkable work of Brydges and Imbrie on branched polymers [13, 14] and
more recently by Helmuth [33].

In the present work, we complete the program of elliptic stochastic quantization, in the
d = 0 case, by proving relation (5) linking the solution to the ellptic SPDE (4) with the Gibbs
measure with action (3) and removing the finite volume cut-off in some cases.

Fix d = 0 and consider the two-dimensional elliptic multidimensional SPDE

(6)
(
m2 −�)φ(x)+ f (x)∂V (φ(x))= ξ(x), x ∈ R

2,

where φ = (φ1, . . . , φn) takes values in R
n, (ξ1, . . . , ξn) are n independent Gaussian white

noises, V : Rn → R a smooth potential function, f (x) := f̃ (|x|2) with f̃ : R+ → R+ a
decreasing cut-off function, such that the derivative f̃ ′ of the function r �−→ f̃ (r) is defined,
tending to 0 at infinity, and ∂V = (∂iV )i=1,...,n denotes the gradient of V . We will denote
f ′(x) := f̃ ′(|x|2).

Equation (6) is the elliptic counterpart of the equilibrium Langevin reversible dynamics
for finite dimensional Gibbs measures. Let us note that the elliptic dynamics is already de-
scribed by a SPDE in two dimensions while in the parabolic setting one would consider a
much simpler Markovian SDE [2, 35] (no renormalization being necessary). The question
of uniqueness of solutions is however quite similar in difficulty; indeed, it is nontrivial to
establish uniqueness of stationary solutions to the SDE and much work in the theory of long
time behavior of Markov processes is devoted precisely to this. In the elliptic context of (6),
there is no (easy) Markov property helping and the question of uniqueness of weak stationary
solutions seems more open, even in the presence of the cut-off f .

What makes this d = 0 problem very interesting, is above all the fact that while the state-
ments we would like to prove are quite easy to describe (see below), to our surprise their
rigorous justification is already quite involved and not yet quite complete in full generality.
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Define the probability measure κ on R
n by

(7)
dκ

dy
:= Z−1

κ exp
[
−4π

(
m2

2
|y|2 + V (y)

)]
,

where y ∈ R
n, Zκ := ∫

Rn
exp[−4π(m

2

2 |y|2 + V (y))]dy (Zκ is well defined since V is
bounded from below).

The main result of this paper is the following theorem which states that on very general
conditions on V there is always a weak solution which satisfies (an approximate) elliptic
stochastic quantization relation (of the form (5)). By weak solution to the SPDE (6), we
mean a probability measure ν on the space of fields φ under which (m2 −�)φ + ∂V (φ) is
distributed like Gaussian white noise on R

2. A strong solution φ to equation (6) is a measur-
able map ξ �→ φ = φ(ξ) satisfying the equation for almost all realizations of ξ . In order to
state precisely our results, we need to introduce the following assumptions on V and on the
finite volume cut-off f .

Hypothesis C. (convexity) The potential V : Rn → R is a positive smooth function such
that

y ∈ R
n �→ V (y)+m2|y|2

is strictly convex and V with its first and second partial derivatives grow at most exponentially
at infinity.

Hypothesis QC. (quasi-convexity) The potential V : Rn → R is a positive smooth func-
tion, such that it and its first and second partial derivatives grow at most exponentially at
infinity and, moreover, it is such that there exists a function H : Rn → R with exponential
growth at infinity such that we have

−〈n̂, ∂V (y + rn̂)〉≤H(y), n̂ ∈ S
n, y ∈ R

n and r ∈ R+,

with S
n is the n− 1 dimensional unit sphere.

Hypothesis CO. (cut-off) The function f is real valued, has at least C2 smoothness and
in addition satisfies f ′ ≤ 0, it decays exponentially at infinity and fulfills �(f ) ≤ b2f for
b2 < 4m2 (some examples of such functions are given in [39] and the motivations for this
hypothesis are explained in Remark 38 below).

THEOREM 1. Under the Hypotheses QC and CO, there exists (at least) one weak solution
ν̃ to equation (6) such that for all measurable bounded functions h : Rn →R we have

(8)
∫
W̃
h
(
φ(0)

)
ϒf (φ)ν̃(dφ)= Zf

∫
Rn
h(y)dκ(y),

where ϒf (φ) := e4
∫
R2 f

′(x)V (φ(x))dx and Zf := ∫
W ϒf (φ)ν̃(dφ). W̃ is a suitable Banach

space of functions from R
2 to R

n where ν̃ is defined (see Section 2, equations (13), (14) and
(17) for a precise definition of W̃ and ν̃).

REMARK 2. The following families of functions satisfy Hypothesis QC:

• Smooth convex functions (since they satisfy the stronger Hypothesis C),
• Smooth bounded functions,
• Smooth functions having the second derivative semidefinite positive outside a compact set,
• Any positive linear combinations of the previous functions.
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The drawback of this result is the lack of constructive determination of the weak solution ν
for which the dimensional reduction described by equation (8) is realized. This is linked with
the fact that Hypothesis QC does not guarantee uniqueness of strong solutions to equation (6).
The fact that nonuniqueness is related to a possible breaking of the supersymmetry associated
with (6) was already noted by Parisi and Sourlas [50]. If we are willing to assume that the
potential V is convex we can be more precise, as the following theorem shows.

THEOREM 3. Under Hypotheses C and CO there exists an unique strong solution φ =
φ(ξ) of equation (6) and for all measurable bounded functions h :Rn →R, we have

(9) E
[
h
(
φ(0)

)
ϒf (φ)

]= Zf ∫
Rn
h(y)dκ(y),

where ϒf is defined as in Theorem 1, Zf := E[ϒf (φ)] and E denotes expectation with
respect to the law of ξ .

Both theorems require the presence of a suitable cut-off f 
≡ 1 which is responsible for the
weighting factor ϒf (φ) on the left-hand side of the dimensional reduction statements (8) and
(9). If we would be allowed to take f ≡ 1, then we would have proven the d = 0 version of
equation (5). However, presently we are not able to do this for all QC potentials but only for
those satisfying Hypothesis C (see Section 4 for the proof).

THEOREM 4. Suppose that V satisfies Hypothesis C and let φ be the unique strong
solution in C0

expβ(R
2;Rn) (see Section 6 for the definition of this space) of the equation

(10)
(
m2 −�)φ + ∂V (φ)= ξ.

Then for any x ∈ R
2 and any measurable and bounded function h defined on R

n we have

(11) E
[
h
(
φ(x)

)]= ∫
Rn
h(y)dκ(y).

This result is the first rigorous result on elliptic stochastic quantization without any cut-off.
In fact, in this case the results of Klein, Landau and Perez [39] do not hold, since they use
only an integral representation of the solution to equation (6) which has meaning only when
f 
≡ 1.

REMARK 5. It is easy to generalize Theorems 1, 3 and 4 to equations of the form

(12)
(
m2 −�)φi(x)+ n∑

r=1

γ ir γ
j
r f (x)∂φj V

(
φ(x)

)= γ ir ξ r (x),
where f is as before,  = (γ ij )i,j=1,...,n is an n× n invertible matrix and the Hypothesis C
and QC are generalized accordingly.

Plan. The paper is organized as follows. In Section 2, we introduce the notions of strong
and weak solutions to equation (6), and we prove, in Theorem 10, the existence of strong
solutions (and thus also of weak solutions) under Hypothesis QC. We also provide, in The-
orem 14, a representation of weak solutions via the theory of transformation of measures on
abstract Wiener spaces developed by Üstünel and Zakai in [59] (whose setting and main facts
needed here are summarized in Appendix A).

Section 3 is devoted to the proof Theorem 1 and Theorem 3 about elliptic stochastic quan-
tization, under the Hypothesis QC and CO and using Theorem 17 and PDE techniques.
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In Section 4, Theorem 17 is proven, that is, dimensional reduction using Hypothesis Vλ
(see Section 3). The proof of Theorem 17 is similar to the rigorous version of Parisi and
Sourlas argument proposed in [39], starting from different hypotheses. The proof of The-
orem 17 in Section 4 is based on Theorem 26 stating a relation between the expectation
involving some bosonic and fermionic-free fields.

In Section 5, we prove Theorem 26 exploiting the properties of supersymmetric Gaussian
fields. In Section 5, we also propose a brief introduction to supersymmetry and supersym-
metric Gaussian fields.

Section 6 discusses the proof of Theorem 4 on the cut-off removal under Hypothesis C.
Appendix A is a brief introduction to the theory of transformations on abstract Wiener

spaces used in this paper, and Appendix B consists of a discussion of some properties of
fermionic fields.

2. The elliptic SPDE. In order to study equation (6), we have to recall some definitions,
notation and conventions. Fix an abstract Wiener space (W,H,μ) where the noise ξ is de-
fined (for the concept of abstract Wiener space we refer, for example, to [29, 48, 59]). The
Cameron–Martin space H is the space

H := L2(
R

2;Rn),
with its natural scalar product and natural norm given by 〈h,g〉 =∑n

i=1
∫
R2 hi(x)gi(x)dx. Let

W (in which H is densely embedded) be the space

(13) W =Wp,η :=Wp,−1−2ε
η

(
R

2;Rn)∩ (1 −�)(C0
η

(
R

2;Rn)),
where p ≥ 1, η > 0 and Wp,−1−2ε

η (R2;Rn) is a fractional Sobolev space with norm

‖g‖
W
p,−1−2ε
η

:=
(∫

R2

(
1 + |x|)−η∣∣(1 −�)− 1

2 −ε(g)
∣∣p dx

) 1
p

,

for some ε > 0 small enough and (1 − �)(C0
η(R

2;Rn)) is the space of the second order
distributional derivatives of continuous functions on R

n growing at infinity at most as |x|η
with norm

‖g‖(−�+1)(C0
η)

:= ∥∥(1 + |x|)−η((1 −�)−1g
)
(x)
∥∥
L∞
x
.

Thus Wp,η is a Banach space with norm given by the sum of the norms ofWp,−1−2ε
η (R2;Rn)

and of (1 −�)−1(C0
η(R

2;Rn)). In the following, we usually do not specify the indices η and
p in the definition of Wp,η and we write only W . We also introduce the notation

(14) W̃ = (1 −�)−1(W).

The Gaussian measure μ on W is the standard Gaussian measure with Fourier transform
given by e− 1

2 ‖·‖2
H . The white noise ξ is then naturally realized on (H,W,μ), in the sense

that ξ is the random variable ξ : W → S ′(R2;Rn) (where S ′(R2;Rn) is the space of Rn–
valued Schwartz distributions on R

2) defined as ξ(w)= idW(w)=w. In this way, the law of
ξ is simply μ (or, better, it is equal to the pushforward of μ on S ′ := S ′(R2,Rn) with respect
the natural inclusion map of W in S ′).

Sometimes it is also useful to consider the space Cατ of α-Hölder continuous functions
such that they and their derivatives (or Hölder norms) grow at infinity at most like |x|τ for a
real number τ (this notation is used also if τ is negative in that case the functions decrease
at least like 1

|x|−τ ). It is important to note that Cαη can be identified with the Besov space

Bα∞,∞,η(R2) (where Bα∞,∞,η(R2) is the weighted Besov space Bα∞,∞(R2, (1 + |x|)η) of [9],
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Chapter 2, Section 2.7). It is also important to realize that (1 −�)−1(W)⊂ Cαη if we choose
p big enough and α > 0 small enough.

We introduce now two notions of solutions for equation (6). For later convenience, it is
better to discuss the equation in term of the variable η := (m2 −�)φ for which it reads

(15) η+ f ∂V (Iη)= η+U(η)= ξ,
where

I := (
m2 −�)−1

and where we introduced the map U : W → H given by

(16) U(w) := f ∂V (Iw), w ∈ W .

Under the condition of (at most) exponential growth at infinity of V , required by Hypothesis
QC and Hypothesis C, it is possible to prove, that for η < 1 in the definition of W , for each
w ∈W we have U(w) ∈W . Indeed we have∥∥U(w)∥∥(L2(R2))n ≤ ∥∥√f (x)∥∥L2(R2) ·

∥∥√f (x)∣∣∂V (Iw(x))∣∣∥∥∞
and ‖√f (x)|∂V (Iw(x))|‖∞ is finite since f decreases exponentially at infinity and V grow
at most exponentially at infinity.

Furthermore, we introduce the map T : W → W as

T (w) :=w+U(w).
It is clear that a map S : W → W satisfies equation (15), that is, T (S(w)) = ξ(w)= w, for
(μ-)almost all w ∈ W , if and only if IS(w) satisfies equation (6). The law ν on W associated
to a solution of equation (15) must satisfy the relation T∗(ν) = μ. For these reasons, we
introduce the following definition.

DEFINITION 6. A measurable map S : W → W is a strong solution to equation (15) if
T ◦S = IdW μ-almost surely. A probability measure ν ∈ P(W) (where P(W) is the space of
probability measures on W) on the space W is a weak solution to equations (15) if T∗(ν)= μ,
where T∗ is the pushforward related with the map T .

If ν is a probability measure on the space W , we write ν̃ the unique probability measure
on W̃ such that

(17)
(−�+m2)−1

∗ (ν)= ν̃.

2.1. Strong solutions. In order to study the existence of strong solutions to equation (6),
we introduce an equivalent version of the same equation that is simpler to study. Indeed if we
write

φ̄ = φ − Iξ,

and we suppose that φ satisfies equation (6), then the function φ̄ satisfies the following (ran-
dom) PDE:

(18)
(
m2 −�)φ̄ + f ∂V (φ̄ − Iξ)= 0.

Equation (18) can be studied pathwise for any realization of the random field Iξ . Hereafter,
the symbol � stands for inequality with some positive constant standing on the right-hand
side.
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LEMMA 7. Suppose that V satisfies Hypothesis QC, and let φ̄ be a classical C2 solution
to the equation (18), such that limx→∞ φ̄(x)= 0, then for any 0< τ < 2 and η > 0 we have

‖φ̄‖∞ � 1 + ∥∥f eα1|Iξ |∥∥∞,(19)

‖φ̄‖C2−τ−η
� 1 + eα1‖φ̄‖∞∥∥(|x| + 1

)η
f eα1|Iξ |∥∥∞,(20)

for some positive constant α1 and where it and the constants involved in the symbol � depend
only on the function H in Hypothesis QC.

PROOF. Putting rφ̄(x) =
√∑

i (φ̄
i(x))2 = |φ̄(x)|, x ∈ R

2, since the C2 function φ̄ con-

verges to zero at infinity, the function rφ̄ must have a global maximum at some point x̄ ∈ R
2.

This means that −�(r2
φ̄
)(x̄)≥ 0. On the other hand, since φ̄ solves equation (18) we have

m2r2
φ̄
(x̄)≤ −1

2
�
(
r2
φ̄

)
(x̄)+m2r2

φ̄
(x̄)

≤ (−φ̄ ·�φ̄ − |∇φ̄|2 +m2|φ̄|2)
≤ −f (x̄)rφ̄(x̄)

(
n̂φ̄(x̄) · ∂V

(
Iξ(x̄)+ n̂φ̄(x̄)rφ̄(x̄)

))
,

where n̂φ̄ = φ̄

|φ̄| ∈ S
n when rφ̄ 
= 0, and 0 elsewhere. Using Hypothesis QC, we obtain

‖rφ̄‖∞ ≤ f (x̄)H(Iξ(x̄))
m2 � 1 + ∥∥f eα1|Iξ |∥∥∞,

since H grows at most exponentially at infinity. This result implies inequality (19).
The bound (20) can be obtained directly using the fact ‖φ‖C2−τ � ‖(−� + m2)(φ)‖∞,

where we use the properties of the Besov spaces Cα(R2)= Bα∞,∞(R2) with respect to deriva-
tives (see [58], Chapter 2, Section 2.3.8). �

REMARK 8. It is simple to prove that the inequalities (19) and (20) can be chosen to
be uniform with respect to some rescaling of the potential of the form λV , or satisfying
Hypothesis Vλ below, where λ ∈ [0,1].

In the following, we denote by F : W → P(C2−τ (R2;Rn)) the set valued function which
associates to a given w ∈ W the (possible empty) set of solutions to equation (18) in
C2−τ (R2;Rn), where τ > 0, when Iξ is evaluated in w.

THEOREM 9. Let V be a smooth positive function satisfying Hypothesis QC, then for
any w ∈ W the set F(w) is nonempty and closed. Furthermore, F(w) ⊂ C2(R2;Rn) and
if B ⊂ W is a bounded set then F(B) =⋃

w∈B F(w) is compact in C2−τ−η (R2;Rn) for any
τ > 0 and η ≥ 0.

PROOF. We introduce the map C2−τ−η (R2;Rn) × W � (φ̄,w) �→ K(φ̄,w) ∈ C2−τ ′
(R2;

R
n), where τ ′ < τ , given by

Ki(φ̄,w) := −I
(
f ∂V

(
φ̄ + Iξ(w)

))
.

The map K is continuous with respect to its first argument; indeed if φ̄, φ̄1 ∈ C2−τ (R2;Rn),∥∥Ki(φ̄,w)−Ki(φ̄1,w)
∥∥
C2−τ ′−η

�
∥∥(|x| + 1

)η
f
(
∂V
(
φ̄,Iξ(w)

)− ∂V (φ̄1,Iξ(w)
))∥∥∞
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�
∥∥∥∥∫ 1

0

(|x| + 1
)η
f ∂2V

(
φ̄ − t (φ̄ − φ̄1)+ Iξ(w)

) · (φ̄ − φ̄1)dt
∥∥∥∥∞

� ‖φ̄ − φ̄1‖∞
∥∥(|x| + 1

)η√
f
∥∥∞(∥∥∂2VB

∥∥∞ + eα‖φ̄−φ̄1‖∞∥∥√f eα|Iξ |∥∥∞),
where the positive constant α depends on the exponential growth of ∂2V at infinity. By a
similar reasoning, we can prove that K sends bounded sets of C2−τ−η into bounded sets of

C2−τ ′
−η′ , where τ ′ < τ and η′ > η. Since the immersion C2−τ ′

−η′ ↪−→C2−τ−η is compact, we have
that K is a compact map.

Since Iξ ∈ C1−
α and φ̄ ∈ C2−τ−η (R2;Rn), we have (−� + m2)Ki(φ̄,w) ∈ C1−(R2;Rn).

This implies, using the regularity results for Poisson equations (see Theorem 4.3 in [27]) and
a bootstrap argument, that if φ̄ = K(φ̄,w) then φ̄ ∈ C2(R2). From this fact, it follows that,
using inequalities (19) and (20) of Lemma 7 and Remark 8, the solutions to the equation
φ̄ = λK(φ̄,w) are uniformly bounded for λ ∈ [0,1]. Thanks to these properties of the map
K we can use Schaefer’s fixed-point theorem (see [25] Theorem 4, Section 9.2, Chapter 9)
to prove the existence of at least one solution to equation (18). Finally, using again Lemma 7
we have that F(B) is compact for any bounded set B ⊂ W . �

THEOREM 10. Under Hypothesis QC on V , there exists a strong solution to equation
(6) (or equivalently to equation (15)).

PROOF. For proving the existence of a strong solution to the equation (15) (in the sense
of Definition 6), it is sufficient to prove that we can choose the solutions to equation (18),
whose existence for any w ∈ W is guaranteed by Theorem 9, in a measurable way with
respect w ∈ W . More precisely, we have to prove that there exists a measurable selection for
the function set map F , that is, there exists a map S̄ : W → C2−τ−η such that S̄(w) ∈ F(w).

Fix a sequence of balls B1, . . . ,Bn, . . . ⊂ W of increasing radius and such that
limn→+∞Bn = W , then by Theorem 9, the map F |Bn\Bn−1 takes values in a compact set.
As proven in Theorem 9, the map K is continuous in φ̄ and measurable in w and, therefore,
a Carathéodory map. As a consequence, by Filippov’s implicit function theorem (see The-
orem 18.17 in [6]), there exists a (Borel) measurable function S̄n defined on Bn\Bn−1 such
that S̄n(w) ∈ F(w). The map S̄ defined on Bn\Bn−1 by S̄|Bn\Bn−1 = S̄n is the measurable
selection that we need (since Bn\Bn−1 is measurable).

A strong solution S to equation (15) is then given by S(w) :=w+ (m2 −�)S̄(w), w ∈ W .
�

COROLLARY 11. Under Hypothesis C, there exists only one strong solution to equation
(15).

PROOF. Suppose that S1, S2 are two strong solutions to equation (15), then letting
φj (x,w)= I(Sj (w(x))), j = 1,2, writing δφ(x,w)= φ1(x,w)− φ2(x,w) and δr(x,w)=√∑n

i=1(δφ
i(x,w))2, we obtain(
m2 −�)(δr2)+ 2

∑
i

(∣∣∇δφi ∣∣2)+ f δr[n̂δφ · (∂V (φ1)− ∂V (φ2)
)]= 0.

By Lagrange’s theorem, there exists a function g(x), x ∈ R
2, taking values in the segment

[φ1(x),φ2(x)] ⊂ R
n such that n̂δφ · (∂V (φ1) − ∂V (φ2)) = δr∂2V (g)(n̂δφ, n̂δφ). From this

fact, we obtain (
m2 −�)(δr2)+ f (∂2V (g)(n̂δφ, n̂δφ)

)
δr2 ≤ 0.

Since m2 + ∂2V (g)(n̂δφ, n̂δφ) ≥ ε > 0, y �→ V (y) + m2|y|2 being strictly convex by our
Hypothesis C, and δr2(x) is positive and goes to zero as x → +∞, we have φ1 = φ2 and,
therefore, S1(w)= S2(w). �
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2.2. Weak solutions. First of all, we prove that the map U , given by (16), is a H − C1

function (in the sense of [59], see Appendix A) for the abstract Wiener space (W,H,μ).

PROPOSITION 12. If V and its derivatives grow at most exponentially at infinity, then
the map U is a H −C1 function, on the abstract Wiener space (W,H,μ) and we have

∇Ui(w)[h] = f (x)∂2
φiφj
V (Iw) · I(hj ).

Furthermore, U is C2 Fréchet differentiable as a map from W into H .

PROOF. The proof is essentially based on the fundamental theorem of calculus and the
use of the Fourier transform. In order to give an idea of the proof, we only prove the most
difficult part, namely that ∇U is continuous with respect to translations by elements of H,
where continuity is understood with respect to the Hilbert–Schmidt norm for operators acting
on H.

For fixed w ∈ W , h,h′ ∈ H, we have for i = 1, . . . , n:

∇Ui(w+ h′)[h] − ∇Ui(w)[h]

= f (x)
∫ 1

0
∂3
φiφjφr

V
((
m2 −�)−1(

w+ th′)) · I(hj ) · I(h′r)dt,
(21)

where the sum over j, r = 1, . . . , n is implied. We recall that the Hilbert–Schmidt norm of an
integral kernel is the integral of the square of the absolute value of the kernel. In our case, the
Fourier transform of the integral kernel representing the difference (21) is given by

K̂ij
(
k, k′

)= n∑
r=1

∫
R4

∫ 1

0

V̂ it,jr,f (k − k1)

(|k1 − k2|2 +m2)
· ĥ′r (k1 − k2)

(|k2 − k′|2 +m2)

dk1 dk2

(2π)4
,

where V̂ it,jk,f (k, l) is the Fourier transform of f ∂3
φiφjφk

V (I(w+ th′)), t ∈ [0,1]. It is simple
to prove that∥∥∇U (w+ h′)[·] − ∇U(w)[·]∥∥2

2 �
∫
R4

∣∣K̂ir (k, k′)K̂ri (k′, k)∣∣dk dk′

�
∥∥√f eα|Iw|+α|Ih′|∥∥2

∞‖√f ‖2
L2

∥∥h′∥∥2
H,

where α depends on the exponential growth of ∂3V . Since ‖√f eα|Iw|+α|Ih′|‖∞ is always
finite in W (for η positive and small enough), we have proved the continuity of the map
h′ �−→ ∇U(w+ h′) with respect to the Hilbert–Schmidt norm. �

By the notation deg2(IH +K), we denote the regularized Fredholm determinant (see Ap-
pendix A and also [56], Chapter 9) which is well defined when K is a Hilbert–Schmidt
operator. The function det2(IH +·) is a smooth functional from the space of Hilbert–Schmidt
operators (with its natural norm) to R (see [56] Theorem 9.2 for the proof of this fact).

We define the measurable map N : W →N∪ {+∞}:
N(w) := (

number of solutions y ∈ W to the equation T (y)=w);
moreover, let M ⊂ W be the set of zeros of the continuous function w ∈ W �−→ det2(IH +
∇U(w)).

THEOREM 13. The function N is greater or equal to 1 and it is μ-almost surely finite.
Furthermore, the map T is proper.
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PROOF. We define T (φ̂,w)= φ̂ +U(φ̂ +w). Obviously, we have that z is a solution to
the equation T (z)=w if and only if φ̂ = z−w is a solution to the equation T (φ̂,w)= 0. On
the other hand, φ̂ is solution to the equation T (φ̂,w)= 0 if and only if φ̄ = I(φ̂) is a solution
to equation (18). By Theorem 9, equation (18) has at least one solution for any w ∈ W and
so N(w)≥ 1 for any w ∈ W .

Let K be a compact set in W we have that T −1(K)⊂K + (m2 −�)(F(K)) (where F is
the set valued map introduced in Theorem 9). Since K is compact, by Theorem 9, F(K) is
compact in C2−−η which implies that (m2 −�)(F(K)) is compact in C0−−η . Since the immersion

C0−−η↪−→W is compact and the sum of two compact sets is compact, we obtain that T is a
proper map.

Since by Proposition 52, μ(T (M)) = 0, for proving the theorem it is sufficient to prove
that N(w) < +∞ for w /∈ T (M). If w /∈ T (M), then idH +∇U(w)|H is a linear invertible
operator on H and so idW +∇U(w) is a linear invertible operator on W . By the implicit
function theorem, we have that T is a C1 diffeomorphism between a neighborhood Bw of w
onto T (Bw). This implies that the set T −1(w) consists of isolated points. Since the map T is
proper, this means that T −1(w) is a compact set made only by isolated points which implies
that T −1(w) is a finite set. �

If K : W → H is an H −C1 function, we denote by δ(K) :W →R the well-defined Sko-
rokhod integral of the map K (see Appendix A for an informal introduction of the concept,
Appendix B of [59] for a more detailed treatment and Proposition 3.4.1 of [59] for the proof
of the fact that the Skorokhod integral of a H −C1 function is well defined).

THEOREM 14. A probability measure ν is a weak solution to equation (15) if and only
if it is absolutely continuous with respect to μ and there exists a nonnegative function A ∈
L∞(μ) such that

∑
y∈T −1(w) A(y)= 1 for μ-almost all w ∈ W and dν

dμ =A|�U | with

�U(w) := det2
(
I + ∇U(w)) exp

(
−δ(U)(w)− 1

2

∥∥U(w)∥∥2
H

)
.

PROOF. Recall that, by Proposition 52, μ(T (M)) = 0. This implies that for any weak
solution ν we have ν(T −1(T (M))) = 0. Letting W

n := T −1(N = n) ∩ T −1(T (M)) we de-
duce that ν(

⋃
nW

n) =∑
n ν(W

n) = 1 and if we prove that ν is absolutely continuous with
respect to μ on each W

n we have proved that ν is absolutely continuous with respect to μ.
Using n times iteratively the Kuratowski–Ryll–Nardzewski selection theorem (see The-

orem 18.13 in [6]) due to the fact that T −1(x) ∩ W
n is composed by zero or n elements,

we can decompose the set W
n into n measurable subsets W

n
1, . . . ,W

n
n where the map

T |Wn
i

is invertible. This means that if � ⊂ W
n we have ν(� ∩ W

n
i ) ≤ μ(T (�)). On the

other hand, we have that μ(T (�)) = ∫
�∩Wn

i
|�U |dμ. This implies that if μ(�) = 0 then

ν(�∩W
n
i )≤ μ(T (�))=

∫
�∩Wn

i
|�U |dμ= 0. As a consequence, ν(�)=∑

i ν(�∩W
n
i )= 0

and ν is absolutely continuous with respect to μ.
Theorem 53 below implies that for any measurable positive functions f , A we have

(22)
∫
f ◦ T (w)A(w)∣∣�U(w)∣∣dμ=

∫
f (w)

( ∑
y∈T −1(w)

A(y)

)
dμ.

Taking f = IT (M) and A = 1, we deduce that
∫
T −1(T (M)) |�U |dμ = μ(T (M)) = 0. There-

fore, we can suppose that there exists a specific nonnegative function A such that dν =
A|�U |dμ and since T∗(ν)= μ we must have∫

f (w)dμ=
∫
f ◦ T (w)dν =

∫
f ◦ T (w)A(w)∣∣�U(w)∣∣dμ,
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for any bounded measurable function f . Comparing this with (22), we deduce that∑
y∈T −1(w) A(y)= 1 for (μ-) almost all w ∈ W .
On the other hand, using again Theorem 53 it is simple to prove that if dν = A|�U |dμ

and
∑
y∈T −1(w) A(y)= 1 then ν is a weak solution to equation (15). �

REMARK 15. If S is any strong solution to equation (15), then ν = S∗μ is a weak solu-
tion. Furthermore, it is simple to prove that the weak solutions of the form S∗μ, where S is
some strong solution to (6), are the extremes of the convex set W := {ν satisfying T∗ν = μ}.
Using a lemma (precisely Lemma 21) that we shall prove below, it follows from this that
W is weakly compact, and thus, by Krein–Milman theorem (see Theorem 3.21 in [53]), any
measure ν ∈ W can be written as convex combination of measures induced by strong solu-
tions.

COROLLARY 16. If V satisfies Hypothesis C, there exists only one weak solution ν to
equation (15) and we have that dν

dμ = |�U | and ν = S∗μ (where S is the only strong solution
to equation (15) and �U is as in Theorem 14).

PROOF. If V satisfies Hypothesis C, by Corollary 11, T is invertible and by Theorem 14
we have that ν is unique and dν

dμ = |�U |. By Remark 15, we have that S∗μ, where S is the
unique strong solution of (15), is the unique weak solution to the same equation. �

3. Elliptic stochastic quantization. In this section, we want to prove the dimensional
reduction of equation (6), namely that the law in 0 of at least a (weak) solution to equation
(15), has an explicit expression in terms of the potential V .

The original idea of Parisi and Sourlas [49] for proving this relations was to transform
expectations involving the solution φ to equation (6) (taken at the origin) into an integral of
the form

E
[
h
(
φ(0)

)]
=
∫
h
(
Iw(0)

)
det
(
I + ∇U(Iw))e−〈U(Iw),Iw〉− 1

2 ‖U(Iw)‖2
H dμ(w),

(23)

where U is defined in equation (16). Then one can express the weight on the right-hand side
of (23) as the exponential e

∫
V (�)dx dθ dθ̄ involving the superfield

�(x, θ, θ̄)= ϕ(x)+ψ(x)θ + ψ̄(x)θ̄ +ω(x)θ θ̄
(see Section 4 and Section 5 for a more precise description) constructed from the real Gaus-
sian free field ϕ over R2, two additional fermionic (i.e., anticommuting) fields ψ , ψ̄ and the
complex Gaussian field ω. Introducing these new anticommuting fields, it can be argued that
the integral (23) admits an invariance property with respect to supersymmetric transforma-
tions. This implies the dimensional reduction, that is,

(24) (23) =
∫
h
(
ϕ(0)

)
e−

∫
V (�)dx dθ dθ̄D�=

∫
Rn
h(y)dκ(y).

Unfortunately, this reasoning is only heuristic since the integral on the right- hand side of
(23) is not well defined without a spatial cut-off, given that both the determinant and the
exponential are infinite.

For polynomial potentials V , a rigorous version of this reasoning was proposed by Klein et
al. [39]. More precisely Klein et al. give a rigorous proof of the relationship (24) introducing
a suitable modification due to the presence of the spatial cut-off f , but they do not discuss
the relationship between equation (6) and the reduction (23).
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In this section, we do not want to propose a rigorous version of the previous reasoning
which will be given in Section 4. Here, we only assume that the conclusion of Parisi and
Sourlas’ formal argument holds for a general enough class of potentials. More precisely, we
assume Theorem 17 below.

For technical reasons, which will become clear in the following (see Remark 38 below),
in order to state Theorem 17, we need first to introduce an additional class of potentials.

Hypothesis Vλ. We have the decomposition

V = VB + λVU, VU(y)=
n∑
i=1

(
yi
)4
, y = (

y1, . . . , yn
) ∈ R

n,

with λ > 0 and VB a bounded function with all bounded derivatives on R
n.

In Section 4 below, we will exploit a supersymmetric argument, described briefly at the
beginning of this section, for the family of potentials V satisfying the more restrictive Hy-
pothesis Vλ to prove that in this case a cut-off version of equation (24).

THEOREM 17. Under the Hypotheses CO and Vλ if h is any real measurable bounded
function defined on R

n, then we have∫
W
h
(
Iw(0)

)
�U(w)ϒf (Iw)dμ(w)= Zf

∫
Rn
h(y)dκ(y),

where Zf = ∫
W �U(w)ϒf (Iw)dμ(w) > 0.

PROOF. The proof is given in Section 4 below. �

In the rest of this section, we want to show how to derive from Theorem 17 the dimensional
reduction result for the solution to the elliptic SPDE. More precisely, the goal of the rest of
this section is to prove the following theorem.

THEOREM 18. Under the Hypotheses CO and QC, there exists (at least) one weak so-
lution ν to equation (6) such that for any measurable bounded function h defined on R

n we
have ∫

W
h
(
Iw(0)

)
ϒf (Iw)dν(w)=

∫
W
h
(
Iw(0)

)
ϒf (Iw)�U(w)dμ(w)

=Zf
∫
Rn
h(y)dκ(y),

(25)

where Zf = ∫
W ϒf (Iw)dν(w) > 0.

This result is very important since it implies Theorem 1 and Theorem 3.

PROOF OF THEOREM 1 AND THEOREM 3. The relation (25) can be expressed in the
following more probabilistic way. Suppose that on a given probability space (�ν,Pν), the
map φ : R2 × �ν → R

n gives the weak solution ν of Theorem 18, namely that the law of
the W-random variable (m2 −�)φ(·,ω) is the measure ν. Then we have that, for any real
measurable bounded function defined on R

n,

EPν

[
h
(
φ(0)

)ϒf (φ)
Zf

]
=
∫
W
h(y)dκ(y),
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namely we have proven Theorem 1. If we assume Hypothesis C, then by Corollary 11, Corol-
lary 16 and Theorem 18 there exists a unique strong solution satisfying (25) and we have
proven as a consequence Theorem 3. �

The proof of Theorem 18 will be given in several steps of wider degree of generality with
respect to the hypothesis on the potential V , before we prove an auxiliary result.

LEMMA 19. Under the Hypothesis Vλ, we have that

(26)
∫
W
g ◦ T (w)�U(w)dμ(w)=

∫
W
g(w)dμ(w),

where g is any bounded measurable function defined on W .

PROOF. Using the methods of Section 2, we can prove that the map T satisfies Hy-
potheses DEG1, DEG2, DEG3 of Appendix A. The claim then follows from Theorem 54
and Theorem 55 below, where we can choose the function g to be any bounded continuous
function since �U ∈ L1(μ) under Hypothesis Vλ. �

PROPOSITION 20. Under the Hypotheses CO and Vλ, there exists at least one weak
solution ν to equation (15) satisfying (25).

PROOF. Let V ⊂ L1(|�U |dμ) be the span of the two linear spaces V1,V2 ⊂ L1(|�U |dμ)
where V1 is composed by the functions of the form g ◦ T , where g is a measurable func-
tion defined on W such that g ◦ T ∈ L1(|�U |dμ), and V2 is formed by the functions of
the form h(Iw(0))ϒf (Iw), where h is a measurable function defined on R

n such that
h(Iw(0))ϒf (Iw) ∈ L1(|�U |dμ). Note that V1 and V2, and so V = span{V1,V2}, are non-
void since, under the Hypotheses Vλ and CO (see Lemma 40 below), �U ∈ Lp(μ) and so
g ◦ T ,h(Iw(0))ϒf (Iw) ∈ L1(μ) whenever g, h are bounded. Define a positive functional
L̂ : V →R by extending via linearity the relations

L̂
(
h
(
Iw(0)

)
ϒf (Iw)

) := ∫
h
(
Iw(0)

)
ϒf (Iw)�U(w)dμ(w),(27)

L̂(g ◦ T ) :=
∫
g(w)dμ(w)(28)

to the whole V . We have to verify that L̂ is well defined and positive on V . Suppose that there
exist functions g and h such that g ◦ T = h(Iw(0))ϒf (Iw). Then, by Lemma 19, we have

(29)
∫
W
g dμ=

∫
W
g ◦ T�U dμ=

∫
W
h
(
Iw(0)

)
ϒf (Iw)�U dμ.

This implies that L̂ is well defined on V1 ∩ V2 and so on V . Obviously, L̂ is positive on V2,
and, by Theorem 17 we have

L̂
(
h
(
Iw(0)

)
ϒf (Iw)

)= ∫
W
h
(
Iw(0)

)
ϒf (Iw)�U dμ

=Zf
∫
Rn
h(y)dκ(y)≥ 0

(30)

whenever h, and so h(Iw(0))ϒf (Iw), is positive. This means that L̂ is positive.
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For any f = g ◦ T ∈ V1, by Theorem 53 and Theorem 13, we have∣∣L̂(f )∣∣= ∣∣∣∣∫W g(w)dμ(w)
∣∣∣∣

≤
∫
W

∣∣g(w)∣∣N(w)dμ(w)
=
∫
W

∣∣g ◦ T (w)�U(w)
∣∣dμ(w)= ‖f�U‖1.

On the other hand, if f ∈ V2, by relation (27), L̂(f ) ≤ ‖f�U‖1. These two inequalities
and the positivity of L̂ imply, by Theorem 8.31 of [6] on the extension of positive function-
als on Riesz spaces, that there exists at least one positive continuous linear functional L on
L1(|�U |dμ), such that L(f )= L̂(f ) for any f ∈ V . The functional L defines the weak so-
lution to equation (15) we are looking for. Indeed, since L is a continuous positive functional
on L1(|�U |dμ) there exists a measurable positive function B ∈ L∞(|�U |dμ) ⊂ L∞(dμ)
such that L(f ) = ∫

W f (w)B(w)|�U(w)|dμ(w). Since �U ∈ Lp by Lemma 40 below, we
have 1 ∈ V1 and so L(1) = ∫

W 1 dμ(w) = 1. This implies, since the function B is positive,
that the σ -finite measure dν = B|�U |dμ is a probability measure. Furthermore, since V1
contains all the functions g ◦ T , where g is measurable and bounded, equality (28) implies
that T∗(ν)= μ. This means that ν is a weak solution to equation (15). Finally, since V2 con-
tains all the functions of the form h(Iw(0))ϒf (Iw) where h is measurable and bounded on
R
n the measure ν satisfies the thesis of the theorem. �

Unfortunately, we cannot repeat this reasoning for general potentials satisfying the weaker
Hypothesis QC since both Theorem 17 and Proposition 20 exploit a Lp bound on �U (see
Lemma 40 below) that cannot be obtained for more general potentials. Thus the idea is to
generalize equation (25) without passing from equation (24). Indeed it is possible to approx-
imate any potential V satisfying Hypothesis QC by a sequence of potentials (Vi)i satisfy-
ing Hypothesis Vλ in such a way that the sequence of weak solutions (νi)i associated with
(Vi)i converges (weakly) to a weak solution associated with the potential V (see Lemma 21,
Lemma 24 and Lemma 25 below). Since equation (25) involves only integrals with respect to
a weak solution to equation (6), we are able to prove that equation (25) holds for any potential
V approximating its weak solution ν by the sequence (νi)i satisfying equation (25).

Let us now set up the approximation argument, starting with a series of lemmas about
convergence of weak solutions.

LEMMA 21. Let {Ti}i∈N be a sequence of continuous maps on W such that for any
compactK ⊂ W we have that

⋃
i∈N T −1

i (K) is precompact and there exists a continuous map
T such that Ti → T uniformly on the compact subsets of W . Let Mi be a set of probability
measures on W defined as follows:

Mi := {
ν probability measure on W such that Tj,∗(ν)= μ for some j ≥ i}.

Then M :=⋂
i∈N M̄i , where the closure is taken with respect to the weak topology on the set

of probability measures on W , is nonvoid and

M ⊂ {
ν probability measure on W such that T∗(ν)= μ}.

PROOF. First of all, we prove that Mi is pre-compact for any i ∈ N. This is equivalent to
proving that the measures in Mi are tight. Let K̃ be a compact set such that μ(K̃) ≥ 1 − ε
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for a fixed 0< ε < 1, then K :=⋃
i∈N T −1

i (K̃) is a compact set in W . Consider ν ∈Mj then
there exists Tk such that Tk,∗ν = μ. This implies

ν(K)≥ ν
(⋃
i

T −1
i (K̃)

)
≥ ν(T −1

k (K̃)
)≥ μ(K̃)≥ 1 − ε,

for any k ∈ N. Since Mi are precompact, M̄i are compact and M̄i ⊂ M̄j if i ≥ j . This implies
that M is nonvoid. If we consider a ν ∈ M, there exists a sequence νk weakly converging to
ν, for k→ +∞, such that Tik,∗(νk)= μ and ik → +∞. Proving that T∗(ν)= μ is equivalent
to prove that for any C1 bounded function g with bounded derivatives defined on W taking
values in R we have

∫
g ◦ T dν = ∫

g dμ. Let K the compact set defined before, then there
exists a k ∈ N such that supw∈K ‖Tik (w)−T (w)‖ ≤ ε and that | ∫W g◦T dν−∫W g◦T dνk| ≤
ε, for the arbitrary 0< ε < 1. This implies that∣∣∣∣∫W g ◦ T dν −

∫
W
g dμ

∣∣∣∣≤ ∣∣∣∣∫W g ◦ T dν −
∫
W
g ◦ T dνi

∣∣∣∣
+
∣∣∣∣∫
K
(g ◦ T − g ◦ Tik )dνk

∣∣∣∣
+ ‖g‖∞ε +

∣∣∣∣∫W g ◦ Tik dνk −
∫
W
g dμ

∣∣∣∣
≤ ε + ‖∇g‖∞ε + ‖g‖∞ε.

Since ε is arbitrary, from this it follows that
∫
W g ◦ T dν = ∫

W g dμ. �

REMARK 22. The proof of Lemma 21 proves also that given any sequence of νi ∈ Mi

there exists a subsequence converging weakly to ν ∈ M.

REMARK 23. In the following, we consider a sequence of functions Vi satisfying
Hypothesis QC. To each function Vi of the sequence, it is possible to associate a map
Ui : W → H defined by Ui(w) := f ∂Vi(Iw) and the corresponding map Ti : W → W de-
fined by Ti(w)=w+Ui(w).

LEMMA 24. Let {Vi}i∈N be a sequence of potentials satisfying the Hypothesis QC and
converging to the potential V , and such that ∂Vi converges uniformly to ∂V on compact
subsets of Rn; moreover, we assume that Vi , V , ∂Vi and ∂V are uniformly exponentially
bounded and there exists a common function H entering Hypothesis QC for {Vi}i∈N and V .
Let Ti , T be the maps on W associated with Vi and V , respectively, as in Remark 23. Then
the sequence {Ti}i∈N satisfies the hypothesis of Lemma 21.

PROOF. Note that the a priori estimates (19) and (20) in Lemma 7 are uniform in i ∈ N

since they depend only on the function H and the exponential growth of Vi , V , ∂Vi , ∂V .
From this, we can deduce the precompactness of the set K =⋃

i∈N T −1
i (K̃) for any compact

set K̃ ⊂W using a reasoning similar to the one proposed in Theorem 9 and Theorem 13.
Proving that Ti converges to T uniformly on the compact sets is equivalent to prove

that the map Ui(w)(x) = f (x)∂Vi(Iw(x)) converges to U(w)(x) = f (x)∂V (Iw(x)) in
L2 uniformly on the compact subsets of W . Let K be a compact set of W , then there ex-
ists an M > 0 such that |Iw(x)| ≤ M(1 + |x|η) (where we suppose without loss of gen-
erality that η < 1). By hypotheses, we have that there exist two constants α,β > 0 such
that |∂Vi(y)|, |∂V (y)| ≤ eα|y|+β , thus there exists a compact subset K of R

2 such that
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Kc (f (x))

2 exp(2αM(1 + |x|η) + 2β)dx ≤ ε, for some ε ∈ (0,1). Denote by Bε the ball
of radius supx∈KM(1 + |x|η) then we have

sup
w∈K

∥∥Ui(w)−U(w)∥∥2
H ≤ 2

∣∣∣∣∫
Kc

(
f (x)

)2
e2αM(1+|x|η)+2β dx

∣∣∣∣
+ sup
w∈K

∣∣∣∣∫
K

(
f (x)

)2∣∣∂V (Iw)− ∂Vi(Iw)∣∣2 dx
∣∣∣∣

≤ 2ε +
(

sup
y∈Bε

∣∣∂V (y)− ∂Vi(y)∣∣)2
∫
K

(
f (x)

)2 dx

→ 2ε,

as i → +∞. This means that limi→+∞(supw∈K ‖Ui(w) − U(w)‖2
H) ≤ 2ε, and since ε is

arbitrary in (0,1) the theorem is proved. �

LEMMA 25. Let V be a potential satisfying Hypothesis QC, then there exists a se-
quence {Vi}i∈N of bounded smooth potentials converging to V and satisfying the hypothesis
of Lemma 24.

PROOF. Let V be a potential satisfying the Hypothesis QC and let H̃ the function whose
existence is guaranteed by Hypothesis QC. Let, for anyN ∈ N, vN := supy∈B(0,N) |V (y)| and

let Ṽ N :=GvN ◦ V where

Gk(z) :=
{
z if |z| ≤ k,
k if |z|> k.

Let ρ be a smooth compactly supported mollifier and denote by ρε the function ρε(y) :=
ε−nρ(y

ε
). We want to prove that V N = Ṽ N∗ρεN , for a suitable sequence εN ∈ R+, is the

approximation requested by the lemma. Without loss of generality, we can suppose that H̃
is a positive function depending only on the radius |y| and increasing as |y| → +∞. Under
these conditions, Hypothesis QC is equivalent to say that for any unit vector n̂ ∈ S

n we have
that for any y ∈ R

n

max
(−n̂ · ∂V (y + rn̂),0)≤ H̃ (y).

We want to prove that H(|y|)= H̃ (|y| + supN(εN)) is the function requested by the lemma.
Since for any unit vector n̂ ∈ S

n we have |n̂ · ∂Ṽ N | ≤ |n̂ · ∂V | and since Ṽ N is absolutely
continuous, we obtain

−n̂ · ∂V N(y + rn̂)= ((−n̂ · ∂Ṽ N )∗ρεN )(y + rn̂)
≤ (

max
(−n̂ · ∂V (· + rn̂),0)∗ρεN )(y)≤ H̃∗ρεN (y).

Furthermore, we have that Ṽ N = V on B(0,N−1) and so there exists a sequence {εN }N such
that εN → 0 and supx∈B(0,N−1) |∂V N(x)− ∂V (x)| ≤ 1

N
. Since V N is smooth and bounded

and

H̃∗ρεN (y)≤ H̃
(
|y| + sup

N

(εN)
)

=H(y),

we conclude the claim. �
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Finally, we are able to prove (25) for all QC potentials, which will conclude this section.

PROOF OF THEOREM 18. By Proposition 20, the equality (25) holds when V satisfies the
Hypothesis Vλ for some λ > 0, that is, if V (y)= Vλ,VB (y)= VB(y)+λ

∑n
k=1(y

k)4 for some
bounded potential VB . It is clear that if λi → 0 the potentials Vλi,VB converge to the potential
VB and the hypothesis of Lemma 24 hold. This means that if ν̂i is a sequence of probability
measures such that ν̂i is a weak solution to the equation associated with Vλi,VB satisfying the
thesis of Proposition 20, by Remark 22 and Lemma 21, there exists a probability measure
ν̂, that is a weak solution to the equation associated with VB , such that ν̂i → ν̂ in the weak
sense, as i→ ∞ and λi → 0.

We want to prove that ν̂ is a weak solution to the equation associated with VB satisfying
equation (25). The previous claim is equivalent to proving that∫

W
g
(
Iw(0)

)
e4
∫
f ′(x)Vλi ,B(Iw(x))dx dν̂i(w)

−→
∫
W
g
(
Iw(0)

)
e4
∫
f ′(x)VB(Iw(x))dx dν̂(w),

(31)

as λ → 0, for any continuous bounded function g, and that κλi → κB weakly, where
dκλi = exp(−4πVλi,B)dx/Zλi and dκB = dκλi = exp(−4πVB)dx/ZB . Proving relation (31)
is equivalent to prove that∫

f ′(x)Vλi,B
(
Iw(x)

)
dx→

∫
f ′(x)VB

(
Iw(x)

)
dx

uniformly on compact sets of W . This assertion can be easily proved using the methods of
Lemma 24. Indeed for any w in the compact setK ⊂W , using the same notation of the proof
of Lemma 24, we have∣∣∣∣∫ f ′Vλi,B(Iw)dx −

∫
f ′VB(Iw)dx

∣∣∣∣
� λi

∫∣∣f ′(x)
∣∣(M(1 + |x|η))4 dx =CKλi → 0.

The weak convergence of κλi to κB easily follows from Lebesgue’s dominated convergence
theorem.

The previous reasoning proves the theorem for any bounded potential VB . Using
Lemma 25, we can approximate any potential V satisfying Hypothesis QC by a sequence
of bounded potentials VB,i . Using Lemma 24, Remark 22, Lemma 21 and a reasoning simi-
lar to the one exploited in the first part of the proof we obtain the thesis of the theorem for a
general potential satisfying Hypothesis QC. �

4. Dimensional reduction. Define

(32) �(h) :=
∫
W
h
(
Iw(0)

)
�U(w)

ϒf (Iw)
Zf

dμ(w),

with the notation as in Section 2 (Theorem 14) and Section 3 (Theorem 18). In this section,
we prove Theorem 17, that is, the identity

(33) �(h)=
∫
Rn
h(y)dκ(y).

It is important to note that �U appears without the modulus in (32).
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Let us start by unfolding the definition of �U and ϒf (Iw) in (32) to get the expression

Zf�(h)=
∫
h
(
Iw(0)

)
det2

(
IH + ∇U(w))

× exp
(
−δ(U)− 1

2
‖U‖2

H + 4
∫
R2
V
(
Iw(x)

)
f ′(x)dx

)
dμ(w).

In order to manipulate the regularized Fredholm determinant, we approximate the right-hand
side by

Z
χ
f �χ(h) :=

∫
h
(
Jχw(0)

)
det2

(
IH + ∇Uχ )

× exp
(
−δ(Uχ )− 1

2

∥∥Uχ∥∥2
H + 4

∫
R2
V
(
Jχw(x)

)
f ′(x)dx

)
dμ(w),

where χ > 0 is a regularization parameter, Jχ := I1+χ = (m2 −�)−1−χ , Zχf is the normal-
ization constant such that �χ(h)= 1 and

(34) Uχ(w) := 1

1 + 2χ
Iχ∂V (Jχw).

We will prove below that limχ→0�χ(h) = �(h). When χ > 0, ∇Uχ(w) = 1
1+2χ ×

Iχ∂V (Jχw)Jχ is almost surely a trace class operator and Uχ ∈ W∗. This means that we can
rewrite the regularized Fredholm determinant det2 in term of the unregularized one (denoted
by det) (see equation (69) and the discussion in Appendix A) obtaining

Z
χ
f �χ(h)=

∫
h
(
Jχw(0)

)
det
(
IH + ∇Uχ )

× exp
(
−〈Uχ,w〉− 1

2

∥∥Uχ∥∥2
H

+ 4
∫
R2
V
(
Jχw(x)

)
f ′(x)dx

)
dμ(w).

(35)

The determinant is invariant with respect to conjugation and so we can multiply ∇Uχ by
(−� + m2)χ at the left-hand side and by (−� + m2)−χ at the right-hand side (this last
multiplication can be done since Iχ = (−� + m2)−χ is a bounded operator from L2(R2)

into the Sobolev space W 2χ,2(R2) and (−�+m2)χ is a bounded operator from W 2χ,2(R2)

into L2(R2)). In this way, we obtain

det
(
IH + ∇Uχ )= det

(
IH + Iχf ∂2V (Jχw)Jχ

)
= det

(
IH + f∂2V (Jχw)I1+2χ ),

where  = 1
1+2χ , and featuring the operator  f∂2V (Jχw)I1+2χ . Let γ be the Gaussian

measure given by the law of ϕ = Jχw ∈ W̃ under μ. In other words, the Gaussian measure
γ is the one whose Fourier transform is∫

W̃
exp
(
i

∫
R2
k(x)ϕ(x)dx

)
dγ (ϕ)= exp

(
−1

2

∥∥Jχ(k)∥∥2
H

)
.

The expression (35) is then equivalent to∫
h
(
ϕ(0)

)
det
(
IH + f∂2V (Jχw)I1+2χ ) exp

(−〈 f∂V (ϕ), (m2 −�)ϕ〉)
× exp

(
− 

2

2

∥∥Iχf ∂V (ϕ)∥∥2
H + 4

∫
V
(
ϕ(x)

)
f ′(x)dx

)
γ (dϕ).
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At this point, we introduce an auxiliary Gaussian field η distributed as the Gaussian white
noise μ to write

exp
(
− 

2

2

∥∥Iχf ∂V (φ)∥∥2
H

)
=
∫

exp
(−i 〈f ∂V (φ),Iχη〉)μ(dη).

We also introduce two fermionic fields ψ , ψ̄ realized as bounded operators on a suitable
Hilbert space Hψ,ψ̄ with a state Tr(ρ·)= 〈·〉ψ,ψ̄ for which{

ψ(x),ψ
(
x′)}= {

ψ̄(x), ψ̄
(
x′)}= {

ψ(x), ψ̄
(
x′)}= 0,〈

ψ̄(x)ψ̄
(
x′)〉

ψ,ψ̄ = 〈
ψ(x)ψ

(
x′)〉

ψ,ψ̄ = 0,〈
ψ(x)ψ̄

(
x′)〉

ψ,ψ̄ = G1+2χ
(
x − x′),

where {·, ·} is the anticommutator between bounded operators, that is, {K1,K2} = K1K2 +
K2K1 for any bounded operators defined on Hψ,ψ̄ , and Gα is the kernel of the operator Iα
(see Appendix B for the definition of fermionic fields and Theorem 57 for the existence of
such fields). By Theorem 58 and Remark 59, these additional fields allow to represent the
determinant as

det
(
IH + f∂2V (Jχw)I1+2χ )

=
〈
exp
(∫
ψi(x)f (x)∂2

φiφj
V
(
ϕ(x)

)
ψ̄j (x)dx

)〉
ψ,ψ̄

.

By tensorizing the fermionic Hilbert space Hψ,ψ̄ with the L2 space of the product measure

γ ⊗μ, one can realize the fermionic fields ψ , ψ̄ and the Gaussian fields ϕ, η as operators on
the same Hilbert space H with a state which we denote by 〈·〉χ when this does not cause any
ambiguity. As a consequence, we have

(36) Z
χ
f �χ(h)=

〈
h
(
ϕ(0)

)
exp
(
Qχ(V,f )

)〉
χ ,

with an operator Qχ(V,f ) given by

Qχ(V,f ) :=
∫
ψ(x)f (x)∂2V

(
ϕ(x)

)
ψ̄(x)dx

− 〈f ∂V (ϕ), (m2 −�)ϕ + iIχη〉+ 4
∫
V
(
ϕ(x)

)
f ′(x)dx.

The operator Q satisfies the following important theorem.

THEOREM 26. For all polynomials p,P :Rn →R and all n≥ 0 and all χ > 0, we have

(37)
〈
p
(
ϕ(0)

)(
Qχ(P,f )

)n〉
χ = 〈

p
(
ϕ(0)

)(−4πP
(
ϕ(0)

))n〉
χ .

This theorem is the key to our results and will be proved with the aid of supersymme-
try in Section 5. Going back to equation (36), a possible strategy would be to expand the
exponential getting

(38)
〈
h
(
ϕ(0)

)
exp
(
Qχ(V,f )

)〉
χ =∑

n≥0

1

n!
〈
h
(
ϕ(0)

)(
Qχ(V,f )

)n〉
χ

and then to use Theorem 26 to prove that each average on the right-hand side is equal to〈
h
(
ϕ(0)

)(−4πV
(
ϕ(0)

))n〉
χ .
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Since 〈
h
(
ϕ(0)

)(−4πV
(
ϕ(0)

))n〉
χ =Zχf

∫
Rn
h(y)dκ(y),

the equality (33) would be proved by taking the limit χ → 0. Unfortunately, equation (38) is
not easy to prove since the series on the right-hand side of (38) does not converge absolutely
for a general V . For this reason, we present below an indirect proof of (33). Given Theo-
rem 26, we will deduce Theorem 17 from it via a sequence of successive generalizations:

1. first, we consider potentials V bounded and such that ‖∂2V ‖∞ <m2/2;
2. then the class of V satisfying Hypothesis Vλ and C;
3. finally those V satisfying only Vλ.

4.1. Bounded potentials.

PROPOSITION 27. For all V : Rn → R bounded such that ‖∂2V ‖∞ < m2/2 and h :
R
n →R bounded and measurable, we have

(39)
〈
h
(
ϕ(0)

)
exp
(
Qχ(V,f )

)〉
χ = 〈

h
(
ϕ(0)

)
exp
(−4πV

(
ϕ(0)

))〉
χ

and for χ > 0 small enough.

Let us introduce

Gχ(t) := 〈
h
(
ϕ(0)

)
exp
(
tQχ(V,f )

)〉
χ ,

Hχ(t) := 〈
h
(
ϕ(0)

)
exp
(−t4πV (ϕ(0)))〉χ

for t ∈ [0,1].

PROOF OF PROPOSITION 27. It is clear that Hχ is real analytic in t ∈ [0,1]. By
Lemma 29 below, the function Gχ(t) is real analytic in [−1,1]. It is enough then to prove
∂nt Gχ(0)= ∂nt Hχ(0) for any n ∈N. Now

∂nt Gχ(0)=
〈
h
(
ϕ(0)

)(
Qχ(V,f )

)n〉
χ ,

∂nt Hχ(0)=
〈
h
(
ϕ(0)

)(−4πV
(
ϕ(0)

)n)〉
χ .

By the density of polynomials in the space of two-times differentiable functions with respect
to the Malliavin derivative (see [48] Corollary 1.5.1), we can approximate both ∂nt Gχ(0)
and ∂nt Hχ(0) with expressions of the form 〈p(ϕ(0))(Qχ(P,f ))n〉χ and 〈p(ϕ(0))(−4π ×
P(ϕ(0)))n〉χ where p, P are polynomials and, therefore, conclude from (37) that ∂nt Gχ(0)=
∂nt Hχ(0) for all n≥ 0. �

The following two lemmas prove the claimed analyticity of Gχ .

LEMMA 28. If V is a bounded potential satisfying the Hypothesis C, then
exp(−tδ(Uχ)) ∈ L1(μ) for any |t | ≤ 1 and χ = 0 and for χ > 0 small enough. Further-
more, the integral

∫
exp(−tδ(Uχ))dμ is uniformly bounded for χ = 0 and for χ > 0 small

enough, and t in the compact subsets of [−1,1].

PROOF. Under the hypothesis of the lemma, we have that

∥∥∇Uχ∥∥≤ ‖∂2V ‖∞
m2(1+χ) ,
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where ‖ · ‖ is the usual operator norm on L(H). Proposition B.8.1 of [59] states that

E

[
exp
(
−1

2
δ(K)

)]
≤ (E[exp

(‖K‖2
H
)]) 1

4 ·
(
E

[
exp
( ‖∇K‖2

2

(1 − ‖∇K‖H)
)]) 1

4

whenever K is a H − C1 map such that ‖∇K‖ < 1. Taking K = 2tUχ in the previous
inequality, we obtain the thesis. �

LEMMA 29. The functionGχ(t) is real analytic in [−1,1] for χ = 0 and for χ > 0 small
enough.

PROOF. First of all, we have that for any t ∈ R the map r → det2(I + (t + r)∇Uχ)=:
Dt(r) is holomorphic in r (see [56] Theorem 9.3). By the Cauchy theorem, this means that

∣∣∂nt (det2
(
I + t∇Uχ ))∣∣≤ n! supθ∈S1 |Dt(Reiθ )|

Rn
.

On the other hand, we have for any χ ∈ [0,1],∣∣Dt(r)∣∣≤ exp
(

1

2

∥∥(t + r)∇Uχ∥∥2
2

)
≤ exp

(
C
(
t2 + |r|2)∥∥∂2V

∥∥2
∞
)
,

where C ∈R+ is some positive constant depending on f but not on V . Thus we obtain

∣∣∂nt (det2
(
I + t∇Uχ ))∣∣≤ n! exp(C(t2 + |R|2)‖∂2V ‖2∞)

Rn
.

With a similar reasoning, we obtain a uniform bound of this kind for ∂nt exp(−1
2 |tUχ |2).

Finally, we note that

E
[
exp
(−δ((t + r)Uχ ))]=∑ (−1)nrn

n! E
[
exp
(−δ(tUχ ))(δ(Uχ ))n].

By Lemma 28, we note that∣∣E[∂nt e−δ((t+r)Uχ )]∣∣= ∣∣E[e−δ((t+r)Uχ )(δ(Uχ ))n]∣∣
≤ 1

εn
E
[
e−δ((t+ε)Uχ )e−δ((t−ε)Uχ )

]
<+∞

for any |t | ≤ 1 and 0< ε < m2+2χ

2‖∂2V ‖∞ −|t |. Using the previous inequality, it follows thatGχ(t)
is real analytic in the required interval. �

PROPOSITION 30. We have that G0(t)=H0(t) for t ∈ [−1,1].
PROOF. By Proposition 27, we need only to prove that Gχ(t) → G0(t) as χ → 0.

Since det2, δ, | · |H are continuous with respect to the natural norm of H and the Hilbert–
Schmidt norm on H ⊗ H (see [56] Theorem 9.2 for the continuity of det2 and [48] Propo-
sition 1.5.4 for the continuity of δ), and since exp(−δ(tUχ)) is bounded uniformly in Lp

(for p small enough), we only have to prove that, for χ → 0, Uχ(w)→ U(w) in H and
∇Uχ(w)→ ∇U(w) in H ⊗ H for almost every w ∈ W . We present only the proof of the
second convergence, the proof of the first one being simpler and similar.

We have that

∇Uχ(w)[h] = Iχ
(
f ∂2V (Jχw) ·Jχh),

thus proving the convergence of ∇Uχ(w) in H ⊗ H is equivalent to proving the conver-
gence of (m2 −�)−1−χ to (m2 −�)−1 in H ⊗ H and the convergence of f ∂2V (Jχw) to
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f ∂2V (Iw) in C0(R2). The first convergence follows from a direct computation using the
Fourier transform of this operators. The second convergence follows from the fact that V is
smooth with bounded derivatives, f decays exponentially at infinity and Jχw converges to
Iw pointwise and uniformly on compact sets since (m2 −�)−χ → idL2 , weakly as bounded
operator on L2(R2) and (m2 −�)−1 is a compact operator from L2(R2) into C0

loc(R
2). �

4.2. Potentials satisfying Hypothesis Vλ and C. Let VB denote a bounded smooth poten-
tial with all its derivatives bounded. Introduce the following equation for φt = φ̄t + Iξ :

(40)
(
m2 −�)φ̄t + tf ∂VB(φ̄t + Iξ)= 0.

Denote by λ− the infimum on y ∈ R
n over the eigenvalues of the y dependent matrix

(∂2VB(y)), and with λ+ the supremum on y ∈R
n over the eigenvalues of the same matrix.

For t ∈ (− m2

|λ+∧0| ,
m2

|λ−∧0|), we have that equation (40) has a unique solution that, by the
implicit function theorem, is infinitely differentiable with respect to t when VB ∈ C∞(Rn).
Define the formal series

(41) St (r) :=
∑
k≥1

supx∈R2 |∂kt φ̄t (x)|
k! rk.

LEMMA 31. Suppose that VB is a bounded real valued function with all derivatives
bounded such that ∥∥∂kVB∥∥∞ ≤ Ckk!,
where the norm is the one induced by the identification of ∂nVB as a multilinear operator and

for some C ∈R+, then the r power series St (r) is holomorphic for any t ∈ (− m2

|λ+∧0| ,
m2

|λ−∧0|).
Furthermore, the radius of convergence of St (r) can be chosen uniformly for t in compact

subsets of (− m2

|λ+∧0| ,
m2

|λ−∧0|).

PROOF. We define the following functions:

V̄ 1(r) :=∑
k≥0

‖∂k+1VB‖∞
k! rk, V̄ 2(r) :=∑

k≥0

‖∂k+2VB‖∞
k! rk.

We have that the partial derivative ∂kt φ̄t solves the following equation:(
m2 −�)∂kt φ̄ + t∂2VB(φ̄t ) · ∂kt φ̄t = −∂k−1

t

(
∂VB(φ̄t )+ t∂2VB(φ̄t ) · ∂t φ̄t )

+ t∂2VB(φ̄t ) · ∂kt φ̄t .
Using a reasoning similar to the one of Lemma 7, it is easy to prove that∥∥∂kt φ̄t∥∥∞ ≤ ‖ − ∂k−1

t (∂VB(φ̄t )+ t∂2VB(φ̄t ) · ∂t φ̄t )+ t∂2VB(φ̄t ) · ∂kt φ̄t‖∞
m2 − |t |(λsign(t) ∧ 0)

,

where it is important to note that the right-hand side of the previous inequality depends only
on the derivatives of order at most k−1. The previous inequality and the method of majorants
(see [60]) of holomorphic functions permit to get the following differential inequality for
St (r):

(42)
(
m2 − |t |(λsign(t) ∧ 0)− rV̄ 2(St (r)))∂r(St )(r)≤ V̄ 1(St (r)).

From the previous inequality, we obtain that St (r) is majorized by the holomorphic function
Ft(r) that is the solution of the differential equation (42) (where the symbol ≤ is replaced by
=) depending parametrically on t with initial condition Ft(0)= 0. Since Ft(r) is majorized
by Fk(r) or by F−k(r) if |t | ≤ k, the thesis follows. �
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REMARK 32. An example of potential satisfying the hypotheses of Lemma 31 is given
by the family of trigonometric polynomials in R

n.

LEMMA 33. Under the hypotheses of Lemma 31 with V = VB and assuming that h is

an entire function, we have that G0(t)=H0(t) for any t ∈ (− m2

|λ+∧0| ,
m2

|λ−∧0|). In other words,
the thesis of Theorem 17 holds if λ= 0, VB satisfies Hypothesis C as well as the hypotheses
of Lemma 31.

PROOF. By Proposition 30, we need only to prove thatG0 is real analytic in the required
set. By Corollary 16, we have that

G0(t)= E
[
h
(
Iξ(0)+ φ̄t (0))e4

∫
tVB(Iξ(x)+φ̄t (x))f ′(x)dx].

Then the thesis follows from Lemma 31 and the analyticity of h and of the exponential. �

Let V be a potential satisfying the Hypothesis Vλ. Then there exist VB such that V =
VB + λVU and we define

Vt,λ = tVB + λVU,
for any t ∈ R. Denote by Ut,λ the corresponding map from W into H. Let h : R → R be a
continuous bounded function. We write

G0,λ(t) :=
∫
W
h
(
Iw(0)

)
det2(IH + ∇Ut,λ)

× exp
(
−δ(Ut,λ)− 1

2
‖Ut,λ‖2

H + 4
∫
R2
Vt,λ

(
Iw(x)

)
f ′(x)dx

)
dμ

and

H0,λ(t) := Zf
∫
Rn
h(y) exp

(
−4π

(
m2 |y|2

2
+ tVB(y)+ λVU(y)

))
dy.

It is evident that the thesis of Theorem 17 is equivalent to prove that

G0,λ(t)=H0,λ(t)

for any bounded potential VB , any h continuous and bounded and any t ∈ (− m2

|λ+∧0| ,
m2

|λ−∧0|).
This fact is the result of the next proposition.

PROPOSITION 34. Under Hypothesis Vλ, we have that G0,λ(t) = H0,λ(t) for any t ∈
(− m2

|λ+∧0| ,
m2

|λ−∧0|). In other words, the thesis of Theorem 17 holds if V satisfies also Hypoth-
esis C.

PROOF. By Lemma 33, we know that Theorem 17 holds for any λ = 0 and for any
bounded potential satisfying Hypothesis C and the hypothesis of Lemma 31. Thus if we are
able to approximate any potential V satisfying Hypothesis Vλ and Hypothesis C by potentials
of the form requested by Lemma 33 the thesis is proved.

We can use the methods of the proof of Lemma 25 for approximating a potential V satisfy-
ing Hypothesis Vλ by a sequence of potentials VB,N satisfying the hypothesis of Lemma 31.
More in detail, using the notation of Lemma 25, we have that the sequence of functions V N

is composed by smooth, bounded functions and, if V satisfies Hypothesis Vλ, they are iden-
tically equal to N outside a growing sequence of squares QN ⊂ R

2. This means that V N,p ,
which is the periodic extension of V N outside the square QN , is a smooth function for any
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N ∈ N. Since V N,p is periodic, it can be approximated with any precision we want by a
trigonometric polynomial PN . Furthermore, since V satisfies Hypothesis C, also V N,p satis-
fies Hypothesis C and we can choose the trigonometric polynomial PN satisfying Hypothesis
C too. In this way, we construct a sequence of potentials VB,N = PN satisfying the hypothe-
ses of Lemma 31 and converging to V uniformly on compact subsets of Rn. Thus the thesis
follows from Lemma 21, Lemma 24, Corollary 16 and the fact that the functions of the form
L(Iξ(0)+ φ̄t (0)), where L is an entire function, are dense in the set of measurable functions
in Iξ(0)+ φ̄t (0) with respect to the Lp(μ) norm. �

4.3. Potentials satisfying only Hypothesis Vλ.

LEMMA 35. Under the Hypothesis Vλ, we have det2(I + ∇U(w)) ∈ L∞(μ).

PROOF. We follow the same reasoning proposed in [39] for polynomials. First of all, by
the invariance property of the determinant with respect to conjugation, we have that

det2
(
I + ∇U(w))= det2

(
I +O(w)),

where O(w) is the self-adjoint operator given by

(43) Oij (w)[h] = (
m2 −�)− 1

2
(
f ∂2
φiφj
V (Iw) · (m2 −�)− 1

2h
)
.

Since V satisfies the Hypothesis QC, the eigenvalues of the symmetric matrix ∂2V (y) (where
y ∈ R

n) are bounded from below. Furthermore, we can write the matrix ∂2V (y) as the differ-
ence of two commuting matrices ∂2V (y) = V+(y)− V−(y) where V+(y), V−(y) are sym-
metric. They have only eigenvalues greater or equal to zero and kerV+(y)∩ kerV−(y)= {0}.
We denote by O+, O− the two operators defined as O in equation (43) replacing ∂2V by V+
and V−, respectively. Obviously, O+ and O− are positive definite and O = O+ −O−. By
Lemma 3.3 [39], we have that∣∣det2

(
I +O(w))∣∣≤ exp

(
2
∥∥O−(w)

∥∥2
2

)
.

Using a reasoning similar to the one of Proposition 12 and the fact that, under the Hypothesis
Vλ, the minimum eigenvalue λ(y) of ∂2V (y) has a finite infimum λ− that is the same as the
one for V−. We obtain∣∣det2

(
I + ∇U(w))∣∣= ∣∣det2

(
I +O(w))∣∣≤ exp

(
Cλ0‖f ‖2

2
)

for some positive constant C. In particular, we have det2(I + ∇U(w)) ∈ L∞(μ). �

In order to prove that exp(−δ(U)) ∈ Lp(μ), we split U into two pieces. First of all, if λ(y)
is the minimum eigenvalue of ∂2V (y) we recall that λ− = infy∈Rn λ(y). Moreover, we shall
set

Ū :=U − (λ− ∧ 0)f I(w),
and Û := U − Ū . We also set W := V + λ−

2 |y|2. We introduce a useful approximation of
Ū (w) for proving Theorem 40. Let Pn the projection of a L2(R2) function on the momenta
less then n, that is,

Pn(h)=
∫
|k|<n

eik·xĥ(k)dk,

where ĥ is the Fourier transform of h defined on R
2. We can uniquely extend the operator Pn

to all tempered distributions. In this way, we define Un(w) as

(44) Un(w) := Pn[f ∂V (IPnw)],
where w ∈ W . We shall denote by Ūn the expression corresponding to (44) where V is
replaced by W .
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LEMMA 36. Under the Hypothesis Vλ, there exist two positive constants C, α indepen-
dent on p ≥ 2 and n ∈ N such that

(45) E
[∣∣δ(Ūn − Ū )∣∣p]≤ C(p− 1)2pn−α,

for some constant C > 0. Furthermore, a similar bound holds also for E[|‖∇Un‖2
2 −

‖∇U‖2
2|p] and E[|‖Iw‖2

H − ‖Pn(Iw)‖2
H|p].

PROOF. First of all, we write Ū = UB + ŪU where UB = f ∂VB(Iw), and we consider
the corresponding decomposition for Ūn. If we prove that an inequality analogous to (45)
holds for UB −UB,n and ŪU − ŪU,n separately, then the inequality (45) holds.

In order to prove the lemma, we use the following inequality (proven in [59] Proposi-
tion B.8.1):

(46)

E

[
cosh

( √
ρ

2
√

2
δ(K)

)]
≤ (E[exp

(
ρ‖K‖2

H
)]) 1

4

×
(
E

[
exp
(

ρ

1 − ρc‖∇K‖2
2

)]) 1
4

that holds when ‖∇K‖2
2 ∈ L∞, ‖∇K‖ ≤ c < 1 and 0 ≤ ρ < 1

2c2 . Putting K = ε̄(UB −UB,n)
for ε̄ small enough, since ‖∇(UB,n −UB)‖2

2,‖∇(UB,n −UB)‖ ∈ L∞ with a bound uniform
in n, we have that

(47)
E
[
cosh

(
εδ(UB −UB,n))]≤ (E[exp

(
ε′‖UB −UB,n‖2

H
)]) 1

4

× (E[exp
(
ε′
∥∥∇(UB −UB,n)

∥∥2
2

)])
,

for suitable ε, ε′ > 0 and for all n ∈N. First of all, we want to give a bound for the right-hand
side of (47) providing a precise convergence rate to the constant 1 of the upper bound for the
right-hand side as n→ +∞. We first note that

(48) E
[
exp
(
ε′‖UB −UB,n‖2

H
)]= ∞∑

k=1

ε′k

k! E
[‖UB −UB,n‖2k

H
]
.

Using a reasoning like the one in the proof of Proposition 12, we have that

‖UB −UB,n‖2
H � ‖∂VB‖2∞

∥∥Qn(f )∥∥2
H + ∥∥∂2VB

∥∥2
∞
∫
R2

(
f (x)Qn(Iw)(x)

)2 dx,

where Qn = I − Pn. From the previous inequality and the hypercontractivity of Gaussian
random fields, we obtain that

E
[‖UB −UB,n‖2k

H
]
� k

(∥∥Qn(f )∥∥2k
H +

∫
R2
f (x)kE

[(
Qn(Iw)(x)

)2]dx
)

� k
∥∥Qn(f )∥∥2k

H + k(2k − 1)k
∥∥f k∥∥1E

[(
Qn(Iw)(x)

)2]k
,

where the constants implied by the symbol � do not depend on k. The right- hand side
converges then for n→ +∞ to 1 as we have announced. Using the Fourier transform, the fact
that f is a Schwartz function, and the fact that Iw is equivalent to a white noise transformed
by the operator (m2 −�) it is simple to obtain that ‖Qn(f )‖2, E[(Qn(Iw)(x))2] � 1

n2 . Then

using the fact that (2k − 1)k � Ck1k! and inserting the previous inequality in equation (48),
we obtain

E
[
exp
(
ε′‖UB −UB,n‖2)]≤ 1 +C3

ε′
n2

(1 − C2ε
′

n2 )
2
,
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that holds when ε′ > 0 is small enough and for two positive constants C2, C3. Using similar
methods, it is possible to prove a similar estimate for E[exp(ε′‖∇(UB −UB,n)‖2

2)]. Inserting
these estimates in the inequality (47), we obtain

(49) E
[
cosh

(
εδ(UB −UB,n))]− 1 � ε′

n2 ,

where the constants implied by the symbol � do not depend on n and on ε′, when ε′ is smaller
than a suitable ε′0 > 0. Using the inequality (49), we obtain that

+∞∑
k,n=1

n1/2ε2k

(2k)! E
[(
δ(UB −UB,n))2k]

=
+∞∑
n=1

n
1
2
(
E
[
cosh

(
εδ(UB −UB,n))]− 1

)

�
∞∑
n=1

ε′

n
3
2

<+∞.

Since the terms of an absolutely convergent series are bounded, we obtain

E
[(
δ(UB −UB,n))2k]� (2k)!

ε2kn
1
2

� (2k − 1)4kn− 1
2 .

Using Young inequality, we obtain that the inequality (45) holds for any p ≥ 2. The estimate
for δ(ŪU − ŪU,n) follows from the fact that ŪU is a polynomial of at most third degree and
from hypercontractivity estimates for polynomial expressions of Gaussian random fields.

The result for ‖∇U‖2
2 − ‖∇Un‖2

2 can be proved using the same decomposition of U and
Un and following a similar reasoning. The result for E[|‖f Iw‖2

H − ‖fPn(Iw)‖2
H|p] can be

proved using hypercontractivity for polynomial expressions of Gaussian random fields. �

In the following, we write cn = Tr(Pn ◦ I). It is important to note that

cn =
∫
|x|<n

1

|x|2 +m2 dx � log(n),

where the integral is taken on the ball |x|< n on R
2.

LEMMA 37. There exists a λ0 > 0 depending only on f and m2 such that for any 0 <
λ< λ0 and V satisfying the Hypothesis Vλ there exist some constants α,C1,C2 > 0 such that

δ(Ūn)−R
∫
R2
f (PnIw)2 dx − ‖∇Un‖2

2 ≥ −C1 −C2c
α
n

for any R ∈ R+.

PROOF. If Tr(|∇K|) < +∞ and K ∈ W, we have that δ(K) = 〈K,w〉H − Tr(∇K).
Using this relation, we obtain that

δ(Ūk)=
n∑
i=1

∫
R2
Pk
(
f ∂φiW(PkIw)

)
(x)wi(x)dx

−
n∑
i=1

TrL2
(
Pk
(
f ∂2
φiφi
W(PkIw) · Pk(m2 −�))).
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From this, we obtain the lower bound∫
R2
Pk
(
f ∂φiW(PkIw)

)
wi dx =

∫
R2
f ∂φiW(PkIw)

(
m2 −�)(PkIwi)dx

=
∫
R2
f ∂φiW(Iwk)

(
m2 −�)(Iwik)dx

=
∫
R2
f ∂φiφrW(Iwk)∇Iwik · ∇Iwrk dx

+m2
∫
R2
f Iwik∂φiW(Iwk)dx

−
∫
R2
(�f )W(Iwk)dx

≥
∫
R2
f
(
m2Iwik∂φiW(Iwk)− b2W(Iwk)

)
dx.

On the other hand, we have

TrL2
(
Pk
(
f ∂2
φiφi
W(Iwk) · Pk(m2 −�)))

= cn
∫
R2
∂2
φiφi
W(Iwk)f dx

≤ c
p
n

p
+ 1

q

∫
R2

(
∂2
φiφi
W(Iwk)(Iwk)

)q
f dx,

where 1
q

+ 1
p

= 1 and q < 2. Furthermore, we have that

‖∇Uk‖2
2 ≤

∫
R2

1

(|x|2 +m2)2
dx
∫
R2

(
∂2
φiφi
V (Iwk)

)2
f dx

= !
∫
R2

(
∂2
φiφi
V (Iwk)

)2
f dx,

where != ∫
R2

1
(|x|2+m2)2

dx. Using the previous inequality, we obtain that

δ(Ūn)−R
∫
R2
f |Iwk|2 dx − ‖∇Un‖2

2

≥ −c
p
n

p
+
∫
R2
f
(
m2Iwik∂φiW(Iwk)− b2W(Iwk)

)
dx

−
∫
R2
f

((∂2
φiφi
W(Iwk))q

q
+ !(∂2

φiφi
(V )(Iwk)

)2 +R|Iwk|2
)

dx.

It is simple to see that there exists a λ0 > 0 (depending only on b2 and m2) such that for any
potential V satisfying the Hypothesis Vλ with λ < λ0 the expression

(50) m2yik∂φiW(y)− b2W(y)−
(∂2
φiφi
W(y))q

q
− !(∂2

φiφi
V (Iwk)

)2 −R|y|2

is bounded from below, and thus the thesis of the lemma holds. �

REMARK 38. Lemma and 36 Lemma 37 are the only places where Hypothesis CO and
Hypothesis Vλ are used in an essential way.

Indeed we are able to obtain the estimate (45), using the technique of the proof of
Lemma 36, only if V is a sum of a bounded function and a polynomial. Furthermore, we
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can obtain that the expression (50) is bounded from below; for λ small enough and for any
R > 0, only if the expression yik∂φiW(y) is positive at infinity and it is able to compensate
the growth of all the other terms in expression (50).

The previous conditions are satisfied only if b2 < 4m2 and V is a sum of a bounded func-
tion and a polynomial of fourth degree (not less because of the presence of −R|y|2, and no
more since in the other cases the growth at infinity of !(∂2

φiφi
V (Iwk))2 would have been

strictly stronger than the growth at infinity of yik∂φiW(y)). This is the main reason for the
restriction on b2 in Hypothesis CO and for the special form of V required by Hypothesis Vλ.

LEMMA 39. Given a p ∈ [1,+∞), there is a R > 0 big enough such that

exp
(
−δ(Û)−R

∫
R2
f (x)

∣∣Iw(x)∣∣2 dx
)

∈ Lp(μ).

PROOF. This lemma is proven in [39] Lemma 3.2. �

LEMMA 40. Suppose that f satisfies the Hypotheses CO, then there exists λ0 > 0 de-
pending only on f and m2 such that for any λ < λ0 and any V satisfying the Hypothesis Vλ
we have that

exp
(−δ(U)+ (1 + ‖∇U‖2

2
)) ∈ Lp(μ)

for any p ∈ [1,+∞).

PROOF. The thesis follows from Lemma 35, Lemma 36, Lemma 37 and Lemma 39 using
a standard reasoning due to Nelson (see Lemma V.5 of [55] or [28]) due to the fact that from
the previous results it follows that there exist two constants α,β > 0 independent on N such
that

μ
({
w ∈ W|δ(UN )(w)≥ β(log(N)

)})≤ e−Nα . �

PROOF OF THEOREM 17. By Proposition 34 in order to prove the theorem, it remains
only to prove that G0,λ(t) is real analytic for any t ∈ R. The proof of this fact easily follows
from Lemma 40 exploiting a reasoning similar to the one used in Lemma 29. �

5. Supersymmetry. At this point, our main result is reduced to check the claim of The-
orem 26, namely that for all polynomials p,P :Rn →R and all n≥ 0 and all χ > 0 we have
the equivalence

(51)
〈
p
(
ϕ(0)

)(
Qχ(P,f )

)n〉
χ = 〈

p
(
ϕ(0)

)(−4πP
(
ϕ(0)

))n〉
χ .

Since the expressions in the expectations are polynomials in the fields ϕ, ω, ψ,ψ̄ which are
“free,” namely satisfy either the bosonic or fermionic version of Wick’s theorem (see, e.g.,
[26] Chapter 3, Section 8), the claim could be checked by explicit computations. However,
this is still not trivial and a better understanding of the structure of the required computations
can be obtained introducing a supersymmetric formulation involving the superspace S and
the superfield �. This new formulation exposes a symmetry of the problem which is not
obvious from the expressions we obtained so far.

For an introduction to the mathematical formalism of supersymmetry see, for example, [7,
23, 24, 52].
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5.1. The superspace. Formally, the superspace S can be thought as the set of points
(x, θ, θ̄) where x ∈ R

2 and θ , θ̄ are two additional anticommuting coordinates. A more con-
crete construction is to understand S via the algebra of smooth functions on it.

Let G(θ1, . . . , θn) be the (real) Grassmann algebra generated by the symbols θ1, . . . , θn,
that is, G(θ1, . . . , θn) = span(1, θi, θiθj , θiθj θk, . . . , θ1 · · · θn) with the relations θiθj =
−θj θi .

A C∞ function F : R2 → G(θ, θ̄) is just a quadruplet (f∅, fθ , fθ̄ , fθθ̄ ) ∈ (C∞(R2))4, via
the identification

(52) F(x)= f∅(x)+ fθ (x)θ + fθ̄ (x)θ̄ + fθθ̄ (x)θ θ̄ .
The function F can be considered as a function F :S →R by formally writing

F(x, θ, θ̄)= F(x).
In particular, we identify C∞(S) with C∞(R2;G(θ, θ̄)). C∞(S) is a noncommutative alge-
bra on which we can introduce a linear functional defined by

F �→
∫
F(x, θ, θ̄)dx dθ dθ̄ := −

∫
R2
fθθ̄ (x)dx,

where fθθ̄ (x) as in equation (52), induced by the standard Berezin integral on S satisfying∫
dθ dθ̄ =

∫
θ dθ dθ̄ =

∫
θ̄ dθ dθ̄ = 0,

∫
θ θ̄ dθ dθ̄ = −1.

REMARK 41. A norm on C∞(S) can be defined by

‖F‖C(G) = sup
x∈R2

(∣∣f∅(x)∣∣+ ∣∣fθ (x)∣∣+ ∣∣fθ̄ (x)∣∣+ ∣∣fθθ̄ (x)∣∣),
and an involution by

F̄ (x, θ, θ̄)= f∅(x)+ fθ (x)θ + fθ̄ (x)θ̄ + fθθ̄ (x)θ θ̄ ,
where the bar on the right-hand side denotes complex conjugation.

Given r ∈ C1(R;R), we define the composition r ◦ F :S →R by

r
(
F(x, θ, θ̄)

) := r(f∅(x))+ r ′(f∅(x))fθ (x)θ + r ′(f∅(x))fθ̄ (x)θ̄
+ r ′(f∅(x))fθθ̄ (x)θ θ̄ ,

in accordance with the same expression one would get if r were a monomial. Moreover, we
can define similarly the space of Schwartz superfunctions S(S) and the Schwartz superdis-
tributions S ′(S)= S ′(R2;G(θ, θ̄)) where T ∈ S ′(S) can be written T = T∅ + Tθθ + Tθ̄ θ̄ +
Tθθ̄ θ θ̄ with T∅, Tθ , Tθ̄ , Tθθ̄ ∈ S ′(R2) and duality pairing

T (f )= −T∅(fθθ̄ )+ Tθ(fθ̄ )− Tθ̄ (fθ )− Tθθ̄ (f∅), f∅, fθ , fθ̄ , fθθ̄ ∈ S
(
R

2).
5.2. The superfield. We take the generators θ , θ̄ to anticommute with the the fermionic

fields ψ , ψ̄ , and introduce the complex Gaussian field

ω := − ((m2 −�)ϕ + iIχη)
and put all our fields together in a single object defining the superfield

�(x, θ, θ̄) := ϕ(x)+ ψ̄(x)θ +ψ(x)θ̄ +ω(x)θ θ̄,
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where x ∈ R
2. We also define

V
(
�(x, θ, θ̄)

)= V (ϕ(x))+ ∂V (ϕ(x))(ψ̄(x)θ +ψ(x)θ̄)
+ [∂V (ϕ(x))ω(x)+ ∂2V

(
ϕ(x)

)
ψ(x)ψ̄(x)

]
θ θ̄

and since

f̃
(|x|2 + 4θ θ̄

)= f̃ (|x|2)+ 4f̃ ′(|x|2)θ θ̄ ,
where f̃ : R+ → R is the smooth function such that f (x) = f̃ (|x|2) and f ′(x) = f̃ ′(|x|2)
(see Section 1), we observe that

−
∫
V
(
�(x, θ, θ̄)

)
f̃
(|x|2 + 4θ θ̄

)
dx dθ dθ̄

=
∫
f (x)∂V

(
ϕ(x)

)
ω(x)dx

+
∫ [
f (x)∂2V

(
ϕ(x)

)
ψ(x)ψ̄(x)+ 4V

(
ϕ(x)

)
f ′(x)

]
dx =Qχ(V,f ).

By introducing the superspace distribution θ θ̄δ0(dx) we have also, by similar computations,

p
(
ϕ(0)

)= −
∫
p
(
�(x, θ, θ̄)

)
θ θ̄δ0(dx)dθ dθ̄ .

As a consequence, we can rewrite 〈p(ϕ(0))(Qχ(P,f ))n〉χ as an average over the superfield
�:

(53)

�χ(p) := 〈
p
(
ϕ(0)

)(
Qχ(P,f )

)n〉
χ

=
〈(

−
∫
p
(
�(x, θ, θ̄)

)
θ θ̄δ0(dx)dθ dθ̄

)
×
(
−
∫
P
(
�(x, θ, θ̄)

)
f̃
(|x|2 + 4θ θ̄

)
dx dθ dθ̄

)n〉
χ

.

While all these rewritings are essentially algebraic, the supersymmetric formulation (53)
makes it appear as a symmetry of the expression for �χ(p) which was not clear from the
original formulation. In some sense, the reader can think of the superspace (x, θ, θ̄) and of
the superfield �(x, θ, θ̄) as a convenient bookkeeping procedure for a series of relations be-
tween the quantities one is manipulating.

A crucial observation is that the superfield � is a free field with mean zero, namely all
its correlation functions can be expressed in terms of the two-point function 〈�(x, θ, θ̄)�(x,
θ ′, θ̄ ′)〉χ via Wick’s theorem. A direct computation of this two point function gives〈

�(x, θ, θ̄)�
(
x, θ ′, θ̄ ′)〉

χ

= 〈
ϕ(x)ϕ

(
x′)〉

χ − 〈ψ̄(x)ψ(x′)〉
χθ θ̄

′ − 〈ψ(x)ψ̄(x′)〉
χ θ̄θ

′

+ 〈ϕ(x)ω(x′)〉
χθ

′θ̄ ′ + 〈ω(x)ϕ(x′)〉
χθ θ̄

+ 〈ω(x)ω(x′)〉
χθ θ̄θ

′θ̄ ′

= G2+2χ
(
x − x′)+ G1+2χ

(
x − x′)(θ θ̄ ′ − θ̄ θ ′)

− (m2 −�)G2+2χ
(
x − x′)(θ ′θ̄ ′ + θ θ̄)

+ ((m2 −�)2G2+2χ
(
x − x′)− G2χ

(
x − x′))θ θ̄θ ′θ̄ ′.
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Upon observing that (m2 −�)G2+2χ = G1+2χ , (m2 −�)2G2+2χ = G2χ and that −θ θ̄ ′ +
θ̄ θ ′ + θ ′θ̄ ′ + θ θ̄ = (θ − θ ′)(θ̄ − θ̄ ′), we conclude

(54)
〈
�(x, θ, θ̄)�

(
x, θ ′, θ̄ ′)〉= C�(x − x′, θ − θ ′, θ̄ − θ̄ ′),

where

C�(x, θ, θ̄) := G2+2χ(x)− G1+2χ(x)θ θ̄ .

REMARK 42. Note that when χ = 0, the superfield � corresponds to the formal func-
tional integral

e−
1
2

∫ [�(m2−�S)�]dx dθ dθ̄D�,

where D�= DψDψ̄DϕDη and where �S =�+ ∂θ∂θ̄ is the super-Laplacian, where ∂θ , ∂θ̄
are the Grassmannian derivative such that ∂θ (θ)= ∂θ̄ (θ̄ )= −1, ∂θ (θ̄)= ∂θ̄ (θ)= 0, ∂θ (θ̄θ)=
−θ̄ and ∂θ̄ (θ̄θ)= θ (see, e.g., [61] Chapter 20 or [63], Section 16.8.4).

Then

1

2

∫ [
�
(
m2 −�S)�]dx dθ dθ̄

= 1

2

∫ [−2ψ̄
(
m2 −�)ψ −ωω+ 2ω

(
m2 −�)ϕ]dx

= 1

2

∫ [−2ψ
(
m2 −�)ψ̄ + ((m2 −�)ϕ)2 + η2]dx

and this indeed corresponds to the action functional appearing in the formal functional inte-
gral for (ψ, ψ̄, ϕ, η). This is in agreement with the fact that the two-point function satisfies
the equation (

m2 −�S)C�(x, θ, θ̄)= δ0(x)δ(θ)δ(θ̄),
where δ(x)δ(θ)δ(θ̄) is the distribution such that∫

F(x, θ, θ̄)δ0(x)δ(θ)δ(θ̄)dx dθ dθ̄ = f∅(0),

namely C� is the Green’s function for (m2 −�S).

5.3. The supersymmetry. On C∞(S) one can introduce the (graded) derivations

Q := 2θ∇ + x∂θ̄ , Q̄ := 2θ̄∇ − x∂θ ,
where x ∈ R

2, ∇ (and in the following also � = div(∇·)) acts only on the space variables
x ∈ R

2, which are such that

Q
(|x|2 + 4θ θ̄

)= Q̄(|x|2 + 4θ θ̄
)= 0,

namely they annihilate the quadratic form |x|2 + 4θ θ̄ . Moreover, if QF = Q̄F = 0, for F as
in equation (52), then we must have

0 =QF(x, θ, θ̄)= 2θ∇f∅(x)+ xfθ̄ (x)+ 2∇fθ̄ (x)θ θ̄ − xfθθ̄ (x)θ,
0 = Q̄F (x, θ, θ̄)= 2θ̄∇f∅(x)+ xfθ (x)− 2∇fθ (x)θ θ̄ + xfθθ̄ (x)θ̄

and, therefore,

∇f∅(x)= x
2
fθθ̄ (x) and fθ (x)= fθ̄ (x)= 0.
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If we also request that F is invariant with respect to R
2 rotations in space, then there ex-

ists an f such that f (|x|2) = f∅(x) from which we deduce that 2xf ′(|x|2) = ∇f (|x|2) =
∇f∅(x)= x

2fθθ̄ (x) which implies

f
(|x|2 + 4θ θ̄

)= f (|x|2)+ 4f ′(|x|2)θ θ̄ = f∅(x)+ fθθ̄ (x)θ θ̄ = F(x, θ, θ̄).
Namely any function satisfying these two equations can be written in the form

F(x, θ, θ̄)= f (|x|2 + 4θ θ̄
)
.

Observe that if we introduce the linear transformations

τ(b, b̄)

⎛⎝xθ
θ̄

⎞⎠=
⎛⎜⎝x + 2b̄θρ + 2bθ̄ρ

θ − (x · b)ρ
θ̄ + (x · b̄)ρ

⎞⎟⎠ ∈ G(θ, θ̄ , ρ)

for b, b̄ ∈ R
2 and where ρ is a new odd variable anticommuting with θ , θ̄ and itself, then we

have
d

dt

∣∣∣∣
t=0
τ(tb, t b̄)F (x, θ, θ̄)= d

dt

∣∣∣∣
t=0
F
(
τ(tb, t b̄)(x, θ, θ̄)

)
= (b · Q̄+ b̄ ·Q)F(x, θ, θ̄)

so τ(b, b̄)= exp(b · Q̄+ b̄ ·Q) and τ(tb, t b̄)τ (sb, sb̄)= τ((t + s)b, (t + s)b̄). In particular,
F ∈ C∞(S) is supersymmetric if and only if F is invariant with respect to rotations in space
and for any b, b̄ ∈ R

2 we have τ(b, b̄)(F )= F .
By duality, the operators Q, Q̄ and τ(b, b̄) also act on the space S ′(S) and we say that

the distribution T ∈ S ′(S) is supersymmetric if it is invariant with respect to rotations in
space and Q(T )= Q̄(T )= 0. For supersymmetric functions and distribution, the following
fundamental theorem holds.

THEOREM 43. Let F ∈ S(S) and T ∈ S ′(S) such that T0 is a continuous function. If
both F and T are supersymmetric, then we have the reduction formula

(55)
∫
T (x, θ, θ̄) · F(x, θ, θ̄)dx dθ dθ̄ = 4πT∅(0)F∅(0).

PROOF. The proof can be found in [39], Lemma 4.5 (see also [54] for a general proof on
supermanifolds). �

Let us note that

QC�(x, θ, θ̄)= Q̄C�(x, θ, θ̄)= 0,

indeed we can check that

∇G2+2χ(x)=
∫
R2

dk

(2π)2
(ik)eik·x

(m2 + |k|2)2+2χ

= − i

2(1 + 2χ)

∫
R2

dk

(2π)2
eik·x∇k 1

(m2 + |k|2)1+2χ

= i

2(1 + 2χ)

∫
R2

dk

(2π)2
(ix)eik·x

(m2 + |k|2)1+δ = − x

2(1 + 2χ)
G1+2χ(x)

= − x 
2

G1+2χ(x).

As a consequence, expectation values of polynomials over the superfield � are invariant
under the supersymmetry generated by any linear combinations of Q, Q̄.
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REMARK 44. The previous discussion implies that

(56) τ(b, b̄)C�(x, θ, θ̄)= C�(x, θ, θ̄).
As a consequence, the superfield �′ := τ(b, b̄)� is a Gaussian free field and has the same
correlation function C�′ as � given by equation (54). However, it is important to stress
that this does not imply that �′ has the same “law” as �, namely that 〈F(�′)〉 = 〈F(�)〉
for nice arbitrary functions. Indeed the correlation function given in equations (54) involves
only the product 〈�(x, θ, θ̄)�(x, θ ′, θ̄ ′)〉 of the complex superfield � and not also the prod-
uct 〈�(x, θ, θ̄)�̄(x, θ ′, θ̄ ′)〉 of � with its complex conjugate �̄. The law of � would have
been invariant with respect super transformations if and if only 〈�(x, θ, θ̄)�(x, θ ′, θ̄ ′)〉
and 〈�(x, θ, θ̄)�̄(x, θ ′, θ̄ ′)〉 had been both supersymmetric. Unfortunately, the function
〈�(x, θ, θ̄)�̄(x, θ ′, θ̄ ′)〉 is not invariant with respect to super transformations.

5.4. Expectation of supersymmetric polynomials. As explained in Remark 44, the law
of � is not supersymmetric. Nevertheless, we can deduce important consequences from the
supersymmetry of the correlation function C�. More precisely, since � is a free field Wick’s
theorem (see, e.g., [26] Chapter 3, Section 8) hold and〈 2n∏

i=1

�(xi, θi, θ̄i)

〉
χ

= ∑
{(ik,jk)}k

n∏
k=1

C�
(
xik − xjk , θik − θjk , θ̄ik − θ̄jk

)
,(57)

〈2n+1∏
i=1

�(xi, θi, θ̄i)

〉
χ

= 0.(58)

By the supersymmetry of C�(x − x′, θ − θ̄ , θ − θ̄ ′) and of its products, we obtain that〈 2n∏
i=1

τ(b, b̄)(�)(xi, θi, θ̄i)

〉
χ

=
〈 2n∏
i=1

�(xi, θi, θ̄i)

〉
χ

.

The previous equality implies that

(59)

〈
n∏
i=1

∫
Pi(�) · τ(b, b̄)(F i)dx dθ dθ̄

〉
χ

=
〈
n∏
i=1

∫
τ(b, b̄)

(
Pi(�)

) · F i dx dθ dθ̄

〉
χ

=
〈
n∏
i=1

∫
Pi
(
τ(b, b̄)(�)

) · F i dx dθ dθ̄

〉
χ

=
〈
n∏
i=1

∫
Pi(�) · F i dx dθ dθ̄

〉
χ

,

where P1, . . . ,Pn are arbitrary polynomials and F 1, . . . ,F n arbitrary functions on super-
space.

LEMMA 45. Let F 1, . . . ,F n ∈ S(S) be supersymmetric smooth functions and P1, . . . ,

Pn be n polynomials then〈
n∏
i=1

∫
Pi(�)(x, θ, θ̄) · F i(x, θ, θ̄)dx dθ dθ̄

〉
χ

= (4π)n
〈
n∏
i=1

f i∅(0)Pi
(
φ(0)

)〉
χ

.
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PROOF. We define the distribution H1 ∈ S ′(G) in the following way:

H1(G) :=
〈 ∫
P1(�)(x, θ, θ̄) ·G(x, θ, θ̄)dx dθ dθ̄

×
n∏
i=2

∫
Pi(�)(x, θ, θ̄) · F i(x, θ, θ̄)dx dθ dθ̄

〉
χ

for any G ∈ S(G). Using the fact that F 2, . . . ,F n are supersymmetric and relation (59), we
have that

H1(τ(b, b̄)(G))
=
〈∫
P1(�) · τ(b, b̄)(G)dx dθ dθ̄

n∏
i=2

∫
Pi(�) · F i dx dθ dθ̄

〉
χ

=
〈∫
P1(�) · τ(b, b̄)(G)dx dθ dθ̄

n∏
i=2

∫
Pi(�) · τ(b, b̄)(F i)dx dθ dθ̄

〉
χ

=H1(G).

This means that H1 is supersymmetric and since F 1 is also supersymmetric, by Theorem 43
we conclude

H1(F 1)= f 1
∅(0)H1

0(0)

= (4π)
〈
f 1
∅(0)Pi

(
φ(0)

) n∏
i=2

∫
F i · Pi(�)dx dθ dθ̄

〉
χ

= H1(K),

where K := (4π)δ0(dx)θ θ̄ . Setting

H2(G) :=
〈(∫

Pi(�)K dx dθ dθ̄
)

×
(∫
Pi(�)Gdx dθ dθ̄

) n∏
i=3

∫
Pi(�)F

i dx dθ dθ̄
〉
χ

and reasoning similarly we also conclude that H2(F 2)= H2(V ). Proceeding by transforming
each subsequent factor, we can deduce that〈

n∏
i=1

∫
Pi(�)F

i dx dθ dθ̄

〉
χ

=
〈
n∏
i=1

∫
Pi(�)K dx dθ dθ̄

〉
χ

= (4π)n
〈
n∏
i=1

f i∅(0)Pi
(
φ(0)

)〉
χ

.
�

PROOF OF THEOREM 26. It is enough to use Lemma 45 with P1 = p, P2 = · · · =
Pn+1 = P , F1 = −θ θ̄δ0(x) and F2 = · · · = Fn+1 = f̃ (|x|2 + 4θ θ̄) to conclude. �

REMARK 46. The dimensional reduction proof via supersymmetry is already present in
[39] and indeed our result is analogous, under different hypotheses, to Theorem II in [39]. The
proofs of Lemma 35, Lemma 37 and Lemma 39 above follows the same ideas of Lemma 3.1,
Lemma 3.2 and Lemma 3.3 in [39]. We decided to propose a detailed proof of Theorem 17
mainly for two reasons:
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1. The first reason is that the hypotheses on the potential V of Theorem 17 and of The-
orem II in [39] are quite different. Indeed in [39], only polynomial potentials are considered
while Hypothesis Vλ permits to consider polynomial of at most fourth degree perturbed by
any bounded function. In order to prove the boundedness of �U in Lp(μ) under these dif-
ferent hypotheses, we need to prove Lemma 36 which is a trivial consequence of hypercon-
tractivity when the potential V is polynomial but is based on the nontrivial inequality (46)
(proven in [59]) for general potentials V .

2. The second main reason is the difference in the use of supersymmetry and of the
supersymmetric representation of the integral (32). Indeed, in our opinion, there is a little gap
in the proof of Theorem III of [39] that cannot be fixed without developing a longer proof.
More precisely, in the proof of Theorem III of [39] it is tacitly assumed that the expression

"(F) :=
〈
g
(
ϕ(0)

)
exp
(
−
∫
V (�)F dθ dθ̄ dx

)〉
χ

,

is supersymmetric with respect to the function F , that is, if F is a smooth function in S(S)
and τ(b, b̄) is a supersymmetric transformation, then we have that"(τ(b, b̄)(F ))=G(F). In
our opinion, this fact is nontrivial since the law of � is not supersymmetric (see Remark 44).
What can be easily proven is only that the expressions

"n(F ) :=
〈
g
(
ϕ(0)

)(∫
V (�)F dθ dθ̄ dx

)n〉
χ

are supersymmetric in F (see Theorem 26 above). This fact alone does not easily imply that
"(F) is supersymmetric. Indeed for the discussion in Section 4, we cannot guarantee that
the series (38), which is equivalent to "(F)=∑

n≥0
1
n!"

n(F ), converges absolutely when V
growth at infinity at least as a polynomial of fourth degree (and we do not know under which
conditions on V and F it converges relatively). In order to overcome this problem, we propose
a proof of Theorem 17 which exploits only indirectly the supersymmetric representation of
the integral (32) in a way which permits to use only the supersymmetry of the expressions
"n(F ) and avoiding the proof of the supersymmetry of the expression "(F).

6. Removal of the spatial cut-off. In this section, we prove Theorem 4 on the removal
of the spatial cut-off in the setting of Hypothesis C. It is important to note that, differently
from Theorem 18, we explicitly require that the potential V satisfies Hypothesis C and not
only Hypothesis QC. This is not due to problems in proving the existence of solutions to
equation (10) or in proving the convergence of the cut-offed solution to the noncut-offed
one without the Hypothesis C (see Lemma 48). The main difficulty is instead to prove the
convergence of ϒf (φ)/Zf to 1. Indeed the previous factor does not actually converge and
what we can reliably expect is that

(60) lim
f→1

Z−1
f E

[
ϒf (φf )|σ (φf (0))]→ 1,

where hereafter φf denotes the solution to the equation (6) with cut-off f , that is,
ϒf (φf )/Zf becomes independent with respect to the σ -algebra generated by φf (0).

To prove (60) directly is quite difficult due to the nonlinearity of the equation or equiva-
lently to the presence of the regularized Fredholm determinant in the expressions (26) and
(25) (which is a strongly nonlocal operator). For this reason, we want to exploit a reasoning
similar to the one used in Section 4. With this aim, we introduce the equation

(61)
(
m2 −�)φf,t + tf ∂V (φf,t )= ξ

and the functions

FLf (t) := Z−1
f E

[
L
(
φf,t (0)

)
e4t

∫
R2 f

′(x)V (φf,t (x))dx],
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where t is taken such that t∂2V (y)+m2 is positive definite, and FL(t)= E[L(φt (0))] (where
φt is the solution to (61) with f ≡ 1). By Lemma 31, (whose proof does not use in any point
the cut-off f ) FL(t) is real analytic whenever V is a trigonometric polynomial, t∂2V (y)+
m2 is definite positive for any y ∈ R

n and L is an entire bounded function. Furthermore,
by Theorem 18, FLf (t) = HL(t) (where HL(t) = ∫

L(y)dκt (y), see Section 4) which is

real analytic. Thus if we are able to prove that limf→1 ∂
n
t F

L
f (0) = ∂nt FL(0) we have that

HL(t)= FL(t) whenever t∂2V +m2 is definite positive proving that Theorem 4 when V is a
trigonometric polynomial satisfying Hypothesis C. The idea then is to apply a generalization
of Lemma 21, Lemma 24, Lemma 25 and the reasoning in the proof of Proposition 34 and in
the proof of Theorem 18 in order to obtain Theorem 4.

REMARK 47. Hypothesis C is required in an essential way in the proof of the holomor-
phy of FL(t), in particular in Lemma 31. The fact that the cut-off is removed does not allow
to reason by approximation as we did in Theorem 17.

Since the proof is composed by many steps which is a straightforward generalization of
the results of the previous sections of the paper, we write here only some details of the parts
of the proof of Theorem 4 which largely differ from what has been obtained before.

Hereafter, we denote by ωβ(x) the function

ωβ(x) := exp
(−β√(1 + |x|2))

and introduce the space Wβ where β > 0 in the following way:

Wβ := (−�+ 1)C0
expβ

(
R

2;Rn),
where C0

expβ is the space of continuous function with respect to the weighted L∞ norm

‖g‖∞,expβ := sup
x∈R2

∣∣ωβ(x)g(x)∣∣.
The triple (Wβ,H,μ) is an abstract Wiener space. We introduce the obvious generalization
of equation (18)

(62)
(
m2 −�)φ̄ + ∂V (φ̄ + Iξ)= 0,

where φ̄ = φ − Iξ .
Now we want to prove a result that can replace Lemma 7. Indeed Lemma 7 plays a central

role in the previous sections of the paper, allowing to prove the existence of strong solutions
to equation (6), the characterization of weak solutions in Theorem 13 and Theorem 14 and fi-
nally allowing to show the convergence of weak solutions using the convergence of potentials
in Lemma 21, Lemma 24.

LEMMA 48. Suppose that V satisfies the Hypothesis QC and suppose that φ̄ is a classi-
cal solution to equation (62). Then there exists a β0 depending only on m2 such that, for any
β < β0,

(63) ‖φ̄‖∞,expβ �
∥∥exp

(
α|Iξ |)∥∥∞,expβ,

where ‖ exp(α|Iξ |)‖∞,expβ is almost surely finite and the constants implied by the symbol �
depend only on H and m2. Furthermore, for any U open and bounded we have

(64) ‖φ̄‖C2−τ (U) �
∥∥exp

(
αp|Iξ |)∥∥Uε,∞ exp

(
αp‖φ̄‖∞,expβ

∥∥ω−1
β

∥∥
Uε,∞

)
,

where Uε := {x ∈ R
2|∃y ∈U, |y − x| ≤ ε} and ε > 0.
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PROOF. The proof is very similar to the proof of Lemma 7. We report here only the
passages having the main differences. For any ε > 0, there is a βε > 0 and for any β < βε we
have ∣∣∣∣�(ω2β(x))

ω2β(x)
− |∇ω2β(x)|2

ω4β(x)

∣∣∣∣< ε, x ∈ R
2.

Without loss of generality (using the result of Lemma 7), we have that limx→∞ |φ̄(x)|2 ×
ω2β(x)= 0 and so x �→ |φ̄(x)|2ω2β(x) has a positive maximum at x̄ ∈ R

2. This means that

−�(|φ̄|2ω2β)(x̄)≥ 0 and ∇φ̄ = − φ̄
2ω2β

∇ω2β we have that

(
m2 − ε)∣∣φ̄(x̄)∣∣2ω2β(x̄)≤ −�(|φ̄|2ω2β)(x̄)

2
+m2∣∣φ̄(x̄)∣∣2ω2β(x̄)

≤ −ω2β(x̄)
(
φ̄(x̄) · ∂V (Iξ(x̄)+ φ̄(x̄))).

Using a reasoning similar to the one of Lemma 7, the thesis follows. �

Since the bounds (63) and (64) in C0
expβ and C2−τ

loc imply the compactness in C0
expβ ′ when

β ′ < β , Lemma 48 permits to prove the existence of strong solutions to equation (10), their
uniqueness when V satisfies Hypothesis C and the generalization of Lemma 21, Lemma 24,
Lemma 25, Proposition 34 and Theorem 18 needed in order to prove Theorem 4.

At this point, the proof of Theorem 4 requires only the following additional statement.

THEOREM 49. Let V be a trigonometric polynomial, let L be a polynomial and let fr
be a sequence of cut-offs satisfying Hypothesis CO, such that fr ≡ 1 on the ball of radius
r ∈ N and such that f ′

r (x)≤ C1 exp(−C2(|x| − r)) for some positive constants C1,C2 ∈ R+
independent on r . Then

∂kt H
L(0)= lim

r→+∞ ∂
k
t F

L
fr
(0)= ∂kt FL(0).

To make the proof easy to follow, we restrict ourselves to the scalar case, that is, the case
where n= 1. The general case is a straightforward generalization. We will also need certain
results about iterated Gaussian integrals. So let us introduce first some notation.

We denote by T the set of rooted trees with at least a external vertex which is not the root.
We denote by τ0 the tree with only one vertex other than the root. In this set, we introduce
two operations: if τ ∈ T , we denote by [τ ] the tree obtained from τ by adding a new vertex
at the root which becomes the new root, and if τ ′ ∈ T we denote by τ · τ ′ the tree obtained
by identifying the root of τ and τ ′. It is possible to obtain any element of T by applying
iteratively a finite number of times the previous operations to τ0. Furthermore, we define
Ifτ (x) ∈ C0(R2) by induction in the following way:

Ifτ0(x) := Iξ, If[τ ](x) :=
∫
R2

G(x − y)f (y)Ifτ (y)dy,

Ifτ ·τ ′(x) := Ifτ (x) · Ifτ ′(x),

where G(x) is the Green function of the operator I = (m2 −�)−1. We need also to introduce
the following notation. Suppose that τ, τ ′ ∈ T and let Pτ,τ ′ be the set of all possible pairing
between the external vertices (except their roots) of the forest τ � τ ′ and let P int

τ,τ ′ ⊂ Pτ,τ ′ the
set of all possible pairing involving separately the vertices of τ and τ ′. If π ∈P, we write

I
π,f

τ,τ ′(x, y)= E
[
Ĩπ,fτ (x) · Ĩπ,fτ ′ (y)

]
,
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where Ĩπ,fτ (x), Ĩπ,fτ ′ (y) are the expression Ifτ (x) where ξ is replaced by some copies of
Gaussian white noises ξV one for each vertex V of τ and τ ′ which have correlation 0 if
(V ,V ′) /∈ π and are identically correlated otherwise.

LEMMA 50. With the notation and the hypotheses of Theorem 49, we have that for any
τ, τ ′ ∈ T ,

lim
r→+∞

(
E

[
Ifrτ (0) ·

p∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

]

−E
[
Ifrτ (0)

] ·E[ p∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

])
= 0.

PROOF. We present the proof only for the case p = 1, since the general case is a straight-
forward generalization. Since Ifrτ are Gaussian random variables depending polynomially
with respect to the white noise ξ , using the notation previously introduced we have

E

[
Ifrτ (0) ·

∫
f ′
r (x)I

fr
τ ′ (x)dx

]
−E

[
Ifrτ (0)

] ·E[∫ f ′
r (x)I

fr
τ ′ (x)dx

]
= ∑
π∈Pτ,τ ′ \P int

τ,τ ′

∫
R2

I
π,fr
τ,τ ′ (0, x)f ′

r (x)dx.

Let us consider the simplest case when τ = τk := [. . . [τ0] . . .] k times and τ ′ = τk′ =
[. . . [τ0] . . .] k′ times. In this case, we have

I
π,fr
τ,τ ′ (0, x)=

∫
G(0 − y1)fr(y1) · · ·G(yk − x1)

× G(x1 − x2)fr(x2) · · ·fr(xk′)G(xk′ − x)dy1 · · · dyk dx1 · · · dxk.

In particular, since C(x)= G∗G, which is the Green function of I2 = (m2 −�)−2, is bounded
and positive, and since G is positive we obtain that∣∣Iπ,frτ,τ ′ (0, x)

∣∣≤ G∗ · · · ∗G︸ ︷︷ ︸
k+k′ times

(0 − x)=
∫
R2

e−il·x

(|l|2 +m2)k+k′
dl.

Thus we get ∣∣Iπ,frτ,τ ′ (0, x)
∣∣ · (|x|2 + 1

)≤ ∣∣∣∣∫
R2
(−�l + 1)

e−il·x

(|l|2 +m2)k+k′
dl
∣∣∣∣≤ C3,

where C3 ∈ R+. Thus∫
R2

I
π,fr
τ,τ ′ (0, x)f ′

r (x)dx

≤
∫
Bcr

C3

(|x|2 + 1)
C1 exp

(−C2
(|x| − r))dx �C1,C2,C3

1

r2 + 1
→ 0.

For the general case, let us note that Iπ,frτ,τ ′ (0, x) is built by taking the product and the convo-
lution with the functions G, fr and C = G∗G. We note that C appears one time for every pair
of vertices (V1,V2) ∈ π . Then, since π /∈ P int

τ,τ ′ there is at least a couple (V ,V ′) ∈ π such that
V is a vertex of τ and V ′ is a vertex of τ ′. Now we can bound the function C with a constant
C4 for all pairs of vertices (V1,V2) 
= (V ,V ′) and fr by 1 obtaining, for any x ∈ R

2, that

I
π,fr
τ,τ ′ (0, x)� Ck1

4 Ifrτk2 ,τk3
(0, x)
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for some k1, k2, k3 ∈ N. The thesis follows from the previous inequality and the bounds ob-
tained on I

fr
τk2 ,τk3

(0, x). �

PROOF OF THEOREM 49. We write

Lfr (t) := L
(
φfr ,t (0)

)
Efr (t) := exp

(
4t
∫
R2
f ′
r (x)V

(
φfr ,t (x)

)
dx
)
.

We have

∂kt F
L
fr
(t)= ∑

0≤l≤k

(
k

l

)
E

[
L
(k−l)
fr

(0)∂lt

(
Efr (t)

E[Efr (t)]
)∣∣∣∣
t=0

]

= E
[
L
(k)
fr
(0)
]+ ∑

1≤l≤k

∑
0≤p≤l−1

(
k

l

)(
l

p

)(
E
[
L
(k−l)
fr

(0) ·E(l−p)fr
(0)
]

−E
[
L
(k−l)
fr

(0)
]
E
[
E
(l−p)
fr

(0)
]) · ∂pt ( 1

E[Efr (t)]
)∣∣∣∣
t=0
,

where we used the Leibniz rule for the derivative of the product and the relation

∂lt

(
1

E[Efr (t)]
)∣∣∣∣
t=0

= − ∑
0≤p≤l−1

(
l

p

)
E
[
E
(l−p)
fr

(0)
] · ∂pt ( 1

E[Efr (t)]
)∣∣∣∣
t=0
.

Since ∂pt (
1

E[Efr (t)])|t=0 is bounded from above and below when r → +∞ if we are

able to prove that E[L(k)fr (0)] → ∂kt F
L(0) and E[L(k−l)fr

(0) · E(l−p)fr
(0)] − E[L(k−l)fr

(0)] ×
E[E(l−p)fr

(0)] → 0, the theorem is proven.
First of all, we note that

(65)
(
m2 −�)∂kt φfr ,t |t=0 = kfr∂k−1

t

(
V (φfr ,t )

)|t=0

for k > 0 and φfr ,0 = Iξ for k = 0. This means that L(k−l)fr
(0), E(l−p)fr

(0) are given by a finite
combination of convolutions and products between the function G (i.e., the Green function of
I), the functions of the form V (l)(φfr ,0) (where V (l) is the lth derivative of V ), the cut-off fr
and f ′

r . Since V is a trigonometric polynomial, by developing V and its derivative by Taylor
series, we obtain the following formal expressions:

(66)

L
(k)
fr
(0)= ∑

τ∈T
AkτIfrτ (0),

E
(k)
fr
(0)= ∑

l

∑
τ1,...,τl∈T

B
k,l
(τ1,...,τl )

l∏
i=1

∫
R2
f ′
r (x)Ifrτi (x)dx.

The previous series are not only formal but they are actually absolutely convergent series.
Furthermore, we can change the integral, the expectation and the limit with the series.

In order to prove this, we now note that there exist two positive constantsC,α > 0 such that
the function V is majorized (in the meaning of the majorants method) by C exp(αx) and let L̃
be the polynomial which majorizes the polynomial L. We now consider L̃fr (t)= L̃(φfr ,f (0))
and Ẽfr (t)= (tC

∫
R2 f ′

r exp(αφfr ,t (x))dx). For what we said, L̃(k)fr (0) and Ẽ
(p)
fr
(0) are a finite

combination of convolutions and products between G, the functions of the form V (l)(φfr ,0)
(where V (l) is the lth derivative of V ), the cut-off fr and f ′

r . Let L̂kfr and Êkfr
be some

random variables having the same expression of L̃(k)fr (0) and Ẽ
(p)
fr
(0) where we replace every

appearance of V (φfr ,0(x)) by C exp(α|φfr ,0(x)|), every appearance of V ′(φfr ,0(x)) with
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Cα exp(α|φfr ,0(x)|) and so on. We introduce the following functions dependent on τ ∈ T
and defined recursively as follows:

J frτ0 (x) :=
∣∣Ifrτ0 (x)∣∣J fr[τ ](x) :=

∫
R2

G(x − y)fr(y)J frτ (y)dy,

J frτ ·τ ′(x) := J frτ (x) ·J frτ ′ (x).

We then obtain that

L̂
(k)
fr

= ∑
τ∈T
ÂkτJ frτ (0)Ê

(k)
fr

=∑
l

∑
τ1,...,τl∈T

B̂
k,l
(τ1,...,τl )

l∏
i=1

∫
R2
f ′
r (x)J frτi (x)dx.

By our construction, we have that Âkτ , B̂k,lτ,i are all greater or equal than zero and also

the following inequalities hold |Akτ | ≤ Âkτ , |Bk,l(τ1,...,τl )| ≤ B̂k,l(τ1,...,τl ). Furthermore, we have

|Ifrτ (x)| ≤ J frτ (x). Finally, E[|L̂(k)fr |p], E[|Ĝ(k)fr |p] are finite for any p, since the x1, . . . , xl
function,

E

[
exp

(
βα

l∑
i=1

∣∣φfr ,0(xi)∣∣
)]

≤ +∞,

for any β > 0. Since G is positive, the bounds on E[|L̂(k)fr |p], E[|Ĝ(k)fr |p] can be chosen uni-
formly on r . This implies that the series (66) are absolutely convergent and by Lebesgue’s
dominated convergence theorem we can exchange the series with the summation and the
limit. This means that

lim
r→+∞E

[
L
(k)
fr
(0) ·E(l)fr (0)

]−E
[
L
(k)
fr
(0)
]
E
[
E
(l)
fr
(0)
]

= lim
r→+∞

∑
l∈N,τ,τ1,...,τl∈T

AkτB
k,l
(τ1,...,τl )

(
E

[
Ifrτ (0) ·

l∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

]

−E
[
Ifrτ (0)

] ·E[ l∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

])

= ∑
l∈N,τ,τ1,...,τl∈T

AkτB
k,l
(τ1,...,τl )

lim
r→+∞

(
E

[
Ifrτ (0) ·

l∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

]

−E
[
Ifrτ (0)

] ·E[ l∏
i=1

∫
f ′
r (x)Ifrτi (x)dx

])
= 0,

where in the last line we used Lemma 50. In a similar way, it is simple to prove that

E
[
L
(k)
fr
(0)
]→ ∂kt F

L(0),

and this concludes the proof. �

PROOF OF THEOREM 4. Using the bounds (63) and (64), we can prove the existence of
strong solutions to equation (10), and their uniqueness when V satisfies Hypothesis C.

Furthermore, using again the bounds (63) and (64) and a suitable generalization of
Lemma 21, Lemma 24, Lemma 25, we can prove that Theorem 4 holds for any potential
satisfying Hypothesis C if and only if Theorem 4 holds for trigonometric potentials satisfy-
ing Hypothesis C.

The fact that Theorem 4 holds for trigonometric potentials, satisfying Hypothesis C, is a
consequence of Theorem 49. �
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APPENDIX A: TRANSFORMATIONS IN ABSTRACT WIENER SPACES

This Appendix summarizes the results of [59] which are used in the paper and estab-
lish the related notation. Hereafter, we consider an abstract Wiener space (W,H,μ) where
W is a separable Banach space, H is an Hilbert space densely and continuously em-
bedded in W (with inclusion map denoted by i : H → W ) called the Cameron–Martin
space and μ is the Gaussian measure on W associated with the Cameron–Martin space,
that is, μ is the centered Gaussian measure on W such that for any w∗ ∈ W ∗ we have

μ̂(w∗) = ∫
W exp(i〈w∗,w〉)dμ(w) = exp(−‖i∗(w∗)‖2

H
2 ) where i∗ : W ∗ → H is the dual op-

erator of i.
If u :W → R is a measurable nonlinear functional, we denote by ∇u :W → H the fol-

lowing linear operator:

∇u(w)[h] = 〈∇u(w),h〉H := lim
ε→0

u(w+ εh)− u(w)
ε

.

The operator ∇ is called a Malliavin derivative and it is possible to prove that it is closable
(with unique closure) on the set of measurable Lp(μ) functions. We denote the domain of
∇ in Lp(μ) by Dp,1. The previous operation can be extended for functional u :W → H⊗k
where ∇u :W →H⊗k+1 with its natural topology. Also, this extension of the operator ∇ is
closable.

If the measurable nonlinear operator F : W → H , where |F |H ∈ Lp(μ), is such that
E[〈F,∇u〉H ] = E[F̃ u] for some F̃ ∈ Lp(μ), we say that F is in the domain of the operator δ
and we denote by δ(F )= F̃ ∈ Lp(μ) the Skorokhod integral of the measurable operator F .
The following expression for δ(F ) used in the following holds: suppose that F(w) ∈ i∗(W ∗)
and that ∇F(w) is a trace class operator on H for μ almost every w ∈W then

(67) δ(F )(w)= 〈
i∗,−1(F(w)),w〉− Tr

(∇F(w)).
We introduce a definition for studying the random transformations defined on abstract Wiener
spaces.

DEFINITION 51. Let U :W →H be a measurable map. We say that U is a H −C1 map
if for μ almost every w ∈W the map Uw :H →H , defined as h �−→Uw(h) :=U(w+h), is
a Fréchet differentiable function in H and if ∇Uw :H →H⊗2, defined as h �−→ ∇Uw(h) :=
∇U(w + h) where ∇ is the Malliavin derivative, is continuous for almost every w ∈W and
with respect to the natural (Hilbert–Schmidt) topology of H⊗2.

We introduce the shift T :W →W associated with U , that is, the map defined as T (w)=
w+U(w), and the nonlinear functional �U :W →R as follows:

(68) �U(w)= det2
(
IH + ∇U(w)) exp

(
−δ(U)(w)− 1

2

∣∣U(w)∣∣2H),
where det2(IH +K) is the regularized Fredholm determinant (see [56] Chapter 9) that it is
well defined for any Hilbert–Schmidt operator K . In particular, if K is self-adjoint, we have

det2(I +K)= ∏
i∈N
(1 + λi)e−λi ,

where λi are the eigenvalues of the operator K .
Suppose that U(w) ∈ i∗(W) and that ∇U(w) is a trace class operator for almost any w ∈

W , then using the expression (67) and the properties of det2 we obtain

(69) �U(w)= det
(
IH + ∇U(w)) exp

(
−〈i∗,−1(U(w)),w〉W − 1

2

∣∣U(w)∣∣2H),
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where det(IH + K) is the standard Fredholm determinant. The functional �U is closely
related to the transformation of the measure μ with respect to the transformation T . Indeed
suppose that W is finite dimensional, then we have

dμ= exp
(
−1

2
〈w,w〉H

)
dx

Z
= exp

(
−1

2

〈
i∗,−1(w),w

〉
W

)
dx

Z
,

where Z ∈ R+ is a suitable normalization constant and dx is the Lebesgue measure on W .
Thus, if T is a diffeomorphism on W , we evidently have thanks to equation (69),

dT∗(μ)
dμ

=
∣∣∣∣det

(
I + ∇U(w)) exp

(
− 〈i∗,−1(U(w)),w〉W

− 1

2

〈
i∗,−1(U(w)),U(w)〉W)∣∣∣∣= ∣∣�U(w)∣∣.

The previous relation can be extended to the case where W and H are infinite dimensional
and the transformation T is not a diffeomorphism but it is only a H −C1 map.

First of all, we need the following generalization to the abstract Wiener space context of
the finite dimensional Sard lemma.

PROPOSITION 52. Let T (w) = w + U(w) be a H − C1 map and let M ⊂ W be the
set of the zeros of det2(I + ∇U(w)), then the μ measure of the set T (M) is zero, that is,
μ(T (M))= 0.

PROOF. See Theorem 4.4.1 [59]. �

The following is the change of variable theorem for (generally not invertible) H − C1

maps.

THEOREM 53. Let T (w) = w + U(w) be a H − C1 map and let f , g be two positive
measurable functions, then

(70)
∫
W
f ◦ T (w)g(w)∣∣�U(w)∣∣dμ(w)= ∫

W
f (w)

( ∑
y∈T −1(w)

g(y)

)
dμ(w).

In particular, if K ⊂W is a measurable subset where T |K is invertible, we have∫
K
f ◦ T (w)∣∣�U(w)∣∣dμ(w)= ∫

T (K)
f (w)dμ(w).

PROOF. See Theorem 4.4.1 [59]. �

In order to prove Theorem 17, and so the relationship between the weak solutions to equa-
tion (6) and the integrals with respect to the signed measure �U dμ, it is not enough to
consider Theorem 53 but we need a relationship analogous to (70) with |�U | replaced by
�U . In order to achieve this result, we need some more hypotheses on the map U :

Hypothesis DEG1 The map U :W → H ↪→W is a Fréchet differentiable map from W

into itself and, furthermore, it is C1 with respect to the usual topology of W .
Hypothesis DEG2 The map T is proper (i.e., inverse images of compact subsets are com-

pact) and the equation T −1(y) = w has a finite number of solution y for μ almost every
w ∈W .
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Under the Hypothesis DEG1 and DEG2, we can define the following number:

DEG(w,T ) := ∑
y∈T −1(w)

sign
(
det2

(
IW + ∇U(y))).

This index is a suitable modification of the Leray–Schauder degree of a Fredholm nonlinear
operator described, for example, in [11] Section 5.3C, where the following definition is given:
if B is a bounded set ofW such that T −1(w)∩ ∂B =∅ and ∇T (y) 
= 0 for y ∈ T −1(w)∩B
we have

DEGB(w,T )=
∑

y∈T −1(w)∩B
(−1)(number of negative eigenvalues of ∇T (y)).

It is evident that under the Hypothesis DEG2 and, as a consequence of Proposition 52, we
have

lim
B→W DEGB(w,T )= DEG(w,T )

for almost all w ∈W .

THEOREM 54. Under the Hypotheses DEG1 and DEG2, we have that DEG(w,T ) is
μ almost surely equal to the constant DEG(T ) ∈ Z independent of w and for any bounded
function f such that f ◦ T ·�U ∈ L1(μ) we have∫

W
f ◦ T (w)�U(w)dμ(w)= DEG(T ) ·

∫
W
f (w)dμ(w).

PROOF. The proof can be found in [59] Theorem 9.4.1 and Theorem 9.4.6. �

In general, it is not simple to compute DEG(T ) but this computation is simplified under
the following hypothesis.

Hypothesis DEG3 The map Tε(w)=w + εU(w) has bounded level set uniformly in ε ∈
[0,1], that is, if B ⊂W is bounded

⋃
ε∈[0,1] T −1

ε (B) is a bounded set in W .

THEOREM 55. Under the Hypotheses DEG1, DEG2 and DEG3 we have that, for any
ε ∈ [0,1]:

DEG(T )= DEG(w,T )= DEG(w,Tε)= 1.

PROOF. The proposition follows from the invariance of DEGB under homotopies of the
operator T . In other words for any B , such that T −1

ε (w)∩ ∂B = ∅ we have DEGB(w,Tε)=
DEGB(w,T ). Under the Hypothesis DEG3, we can choose B big enough such that
DEGB(w,Tε) = DEG(w,Tε) for any ε ∈ [0,1]. Since DEG(w,T0) = DEG(w, idW) = 1,
the thesis follows. �

APPENDIX B: FERMIONIC FIELDS

In this Appendix, we introduce the notion of fermionic fields used in Section 4 and Sec-
tion 5. For a more detailed discussion about this subject, see [15–17].

We consider a quantum probability space (H, ρ), where H is a separable Hilbert space and
ρ is a positive trace class operator. If K ∈ B(H) (where B(H) is the Hilbert space of bounded
operators defined on H), we define 〈K〉 = Tr(K · ρ).

Let H be a Hilbert space, we consider two continuous linear maps ψ, ψ̄ :H → B(H) such
that for any f1, f2 ∈H we have{

ψ(f1),ψ(f2)
}= {

ψ̄(f1), ψ̄(f2)
}= {

ψ(f1), ψ̄(f2)
}= 0,

where {K1,K2} =K1 ·K2 +K2 ·K1 is the anticommutator of the operators K1,K2 ∈ B(H).
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DEFINITION 56. Using the previous notation, the two antisymmetric fields ψ, ψ̄ :H →
B(H) are called fermionic fields associated with the Hilbert space H if we have that

(71)
〈
ψ̄(f1)ψ(g1) . . . ψ̄(fn)ψ(gn)

〉= det
(〈fi, gj 〉).

The following theorem ensure the existence of a pair of fermionic fields for each separable
Hilbert space H .

THEOREM 57. For any separable Hilbert space H , there exists a quantum probability
space (H, ρ) and two continuous linear maps ψ, ψ̄ :H → B(H) such that ψ , ψ̄ are a pair of
fermionic fields associated with H . Furthermore, we have

(72)
∥∥ψ(f )∥∥B(H),∥∥ψ̄(f )∥∥B(H) ≤ 2‖f ‖H

(we use the notation ‖ · ‖K for the norm in a Hilbert space K).

PROOF. By standard results of quantum fields theory (see, e.g., [8], Chapter 2), there are
four operators a, a∗, b, b∗ :H → B(H) (formed by two independent pairs of anticommuting
creation a, b and anticommuting adjoint annihilation a∗, b∗ operators) such that{

a(f ), a(g)
}= {

b(f ), b(g)
}= 0,{

a(f ), b(g)
}= {

a∗(f ), b(g)
}= 0,{

a∗(g), a(f )
}= {

b∗(g), b(f )
}= 〈f,g〉HIH,

and such that 〈
a(f )K

〉= 〈
Ka∗(f )

〉= 〈
b(f )K

〉= 〈
Kb∗(f )

〉= 0

for any f,g ∈H and any bounded operator K ∈ B(H). Consider now

ψ(f )= a∗(f )+ b(f ), ψ̄(f )= b∗(f )− a(f ),
where f ∈ H . We want to prove that ψ , ψ̄ are the two fermionic fields associated
with H fields of the thesis of the theorem. Obviously, {ψ(f ), ψ̄(g)} = {ψ(f ),ψ(g)} =
{ψ̄(f ), ψ̄(g)} = 0, so we have only to prove that ψ , ψ̄ satisfy equality (71) and inequal-
ity (72).

We prove equality (71) by induction on n. By the properties of a, a∗, b, b∗, we have〈
ψ̄(f1)ψ(g1)

〉= 〈
b∗(f1)a

∗(g1)
〉+ 〈b∗(f1)b(g1)

〉− 〈a(f1)a
∗(g1)

〉
− 〈a(f1)b(g1)

〉= 〈f1, g1〉H .
Suppose that 〈ψ̄(f1)ψ(g1) . . . ψ̄(fn−1)ψ(gn−1)〉 = det(〈fi, gj 〉H ) and we want to prove the
same equality for n operators. We have〈

ψ̄(f1)ψ(g1) . . . ψ̄(fn)ψ(gn)
〉

= 〈
b∗(f1)ψ(g1) . . . ψ̄(fn)ψ(gn)

〉
=

n∑
k=1

(−1)k
〈
b∗(f1)b(gk)

〉〈
ψ̄(f2)ψ(g1) . . . ψ̄(fk)ψ(gk) . . . ψ̄(fn)ψ(gn)

〉

=
n∑
k=1

(−1)k〈f1, gk〉H det
(〈fi, gj 〉|i 
=1,j 
=k

)= det
(〈fi, gj 〉),
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where we use the commutation relations of a∗ with a, b, b∗, the induction hypothesis and the
properties of determinant. Since∥∥a(f )∥∥B(H) = ∥∥a∗(f )

∥∥
B(H) =

∥∥b(f )∥∥B(H) = ∥∥b∗(f )∥∥B(H) = ‖f ‖H ,
ψ , ψ̄ satisfy inequality (72). �

Suppose that i :H ↪→ C0(R2) for some continuous injection i, then by the identification
of H with its dual we have that i∗(δx) ∈ H , where δx ∈ (C0(R2))∗ is the Dirac delta with
mass in x ∈ R

2. In this way, we can define ψ , ψ̄ as continuous functions of the point R2 in
the following way:

ψ(x) :=ψ(i∗(δx))ψ̄(x) := ψ̄(i∗(δx))
and the corresponding covariance function as

S
(
x;x′)= 〈

ψ̄
(
x′)ψ(x)〉.

Hereafter, we suppose that S(x;x′) is a continuous function of the form S(x;x′) = S(x −
x′)≥ 0. In this case, if g ∈ L1(R2), by Theorem 57 we have ‖ψ(x)ψ̄(x)‖B(H) ≤ 2S(0), and
thus

∫
R2 g(x)ψ̄(x)ψ(x)dx is a bounded well-defined operator.

Under the previous condition, the operator Kg : L2(R2)→ L2(R2), defined as Kg(h)(x)=∫
g(x)S(x − x′)h(x′)dx′, is trace class since

Tr
(|Kg|)≤ ∫

R2

∣∣g(x)∣∣Tr
(∣∣ψ̄(x)ψ(x)ρ∣∣)dx ≤ 2S(0)‖g‖L1(R2) <+∞.

This means that the Fredholm determinant (see [56], Chapter 3) det(I + Kg) is well defined
and finite. Furthermore, we have the following representation.

THEOREM 58. Under the previous hypotheses and notation, we have〈
exp
(∫

R2
g(x)ψ̄(x)ψ(x)dx

)〉
= det(I +Kg).

PROOF. By Definition 56 and the definition of the function S, we have that〈(∫
R2
g(x)ψ̄(x)ψ(x)dx

)n〉
=
∫
R2n
g(x1) . . . g(xn)det

(
S(xi − xj ))dx1 . . . dxn

=
∫
R2n

det

⎛⎜⎝g(x1)S(x1 − x1) . . . g(x1)S(x1 − xn)
...

. . .
...

g(xn)S(xn − x1) . . . g(xn)S(xn − xn)

⎞⎟⎠ dx1 . . . dxn.

On the other hand, when S is continuous, by Theorem 3.10 of [56], we have that

det(I +Kg)

=
+∞∑
n=0

1

n!
∫
R2n

det

⎛⎜⎝g(x1)S(x1 − x1) . . . g(x1)S(x1 − xn)
...

. . .
...

g(xn)S(xn − x1) . . . g(xn)S(xn − xn)

⎞⎟⎠ dx1 . . . dxn.

The thesis follows. �

REMARK 59. The fermionic fields considered in Section 4 and Section 5, where S =
 G1+2χ(x−x′),H =W 1+2χ,2(R2) with norm ‖f ‖2

H = ∫
R2(−�+m2)1+2χ(f )(x)f (x)dx,

satisfies all the hypotheses of Theorem 58.
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